Return to Presentations Table of Contents

Historical Development of Cobalt-slurry Fischer-Tropsch Reactor Systems

 Paul Schubert, Stephen LeViness, Kym Arcuri and Branch Russell,

Syntroleum Corporation, Tulsa, OK

 After the pioneering work of Fischer and Tropsch in the 1920’s, it was several years before Fischer and Kuster (1) first published a report of liquid (slurry) phase carbon monoxide hydrogenation.  This work was extended by Fischer and Pichler (2) and Fischer, et al. (3) even conducted the reaction in liquid water in the late 1930s.  The earliest known liquid phase FT patent, awarded to Dr. Mathias Pier of I. G. Farbenindustrie in 1936 (4), was applied for in late 1928, predating Fischer’s publications by about 3 years.  Subsequent patents issued in the US and a number of European countries in the late 1930’s through the early 1950’s (5-22), indicate a fairly high degree of R&D was occurring immediately before and during WWII.  The major players were I. G. Farbenindustrie and Ruhrchemie in Germany, while liquid phase/slurry FT patents were also issued to a number of US companies (M. W. Kellogg Company, Celanese Corporation, The Texas Company, and Standard Oil Development Company).  In most cases, initial slurry R&D involved the typical commercial Co catalyst employed in fixed bed operations at that time.  Stewart, et al. (19) were the first to explicitly specify slurry reactor FT catalyst (preferably Co) particle size, giving a preferred range of 0.0001 to 0.01 inches (2.5-254 mm).  Especially in Germany, however, Co was in extremely short supply and critical to other areas of the war effort, and slurry phase R&D quickly moved to various forms of Fe catalysts.  In addition, Fe catalysts produced a large percentage of highly desirable high octane gasoline range products, while Co catalysts produced a smaller amount of very low octane gasoline; the majority of the Co products were high cetane diesel range compounds. 

 Most of our knowledge of the German slurry R&D effort comes from the technical files maintained by Dr. Pier (23-29) and through interrogations of a number of German researchers – Pier and co-workers, Roelen, and Kolbel (30-32) - conducted by the Allied Technical Missions immediately after the war.  Both Michael (23) and Kolbel (32) reported the construction of large (ca. 1.5 m diameter) pilot/demonstration plant slurry FT reactors, although synthesis gas limitations and/or damage inflicted by Allied bombing prevented their operation during the war.

 In the immediate postwar years, R&D focused on Fe catalyzed, fluidized bed FT technology, principally based on coal (and to a lesser extent natural gas) derived synthesis gases, again targeting high octane gasoline production.  This work culminated in the 8,000 bpd Carthage-Hydrocol plant in Brownsville, Texas, and in the creation of Sasol in South Africa.  In addition the U. S Bureau of Mines operated a demonstration plant employing Fe catalysts in the oil recirculation process in Louisiana, Missouri (33), which was itself based on the earlier, German R&D work (30,34).  Except in South Africa the fledgling synthetic fuel industry was largely terminated due to the oil price collapse that occurred shortly after the discovery of the giant Middle Eastern oil fields.

 Kolbel, Ackermann, and Engelhardt (35) reported the results of  the operation of a large (ca. 1.5 m diameter) Fe catalyzed slurry FT demonstration unit that was in operation in the 1951-1953 time frame.  The results were largely excellent, and led to a series of US and foreign patents, many – but not all – of which were specific to Fe catalysts.  Over the next 25-30 years, the only reported slurry FT investigations largely consisted of attempts to duplicate these results, all of which were unsuccessful.  These studies have been summarized in great detail by Kolbel and Ralek (36), Frohning, et al., (37), and Saxena (38).  Through the oil embargoes of the 1970’s, however, FT was of little interest in most of the world;  commercial FT synthesis – in Fe catalyzed fixed and fluidized beds – was practiced only by Sasol in South Africa, while Kolbel and various coworkers kept the slurry FT flame alive with a steady stream of literature publications.  We note that in a later, summary publication (37), Kolbel and coworkers reported than the 9.6 cm/s maximum superficial gas velocity employed in the Rheinpreussen demonstration plant (35) was due entirely to a limitation in syngas compressor size.  Alternative studies suggested to the authors that had the gas been available, identical conversion performance at 3 times the gas velocity (i.e. 28.8 cm/s) would have been achieved.

