THE TEXAS COMPANY # REFINING DEPARTMENT TECHNICAL & RESEARCH DIVISION REPORT ON CARTHAGE HYDROCOL, INC. BROWNSVILLE PLANT OPERATIONS ANALYSIS OF SYNTHESIS REACTOR DATA Engr'g Dev. Group (NY Office) Report No. 25 Date March 29, 1952 ChevronTexaco provides no warranties, either express or implied, as to the accuracy or validity of any of the work in this report. Anyone accessing or using the reports indemnifies and holds ChevronTexaco harmless against any liability that comes from using or relying on the information contained therein. # TECHNICAL AND RESEARCH DIVISION ENGINEERING DEVELOPMENT GROUP (N.Y. OFFICE) REPORT NO. 25 MARCH 29, 1952 # CARTHAGE HYDROCOL, INC. BROWNSVILLE PLANT OPERATIONS ANALYSIS OF SYNTHESIS REACTOR DATA #### Introduction The conversions and yields on the Synthesis Reactors at Brownsville have been consistently very much lower than those predicted in design and also much lower than those obtained with the same catalyst on pilot and laboratory units. For over a year this has been the subject of much concern to many individuals and almost every conceivable reason to account for this discrepancy has been expressed at some time or another. The latest widely accepted opinion is that poor catalyst contacting efficiency in the large commercial reactors relative to that obtained in the small pilot units is responsible for much if not most of the trouble and steps are now being taken to compartmentalize one of the reactors at Brownsville to simulate operation with a number of smaller reactors in parallel. In addition, on the assumption that this may not be the answer, engineering studies are being made to determine what changes would be required to operate the two reactors in two stages instead of in parallel. So far, the opinion seems to be divided on whether two stage operation will result in better conversion and yields than parallel operation. On the off-chance that an additional independent review of the situation, and particularly a detailed study of the Browns-ville data itself, might disclose some factors which had been overlooked, or help to establish which opinions are correct, arrangements were made for the writer to make such a survey at Brownsville. This study which was made during the period of February 12 to March 25, 1952 is the subject of the present report. Scope The first step in this survey was to trace all pertinent lines in the field to become familiar with the location of flow meters, sampling connections etc. and to look for by-passing and leakage possibilities. None of the latter were found. In the course of this step flow diagrams were made of the important lines and these diagrams are included in the appendix for future reference. Next, a detailed review was made of the methods used by the plant to calculate and report run data. Checks were made on the reliability of the data, as discussed in the report where pertinent, and then after innunerable false starts the correlations presented here were developed. ## Correlations - H2 Conversion vs %CO in FF to C3+ The following Figs. 1, 1A and 1B, which are a plot of $\rm H_2$ converted vs % of CO in fresh feed which went to $\rm C_3^+$, are a graphical comparison of all the following data: - 1. All available Brownsville data. - 2. Stanolind Filot unit data on Allan Wood and Brownsville Mill Scale catalysts. - 3. Montebello Pilot unit data on Allan Wood, Brownsville Mill Scale and Spent CM&S catalysts. The CONTERSION EUGENE DIETZGEN GO - 4. Beacon data on Brownsville Mill Scale and Spent CM& S catalysts. - 5. HRI Olean Runs H-24 & H-25 on Spent CM&S catalyst, which runs formed the basis for the Brownsville Plant Design. - 6. The Brownsville Design. On these graphs each point which is joined by lines, represents about 24 hrs. operation. The points are joined to-gether in chronological order. A ring has been placed around the first day of each run. The unjoined points which are all laboratory or pilot unit data, represent averages of several periods or of a whole run. The Brownsville data were divided into three plots, Figs. 1, 1A & 1B simply to avoid cluttering. The Beacon, Montebello and Stanolind data obtained with Brownsville Mill Scale catalyst, the design point and the Montebello data on CM&S catalyst have been repeated on Fig. 1A. The solid lines on all three of these plots, one for Fresh Feed having an $\rm H_2/CO$ ratio of 2.0 and the other for an $\rm H_2/CO$ ratio of 1.0 are those which were developed in EDG Report No. 1 dated May 20, 1947. These lines represent an extremely large number of runs made at various conditions in HRI, Beacon, Stanolind and Jersey laboratories. The data for Figs. 1, 1A & 1B and for others which will be described later are included in Tables I & II of the appendix. We shall discuss these figures after we have developed sufficient background to understand what they mean. #### Sources of Data The sources of these data to-gether with a brief description of the reactors on which they were obtained are as follows: #### Montebello Data The Montebello Data for Run 49 with Allan Wood catalyst were obtained from the detailed yield calculation sheets included in the appendix of partial report TDC 802 - 37 P. The data for Run 63 on Brownsville's Mill Scale catalyst and for Run 59 on spent CM&S catalyst were obtained from the daily yield calculation sheets which were sent to us from Montebello by mail. The data for the single points representing parts of Runs 57, 64, 65 & 66 with Mill Scale catalyst were obtained from the calculation sheets included in the undated report which Mr. duBois Eastman presented at the recent Tulsa Meeting with Stanolind. actor which is described in detail in P.R. 37 P referred to above. This reactor is a straight pipe 30 ft. long with 3-2" sched. 80 pipes about 18 ft. long inside the reactor for cooling. Steaming water is used as the cooling medium. The 11 ft. above the cooling tubes is disengaging space. An external cyclone is used to separate the carried over fines from the reactor effluent but no fines are returned to the unit. Preheat of the total feed is varied automatically to control reactor bed temperature. #### Stanolind Data The Stanolind Data for Run D-201-29 on Allan Wood Catalyst were obtained from the calculation sheets included in the appendix of partial report TDC 802 - 37 P. and the data for the other runs on Mill Scale Catalyst from the Tulsa Meeting Report referred to above. The Stanolind D-201 reactor is 8" I.D. about 20 ft. long and is cooled by an external jacket. About 6 to 8 ft. of the upper part of the reactor is expanded to provide catalyst disengaging space. An external cyclone is used and feed preheat is varied automatically as at Montebello. #### Beacon Data The Beacon data for old runs 7024, 7027 and 8001 on Spent CM&S Catalyst were taken from the 1947 Report (EDG #1). The first two were made on a 1 5/8" I.D. stirred reactor and the other on a 3/4" I.D. 9 ft. long baffled reactor similar to that still in use and on which the other data shown on the graphs were obtained. This reactor is topped with a catalyst disengaging space 4 to 6" in diam. and about 2 ft. long and filters are used to knock back the catalyst. These laboratory reactors are jacket cooled and the total feed is normally regularly preheated to about 600°F. #### HRI Data The HRI data on spent CM&S catalyst were reproduced from the 1947 correlation referred to above. They were obtained on an 11 1/2" I.D. reactor 18 1/2 ft. long with 19 - 1" ex. hvy. tubes provided for cooling with Dowtherm. An expanded section about 2 ft. long was provided for catalyst disengaging and filters were used for final catalyst separation. In the particular runs shown here the total feed was preheated to 600 - 650°F. ### Brownsville Design Conditions The following yields and operating conditions were predicted by HRI in Case VI Process Specs. Sect. 350 and are the goal we are shooting for: | | Per Reactor | <u>Total</u> | |---|--|---------------------------| | Syn. Gas Feed Rate (MMSCFH) Recycle/F.F. ratio Catalyst Holdup Tons Steam Prod'n. M#/Hr. Cat. bed Density #/C.F. Reactor Press. Reactor Effluent Temp. °F. % CO Conv. (on F.F.) % H2 Conv. (on F.F.) % H2+CO Conv. (on F.F.) Fresh Feed Comp: Mol % CO H2 CO2 N2+ A CH4 H2O | 5.0
1.0
99
215.5
100
425
650
98.2
86.3
90.4
33.14
61.12
1.30
2.95
1.07
0.43 | 10.0
1.0
198
431 | In the design, the water-gas shift reaction was assumed to be in equilibrium $(H_2)(CO_2)$ = 22 at 650°F) at the reactor outlet. $(CO)(H_2O)$ The predicted yields were as follows: | | BPOD | $ rac{ ext{BPOD}}{ ext{Ex} ext{ Casinghead}} \ 10_n^{\prime\prime} ext{ RVP Gaso.*}$ |
---|---|--| | Casinghead C4's Casinghead Gaso. Synthetic C4's Synthetic Gaso. (DB) Poly Gaso. Total Gaso. | 150
179
164
4781
<u>915</u>
6189 | 6079 | | Gas Oil
Waxy Btms.
Poly Tar
Total Oil | 946
103
<u>99</u>
7337 | 947
103
<u>95</u>
7224 | | Water Sol. Chemicals 213,168% Water Sol. Simple Solution Solution Simple Solution S | /day
631
9144 | 631 | | Total Synthetic Oil plus WSC Bbls/MMSCF of Syn. Gas | 31.8 | 32.6 | ^{*} From PR TDC 802 - 37P page 88 The total C_3^+ yield, including water soluble chemicals can be calculated from the breakdown of the reactor effluent streams reported in the HRI Process Specs. for Sect. 350 (Case 6 design) as follows: Table A Total C₃+ Design Yields For Two Reactors And 10,000,000 SCFH of Fresh Feed | | #/Hr.
Flash
Vapor | #/Hr.
