The data obtained in Run 15 show that a satisfactory oil yield and catalyst life can be obtained when charging catalyst batch-wise and operating with an inlet velocity of 1.8 ft./sec. with an open reactor without catalyst return over a period of 200 to 250 hours. This is not regarded as a particularly desirable method of operation but is considered entirely feasable. The low carry-over rates are believed to be characteristic of this catalyst and are believed to demonstrate that the high rates of catalyst circulation previously encountered merely show that excessively fine catalyst returned to the reactor is immediately discharged again, setting up a catalyst circulation so that the rates of carry-over in a system equipped for catalyst return are far above those in a system where the fines are not returned. This run shows that satisfactory yield and catalyst life can be obtained without catalyst return. Since rates of carry-over are very sensetive to reactor velocity, longer or shorter catalyst life can be obtained by varying this factor. This puts a premium on uniformity of flow through the reactor and it is expected that somewhat lower loss rates will be obtained in the future by reducing the pressure surges which have previously been experienced when the secondary cyclone trap is discharged. Run 15 was terminated by a sudden loss of bed temperature and a correspondingly sudden reduction in steam production and increase in wet gas rate. While it is possible that this effect may have resulted from a leak in the steam combling system, this is not thought to be the case and the effect is thought to represent a critical space velocity which, for this catalyst, was on the order of 160 cu.ft./hr./lb. of catalyst. ## MONTEBELLO SYNTHESIS UNIT SUMMARY OF PRELIMINARY DATA (1) | RUN NUMBER
Start
End | 15A
4/7
4/8 | 1 5B
4/8
4/9 | 150
4/9
4/10 | 15D
4/10
4/11 | 15E
4/11
4/12 | |--|---|---|--|--|---| | GENERATOR DATA Gas Rate-scfh Oxygen Rate-scfh Product Rate-scfh Product Compostion by Co CO H2 CO2 N2 CH4 | 2620
1820
7780
prrected
31,1
57.4
2.4
2.2
6.9 | 1915
8110
Explosio
31.8
59.9
2.5 | 34.8
58.4
2.3
2.1 | 1900
8000
- mol %
33.2
60/0
2.1
2.2 | 7300
34.8
58.0
2.3
2.2 | | Pressure-psig Recycle Rate-scfh Fresh Feed Rate-scfh Wet Gas Rate-scfh Catalyst Temperature F. Catalyst Denity-#/cu.ft. Cat. Fluidized-# Depth of Bed-ft. Fresh Feed-cfh/# cat. Inlet Velocity-ft./sec. Recycle Ratio Contraction-% Measured Oil-gph Measured Water-gph Steam Pressure-psig Steam Rate-#/hr. (1) YIELDS ESTIMATED FROM COR | 2080
618
45
268
14
29
1.7
1.6
73.6
9.4
925
358 | 11410
8110
1855
620
25
255
16
32
1.4
77.0
5.9
10.0
925
349 | 7650
2005
623
248
208
18
37
1.6
1.5
73.8
925 | 10700
8000
2120
630
22
185
18
13
1.5
73.5 | 12118
7300
2550
630
20
166
19
44
1.8
1.7
65.0
4.2
7.3 | | CO Conversion- % H2 Conversion- % Ultimate Oil Yield | 96.3
81.8 | 97.5
86.0 | 96.6
82.7 | 96.5
82.3 | 93.4
72.9 | | bbl./MMCF Gen. Feed | 119 | 125 | 120 | 120 | 1 05 | | Cumulative Ultimate Oil bbl./MMCF Gen. Feed gal./# cat. charged | 119 | 122
2.4 | 121
3.5 | 121
4•7 | 118
5•7 | ⁽¹⁾ Sight average from badly pulsating chart