 The oil embargoes of the 1970’s re-ignited interest in synthetic fuels.  In the United States most of this interest focused on coal gasification – for power and/or synthetic natural gas production – and high pressure direct coal liquefaction (which was also first developed and practiced in Germany before and during WWII).  FT research was largely confined to small scale, basic catalyst development work.  This period was, however, not without implication for slurry FT development.  In 1975 Texas A&M University began the German Document Retrieval Project, which collected and indexed the majority of the German data collected at the end of WWII (39).  Significant slurry reactor hydrodynamic R&D was conducted on US DOE research projects in support of a number of direct coal liquefaction processes, mainly Solvent Refined Coal (SRC) and Exxon Donor Solvent (EDS).  These works, conducted by the Pittsburg and Midway Coal Mining Co. (40-44), Air Products and Chemicals (45), International Coal Refining Co. (46), Amoco (47) and Exxon Research and Engineering Co (48), provided a firm basis for the rigorous description of slurry reactor hydrodynamics when later applied to Co catalyzed FT.

 Slurry reactor syngas processes were not totally unknown in the 1970s.  In the middle of the decade, Chem Systems developed a liquid phase methanation and/or shift process with ERDA/US DOE funding (49,50).  This work led to the development of an EPRI sponsored liquid phase methanol synthesis process (51), which was subsequently picked up by EPRI/US DOE and Air Products (52-54).  On specific Fischer-Tropsch developments, Mobil worked with small, low gas velocity Fe catalyzed FT slurry reactors for the US DOE in development of a two-stage process for gasoline production (55-57), but never even approached the reactor/catalyst performance observed earlier by Kolbel (35).

 In the 1980’s Co FT research increased dramatically.  Very early in the decade, Slegeir, Sapienza and co-workers at Brookhaven National Laboratory (58-61) reported and patented the development of an extraordinarily active, noble metal promoted Co slurry FT catalyst.   Particle size was 150-180 mm, with about 50 wt% Co deposited in an eggshell type layer on the alumina support.  In a batch slurry autoclave, they observed product formation rates of 3000 g/kg metal/hr at 225oC, approximately 7 times higher than the rates observed by Kolbel (35-37) over Fe catalysts in his pioneering Fe slurry FT investigations.  Air Products conducted two separate US DOE sponsored Co (and Fe) slurry catalyst and reactor development programs during the 1980s (62-64).  From South Africa, Dry (65) reported Sasol’s first comparison of slurry reactor performance versus the commercial fixed and fluidized beds.  Feed gas velocity was reported as 36-45 cm/sec in a 5 cm diameter reactor.  Also from South Africa Van Vuuren contributed a series of slurry FT process reports (66-68), in which he recommended pilot scale development work.  Based upon patent filing/granting activity, industry was clearly very active in FT R&D, but in the 1980’s this was largely restricted to catalyst specific developments and/or formulations.  The real explosion in slurry FT process related patent activity would not occur until well into the 1990’s.

 The Department of Energy was extremely active in support of FT slurry research.  Smith and co-workers at PETC presented a series of reactor hydrodynamic studies in the early to mid 1980’s (69-72).  A significant number of DOE sponsored slurry reactor hydrodynamic studies were conducted (63, 73-77); others investigated FT wax characterization and upgrading (78), synthesis gas solubility in FT slurry (79), syngas diffusivities in FT slurry (80), and heat transfer in slurry bubble columns (81,82).  In the late 1980’s, Air Products conducted a DOE sponsored series of radioactive tracer tests in the LaPorte AFDU under MeOH synthesis conditions (83,84).  At gas velocities in the 5.5-15.2 cm/sec range, these tracer tests indicated that the liquid/slurry phase in the 22.5 inch ID AFDU reactor was relatively well mixed, while - except at very low slurry levels (low L/D’s) and/or low gas velocities - the gas phase mixing approached plug flow conditions.  At a March, 1990 AIChE meeting, Fox (85,86) made a case that “there does not appear to be any reason why a slurry Fischer-Tropsch reactor cannot be operated at the same conditions as a slurry methanol reactor” and that “operation at 0.15 m/sec inlet superficial velocity and 35 wt% slurry concentration appears as feasible in a Fischer-Tropsch as in a methanol slurry reactor.”  Finally he also concluded that “supported cobalt catalysts appear to have lower particle densities but a higher activity per unit weight of catalyst so that the productivity per unit volume of reactor is the equivalent of or higher than iron based catalyst.”  Fox’s work summarizes most of the slurry reactor development work conducted during the previous decade, reviewed above, and laid the foundation for the explosion of Co slurry FT process development work that has taken place since that time.

 References – all marked with an * (and many others) are available in their entirety at: www.Fischer-Tropsch.org - URL’s for individual referenced documents appear below along with the normal bibliographic information.