Stripper
Feed | Net Reactor
Effluent | #/Gal. | #/Bbl. | ВРН | |---|---|---|--|--|--|---| | N C C C C C C C C C C C C C C C C C C C | 21,865
4,412
69,529
7,447
11,554
6,062
5,649
5,871
4,435
388
6,251
2,466
408
121
60
17 | 73
20
2,666
10
179
232
306
710
1,249
5,565
6,183
4,7,719
7,924
2,580
2,719
7,924
2,970
2,580
2,230
4,540
64,309 | 21,938 4,432 72,195 4,457 11,733 6,955 6,581 5,684 5,684 11,8648 7,840 7,940 7,940 2,930 2,930 4,540 209,347 | 8.33
8.33
8.33
8.33
8.33
8.33
8.33
8.33 |
349.9
349.9
349.9
349.9
130.5
110.5
181.5
211.6
2207.2
237.2
2486.2
276.9
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296.2
296. | 36.18
36.40
26.85
26.56
53.59
36.38
31.43
29.69
25.68
8.84
10.03
7.48
15.01
335.92 | | Water | Sol. Chem | S. | 8,882 | | 336.0 | 26.30 | | Water
Total Out | | 104,045
322,274 | | | 362.22 | | | Total In (F.F.) | | 322,571 | | 870 | O BPD | | The total C_3+ and WSC in the reactor effluent amounts to 362.2 BPH or 8700 BPD. The difference between this figure and the lower corresponding figure reported above in the predicted yield table is, of course, due to the poly contractions and the C_3 , C_4 and other losses. The total C_3 + Incl. WSC leaving the reactors amounts to 91,225%/Hr. which divided by 14 = 6,516 CH $_2$ radicals per hr. which is 74.05% of the 8,800 Mols of CO fed to the reactors in the fresh feed. The other design factors used in these correlations were similarly calculated as follows: ``` % CO in F.F. to WSC = 7.2 % CO in F.F. to CO_2 Made = 14.73 % CO in F.F. to CH_L Made = 5.1 % H_2 in F.F. to H_2O Made = 34.9 ``` #### Brownsville Reactors An assembly drawing of the Brownsville Reactors (Combustion Engineering Drg. No. E-152-572-7) is included in the appendix for ready reference. These reactors, of which there are two alike, are 16'-6" I.D. and 21'-9" high from bend line to bend line with hemispherical heads. Each reactor is filled with steam tubes which are arranged in bundles as shown in plan on the following Sketch A. There are 1420 - 1 7/8" 0.D. tubes in all, arranged in 31 bundles. All but 12 of the bundles have 61 tubes each with 24" melons at top and bottom. The other 12 bundles have 21 or 22 tubes with 19" melons. The height of the bundles from ctr. line of bottom melons to ctr. line of top melons is 16'-6" for most bundles and 18'-6" for a few to stagger the top melons. The bottom melons are all on the same plane with their center line 21 1/4" above the grid. # SKETCH A Arrangement of water tube bundles in reactor K 351B Arrangement of reactor grid holes and location of mellons. Total of 1% 0.0 water tubes - 1420 in 19 bundles A,-A6, B, to B7, D, to D6, each Gltubes Total number of \$1.0 holes - 336 and 12 bundles C, to C, each 21/22 tubes. Mellons installed 24" above grid (to center) Distance between mellon centers vertically: Bundles A.B. - 16/2A, Bundles C&D: 18/2ft Grid consist of 24 pie sections, center plate and 48 sectors at periphery, each with Aholes The free area between tubes is 187 sq. ft. and the distance from the grid to the center line of the lower row of top melons is $18^{\circ}-6^{\circ}$. This is probably the maximum height of catalyst bed that can be used and still have enough submerged cooling surface to take away the exothermic heat of reaction. The grid is made up of pie shaped castings and contains 336 openings as shown in the plan on the above Sketch A. These openings were originally $3/4^n$ diameter but in May 1951, after Run 7/8, these were reduced to $3/8^n$ diameter by means of sleeve inserts. This was done on both reactors. In the original reactors there were three horizontal rows of louvre type baffles installed between the cooling tubes near the tops of the bundles. These caused localized erosion of some of the tubes and were removed from both reactors in Feb. 1951 after Run #5. Reactor Operations Before attempting to analyze the Brownsville data it is well to briefly review the operating procedures used on the reactor system. The following Sketch B is a simplified flow diagram of the Reactor System. Su pose we start with the reactor in operation and about to come down. ## A. Catalyst Stripping After Shutdown - Circulation First the synthesis gas feed is shut off at the fresh feed compressor (V-302) section. The compressor V-302 will then be on recycle gas alone, supplemented by the Nat. Gas used for Aeration, about 55,000 SCFH and an additional 45,000 SCFH or so of Nat. Gas admitted to the V-302 suction when the Syn. Gas is cut off. The recycling rate is maintained to hold a lineal velocity thru the bed of 0.6 ft/sec with a minimum of 0.4 ft/sec to insure maintaining fluidization. The flow will be from the V-302 compressor thru the steam superheater L-305C (now used all the time as gas htr.) thru the reactor, the M-352 & M-356 exchangers, the M-353 cooler and then thru the Gas Scrubber N-351 and thus back to the V-302 suction. The V-351 recycle compressors will be shut down. During stripping, the system pressure is reduced to about 100% and the reactor effluent temperature is held at $650\text{--}700^{\circ}\text{F}$. without exceeding 800° on the L-305C outlet. To maintain the bed temperature at this level the steam bundles have to be cut out of service. When the mass spec. analysis shows 90 to 94% CH₄ in the tail gas the stripping is considered complete. The reactor temperature is then reduced to 270 to 300°F. by lowering the L-305C heater outlet. The acid water is then cut out of the gas scrubber (N-351) and city water only is used. After displacing the water in the acid water line to Stanolind for one hour the water from the gas scrubber is discharged to the pond. If the catalyst is to be continuously circulated between runs, the conditions described in the previous paragraph are the ones used except that the reactor pressure may be lowered to about 80%. The rate required to maintain a lineal velocity of 0.6 ft/sec at 80% press. and 300° F. is about 1,800,000 SCFH. #### Starting From Scratch When coming up from a dead stop the same method of circulation is used except that the bed temperature is held at 500 to 700°F. while adding the catalyst to the reactor. #### Unloading Reactor The same circulation procedure (at 300°F.) is also used when catalyst is unloaded from the reactor. After all possible catalyst has been removed in this manner (thru bottom center outlet) the circulation is stopped and the reactor washed with hot water before unheading. When the reactors are opened several tons of catalyst are always found packed between the tubes. This has to be removed by hand prodding. #### Reduction Before Startup With the reactor circulating Natural Gas as described above, the reactor temperature is raised to 700-725°F. and the pressure increased to 200% press. while raising the recycle rate and Nat. Gas input as necessary to maintain a lineal velocity of 0.6 ft/sec. This requires a rate of about 2,800,000 SCFH. Hydrogen is then cut into the V-302 suction at the maximum rate of production, about 20,000 SCFH and the Nat. Gas is cut out. Aeration is maintained by recirculation in the separate (reciprocating) compressors (V-352). After about 48 hours the hydrogen concentration in the system will have reached about 40% and reduction is considered completed. In some runs where in a hurry to get started this time has been cut to 12 hrs. with only 30% H₂ concentration attained. Nothing but city water is used in the gas scrubber N-351 during reduction. #### Carbiding Prior to
the last three runs #15, #16 and #17 a carbiding step has been added after reduction. This is accomplished by simply shutting off the hydrogen and substituting synthesis gas from the generator with reactor at 650 to 700°F. and 250# pressure, synthesis gas is added to the V-302 compressor section at a rate of about 50,000 SCFH and is increased by that amount every 15 minutes until a total of about 700,000 SCFH is being added. This condition is maintained for about 20 hrs. Shortly after the start of syn. gas admission acid water washing is started in the gas scrubber N-351. #### Start Up The normal starting up procedure is essentially the same as that described above for carbiding except that the increase in syn. gas admission rate is not interrupted until the full desired rate, usually 3,000,000 SCFH has been attained. Also as the syn. gas rate is increased the reactor pressure is raised to 350% and steam bundles are placed in service as necessary to maintain and equalize reactor bed temperatures. In the earlier runs some of the bundles were left out of service entirely but in recent runs it has been the practice to place them all in service pinching off each bundle circuit as necessary to equalize bed temperatures. No record is kept of the amount of pinching off of the individual steam circuits. The following Sketch C shows the location of the thermowells in Reactor A with respect to the tube bundles. Those in Reactor B are opposite hand. Whether carbiding or just starting up directly, acid water is admitted to the gas scrubber as soon as or shortly after synthesis gas is added to the reactor. The recycle compressor V-351 is started as soon as pressure has been built up on the system. The plant is always run to load the fresh feed compressor V-302, with fresh feed plus part of the recycle and this entire stream, usually about 4,500,000 SCFH is routed thru the L-305C heater and there preheated to 650°F. The remainder of the recycle is handled by the V-35l compressor and is not preheated. Thus when running with a fresh feed rate of about 3,000,000 SCFH, the de hels output when only one 02 plant is running, and with a recycle to fresh feed ratio (R/FF) of one, approximately 1,500,000 SCFH of the recycle is preheated along with the fresh feed and an equal amount of the recycle is not. Therefore when the fresh feed rate is increased with the R/FF remaining the same, less of the recycle goes thru the V-302 compressor heater and therefore the combined steam reactor inlet temperature drops. In other words when running with a F.F. rate of 3,000,000 SCFH and R/FF of 1.0, 75% of the total feed to the reactor is preheated to 650°F. resulting in a total feed temperature of about 530°F. whereas when the F.F. rate is increased to 4,500,000 SCFH and the R/FF rate is still maintained at one, then only 50% of the total feed is preheated and the combined feed temperature drops to about 415°F. #### Brownsville Data Seventeen runs have been made at Brownsville. The first of any consequence so far as the reactor is concerned was Run \$\frac{1}{2}\$. No data were worked up for Run \$\frac{1}{2}\$. A general description of each run with causes of shutdown etc., is periodically made up by Carthage in N.Y. and is called "Summary of Operations". Our copy of this summary with supplementary notes is included in the appendix. The following Table B is a list of Runs 5 to 17 inclusive showing the dates of the runs, their duration and the catalysts used. It will be noted that all runs except #8 were less than 2 weeks long and all but four were of 10 days or less. Run #10 was the first run made with well reduced catalysts and Run #11 was the first made with the fine grind catalyst now being used. TABLE B BROWNSVILLE REACTOR RUNS | Run | n | | Reac | Reactor | Catalyst | | | | |------------------|------------------|-------------------|------|---------|--------------------------------|---|------------------------------|--------------| | No. | Start | End | Days | Used | Tons | | % Fe | Red'n. Temp. | | 5 | 1/16/51 | 1/25/51 | 9 | | 140
80 | Used AW & MS*
Fresh MS Added | 72.3
90 | 770 | | 6 | 3/11/51 | 3/20/51 | 9 | | 170
100 | Fresh MS
Fresh MS Added | 88
90 | 750 | | 7 | 4/8/51 | 4/13/51 | 6 | | Run Not Used. Data unavailable | | | | | ප් | 4/21/51 | 5/15/51 | 24 | | 160
194 | Used in Run 7
Fresh MS Added | 73 • 7
90 | | | 9 | 6/5/51 8 PM. | 6/9/51 3:15 PM | 4 | В | 126
57 | Used in Run #8
Fresh Added | 7 4
88 | | | 10 | 7/20/51 11 AM | 8/1/51 12:35 AM | | В | 240
43 | Fresh
Fresh Add e d | 95+
97 | | | general grant of | 11/11/51 6 AM | 11/20/51 10:15 AM | 10 | Å | 248
61 | Fresh
Fresh Add e d | 96
9 7 | 725 | | 12 | 11/28/51 11 PM | 12/7/51 12 N | 9 | A | 214
82 | Used in Run ll
Fresh Added | 79.3
96.6 | 725 | | 7 | 12/21/51 5 PM | 1/2/51 9:13 AM | 13 | В | 130
127
60
49 | Used
Fresh
Fresh Added
Fresh Added** | 80.9
97.3
97
96.2 | 725 | | 14 | 1/9/52 5 PM | 1/22/52 11 AM | 14 | В | 207
55 | Us ed
Fresh Added | 80.7
95.3 | 775 | | 15 | 2/2/52 9:30 AM | 2/11/52 4:30 PM | 10 | A | 79
121
13
42 | Us e d
Fresh
Used Added
Fresh Added** | 77.7
94.8
77.7
95.5 | 810 | | 16 | 2/19/52 12:30 PM | 2/22/52 9:30 AM | 4 | А | 104
24
71 | Used
Fresh**
Fresh | 78.2
96
95 | 825
810 | | 17 | 3/4/52 9:13 AM | 3/13/52 2 PM | 10 | A | 130
6
55
31 | Used
Fresh
Fresh Added
Fresh Added | 80.3
95
80.3