 1.             Fischer, F., Peters, K., “Catalytic Gas Reactions in Liquid Medium”, Brennstoff-Chem., 12, 1931, pp. 286-293.

2.             Fischer, F., Kuster, H., “Influence of Pressure and Temperature Upon the Synthesis of Benzine and Synthol in Liquid Medium”, Brennstoff-Chem., 14, 1933, pp. 3-8.

3.             Fischer, F., Pichler, H., Lohmar, W., “Factors in the Synthesis of Kogasin and Paraffin Wax in Water Phase”, Brennstoff-Chem., 20 (13), 1939, pp. 247-250.

4.             Pier, M., (I. G. Farbenindustrie), “Verfahren zur katalytischen Reduktion der Oxyde des Kohlenstoffs”, German Patent 630,824, May 14, 1936.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/DE/de630824.pdf.

5.*           I. G. Farbenindustrie, “Improvements in the Manufacture and Production of Hydrocarbons of High Boiling Point”, British Patent 449,274, Jun. 24, 1936.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/GB/gb449274.pdf.

6.*           I. G. Farbenindustrie, “Improvements in and Apparatus for the Conversion of Oxides of Carbon and Hydrogen”, British Patent 468,434, Jun. 29, 1937.

URL: http://www.fischer-tropsch.org/primary_documents/patents/GB/gb468434.pdf.

7.*           Standard Oil Development Company, “An Improved Method of Controlling Exothermic Catalytic Reactions”, British Patent 496,159, Nov. 25, 1938.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/GB/gb496159.pdf.

8.*           Dreyfus, H., “Improvements in or Relating to the Manufacture of Hydrocarbons and Other Products From Carbon Monoxide and Hydrogen”, British Patent 505,121, May 5, 1939.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/GB/gb505121.pdf.

9.*                Duftschmid, F., Linckh E., Winkler, F., (I. G. Farbenindustrie), “Production of Valuable Hydrocarbons and Their Derivatives Containing Oxygen”, US Patent 2,159,077, May 23, 1939.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/US/us2159077.pdf.

10.*                International Hydrocarbon Synthesis Company, “Procédé de synthèse catalytique en général et plus particulièrement applicable à la production synthétique d'hydrocarbures liquides à partir de mélanges gazeux à synthèse comprenant du monoxyde de carbone et de l'hydrogène ”, French Patent 855,378, Feb. 12, 1940.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/FR/fr855378.pdf.

11.*         Tramm, H. (Internal Hydrocarbon Synthesis Company), “Forfaringssatt vid syntetisk framstalling av kolvaten ur koloxid och vate samt pa sa satt framstalla produkter”, Swedish Patent 104,113, Jun. 18, 1941.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/swede/se104113.pdf.

12.*         Riblett, E. W., (M. W. Kellogg Company), “Method of Catalytic Synthesis”, US Patent 2,250,421, July 22, 1941.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/US/us2250421.pdf.

13.*                International Hydrocarbon Synthesis Company, “Procedimento per aumentare la resa in indrocarburi che bollono nel campo di ebollizione di olio per diesel, nella sintesi da monoossido di carbonio e idrogeno”, Italian Patent 389,201, Oct. 29, 1941.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/IT/it389201.pdf.

14.*                International Hydrocarbon Synthesis Company, “Procedimento per la produzione di olio da gas nell'idrogenazione catalitica di ossidi di carbonio”, Italian Patent 390,152 , Nov. 27, 1941.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/IT/it390152.pdf.

15.*         Tramm, H., Wischermann, W., (Ruhrchemie), “Verfahren zur Durchführung der Kohlenoxydhydrierung über in flüssigem Medium aufgeschlämmten Kontakten”, German Patent 744,185, Nov. 18, 1943.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/DE/de744185.pdf.

                English Text URL: http://www.fischer-tropsch.org/primary_documents/patents/DE/de744185eng.pdf.

16.*         Dreyfus, H., “Improvements Relating to the Production of Hydrocarbons”, British Patent 564,730, Oct. 11, 1944.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/GB/gb564730.pdf.

17.*         Dreyfus, H., (Celanese Corporation), “Production of Organic Compounds”, US Patent 2,361,997, Nov. 7, 1944.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/US/us2361997.pdf.

18.*         Kolbel, H., Ackermann, P., (Steinkohlenbergwerk Rhienpreussen), “Verfahren zur Durchführung der Kohlenoxydhydrierung”, German Patent 766,025, Feb. 8, 1945.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/DE/de766025.pdf.

19.*         Stewart, M. M., Garrett, R. C., Sensel, E. E., (The Texas Company), “Method of Effecting Catalytic Reaction Between Carbon Monoxide and Hydrogen”, US Patent 2,433,072, Dec. 23, 1947.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/US/us2433072.pdf.

20.*         Moore, F. J., (The Texas Company), “Method of Effecting Catalytic Reactions”, US Patent 2,440,109, Apr. 20, 1948.

                URL:http://www.fischer-tropsch.org/primary_documents/patents/US/us2440109.pdf .

21.*         Schnur, F., (Ruhrchemie), “Verfahren zur katalytischen Kohlenoxydhydrierung in flussiger Phase”, German Patent 817,596, Aug. 30, 1951.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/DE/de817596.pdf.

22.*         Kolbel, H., Ackermann, P., (Steinkohlenbergwerk Rhienpreussen), “Verfahren zur Durchführung der Kohlenoxydhydrierung in einem flüssigen Medium”, German Patent 764,166, Dec. 4, 1952.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/DE/de764166.pdf.

23.*         Michael, W., “Principal Data on the Foaming Process for the Hydrocarbon Synthesis”, Dr. Pier’s files, Feb. 27, 1943, W. M. Sternberg, trans., U. S. Bureau of Mines Translation T-431, 1948.

                URL: http://www.fischer-tropsch.org/Bureau_of_Mines/reports/report_pdfs/t_431.pdf.

24.*         Michael, W., Ehrmann, “Difficulties Encountered in the Foaming Method of Synthesis of Hydrocarbons, and Their Overcoming”, Dr. Pier’s files, Feb. 18, 1943, W. M. Sternberg, trans., U. S. Bureau of Mines Translation T-432, 1948.

                URL: http://www.fischer-tropsch.org/Bureau_of_Mines/reports/report_pdfs/t_432.pdf.

25.*         Goring (?), “Synthese in Flussiger Phase”, Dr. Pier’s files, TOM Reel 256, frames 174-179, 1943, and “Synthesis in the Liquid Phase”, W. M. Sternberg, trans., U. S. Bureau of Mines Translation T-433, and TOM Reel 274, frames 1446-1452, 1948.

                URL: http://www.fischer-tropsch.org/Bureau_of_Mines/reels/reel_pdfs/tr_274_fr_1446_1452.pdf.

26.*         Michael, W., “Experience With the Synthesis Reactor Stall 506”, Dr. Pier’s files, June 28, 1941, W. M. Sternberg, trans., U. S. Bureau of Mines Translation T-434, 1948.

                URL: http://www.fischer-tropsch.org/Bureau_of_Mines/reports/report_pdfs/t_434.pdf.

27.*         Michael, W. (?), “Comparison of Products of Vapor and Foam Phase Syntheses at Different Temperatures”, Dr. M. Pier’s files, August 27, 1941, W. M. Sternberg, trans., U. S. Bureau of Mines Translation T-436, 1948.

                URL: http://www.fischer-tropsch.org/Bureau_of_Mines/reports/report_pdfs/t_436.pdf.

28.*         Michael, W., “The Present Stand of the Synthetic Oil Experiments’, Dr. Pier’s files, Jan. 6, 1942, W. M. Sternberg, trans., U. S. Bureau of Mines Translation T-439, 1948.

                URL: http://www.fischer-tropsch.org/Bureau_of_Mines/reports/report_pdfs/t_439.pdf.

29.*         “Wet Synthesis”, Ruhrchemie A. G. Oberhausen – Holten, Jan 20, 1942, W. M. Sternberg, trans., U. S. Bureau of Mines Translation T-459, and FIAT Reel no. K-31, pp. 1108-1115, 1948.

                URL: http://www.fischer-tropsch.org/primary_documents/gvt_reports/FIAT/pdfs/fiat_reel_k_31_pgs_1108.pdf.

30.*         Horne, W. A., Faragher, W. F., “Interrogation of Dr. Pier and Staff, I. G. Farbenindustrie, A. G., Ludwigshafen/Oppau”, FIAT Final Report No. 426, 1945.

                URL: http://www.fischer-tropsch.org/primary_documents/gvt_reports/FIAT/fiat_426/fiat_426_toc.htm.

31.*         Hall, C. C., Craxford, S. R., Gall, D., “Interrogation of Dr. Otto Roelen of Ruhrchemie, A. G.”, BIOS Final Report No. 447, Item No. 30, 1946.

                URL: http://www.fischer-tropsch.org/primary_documents/gvt_reports/BIOS/ottorol/Interrogation-OttoRoelen.PDF.