87 | | ^{*} AW = Allan Wood used only in Run #5 and before all other runs used Mill Scale MS. Where so noted the catalyst was added during the run. ^{**} These batches were reduced and precarbided before adding to reactor. In addition in situ carbiding was practiced in the reactor before the beginning of Runs 15, 16 & 17. The stock room at Brownsville works up a daily (6 AM to 6 AM) statement of reactor operations using 24 hr. averages of meter readings, temperature and pressure measurements with averages of three mass spectrometer analyses on the fresh feed and two on the recycle. In this calculation, because there is no direct measure of the fresh feed to the reactor, the fresh feed is found by balance in which the output is made up of: - 1. Absorber tail gas metered and analyzed. - 2. Raw Primary Oil gaged when treating unit not running, otherwise metered. - 3. Water Soluble Chemicals obtained from ctanolind. - 4. Water make obtained from Stanolind. The absorber tail gas is adjusted to remove metered aeration gas (Nat. Gas) and the total output weight is then used together with fresh feed analysis to calculate the fresh feed rate and input of each fresh feed component. A check against this calculated rate can be obtained by subtracting from the metered rate of the combined fresh feed and part of the recycle on the fresh feed compressor discharge (preheater outlet), the rate of recycle to the fresh feed compressor which is measured by a pitot venturi not considered reliable enough to use for the daily calculations. The remainder of the recycle, that going thru the recycle compressor, is metered separately. An additional check on the calculated reactor fresh feed rate is obtained by comparing with the syn. gas generator output which in turn is calculated by carbon balance around the generator. 22 The accuracy of the reactor calculation is also noted daily by comparing the calculated argon input with that leaving the system which is calculated by difference as outlined above. We have made spot checks on all these calculated rates and found them reasonably reliable. The above method of calculation applies to all runs which were made since March 1951 after Run #5. Run #5 was calculated separately but in a similar manner. These stock room data do not agree exactly with those reported in the teletypes because the teletypes are based on spot 6 AM readings using midnight sample analyses and short-cut calculations. At the end of each run the daily stock room data are tabulated to form what is called the run "Operating and Yield Summary" which is sent to New York and copies of which are included in the appendix.* The data from the run summaries, supplemented by a few additional data, were tabulated and recalculated for correlation purposes and are included in Tables I & II in the appendix as referred to above. #### Reliability of Brownsville Data It will be evident from the above description of the method of daily data calculations and from consideration of the many factors involved, that the possibility of inconsistencies in the Brownsville data from day to day and run to run is great. Therefore, ^{*} The weight percentages in the Run Summaries do not add up to 100% because the CO₂ and CH₄ in the fresh feed have been subtracted from the CO₂ and CH₄ respectively in the reactor effluent. The total products shown are the 'make' products they are all expressed as wgt.% of the fresh feed synthesis gas and not of the pure H₂ plus CO input. in order to explore the relative reliability of the point to point data and to examine the effect, if any, of changes in operations made during the runs a plot was made of all the Brownsville data run by run in the following separate graphs. These graphs are plots of space velocity (SCF of F.F./Hr/Cu.Ft. of fluidized catalyst) against yield of C₃+ expressed in Bbls/MMSCF of fresh feed. They are numbered Run 5, Run 6, Run 8 etc. On each plot the points have been joined in chronological order with a ring around the first day's operation. Examination of these individual graphs and Table II in the appendix, which lists the plotted data as well as the operating conditions used, discloses the following: - 1. Some points, but not too many, are obviously way out of line and can legitimately be discarded if necessary to avoid confusion. (Note: A great many points which were out of line
in the original rough graphs were corrected when on checking back to the original stock room calculations, it was found that errors in arithmetic or errors in transcription or errors of ommission were responsible). - 2. In the first part of Runs 8, 13 & 14 all of Runs 11, 12 and the last part of Run 17 there is obviously a wide random distribution of the data during periods when operating conditions were deliberately being maintained as constant as possible in the plant. This random distribution shows that the plant data cannot be depended upon too much, from point to point at least, to show anything but large effects of changes in operating variables. We must look instead to the mass of the data to show trends - 3. The effect of catalyst deactivation is quite pronounced in many runs. Note especially the sharp drop after the first or second day in Runs 5, 11, 12, 14 & 15. Note also the SP. VEL. V/MR/V SPACE DIEL. VINAL Sp. Vec. V/MR/V SPACE VELOCITY V/HR/V professor. SPACE VEL. YMR /V 4.5 Sp. Vec SPACE VEL. V/HR/V sharp drop which occurred during the later part of Runs 13 & 8. The drop in Run 13 may have been caused by a sharp change in mass spectrometer operations (could not be pinned down as such however) but that in Run #8 it is too consistent, in spite of maintaining constant operating conditions to be anything but catalyst deactivation. 4. In runs 14, 16 and 17 there is an apparent pronounced effect of space velocity. This is not solely the effect of space velocity however because space velocity was always increased as the run progressed and therefore the effect of catalyst aging is superimposed. In summary, these individual run graphs indicate that some rapid deactivation takes place the first day. The graphs also indicate that if the runs were longer, some further deactivation would occur as it did in run 8 where the catalyst apparently went to pot completely. Space velocity has an apparent effect but the magnitude of its effect is clouded by the superimposed. catalyst aging and possibly the effect of automatically reducing the combined feed inlet temperature when total feed rate is increased as discussed above. The point to point data of each individual run are not accurate enough by themselves to show the effect, if any, of other operating variables. # Fig. A H_2+CO Conv. vs % Contraction In order to get some idea of the consistency of the runs with each other, we have plotted <u>all</u> of the data on the following Fig. A where $\rm H_2$ + CO conversion is plotted against % contraction. This relationship is almost mathematical and if the methods of measurement and calculations were correct, the points should all fall on a single line. It will be noted that altho the deviation is fairly great, all but a few points fall within a band which should be good enough for our purpose. The points that are outside that band are all unreliable and not real effects of operating conditions. These points cannot be discarded yet however because altho they may be in error so far as % contr. or H_2+CO conv. is concerned they may be correct when other factors are correlated. # Fig. B $\rm H_2+CO$ Conversion vs $\rm C_3+$ Yields/MMSCF of Feed Another plot used for the purpose of establishing the consistency of the data with each other is Fig. B where we have shown $\rm H_2+CO$ conversion vs the yield of $\rm C_3+$ in Bbls/MMSCF of F.F. for all points. Here the scattering is even greater than in Fig. A because the $\rm C_3+$ yield is numerically dependent on the accuracy of many more values than the % contraction. All of this merely reiterates that we must draw conclusions from the mass of the data and not try to deduce too much from a point to point comparison. It will be noted from this Fig. B and also from Fig.1A that the C_3 + yields reported for Run #5 are way out of line. As a matter of fact these yields are stoichoimetrically impossible for the H_2 and CO conversions reported. This particular run was not worked up by the usual stock department procedure and the complete recalculation of the original data might have disclosed the cause of the discrepancy. However, this expenditure of time was not warranted and we have elected to ignore Run $\frac{1}{10}$ 5 instead. All the data in Run #8 are suspect. This is unfortunate since this is the longest run. An examination of the data discloses that the mass spectrometer analyses on the reactor fresh feed (V-301 effluent) was in error. The $\rm H_2/CO$ ratio averaged about 1.7 instead of the 1.8 in other runs before and after Run %8. This has such a great effect on the correlations which use $\rm H_2$ conversion or $\rm H_2+CO$ conversion as a base that Run #8 must be ignored for this purpose. The error however was consistent throughout the run and therefore the run may be used to evaluate the effect of operating variables & catalyst age. We also note from Fig. B that the following points should be treated with suspicion. - 1. The last three points in Run #9 - 2. The last two points in Run #10. ## Fig. C Space Velocity vs C_3 + Yields The following Fig. C is a plot of space velocity vs C₃+ yields in Bbls. per million SCF of synthesis gas feed for all Brownsville Runs from Run #10 on. This plot was made up to see what these recent and more reliable runs, shown on the individual plots above, would look like if superimposed on each other. In general it will be noted that they check each other reasonably well. From examination of this plot and Table II of the appendix there is no clear cut evidence that difference in operating conditions from run to run made any consistent change in results. We were particularly surprised to find no large consistent effect of differences in degree of catalyst reduction. In general it can be concluded that catalyst aging and space velocity, as modified by catalyst aging and perhaps preheat, are the only two factors that make large differences in results. One might argue that the fine grind catalyst, used in Run #10 and also in Runs #6 & 9 (see Fig. 1) were not as good as those ob- tained in the succeeding runs. (The Run #8 data are unreliable as discussed above) On this same Fig. C we have shown for comparison the effect of space velocity in pilot unit operations as reported in Table #5, p. 21 of P.R. TDC 802 - 37 P. We have also shown for comparison horizontal lines representing the design goal of C_3 + yields both as originally proposed and as adjusted for the quality of the present synthesis gas as follows: ### Effect of Synthesis Gas Quality on Yields From the Case 6 design breakdown of the reactor effluent previously submitted, it was found that the total C_3 + yield (incluing WSC) per MM SCFH of syn. gas feed predicted was 36.22 Bbls. This was for a synthesis gas that was quite different from that now being produced at Brownsville. Shown in the following Table C are radomly selected analyses of the synthesis gas in various runs compared with that predicted in design. On Nov. 29, 1951, the end of Run 13, the practice of adding about 15% steam to the natural gas feed to the generator in order to reduce soot formation was started. It will be noted that this made a perceptible difference in the syn. gas composition, H_2/CO ratio and H_2+CO purity as shown below. | | | Average Runs
%13 & %16 Incl. | Average Runs $\frac{7}{16}$ & $\frac{4}{12}$ Incl.* | |--------------------------|--------|---------------------------------|---| | | Design | with Steam | No Steam | | Syn. Gas Rate MMSCFH | 5.0 | 3.18 | 3.10 | | Mol % Dry: CO | 33.23 | 31.73 | 33.27 | | H ₂ | 61.35 | 59.78 | 60.15 | | co ₂ | 1.31 | 3.90 | 2.97 | | N ₂ +A
CH, | 3.01 | 2.12 | 1.94 | | $CH_{I_{\mathbf{b}}}$ | 1.10 | 2.47 | 1.80 | | н ₂ 7со | 1.845 | 1.88 | 1.81 | | (Ĥ ₂ +CO)% | 94.2 | 91.5 | 93.42 | ^{*} Run %8 Excluded TABLE C COMPARISON OF FRESH FEED COMPOSITIONS | Run #
Date
Syn Gas Rate | Design | 2/22/ | #16
/52 2/29/52 | $\frac{2}{2/3}$ | 1 <u>5</u>
52 2/10/52 | 1/11/5 | #14
52 1/21/5 | 2 1/22/52 | #1
12/23/5 | .3
51 12/30/51 | | |---|---|--|---|--|---|--|---|--|--|--|--| | H2 61
CO2
N2
CH4
H2O | 3.1 33.2
1.1 61.3
1.3 1.3
3.0 3.0 | 559.70
1 4.63
1 1.34
0 2.76 | 3.30
.63
32.34
58.98
3.87
1.60
2.58 | 2.856
.69
32.20
59.65
3.71
1.31
2.44 | 6 2.663
.69
31.43
60.14
4.01
1.11
2.62 | 2.646
.73
31.74
59.58
3.90
1.45
2.60 | 3.354
.68
31.62
60.23
3.63
1.68
2.16 | 3.771
.65
31.69
60.08
3.77
1.38
2.43 | 2.999
.73
32.08
59.82
3.71
1.43
2.23 | 2.990
.70
31.56
59.87
3.84
1.61
2.42 | | | H ₂ /CO 1.8
(H ₂ +CO)%94.2 | B45
2 | 1.93
90.62 | 1.81
91.32 | 1.85
91.85 | 1.91
91.57 | 1.88
91.32 | 1.90
91.85 | 1.90
91.77 | 1.86
91.90 | 1.90
91.43 | | | Run #
Date
Syn. Gas Rate
A
CO
H2
CO2
N2
CH4 | #1
11/30
3.03
.69
33.48
59.77
3.06
.93
2.07 | 2
12/5
2.81
.68
32.14
59.86
3.88
1.41
2.03 | 3.00 3
.65
32.88 34
60.89 59
2.87 2
1.04 1 | .05 2
.71 .03 32
.97 60
.69 2 | #10
/21 7/29
2.51 2.67
.66 .61
2.66
34.42
0.93 60.56
2.65 2.49
1.08 .88
2.02 1.04 | #9
6/6 6
2.81
.67
33.313
60.936
2.74
1.07
1.28 | 7/8
4.77
3.93
3.93
3.93
3.07
2.
1.18
1. | 07 3.46
74 .79
70 34.95
40 58.05
94 2.58 | .74
33.30 32.
58.63 59.
3.12 3.
1.88 1. | 06
73
51 | | | H2/CO
H2+CO)% | 1.79
93.25 | 1.86
92.00 | | | 1.87 1.76
3.59 49.80 | 1.83
94.249 | | 68 1.66
10 93.00 | 1.76 1.
91.93 92. | | | If it is assumed that steam will continue to be added to the generator to control soot formation the syn. gas will contain only 90.32 of $\rm H_2+CO$ having an $\rm H_2/CO$ ratio of 1.845, assuming the extra hydrogen is not beneficial, thus % CO = 31.73 x 1.845 = 58.6 = % Effective $$H_2$$ 31.73 + 58.6 = 90.3% H_2 +CO It follows therefore that the anticipated yield of $C_3+/MMSCF$ of synthesis gas must be reduced to 90.3/94.2 = 95.9% of that originally anticipated due to inferior synthesis gas composition. This amounts to 34.73 Bbls/MMSCF of syn. gas. Similarly if steam is not added the syn. gas will contain 92.1% of $\rm H_2+CO$ of 1.845 $\rm H_2/CO$ ratio and the anticipated yield must be reduced to $\frac{92.1}{94.2}$ = 97.82 of that predicted (35.42 Bbls/MMSCF FF). Roughly therefore some 3 or 4 percentage points of the discrepancy between anticipated and actual yields of $\rm C_3+/MMSCF$ of syn. gas at Brownsville can be accounted for by differences in the synthesis gas compositions. Incidentally, it is noted that the Nitrogen plus Argon in the Brownsville gas is consistently less than that predicted. This is because it was assumed in design that the nat. gas would contain 5% N₂ whereas this has been running consistently at 0.3 to 0.5%. On the above Fig. C we have also shown vertical lines representing the space velocity required per reactor for the present production of syn. gas (abt. 3,000,000 SCFH/Reactor) and that required ultimately for the design rate of 5,000,000 SCFH for each reactor. These values were developed as follows: ### Space Velocity: The design space velocity calculated from the data submitted in the Case 6 design specifications is 2520 V/HR/V. These specs. show a horizontal reactor however and later, if my memory is correct, as changes were made in the design 2200 was consistently referred to as the design space velocity. In actual practice the bed density has been found to run much higher than the 100 %/c.f. predicted in design. It actually is nearer 150 at Brownsville and about 140 at Montebello. The present reactors can probably accomodate a bed beight of about 17 ft. which, with an average free area between the tubes of 187 sq. ft. amounts to a total catalyst volume of 3180 C.F. or a space velocity with the design rate of 5,000,000 SCFI of Syn. gas of 1570 V/HR/V. At 150 // c.f. catalyst density, this bed height requires about 240 tons of catalyst which is the amount now normally used for a full load. Although the ultimate goal is to operate at 1600 space velocity the present synthesis gas output with one oxygen plant in service is only 3 million SCF of syn. gas instead of the design value of 5 million. At this actual rate therefore the space velocity required per reactor is about 960 SCF of Gas/Hr/CF of catalyst bed. ### Discussion of Fig.C. It will be noted from Fig. C that there is a long way to go before Brownsville results will equal those of the pilot units and, what is more important, the pilot units have almost as far again to go to reach the desired goal at the ultimately desired space velocity of 1600. It will be noted also from Fig. C that if a line is drawn thru the best of the Brownsville high space velocity data and extended to zero space velocity the yields would still not be as good as those obtained on the pilot units at 960 space velocity. Fig. D Space Velocity vs C_2 + Yield for Averaged Data In plotting the points on Fig. C it was observed that in many runs the yields in the first day's operation were substantially higher than those for succeeding days at the same operating conditions. This effect was obscured in Fig. C because of the random distribution of the points representing succeeding days. Furthermore in nearly all runs the space velocity was increased only after several day's operation (time required to get the second oxygen plant in service). We therefore averaged the data for periods where operating conditions were kept constant leaving the first day's operation separate and obtained the following plot Fig. D. On this plot we have shown besides each point the number of days represented by the point and we have put a ring around each pt. representing the first day. On this graph the abscissa should have been made longer to permit showing all the points at very high space velocities in Run 17. These however are simply an extension of the graph as can be seen thru reference to the individual plot for Run 17. This is one of the most important graphs in this report. It correlates well all the recent run data, Runs ll thru 17, excepting only the first day of Run 16 which covered a 17 1/2 Hr. period but was obviously out of line. The line thru the Brownsville data shows the combined effect of space velocity and catalyst deactivation. * *To a certain extent the lower end of the curve, beyond 1000 to 1200 $\mathrm{Sp}_{\bullet}\mathrm{vel}_{\bullet}$ also may be influenced by total feed inlet temperature but as shown before this temperature actually doesn't change very much (530° F to 415° F) and therefore its effect on this graph should not be The pilot unit line on the other hand since it was based on the first few days operation of several different runs (see Table V p. 21 PR 37P) shows the effect predominantly of space velocity alone. From the relative position of the first day points the Brownsville catalyst deactivates very rapidly at the very beginning of each run. It will be noted also that if the steep portion of the curve were to be extrapolated to, say, the first hour's operation, the yields would very likely be right up there with those obtained at the same space velocity on the pilot units. Moving down The Brownsville line to the points representing the largest number of days (at about 1000 space velocity) it will be noted that the slope is still very steep until we get to space velocity of about 1200 beyond which the line parallels the true effect of space velocity on the pilot units. This steep intermediate portion of the curve, where most of the data fall, indicates that poisons are entering the system with the gases. A small increase in space velocity increases the rate of poison entering the system so that catalyst activity and yields drop off rapidly. Beyond that, the catalyst is virtually dead anyway and the effect is almost purely one of space velocity alone. This graph and the previous Fig. C also show that if the initial degree of reduction of the catalyst and catalyst carbiding have any effect at all, the effects are well within the accuracy of the data. Also since Run 17 made predominantly at very high space velocity because of very low catalyst bed, falls on the curve with other runs of deeper bed where the space velocity was high only because of high thruput instead, Fig. D indicates that at this low level of activity, at least, bed height and therefore probably catalyst contacting efficiency have little to do with the poor conversions, at least not at these low levels of activity. ## Fig. E. Space Velocity vs H_2 + CO Conversion: Fig. E is a plot similar to Fig. C except that H_2+CO conversion is the ordinate instead of the C_3+ yields. This graph like Fig. 1, permits a direct comparison of Brownsville and Pilot Unit data and also shows the H_2+CO conversions obtained at Brownsville at very low space velocity during carbiding operations. The solid line at 90.4% H₂+CO conversion represents the design goal. It will be noted that the HRI H series runs H-24 & H-25 (0) which it will be remembered were made on an ll.5" i.d. reactor with spent CM&S catalyst all fall on or above the goal. The Beacon data (x) with the same catalyst and with Brownsville Mill Scale catalyst also all fall along this line but only one run (7027) was available at low enough space velocity to be shown on this plot. The others were all made at space velocities of 5,000 to 15,000 V/HR/V. Referring to the Stanolind and Pilot unit data it will be noted that the deactivation with time when using either mill scale of Allan Wood Catalyst at a given space velocity is quite pronounced though much slower than which takes place at Brownsville as shown in Fig. D above. The deactivation in the Stanolind Run #25 with Allan Wood catalyst (0-0) was somewhat more rapid and more consistent than that obtained with the same catalyst at Montebello. The Montebello Run #59 (\boxtimes) with spent CM&S catalyst, on the other hand shows a much slower rate of deactivation, if any. A line thru the points for this run is almost parallel to the dotted line showing the effect of space velocity in the Pilot units. This line is the same as that shown on Fig. D above. It is quite interesting to note that the Brownsville carbiding runs fall exactly on an extrapolation of this space velocity line. This indicates that during carbiding operations when operating with a fresh catalyst and relatively high hydrogen partial pressure The Brownsville Reactor acts just about the same as the Pilot unit reactor. On the other hand it is evident, of course, that this space velocity line does not go thru the best pilot unit results but perhaps represents instead average results with a catalyst that has become somewhat stabilized. Except for Run #10 and the latter part of Run #13, the plant scale data, at a lower conversion level show about the same effect of space velocity on H_2+CO conversion as does the pilot unit line. As we have seen from Fig. D however this is not the whole story. ### Discussion of