32.*         C.C. Hall, et al., “Medium Pressure Synthesis with Iron Fixed-Bed Catalysts, and Operation of the Fischer Tropsch Synthesis in the Liquid Phase.  Interrogation of H. Kolbel”, BIOS Report No. 1712, 1947.

                URL: http://www.fischer-tropsch.org/primary_documents/gvt_reports/BIOS/bios_1712/bios_1712_toc.htm.

33.*         Benson, H. E., Field, J. H., Bienstock, D., Nagel, R. R., Brunn, L. W., Hawk, C. O., Crowell, J. H., Storch, H. H., “Development of the Fischer-Tropsch Oil-Recycle Process”, U. S. Bureau of Mines Bulletin 568, 1957.

                URL: http://www.fischer-tropsch.org/Bureau_of_Mines/bulletins/bultn_568/ftoil-toc.htm.

34.*                Duftschmid, F., “Three Papers on the Duftschmid Oil Circulation Process”, 1941-2, W. M. Sternberg, trans., TOM Reel 134, Frames 40’, 26-39, U. S. Bureau of Mines Translation T-463, 1948.

                URL: http://www.fischer-tropsch.org/Bureau_of_Mines/reels/reel_pdfs/tom_reel_134_fr_40_26_29.pdf.

35.           Kolbel, H., Ackermann, P., Engelhardt, F., “Neue Entwicklung zur Kohlenwasserstoff-Synthese II. Fischer-Tropsch Synthese im Flussigen Medium”, Erdol u. Kohle, 9(4), 1956, p. 225.

36.           Kolbel, H., Ralek, M., “The Fischer-Tropsch Synthesis in the Liquid Phase”, Cat. Rev. – Sci. Eng., 21(2), 1980, p. 225.

37.                Frohning, C. D., Kolbel, H., Ralek, M., Rottig, W., Schnur, F., Schulz, H., “Fischer-Tropsch Process”, chapter 8 in “Chemical Feedstocks from Coal”, Falbe, J., ed., John Wiley and Sons, NY, NY, 1982, p. 309.

38.*         Saxena, S. C., “Indirect Liquefaction of Coal; Fischer-Tropsch Synthesis in Slurry Bubble Colum Reactors”, part I in Saxena, S. C., “An Assessment of Experimental Techniques for the Measurement of Bubble Size in a Bubble Slurry Reactor as Applied to Indirect Coal Liquefaction”, U. S. DOE Report DOE/PC/71010-T1 (NTIS  DE85015211), 1985.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/pc71010_t1_pt1/pc71010_t1_pt1_toc.htm.

39.*         Center for Energy & Mineral Resources, “German Document Retrieval Project”, Texas A&M University, April 28, 1977.

                URL: http://www.fischer-tropsch.org/DOE/germ_doc_ret_proj/germ_doc_toc.htm.

40.*         Parimi, K., Pitchford, M. D., (Pittsburg and Midway Coal Mining Co.), “Solvent-Refined-Coal (SRC) Process: Axial Dispersion in Tall Bubble Columns - Tracer Tests”, US DOE Report DOE/ET/10104-40 (NTIS  DE82006944), 1982.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/10104/10104_40/10104_40_toc.htm.

41.*         Kara, S., Kelkar, B. G., Shah, (Pittsburg and Midway Coal Mining Co.), “Solvent-Refined-Coal (SRC) Process. Hydrodynamics and Axial Mixing in a Three-Phase Bubble Column”, US DOE Report  DOE/ET/10104-28 (NTIS DE82007255), 1982.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/10104/10104_28/10104_28_toc.htm.

42.*         Parimi, K., “Solvent Refined Coal (SRC) Process:  Fluid Dynamic Behavior of Large Bubble Columns”, US DOE Report DOE/ET/10104-39 (NTIS DE82007660), 1982.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/10104/10104_39/10104_39_toc.htm.

43.*         Singh, C. P. P., Shah, Y. T., Carr, N. L., (Pittsburg and Midway Coal Mining Co.), “Solvent-Refined Coal (SRC) Process. Effect of Mixing Energy on Hydrogen Reaction Rates in SRC-II Reactors”, US DOE Report DOE/ET/10104-50 (NTIS DE82008447), 1982.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/10104/10104_50/10104_50_toc.htm.

44.*                Pittsburgh & Midway Coal Mining Co., “Reactor Hydrodynamics. Report for the Technical Data Analysis Program”, US DOE Report DOE/PC/50046-9 (NTIS DE84016847), 1984.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/50046_9/50046_9_toc.htm.

45.*         Ying, David H.S., Sivasubramanian, R., Moujaes, Samir F., Givens, E.N., (Air Products and Chemicals Inc.),

“Gas/Slurry Flow in Coal-Liquefaction Processes (Fluid Dynamics in a Three-Phase-Flow Column). Final Technical Report, 1 October 1979-31 March 1982”, US DOE Report DOE/ET/14801-30 (NTIS  DE83001643), 1982.

URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de83001643/de83001643_toc.htm.

46.*                Moujaes, S.  F., (International Coal Refining Company), “Large-Scale Dissolver Cold-Flow Modeling”, US DOE Report DOE/OR/03054-20 (NTIS DE84013974), 1984.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/03054/03054_20/03054_20_toc.htm.

47.*                Schaefer, R.J., Rundell, D.N., Shou, J.K., (Amoco Research Center), “Study of Ebullated Bed Fluid Dynamics, Final Progress Report, September 1980 - July 1983”, US DOE Report DOE/PC/30026-T5 (NTIS  DE84010230), 1983.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de84010230/de84010230_toc.htm.

48.*.        Mueller, W. H., (Exxon Research and Engineering Co.), “EDS Coal Liquefaction Process Development, Phase 5. EDS Consolidation Program: Reactor Optimization Design Study. Interim Report”, US DOE Report DOE/ET/10069-T113 (NTIS DE85010394), 1985.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/10069_t113/10069_t113_toc.htm.

49.*         Chem Systems, Inc., “Liquid Phase Methanation/Shift Final Report, July 1, 1976--September 30, 1976”, ERDA report DE-1505-55 (NTIS FE150555), 1976.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/fe150555/fe150555_toc.htm.

50.*         Chem Systems, Inc., “Liquid Phase Methanation/Shift Pilot Plant Operation and Laboratory Support Work. Final Report, July 1, 1976-November 30, 1978”, US DOE FE-2036-37 (NTIS FE203637), 1979.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/fe203637/fe203637_toc.htm.

51.*         Sherwin, M., Blum, D., (Chem Systems Inc.), “Liquid-Phase Methanol. Final Report”, EPRI report  AF-1291 (NTIS EPRIAF1291), 1979.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/epriaf1291/epriaf1291_toc.htm.

52.*         Air Products and Chemicals, Inc., “Liquid-Phase Methanol (LPMeOH) Process Development Unit (PDU) 40-Day Run at LaPorte, Texas”, US DOE Report EPRI-AP-4430 (NTIS DE86006782), 1986.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/90543/de86006782/de86006782_toc.htm.

53.*         Air Products and Chemicals, Inc., “Liquid-Entrained Catalyst Operations at LaPorte Pilot Plant for Liquid-Phase Methanol Process, 1984-1985: Final Report”, US DOE Report EPRI-AP-5049 (NTIS DE87006950), 1987.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de87006950/de87006950_toc.htm.

54.*         Air Products, “LaPorte Liquid-Phase Methanol Process Development Unit: Continued Operation in Liquid-Entrained Catalyst Mode”, US DOE report EPRI-AP-5050 (NTIS DE8706897), 1987.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/90543/de87006897/de87006897_toc.htm.

55.*         Kuo, J. C. W., (Mobil Research and Development Corporation), “Slurry Fischer-Tropsch/Mobil Two Stage Process of Converting Syngas to High Octane Gasoline. Final Report”, US DOE Report DOE/PC/30022-10 (NTIS DE84004411), 1983.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/30022/30022_toc.htm.

56.*         Kuo, J. C. W., (Mobil Research and Development Corporation), “Two-Stage Process for Conversion of Synthesis Gas to High Quality Transportation Fuels. Final Report”, US DOE Report DOE/PC/60019-9 (NTIS DE86011522), 1985.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/60019_9/60019_9_toc.htm.

57.*                Poutsma, Marvin L., (Oak Ridge National Laboratory), “Assessment of Advanced Process Concepts for Liquefaction of Low H2:CO Ratio Synthesis Gas Based on the Köelbel Slurry Reactor and the Mobil-Gasoline Process”, Oak Ridge National Lab Report ORNL-5635, 1980.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/ornl5635/ornl5635_toc.htm.

58.*         Slegeir, W., (Brookhaven National Lab), “Development of Catalytic Systems for the Conversion of Syngas to Jet Fuel and Diesel Fuel and Higher Alcohols Annual Report - October 1980”, Brookhaven Report  BNL-61423 (NTIS DE82000067), 1980.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de82000067/de82000067_toc.htm.