Figs. 1, 1A & 1B Figs. 1, 1A & 1B were included at the beginning of the report because they show quite strikingly the differences between Brownsville, pilot unit and laboratory results. They were among the first plots made and all the Brownsville data were included even though we now know that some of these data, notably Runs 5 & 8, are in error. These form the first of a series of graphs where Brownsville and Pilot unit results are compared with base lines established in the 1947 correlations (EDG Report No.1) from an extremely large number of data obtained at several laboratories. Since the points are joined in chronological order with rings around the first day of each run, the drift downward to lower $\rm H_2$ conversion with time is quite evident. It is also clear that the drift on Pilot units is of the same order though slower than that experienced at Brownsville. With reference to the Pilot unit results it will be noted that the Montebello data fall about where they should with respect to the base lines because the Montebello gas has an $\rm H_2/CO$ ratio of only 1.6 compared to 1.8 for Brownsville and 2.0 for the lab. and the Stanolind Pilot unit runs. This, incidentally, may explain the relatively high selectives for a given H2+CO conversion consistently reported by Montebello because conversion is always expressed as % of $\rm H_2+CO$ and Montebello has less $\rm H_2$ to start with. On the other hand, The Allan Wood catalyst at Montebello apparently results in better selectivity than that obtained with Mill Scale. It would appear from Figs. 1, 1A & 1B that the problem of raising Brownsville conversions is the same <u>kind</u> of problem as that of raising Pilot unit results to those of the smaller units. Although a little difficult to see on Fig. 1 & 1A, it will be noted that the drift in activity with time of the spent CM&S catalyst on the Montebello unit was not as great as with Mill Scale. It was still there however and even with this apparently more stable catalyst periodic reactivations would be required to maintain activity. Such periodic reductions were used on the "1000 Hr. demonstration Run 19-6 with <u>fresh</u> CM&S catalyst at Trenton. In general it will be observed from Figs. 1, 1A & 1B that all the data, comm'l., pilot unit and lab. fall pretty close to the base lines established in 1947. This is pertinent to succeeding discussions. ### $\rm H_2$ vs CO Conversion - Fig. 2 The following Fig. 2 is a plot of H_2 vs CO Conversion for all the data used in Figs. 1, lA & lB except for a few points and Runs 5 & 8 which were discarded above. On this plot the CO Conversions for Run 10 are obviously in error and should be ignored. The nomenclature on this and succeeding plots is the same as in Fig. 1. The solid lines on this graph are those that were established in the 1947 correlation (EDG Report #1) and the dotted line is an interpolation for Brownsville feed showing where Brownsville data ought to fall. I strongly believe that this graph is the key to the entire problem. If we can explain why the Brownsville and pilot unit data on Allan Wood and Mill Scale fall below the lines where they should, that is, why the CO disappearance for a given H₂ disappearance is less than it should be, we shall probably have a clear understanding not only of the poor Brownsville yields but also of the reason why the pilot units at Stanolind and Montebello Do over BROWNSPALLE 1. 545 CLEAN RYNG H-24 & N-25 1.95 BEST KUNS . CHES S CHEMENT * BEGGEN PLANT ON CLOSE SCATEL PS 2.00 MONTERED RON 45 1.63 Stance in Rene-201-22 1193 MONTEBELLO RUNS ON MALL SCALE 1.62 STANGERMO ROMO ON MILL SCALE MONTERALLO RUNGON GO ON MILL SCALE MONTERALLO RUNGO ON MILL SCALE 1.00 2.00 1.62. BROWNSVIALE RUN # 60 1.80 BROWNSVILLE RUN S 1.70 (MASS STAKE BROWNSVILLE RUN 49 OPominos 72/20 BUN 410 1.82 RUN # 11 1.82 1.85 RUN # 3 1.87 RUN # 14 1.87 RUN WKG 1.84 RIA #/ 1.84 MONTE BELLO RUN #50 SPENT CMAS SONVERSION S 0 V TO HE CONVERSION do not check the results obtained on the smaller Beacon units or in the H series runs on CM&S catalyst in the $11 1/2^n$ reactor at Olean. Incidentally, we shall also probably explain the as yet unexplained reason why the HRI 14 and 15 series runs in the $4 1/2^n$ reactor at Olean and the Trenton 19-6 Run also fall below the base lines which were established predominantly by Beacon and HRI H series data in 1947 (see EDG Report #1). It will be noted that the design point falls on the line. This, plus the fact that Beacon has exceeded the desired H₂ and CO conversions at very high space velocities (up to 15,000) indicates that the goal can be attained. Before attempting to explain the difficulty, we shall introduce the next plot. ### H_2 Conv. vs CO to CO_2 and H_2 to H_2O - Fig. 3 The following Fig. 3 is a plot of all the data, except that previously discarded, showing the relationships between H_2 Conversion and the amount of CO. in the fresh feed that went to CO_2 and also the amount of H_2 in the fresh feed that went to H_2O_4 . The solid lines in the ${\rm CO}_2$ plot are, as before, those which were established in our correlation of 1947. The corresponding lines in the ${\rm H}_2{\rm O}$ plot are shown dotted because they not only correlated the data well in 1947 but they are actually calculated by oxygen balance assuming that the solid lines in the ${\rm CO}_2$ plot on Fig. 3 and the solid lines in ${\rm H}_2$ vs ${\rm CO}$ plot on Fig. 2 are correct. The fact that the 1947 data fell on these calculated lines is therefore a check on the validity of the lines of ${\rm CO}$ conv. and ${\rm CO}$ to ${\rm CO}_2$ which were established by the data themselves. The fact that the present data falls on this same $\rm H_2O$ line while it falls below the $\rm CO_2$ line in Fig. 3 and the CO line in Fig. 2 shows that the speed of the water gas shift reaction with respect to that of the Fischer-Tropsch reaction is less at Brownsville, Montebello and Stanolind on Mill Scale than it was in the HRI H-Series reactor and in Beacon's runs on CM&S catalyst which runs formed the basis predominantly for the 1947 correlation. Mill Scale may have exactly the same effect on the Beacon reactors but there, where conversions are so high, the effect is too small to detect. #### Discussion As discussed extensively in the correlation report of 1947, the water gas shift and the Fischer-Tropsch reaction go on simultaneously both using up CO as the reactants proceed up the reactor thus: - 1) $2H_2 + CO \longrightarrow (=CH_2) + H_2O$ Fischer-Tropsch - 2) $CO + H_2O \longrightarrow H_2 + CO_2$ Water-Gas Shift Since the feed to the reactor, total feed in this case, is relatively dry it is far removed from equilibrium and should proceed quite rapidly as soon as water is made by the Fischer-Tropsch reaction. Normally as these two reactions proceed simultaneously the CO disappears rapidly, part of it going quickly to $\rm CO_2$ until the concentration of $\rm CO_2$ has been built up and the CO concentration reduced to the point where the water gas shift reverses thereby converting the $\rm CO_2$ back to CO by reaction with the remain- ing H₂ thus: $$CO + H_2O \leftarrow H_2 + CO_2$$ This reversal of the water gas shift is of course what accounts for the humped shape of the $\rm CO_2$ base line in Fig. 3. When the shift reaction is occurring at normal speed this reversal must take place if one wishes to exceed an $\rm H_2$ conversion of 50 to 60% (for $\rm H_2/CO$ ratio feed of 2) otherwise the reactions would stop simply because practically all the CO has been used up. If the water gas shift is slow however and doesn't use up the CO sc rapidly, the $\rm H_2$ conversion can exceed this figure of 50 to 60% materially but never can it get up to the level of conversion we want, of the water gas shift is occurring at all, because the water gas shift inevitable uses up part of the CO and if it is too slow to reach a point of reversal it never gives the CO back. The 1947 Correlation shows that about 30% of the CO is initially consumed by the water gas shift before it's reversal occurs. At that time most of the rest of the CO has been consumed simultaneously by the F-T reaction. Consider for example the case for $50\%~{\rm H_2}$ conversion. From the base lines for 2/1 gas we get the following: | H_2 | Conv. | 50% | |----------------|---------------------|-------| | CO | Conv. | 92.5% | | CO | to CH ₂ | 42% | | CO | to CO_2 | 30% | | H ₂ | to H ₂ O | 16% | The equations can be written as follows: W-G Shift 30 CO + 30 $$H_2$$ 0 ____ 30 H_2 + 30 CO_2 F-T 70 CO + 200 H_2 ____ 42 CH_2 + 8.5 CO + 70 H_2 + 62 H_2 0 + 19.5 CH_2 .66 * Overall 100 CO + 200 $$H_2$$ ___ 42 CH_2 + 70 CO_2 + 32 $H_2O+100H_2$ + 8.5 CO + 19.5 $CH_{2.66}$ The water gas shift ratio at this point is $\frac{(H_2) (CO_2)}{(H_2O) (CO)}$ = 11 and shortly thereafter the water gas shift starts reversing to convert ${\rm CO_2}$ back to ${\rm CO_{ullet}}$ If on the other hand an average line is drawn thru the Brownsville data on Figs. 1, 2 & 3 however the same approach shows that at 50% H₂ conversion the amount of CO used up by the water gas shift is only 22.5% of the total, some 25% less than normal, thus: For Brownsville data H_2/CO in FF = 1.84 H_2 Conv. = 50% CO Conv. = 77.5% CO to $CO_2 = 22.5$ CO to $CH_2 = 42$ H_2 to $H_20 = 17.5$ $184 \text{ H}_2 + 100 \text{ CO} = 92 \text{ H}_2 + 42 \text{ CH}_2 + 22.5 \text{ CO} + 22.5 \text{ CO}_2 + 32.2 \text{ H}_2\text{O} + 13 \text{ CH}_3 \frac{*}{.5}$ Water Gas Shift ratio = $\frac{(92)(22.5)}{(22.5)(72.2)} = 2.9$ *Found by C & H Balance Precisely the same effect is evident at 80% H₂ conversion level from a similar comparison of the 1947 correlation base lines and an average line thru the pilot unit data on Mill Scale. It is suspected that the same <u>kind</u> of thing is true also in the Beacon Runs with Mill Scale but in this case, at the high levels of conversion attained, the differences are too
small to notice. This characteristic of Mill Scale catalyst (slow water-gas shift) and it's relationship to the fact that lower conversions are obtained at Brownsville than on Pilot units could stand some further thought and development. It is felt however that the facts are already sufficiently developed to permit drawing conclusions and therefore, in the interest of getting this report out, indulgence in further discussion will be left until later. ### Conclusions Tropsch catalyst. It changes activity \underline{up} or \underline{down} very rapidly depending upon the composition of the gases surrounding it and in addition it does not promote the water-gas shift as much as it should. A freshly reduced Mill Scale catalyst gives excellent results in the Beacon reactors where \underline{pure} \underline{H}_2 and \underline{CO} and stable conditions are used, and altho there is even there a slight deactivation with time aggravated by the fact that the composition of the recycle gas is gradually changing, the catalyst appears quite stable. On the pilot units, on the other hand, the synthesis gas is not so pure (it contains ${\rm CO_2}$, ${\rm CH_4}$ and some ${\rm H_2O}$) the bed conditions are not as stable and as time goes on the catalyst continuously readjusts itself to the surrounding gases chemically and in effectiveness and deactivates much more rapidly than on the purer laboratory units. This again is aggravated by recycling and constantly changing recycle composition. This change occurs even though in the very beginning, say in the first hour, of the pilot unit runs the catalyst activity and results obtained are fully as good as those obtained under more ideal conditions on the laboratory units. The same thing happens in the plant but to a greater extent. There operating conditions are still more unstable and the situation is apparently further aggravated by the fact that the gases contain poisons as well as the ${\rm CO_2}$, ${\rm CH_4}$ and ${\rm H_2O}$ also found in the pilot unit.* The stability of the operating conditions is quite important. In the F-T reaction there tries to be a dynamic ^{*} Poisons may come from the salt water used to wash the fresh feed, acid water used to wash the recycle or highly chlorinated city water used as trim on both. equilibrium between the solid and gaseous phases. In recycling operations any momentary change in operating conditions and therefore conversions causes a change in recycle composition which in turn affects the solid phase and its activity thereby upsetting the equilibrium to create a vicious circle. It appears therefore that the low conversions at Browns-ville are caused by exactly the same factors that prevent the pilot units from maintaining continuously the same results as obtained on the laboratory units which are operating under more nearly perfect conditions. Since Mill Scale catalyst deactivates rapidly when certain changes occur in its surrounding atmosphere it, conversely, reactivates rapidly when the atmosphere is favorable. That explains why a catalyst sample drawn from the Brownsville reactor at say 12 or 96 hrs. operation and which was giving poor results at Brownsville gave almost immediately good results under Beacon's condition. The difference in results obtained at Beacon on the samples drawn from the Brownsville reactor at the 0, 12 & 96th hr. of Run #11 are quite significant in this respect. In spite of widely different chemical compositions the results obtained at Beacon on the three samples were all very high. The small differences obtained at Beacon were probably due to permanent poisoning which had occurred in even that very short period. The X-Ray analyses of these three samples together with the relative yields were as follows. They are compared with the Brownsville, Pilot unit and other laboratory data on Fig. 1. | Age of Catalyst Hrs. | 0 | 12 | 96 | |--------------------------------|-------|-------|-------| | Beacon Run $\frac{\#}{\pi}$ | 11143 | 11146 | 11144 | | Analysis | | | | | % Fe | 100 | 25 | - | | % Carbide | - | 60 | 75 | | % Oxide | - | 15 | 25 | | C ₃ + Yields gms/cm | 152.4 | 142.0 | 141.0 | The solution to the problem is to use a catalyst which resist changes effected by the surrounding atmosphere. The fused catalysts such as spent CM&S catalyst are apparently much more stable in this respect. Even these however will show a drift in activity with time especially at Brownsville and a method must be developed to periodically reactivate the catalyst in place. Permanent poisons, whatever they may be, will have to be identified and removed from the fresh feed and recycle gases. It might be argued that the Mill Scale activity could be maintained by periodic reactivation. This is probably true but with this catalyst reactivations would probably be required every 4 hrs. or so. Another hypothetical solution to the problem is to build 600 - 11.5" I.D. units like Montebello but even then Mill Scale catalyst would probably have to be reactivated every 2 days or so. Effect of Operating Variables The effect of changes in operating conditions and physical features of the reactor will be insignificant compared to the effect of the catalyst discussed above. This is true at present low conversion levels but when higher levels are being attained the choice of operating conditions may become quite important. It seems quite reasonable to expect that best results will be obtained with a full bed of well reduced catalyst. There is also a little evidence that fine catalyst is better than coarse. There is also some evidence that both the fresh feed and recycle streams should be preheated to full reaction temperature. Whether this and an additional reactor, to permit operating at lower space velocity, will be required when a good intermittently reactivated catalyst is used remains to be seen. #### Recommendations The following recommendations are made: - 1. After Beacon, Montebello and others involved have reviewed this report we should get together and agree upon a single concerted position and be ready to work toward a common goal. - 2. Perhaps we should consult with experts on Fischer-Tropsch mechanism and catalysts such as Craxford and Herrington. - 3. Once having agreed upon a goal a series of experiments should be layed out for Beacon, Montebello and Brownsville to: - A. Confirm these conclusions. - B. Learn how to manufacture a good catalyst. - C. Learn how to keep it active by in situ reactivation. The program of experimentation should be layed out in conference but the following are a few suggestions for consideration. - 1. Beacon should learn to operate its reactor with diluted catalyst or at higher space velocities so that it can deliberately produce a lower level of conversion where differences in catalysts should show up. - 2. Montebello should continue working, first with Mill Scale and then with spent CM&S catalyst and should try to develop a procedure to periodically reactivate the catalyst. Montebello should also set up fused catalyst manufacturing conditions and with Beacon's small unit assistance learn how to manufacture a good stable catalyst commercially. - 3. Montebello should try poisoning its gas with salt water, acid water and highly chlorinated drinking water washes as at Brownsville to see if these, and which of them are really responsible for permanent poisons if any. In the meantime Brownsville should also be conducting a series of experiments, to confirm the conclusions reached here, as follows: - l. A small reactor should be set up at once to operate in parallel with the commercial unit. Runs should be made first with their catalyst, fresh feed and recycle gas. The results of this run should be compared with another made with the same catalyst but with synthesis gas from the small hydrogen generator (K-303) which has been washed with only fresh water. Runs should also be made with fresh & spent Brownsville catalysts, methods of in situ reactivation should be tried etc. - 2. It is also suggested that Brownsville try running once thru (no recycling) with a fresh catalyst to see by difference if the acid water used in the effluent gas scrubber (recycle) is responsible for poisons. - 3. They should also make a similar test run (test run meaning changing only one thing at a time) using once the operation with a closed water cooling system on the synthesis gas wash tower. #### Acknowledgement I wish to thank the plant for the excellent cooperation I received in this study and particularly do I gratefully acknowledge the help of Mr. M. P. Hnilicka who was assigned to work with me throut my stay in Brownsville. LPG-(MF-MI-ML-JR) Report by: Thurches MH-FHH-RP-(DWC-REN)-TAM-CEL-CEM-dBE WMS-KGM FMDawson(2), RHAitken(2) from LCKjr # APPENDIX 7611 TABLE I TABULATION OF DATA USED IN H2 CONVERSION CORRELATIONS | Montebello Run #63
Brownsville
Mill Scale Cat. | FF
H2/CO | CO
Conv. % | H ₂
Conv. % | Mols CO ₂ | CO to
CO2 | (H ₂)(CO ₂)
(CO)(H ₂ O) | Tot. ^C 3+
lbs./hr. | CH ₂
Mols/Hr. | Mols CO
Fed | co
to c ₃₊ | R/FF | CO +H2 | Mols CH4
Make | co
to CH4 | Net ^H 2 ^O
Make MPH | H ₂ MPH
in Feed | H ₂ | Space
Velocity | Reactor inlet °F. | |---|--|---|--|---|--
---|--|--|--|--|--|---|--|--|--|--|--|--|---| | A
B
C
D
E
F
G
H
I
J
K
L
M
N
O | 1.56
1.63
1.60
1.63
1.62
1.62
1.62
1.62
1.68
1.63
1.64
1.61 | 34.36
94.15
94.56
94.47
94.13
93.71
93.33
93.53
93.52
92.42
91.07
90.81
89.46 | 80.95
80.30
80.85
81.11
82.28
80.87
80.76
80.27
79.14
77.16
77.33
75.28
74.03
71.22 | 3.220
3.250
3.238
3.074
3.075
3.369
3.324
3.485
3.485
3.413
3.519
3.620
3.637 | 21.2
21.1
19.8
20.1
21.5
21.9
22.8
22.1
22.3
22.9
22.8 | 12.84
12.65
13.11
12.25
11.38
11.58
10.88
11.58
11.98
11.78
11.60
11.05
11.93
10.76
11.41 | 130.89
131.92
136.50
137.02
135.37
131.58
134.65
129.66
133.96
122.98
123.85
124.92
122.06
120.64
122.20 | 9135
9.42
9.75
9.67
9.67
9.62
9.57
8.89
8.92
8.62
8.73 | 15.213
15.343
15.338
15.511
15.284
15.639
15.777
15.684
15.891
15.878
15.432
15.763
15.813
15.856 | 61.5
61.4
63.1
63.1
61.0
59.2
55.3
57.6
55.1
55.1 | 0.99
0.98
0.96
0.97
0.96
0.95
0.98
0.99
0.99 | 86.19
85.55
86.13
86.20
86.73
85.76
85.55
85.33
84.51
83.07
82.86
81.28
80.39
79.11
78.13 | 1.114
1.275
0.944
1.437
1.177
1.249
1.265
1.310
1.259
1.328
1.315