59.*                Sapienza, R., Slegeir, W., O'Hare, T., (Brookhaven National Lab), “Design and Preparation of New, Highly Active Fischer-Tropsch Catalysts”, Brookhaven Report BNL-30289, US DOE Report CONF-810814-10, 1981.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de82003670/de82003670_toc.htm.

60.*                Sapienza, R. S., Sansone, M. J., Slegeir, W. A. R., “Hydrocarbon synthesis catalyst and method of preparation”, US Patent 4,396,539, Aug. 2, 1983.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/US/us4396539.pdf.

61.*                Sapienza, R. S., Sansone, M. J., Slegeir, W. A. R., “Catalytic method for synthesizing hydrocarbons”, US Patent 4,460,710 , Jul. 17, 1984.

                URL: http://www.fischer-tropsch.org/primary_documents/patents/US/us4460710.pdf.

62.*         Dyer, P. N., et. al., (Air Products and Chemicals, Inc), “Catalyst and Reactor Development for a Liquid Phase Fischer-Tropsch Process”, US DOE contract number DE-AC22-80PC30021, multiple quarterly and task updates, DOE report numbers DOE/PC/30021-xxx, 1981-1985.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/30021/30021_toc.htm.

63.*         Air Products and Chemicals, Inc., “Slurry Reactor Hydrodynamic Studies Final Report”, DOE report  DOE/PC/30021-T20 (NTIS DE90002792), 1985.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de90002792/de90002792_toc.htm.

64.*         Withers, H. P., Eliezer, K. F., Mitchell, J. W., (Air Products and Chemicals, Inc.), “Novel Fischer-Tropsch Slurry Catalysts and Process Concepts for Selective Transportation Fuel Production: Final Report”, US DOE Report DOE/PC/70030-T9 (NTIS DE88004678), 1987.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de88004678/de88004678_toc.htm.

65.           Dry, M. E., “The Fischer-Tropsch Synthesis”, in “Catalyst Science and Technology”, J. R. Anderson, et al., eds., Vol. 1, Springer-Verlag, Berlin, 1981, p. 159.

66.*         van Vuuren, D. S., (Council for Scientific and Industrial Research, South Africa), “Fischer-Tropsch Synthesis in Slurry Reactors: Summary and Analysis of the State of the Art”, CSIR Report CENG 432 (NTIS  PB83116194), 1982.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/pb83116194/pb83116194_toc.htm.

67.*         Van Vuuren, D. S., Heydenrych, M. D., (Council for Scientific and Industrial Research, Pretoria), “Multicomponent Modelling of Fischer-Tropsch Slurry Reactors”, CSIR Report CENG 581 (NTIS PB86116720), 1985.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/pb86116720/pb86116720_toc.htm.

68.*         van Vuuren, D. S., (Council for Scientific and Industrial Research, Pretoria), “Assessment of the Techno-Economic Potential of Fischer-Tropsch Slurry Reactors”, CSIR Report CENG 655 (NTIS  PB89167209), 1987.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/pb89167209/pb89167209_toc.htm.

69.*         Smith, D. N., Ruether, J. A., Stiegel, G. J.,(PETC), “Slurry Bubble Column Dynamics”, US DOE report CONF-8310401-1 (NTIS DE85013228), 1983.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de85013228/de85013228_toc.htm.

70.*         Smith, D. N., Ruether, J. A., Stiegel, G. J., Shah, Y. T., (PETC), “Modified Sedimentation-Dispersion Model for Solids Behavior in Coal Liquefaction Reactors”, US DOE Report CONF-841121-19 (NTIS DE85013465), 1984.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de85013465/de85013465_toc.htm.

71.*         Smith, D. N., Ruether, J. A., Stiegel, G. J.,(PETC), “Polydispersed Solids Behavior in a Bubble Column”, US DOE Report CONF-841121-20 (NTIS DE85013463), 1984.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de85013463/de85013463_toc.htm.

72.*         Smith, D. N., O'Dowd, W., Ruether, J. A., Stiegel, G. J., Shah, Y. T., (PETC), “Slurry F-T Reactor Hydrodynamics and Scale-up”, US DOE Report CONF-8410328-1 (NTIS DE85013227), 1984.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de85013227/de85013227_toc.htm.

73.*         Knickle, H. N., (URI), “Study of Multiphase Flow Useful to Understand Scaleup of Coal Liquefaction Reactors. 1981-1984 Final Report”, US DOE Report DOE/PC/40797-T4 (NTIS DE85001312), 1984.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/40797/40797_toc.htm.