1.326
1.259
1.301 | 7.32
8.30
6.15
9.25
7.70
7.98
8.05
7.92
8.35
8.41
7.96
8.18 | 7.471
7.325
7.316
7.506
7.410
7.248
7.255
7.283
6.883
6.883
6.887
6.448
6.229
6.080 | 23.751
25.065
24.512
25.224
25.397
25.413
25.621
25.621
25.943
25.915
25.915
25.656
26.018 | 31.45
29.22
29.84
29.75
29.17
28.52
28.31
28.63
27.42
26.23
25.25
24.88
24.27
23.36 | 1039
1079
1085
1096
1084
1095
1114
1102
1126
1112
1133
1149
1218
1218 | 415
414
412
415
414
413
416
415
412
409
409
408
406
404
402 | | MISC. LAB. & PILOT U
DATA FROM EASTMAN'S
TULSA REPORT | NIT | | | | | | | | | | | | | | | | | | and the second | | Beacon 11140
Stanolind | 2.0 | 98.60 | 90.66 | 0.897 | 10.22 | 23.31 | 87.29 | 6.23 | 8.775 | 71.0 | 2.0 | 93.31 | 0.838 | 9.54 | 6.895 | 17.575 | 39.23 | 9120 | • | | D-201-42 3/5
D-201-45 3/5
D-201-46 3/5 | 1.97
1.85
1.84 | 97.94
93.85
97.23 | 84.97
79.21
84.45 | 0.652
0.753
0.655 | 14.61
16.41
14.49 | 20.33
9.07
15.55 | 44.68
39.37
43.98 | 3.19
2.81
3.14 | 4.462
4.586
4.520 | 71.5
61.3
69.5 | 1.0
1.0
1.0 | 89.34
84.35
88.94 | 0.446
0.496
0.440 | 10.0
10.8
9.73 | 2.850
2.564
2.796 | 8.791
8.471
8.332 | 32.41
30.26
33.55 | 1072
1195
1137 | •
• | | Montebello
57 F/O
64 F/P
65 F/N
66 F/O | 1.57
1.62
1.62
1.63 | 93.75
90.26
90.87
91.15 | 78.57
75.44
77.00
75.03 | 2.850
3.403
3.114
3.430 | 22.47
22.32
20.49
22.88 | 13.37
10.85
9.18
11.82 | 102.87
119.32
120.97
117.28 | 7.35
8.52
8.64
8.38 | 12.678
15.240
15.194
14.985 | 58.0
55.9
56.9
55.9 | 0.98
1.06
1.05
1.00 | 84.47
81.10
82.31
81.17 | 1.023
1.166
1.216
1.262 | 8.06
7.65
8.00
8.42 | 5.712
6.402
7.108
6.294 | 19.925
24.645
24.537
24.358 | 28.66
25.97
28.96
25.83 | 1119
1138
1218
1210 | •• | | MONTEBELLO RUN #59 (SPENT CM&S) | A
B
C
D
E
F
G
H | 1.65
1.65
1.66
1.65
1.72
1.77
1.77 | 93.71
92.74
94.53
95.29
95.58
94.57
93.19
92.59 | 84.10
82.32
81.90
83.81
82.38
80.48
78.60
77.31 | 3.175
3.271
3.587
3.264
3.504
3.343
3.562
3.423 | 19.51
19.95
22.01
19.99
21.73
20.89
22.26
21.83 | 7.72
12.80
12.19
15.46
13.63
12.77
13.16 | 150.6
142.21
143.97
155.63
145.05
145.10
134.67
138.35 | 10.76
10.16
10.28
11.12
10.36
10.36
9.62
9.88 | 16.267
16.394
16.293
16.327
16.125
15.996
15.999 | 66.14
61.97
63.09
68.11
64.25
64.76
60.12
63.02 | 0.87
0.88
0.85
0.84
0.85
0.87
0.87 | 87.73
86.25
86.65
88.14
87.23
85.56
83.86
82.74 | 1.444
1.137
1.258
1.168
1.229
1.210
1.201
1.238 | 8.87
6.93
7.72
7.15
7.62
7.56
7.50
7.89 | 7.893
8.470
7.558
8.079
7.940
7.841
7.491
7.005 | 26.810
27.128
27.070
26.975
27.748
28.385
28.384
28.459 | 29.44
31.22
27.92
29.94
28.61
27.62
26.39
24.61 | 1383
1463
1517
1488
1565
1596
1705
1761 | 140
146
153
155
155
152
152
156 | | MONTEBELLO
RUN 49 ALLAN
WOOD CAT. | FF
H _{2/CO} | CO
Conv. % | Space
Vel. | H ₂
Conv. % | CO
to C ^O 2 | (H ₂)(CO ₂)
(CO)(H ₂ O) | Tot.C ₃ + lbs./Hr. | (Ch ₂)
Mols/Hr. | Mols
CO Fed | CO to C3+ | R/FF | Mols CH ₄ | CO to | Net MPH
H ₂ O
<u>Make</u> | H ₂ MPH
in Feed | H ₂ to | CO
+H ₂
Conv. | |--|--|--|--|--|--|--|--|---|--|--|--|--|--|---|---|--|--| | A
B
C
D
E
F
G
H
I | 1.59
1.60
1.65
1.65
1.615
1.664
1.645 | 91.63
91.09
88.25
87.41
89.67
87.98
87.52
86.34 | 945
1057
1140
1120
1088
997
994
1094
1122 | 82.74
79.12
75.48
77.26
77.46
72.57
73.80
74.41 | 16.0
15.4
13.1
18.9
19.6
19.2
18.9
18.9 | 6.2
6.5
7.5
7.2
7.8
7.7
7.2
6.7 | 134.67
138.62
123.01
132.94
121.91
127.14
127.87
124.88
126.24 | 9.62
9.91
8.78
9.49
8.70
9.08
9.13
8.92
9.02 | 14.506
14.705
14.890
14.565
15.053
14.858
15.149
15.212 | 66.3
67.4
58.7
59.7
61.4
58.9 | 0.96
1.03
1.02
.99
1.00
.99
.99
.99 | 1.135
0.889
0.845
0.859
0.907
0.816
0.785
0.804
0.973 | 7.8
6.0
5.8
6.2
5.3
6.4 |
7.845
8.377
6.959
6.296
7.473
7.092
6.985
7.129
6.610 | 23.065
23.499
23.870
24.623
24.024
24.310
24.724
24.760
24.188 | 34.0
35.6
29.2
25.6
31.1
29.2
28.3
28.6
26.7 | 86.17
83.73
80.40
81.08
82.06
78.46
78.95
79.15
77.43 | | K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y | 1.59
1.63
1.62
1.62
1.59
1.61
1.59
1.64
1.52
1.70
1.62
1.55 | N 0
85.998
85.66.85
85.66
85.66
85.85
84.50
84.98
82.86
88.89
88.89 | 1037
1033
1085
1127
1083
1163
1142
1244
1256
1203
1252
1185
1219
894
856 | d a t 73.14 73.03 72.81 75.53 72.51 71.30 71.99 71.13 72.18 71.64 72.80 71.99 79.16 | 20.0
17.3
18.5
18.6
18.6
18.5
18.0
17.7
16.6
16.4
14.4 | 717074899486206 | 117.23
127.17
123.30
126.43
120.95
119.94
125.97
125.59
126.66
125.15
123.68
125.46
123.56
99.53
98.18 | 5.37
9.09
8.81
9.03
8.64
5.00
5.97
9.095
8.83
6.83
7.11
7.01 | 14.828
14.775
14.731
15.064
14.904
14.927
15.503
15.556
15.556
15.536
15.539
10.558
10.626 | 561°8904795577930
561°99879795576766 | 1.03
1.03
1.01
1.02
1.04
1.49
1.55
1.47
1.46
1.46
1.06
0.99 | 0.938
0.939
0.8863
0.856
0.856
0.876
0.773
0.837
0.837
0.837
0.837
0.539
0.539 | 340774871468211
5.11 | 6.218
6.792
6.534
6.948
6.747
6.909
7.110
6.913
6.949
7.198
7.584
5.962
6.362 | 23.561
24.083
23.548
24.329
24.169
23.756
24.588
24.588
24.588
24.5922
23.603
25.360
25.360
25.157
16.220
16.441 | 26.4
28.7
28.7
28.9
28.9
28.9
29.4
29.1
27.9
28.7
29.1
29.1
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3 | 77.80
77.92
77.72
78.61
77.52
76.53
77.11
76.30
76.71
76.53
76.48
75.57
76.11
83.0
83.11 | | MONTEBELLO
46 & STANOLIN
(FROM TDC802- | RUN
D RUN 2 | | | | | | | | | | | | | | | | | | 46 F/1 46 J/P 46 Q/W Stand. 29-1 Stan2 -3 -4 -5 -6 -7 -8 -9 -10 Stan. Ave. | 1.68
1.69
1.92
1.90
2.04
1.89
1.92
1.96
1.97
1.97 | 68.60
75.29
77.44
97.89
95.08
98.28
92.29
91.29
91.75
92.58
91.18
90.15 | 856
856
902
912
956
957
1033
945
952
982
991
954 | 54.31
58.20
61.60
85.94
82.19
82.80
77.24
73.69
74.14
72.53
70.79
76.26 | 18.1
18.9
18.5
11.0
10.4
14.2
16.4
18.8
15.7
16.4
17.5 | 5.8
5.9
5.7
16.98
7.60
31.2
8.73
8.81
9.27
10.1
9.1
8.9 | 91.75
104.03
104.85
33.92
32.93
30.45
29.96
30.04
28.06
29.11
29.03
27.75
28.01 | 6.55
7.49
2.42
2.35
2.17
2.15
2.00
2.08
2.07
1.98
2.00 | 15.680
15.964
15.510
3.078
3.112
3.025
3.204
3.192
3.054
3.075
3.176
3.219
3.098 | 41.8
46.5
48.6
75.7
66.4
67.6
67.6
67.6
64.6 | 1.12
1.04
1.05
1.03
1.01
1.00
.99
1.00
1.01
1.01 | 0.664
0.721
0.754
0.334
0.104
0.439
0.273
0.286
0.263
0.261
0.292 | 4.5
4.9
10.8
3.5
5.9
8.6
2.6
14.5
98.6
98.6
98.6
98.6 | 5.268
6.000
6.353
2.062
2.210
1.738
1.774
1.689
1.715
1.689
1.731 | 26.353
26.531
26.155
5.909
5.902
6.185
6.045
6.135
5.977
5.970
6.029
6.111 | 20.0
22.6
34.9
37.4
28.3
28.3
28.3
27.8
27.8
27.8
27.8 | 90.8
87.5
87.6
87.6
80.5
81.8 | | Run_# | 11.138 | 11, 143 | 11,144 | 11,146 | 11,004 | 11.096 | |---|--|--|--|---|---|---| | Catalyst | Brownsville Mill Scale reduced at Beacon Best run with Mill Scale Cat. Rec'd. 10/10/51 | Brownsville 0 Hr. Sample Run #11 Run as Received | Brownsville 96 Hr. Sample Run #11 Run as Received | Brownsville 12 Hr. Sample Run #11 Run as Received | Spent
CM&S
Run
At
200 # | Bethlehem
Mill
Scale | | Lgt. of Run (Hrs.) R/FF Pressure, psig Temp. | 2.0
400
675 | 84
2.0
400
675 | 84
2.0
400
675 | 72
2.0
400
67 5 | 84
2.0
200
650 | 84
2.0
200
650 | | Total ^C 3 ⁺ Yields (gms/CM) V/Hr/V | 155
80 | 152.4
80.7 | 141.0
81.7 | 142.0
79.1 | 149.6
39.6
5.000 | 157.4
39.6 | | V/Hr/V (x125) H_/CO FF % Contr. H2 Conv. CO Conv. | 2.02
87.1
94.4
99.2 | 2.0
86.7
93.8
99.0 | 1.89
78.3
86.0
97.5 | 2.05
82.2
89.3
98.1 | 1.99
87.0
94.6
99.4 | 1.96
85.3
92.1
99.3 | | CO to CO ₂ % CO to CH ₄ CO to C ₂ s CO to C ₃ + CO to Oxygenates CO to C ₃ + Total H ₂ to H ₂ O Chem.Fre | 8.0
9.8
7.7
61.8
12.7
74.5 | 8.1
10.0
8.1
60.9
13.0
73.9
40.9 | 12.9
10.9
10.1
53.3
14.5
67.8
34.8 | 11.4
10.0
8.8
56.5
13.4
69.9
36.4 | 7.3
10.9
7.4
67.8
4.3
72.1
43.2 | 8.0
9.4
9.1
64.5
10.5
75.0
41.3 | | Wet Gas % Unsats. C2 C3 C1 (H2) (C02) | 29.0
85.2
86.2 | 50.5
86.7
88.0 | 55.7
85.5
90.5 | 52.4
86.2
86.3 | 36.8
81.1
83.8 | 57•7
88•2
90•6 | | (CO) (H ₂ O) | 23.0 | 18.9 | 21.1 | 21.3 | 23.5 | 21.9 | # BROWNSVILLE RUN #5 (Not used except in Fig. 1, A & B) | Date | 1-16-51
(24 Hrs.) | 1-17-51 | 1-18-51 | 1 == 20 == 51 | 1-21-51 | 1-22-51 | 1-23-51 | 1-24-51 | |---|----------------------|---------------------|---------------------|--------------------|-------------------|-----------|-------------------|-------------------| | Mols CO CO Conv. CO Unconv. Mols H ₂ H ₂ % Conv. H ₂ Unconv. % Unconv. Mols Unconv. Lbs. | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 50.71 | 49.21 | 52.31 | 71.74 | 73.69 | 71.24 | 65.62 | 69.38 | | | 49.29 | 50.79 | 47.69 | 28.26 | 26.31 | 28.76 | 34.38 | 30.62 | | | 179 | 185 | 182 | 183 | 183 | 183 | 183 | 182 | | | 21.79 | 26.08 | 24.00 | 39.18 | 43.21 | 39.24 | 32.92 | 36.86 | | | 78.21 | 73.92 | 76.00 | 60.82 | 56.79 | 60.76 | 67.08 | 63.14 | | | 140.0 | 136.75 | 138.32 | 111.30 | 103.9 | 111.2 | 122.8 | 114.9 | | | 280 | 273.5 | 276.6 | 222.6 | 207.8 | 222.4 | 245.6 | 229.8 | | In Product Wt. % H ₂ | | | | | | | | | | Total Prod. Lbs. Unconv. CO Lbs. Unconv. CO Wt. % Calc. Unconv. CO Wt. % Actual | 4.72 | 6.33 | 6.69 | 4.99 | 4.77 | 4.85 | 5.32 | 5.17 | | | 5932 | 4321 | 4135 | 4461 | 4356 | 4586 | 4617 | 4445 | | | 1380 | 1422 | 1335 | 791 | 737 | 805 | 963 | 857 | | | 23.3 | 32.9 | 32.28 | 17.73 | 16.91 | 17.6 | 20.9 | 19.3 | | | 22.18 | 32.90 | 30.76 | 17.50 | 16.21 | 17.47 | 20.75 | 19.74 | | CO ₂ Wt. % | 24.70 | 31.46 | 32.76 | 38.09 | 38.63 | 36.43 | 35.08 | 37.06 | | Lbs. | 1465 | 1359 | 1355 | 1699 | 1683 | 1671 | 1620 | 1647 | | Mols (CO to CO ₂) | 33.3 | 30.9 | 30.8 | 38.6 | 38.3 | 38.0 | 36.8 | 37.4 | | Water Wt. % Lbs. Mols H ₂ to H ₂ O % | 32.20 | 8.96 | 9.22 | 12.84 | 13.21 | 15.44 | 14.94 | 10.63 | | | 1910 | 387 | 381 | 573 | 575 | 708 | 690 | 473 | | | 106 | 21.5 | 21.2 | 31.8 | 31.9 | 39.3 | 38.3 | 26.3 | | | 59.2 | 11.6 | 11.6 | 17.4 | 17.4 | 21.5 | 20.9 | 14.5 | | C_3 + (Incl. Oxygenates) Wt. % Lbs. Mols CH_2 (CO to C_3 +) | 10.94 | 13.24 | 13.22 | 15.62 | 15.81 | 14.75 | 14.35 | 15.02 | | | 649 | 572 | 547 | 697 | 689 | 676 | 663 | 668 | | | 46.4 | 40.9 | 39.1 | 49.8 | 49.1 | 48.3 | 47.4 | 47.7 | | CH ₄ Wt. % | 0.91 | 0.98 | 0.95 | 3.87 | 4.53 | 4.53 | 3.73 | 4.12 | | Lbs. | 54 | 42 | 39 | 173 | 197 | 208 | 172 | 183 | | Mols (CO to CH ₄) | 3.4 | 2.6 | 2.4 | 8.1 | 12.3 | 13.0 | 10.8 | 14.4 | | C ₂ s Wt. %
Lbs.