74.*                Humphreys Jr., R. H., Antos, A. J., Woods, D. P., (MIT/ORNL), “Hydrodynamic Study of a Fischer-Tropsch Bubble Column Slurry Reactor”, Report ORNL/MIT-362 (NTIS DE83013714), 1983.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de83013714/de83013714_toc.htm.

75.*         Bukur, D. B., Daly, J. G., Patel, S. A., Raphael, M. L., Tatterson, G. B., (TAMU), “Hydrodynamics of Fischer-Tropsch Synthesis in Slurry Bubble Column Reactors: Final Report”, US DOE Report DOE/PC/70027-10 (NTIS DE88000383), 1987.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de88000383/de88000383_toc.htm.

76.*         Bukur, D. B., Daly, J. G., Patel, S. A., (TAMU), “Hydrodynamics of the Three-Phase Slurry Fischer-Tropsch Bubble Column Reactors. Final Report”, US DOE ReportDOE/PC/90012-10 (NTIS  DE91014240), 1990.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de91014240/de91014240_toc.htm.

77.*         Clark, N., Kuhlman, J., Celik, I., Gross, R., Nebiolo, E., Wang, Y –Z., (WVU), “Circulation in Gas-Slurry Column Reactors: Final Report”, US DOE Report DOE/PC/79935-14 (NTIS DE91000694), 1990.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de91000694/de91000694_toc.htm.

78.*         Shah, P.P, Sturtevant, G.C., Gregor, J.H., Humbach, M.J., Padrta, F.G., Steigleder, K.Z., (UOP), “Fischer-Tropsch Wax Characterization and Upgrading: Final Report”, US DOE Report DOE/PC/80017-T1 (NTIS  DE88014638), 1988.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de88014638/de88014638_toc.htm.

79.*         Chao, K.C., (Purdue), “Synthesis Gas Solubility in Fischer-Tropsch Slurry”, US DOE Report DOE/PC/70024-T9 (NTIS DE88006851), 1988.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/70024/70024_toc.htm.

80.*                Akgerman, A., (TAMU), “Diffusivities of Synthesis Gas and Fischer-Tropsch Products in Slurry Media”, US DOE Report DOE/PC/70032-T2 (NTIS DE88013683), 1987.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/70032/70032_toc.htm.

81.*         Saxena, S. C., Rao, N. S., Vadivel, R., Shrivastav, S., Saxena, A. C., (Illinios U.), “Heat transfer investigations in a slurry bubble column. Final report: Volume 1.”, US DOE Report DOE/PC/90008-T8-VOL.1 (NTIS DE91016810), 1991.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de91016811/de91016811_toc.htm.

 82.*         Saxena, S. C., Rao, N. S., Vadivel, R., Shrivastav, S., Saxena, A. C., (Illinios U.), “Heat transfer investigations in a slurry bubble column. Final report: Volume 2.”, US DOE Report DOE/PC/90008-T8-VOL.2 (NTIS DE91016811), 1991.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de91016811/de91016811_toc.htm.

83.*         Studer, D. W., Brown, D. M., Henderson, J. L., Hsiung, T. H. (Air Products), “Status of the Development of Methanol Synthesis by the LPMeOH Process”, in “Indirect Liquefaction: Contractor's Review Meeting Proceedings November 1989”, US DOE report CONF-891131 (NTIS DE90008422), 1989.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de90008422/de90008422_o2_syn_sec01.pdf.

84.*         Air Products, “Liquid Phase Methanol LaPorte Process Development Unit: Modification, Operation, and Support Studies. Task 2.3, Tracer Studies in the LaPorte LPMEOH PDU: Topical Report, Revision No.1”, US DOE Report DOE/PC/90005-T30 (NTIS DE91005732), 1990.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/90543/de91005732/de91005732_toc.htm.

85.*         Fox, J. M., (Bechtel), “Fischer-Tropsch Reactor Selection – A Comparison of Slurry versus Fixed-Bed Reactor Design Principles for Methanol and Fischer-Tropsch Distillate Production”, paper presented at the AIChE Spring National Meeting, Fischer-Tropsch Synposium, Paper No. 91C, March 21, 1990, contained in its entirety as Appendix D in reference 86.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de90010924/de90010924_appndxd.pdf.

86.*         Fox, J. M., Degen, B. D., (Bechtel), “Slurry Reactor Design Studies - Reactor Selection Criteria - Topical Report”, US DOE report DOE/PC/89867-T1 (NTIS DE90010924), 1990.

                URL: http://www.fischer-tropsch.org/DOE/DOE_reports/de90010924/de90010924_toc.htm.