Mols (CO to C ₂ s) | 1.14
67.6
4.7 | 1.39
60.0
4.1 | 1.64
67.8
4.7 | 2.68
120
8.3 | 2.13
93
6.4 | 89
6.1 | 1.57
72
5.0 | 1.92
85
5.9 | | Oxy. Comps. Wt. % | 0.58 | 1.52 | 1.57 | 1.96 | 2.02 | 2.10 | 2°21 | 2.88 | | Lbs. | 34.4 | 65.7 | 64.9 | 8 | 88 | 96 | 102 | 128 | | CO to Oxygenates | 2.5 | 4.7 | 4.6 | 6.2 | 6.3 | 6.9 | 7°3 | 9.1 | | R/FF | 1.23 | 1.10 | 1.09 | 1.33 | 1.34 | 1.20 | 1.30 | 1.31 | | | 3/13/51 | 3/14/51 | 3/15/51 | 3/16/51 | 3/17/51 | 3/18/51 | 3/19/51 | |--|---|--|--|------------|--|---|---| | CO Unconv. Mols. Mols. H ₂ H ₂ % Conv. H ₃ Unconv. % | 100
70.78
29.22
185
43.54
56.46
104.45
208.9 | 100
74.71
25.29
180
48.14
51.86
93.35
186.7 | 100
75.28
24.72
176
49.24
50.76
89.34
178.6 | 100
176 | 100
76.51
23.49
174
48.53
51.47
89.56
179.1 | 100
73.15
26.85
183
43.36
56.64
103.65
207.3 |
100
73.76
26.24
183
42.49
57.51
105.24
210.5 | | Wt. % H ₂ Total Prod. Lbs. Unconv. CO Lbs. Unconv. CO Calc. Wt.% Actual Wt.% CO ₂ Wt.% Lbs. Mols CO to CO ₂ | 5.36
3897
818.2
21.0
20.8
25.46
992.2
22.6 | 4.79
3898
708
18.2
17.82
25.29
985.8
22.4 | 4.59
3891
692.2
17.8
17.63
21.94
853.7
19.4 | | 4.60
3896
657.7
16.9
16.89
23.62
920.2
20.9 | 5.28
3926
751.8
19.1
19.01
28.55
1120.9
25.5 | 5.21
4040
734.7
18.2
18.89
28.38
1146.6
26.1 | | Water Wt.%
Lbs.
Mols.
H2 to H ₂ O Mol.% | 13.11
510.9
28.4
15.4 | 14.50
565.2
31.4
17.5 | 16.91
658.0
36.6
20.8 | | 10.74
418.4
23.2
13.3 | 10.77
422.8
23.5
12.8 | 12.08
488.0
27.1
14.8 | | C3 Incl. Oxy. Wt.%
Lbs.
Mols CH2(Mols. CO to C3) | 451.3 | 13.32
519.2
37.1 | 13.01
506.2
36.2 | | 13.49
525.6
37.5 | 12.59
494.3
35.3 | 10.88
439.6
31.4 | | CH ₄ Wt. %
Lbs.
Mols.(CO to CH ₄) | 198.7 | 5.93
231.2
17.5 | 6.97
271.2
17.0 | | 10.72
417.7
26.1 | 4.40
172.7
10.8 | 4.83
195.1
12.2 | | C ₂ Wt. %
Lbs.
Mols. CO to C2 ⁸ | 2.21
86.1
5.9 | 2.20
85.8
5.9 | 1.87
72.8
5.0 | | 2.41
93.9
6.5 | 2.41
94.6
6.5 | 2.37
95.7
6.6 | | Oxy. Comps. Wt. %
Lbs.
Mols. | 2.20
85.7
6.1 | 2.24
87.3
6.2 | 2.23
86.8
6.2 | | 2.55
99.3
7.1 | 2.69
105.6
7.5 | 2.74
110.7
7.9 | | R/FF | 0.58 | •51 | •42 | | •53 | •60 | .61 | | | APRIL | APRIL 23 | APRIL 24 | APRIL | APRIL
26 | APRIL | APRIL 28 | APRIL
29 | APRIL
30 | MAY | MAY
2 | MAY
3 | MAY | MAY
5 | MAY
6 | MAY | MAY
8 | MAY9 | MAY
10 | MAY | MAY
12 | MAY | MAY
14 | |--|--|---|--|--|--|---|---|--|---|---|---|---|---|---|--|---|---|---|---|---|---|--|---| | OWNSVILLE RUN #8 Ols CO Conv. Ounconv. Ols H ₂ Ols Conv. Conv. Cols H ₂ Ols Conv. Cols Conv. Cols H ₂ Ols Conv. Cols Conv. Cols Conv. Cols Conv. Cols | 100%
79.5
30.5
172.
58.3
41.7
71.7 | 100%
77.09
22.91
174.
56.80
43.20
75.2
150.4 | 100%
75.57
24.43
173.
54.62
45.38
78.5
157. | 100%
82.22
17.78
168.
60.26
39.74
66.76
133.5 | 100%
83.11
16.89
170.
63.42
36.58
62.19
124.4 | 100%
81.27
18.73
169.
60.40
39.60
66.9
133.2 | 100%
81.89
18.91
167.
61.66
38.34
64.0
128.0 | 100%
79.51
20.49
168.
56.57
43.43
72.96
145.9 | 100%
82.35
17.65
170.
61.49
38.53
65.5
131.0 | 100%
83.22
16.78
164.
63.45
36.55
59.9
119.8 | 100%
83.72
16.28
161.
63.34
36.66
59.0
118.0 | 100%
83.04
16.96
166.
62.12
37.88
62.9
125.8 | 100%
82.96
17.04
172.
62.31
37.69
64.8
129.6 | 100%
84.30
15.70
172
64.29
35.71
61.44
122.9 | 100%
83.8
16.2
168.
63.37
36.63
61.54
123.0 | 100%
78.76
21.24
161.
60.30
39.70
63.9
127.8 | 100%
79.47
20.53
166.
54.95
45.05
74.8
149.6 | 100%
77.24
22.76
172.
52.71
47.29
81.3
162.6 | 100%
77.95
22.05
175.
53.63
46.37
81.1
162.2 | 100%
79.19
20.81
166.
53.99
46.01
76.4
152.8 | 100%
77.94
22.06
175.
54.47
45.53
79.7
159.4 | 100%
79.49
20.51
175.
,50.46
49.54
86.7
173.4 | 100%
76.82
23.18
179.
52.76
47.24
84.6
169.2 | | Wgt. % H ₂ Total Prod. Lbs. Unconv. CO Lbs. Unconv. CO. Wgt.% Unconv. CO Actual | 3.82
3754
854.0
22.75
15.16 | 4.01
3751
641
17.08
16.96 | 4.18
3756
684
18.21
18.11 | 3.57
3739
499
13.35
13.17 | 3.30
3770
473
12.55
12.44 | 3.57
3731
524
14.04
13.53 | 3.44
3721
529
14.21
13.48 | 3.89
3751
574
15.30
15.18 | 3.47
3775
494
13.09
12.97 | 3.20
3744
470
12.55
12.42 | 3.20
3688
456
12.36
12.46 | 3.36
3744
475
12.69
12.64 | 3.43
3778
477
12.62
12.51 | 3.27
3758
440
11.71
11.59 | 3.27
3761
454
12.07
11.96 | 3.44
3715
595
16.02
15.90 | 4.00
3741
575
15.37
15.27 | 4.33
3755
637
16.96
16.77 | 4.30
3772
617
16.35
16.27 | 4.06
3764
583
15.49
15.37 | 4.15
3841
617
16.06
16.01 | 4.54
3819
574
15.03
14.92 | 4.37
3643
649
17.81
16.66 | | O ₂ Wgt. %
Lbs.
Mols. | 33.16
1244.80
28.29 | 32.98
1237.1
28.12 | 31.73
1191.7
29.08 | 31.79
1188.6
27.01 | 31.40
1183.7
26.90 | 32.22
1202.
27.32 | 32.19
1197.8
27.22 | 36.84
1382.
31.41 | 31.31
1182.0
26.86 | 31.61
1183.5
26.90 | 36.69
1353.1
30.85 | 31.48
1178.6
26.79 | 32.33
1221.4
27.76 | 31.71
1191.7
24.81 | 32.10
1207.3
27.44 | 33.62
1248.9
28.38 | 34.83
1303.0
29.61 | 34.82
1307.5
29.72 | 33.12
1249.3
28.37 | 34.93
1314.8
29.88 | 35.75
1373.2
31.21 | 35.40
1351.9
30.73 | 33.72
1228.4
27.92 | | ater Wgt. % Lbs. Mols. 2 to H ₂ O Mol. % | 16.14
605.90
33.66 | 15.44
579.2
32.18
.18 | 15.27
573.5
31.86
.18 | 16.75
676.3
34.79 | 693。3 | 17.63
657.8
36.54 | 17.11
636.7
35.37 | 15.84
594.2
33.01 | 18.41
695.0
38.61
.23 | 24.53
918.4
51.02 | 19.92
734.6
40.81 | 21.04
78.77
43.76
.26 | 12.79
483.2
26.84
.16 | 19.10
717.8
39.88 | 18.51
696.2
38.68 | 16.87
626.7
34.82 | 14.51
542.8
30.16
.18 | 13.17
494.5
27.47 | 16.01
603.9
33.55 | 15.33
577.0
32.06
.19 | 14.37
552.0
30.67 | 14.97
571.7
31.76 | 14.93
543.9
30.21 | | 3+ (Incl. water sol. chem.) Wgt. % Lbs. Tols CH2 | 17.60
660.7
47.19 | 18.18
686.
48.9 | 16.02
601.7
42.98 | 19.87
742.9
53.06 | 928.2 | 19.41
724.2
51.73 | 20.11
748.3
53.45 | 20:12
754.7
53.91 | 18.81
710.1
50.72 | 23.28
871.6
62.26 | 22.62
834.2
59.59 | 22.71
850.3
60.74 | 16.50
623.4
44.53 | 17.96
674.9
48.20 | 17.62
662.7
47.34 | 14.71
546.5
39.04 |
15.14
566.4
40.46 | 14.43
541.8
38.70 | 14.58
549.9
39.28 | 13.99
526.6
37.61 | 12.35
474.4
33.89 | 11.26
430.0
30.71 | 11.68
425.5
30.39 | | H ₄ Wgt. % Lbs. Mols. | 5.60
210.2
13.1 | 5.24
196.6
12.28 | 7.38
277.2
17.33 | 7.57 283.0 17.69 | 5.93
223.6
13.98 | 5.49
204.8
12.80 | 5.55
206.5
12.91 | 5.34
200.3
12.52 | 6.73
254.1
15.88 | 5.50
205.9
12.87 | 5.93
219。
13.69 | 5.55
207.8
12.99 | 5.65
213.5
13.34 | 5.72
214.9
13.43 | 5.71
214.8
13.43 | 5.23
194.3
12.14 | 5.89
220.3
13.77 | 5.87
220.4
13.78 | 6.17
232.7
14.54 | 6.29
236.8
14.80 | 6.22
238.9
14.93 | 6.82
260.5
16.28 | 5.69
207.3
12.96 | | 2 Wgt. %
Lbs.
Mols. | 2.06
77.3
5.26 | 89.65 | 2.13
80.0
5.44 | 2.61
97.6
6.64 | 2.20
82.9
5.64 | 2.38
88.8
6.04 | 2.49
92.7
6.31 | 2.34
87.8
5.97 | 2.42
91.4
6.22 | 1.80
67.4
4.59 | 2.37
87.4
5.95 | 3.37
126.7
8.62 | 3.28
123.9
8.43 | 3.08
115.7
7.87 | 8,80 | 3.17
117.8
8.01 | 2.77
103.6
7.05 | 3.03
113.8
7.74 | 8.16 | | 8.15 | 3.50
133.7
9.10 | 2.27
82.7
5.63 | | xy. Comps. Wgt. % Lbs. Mols. | 3.14
117.87
8.42
1.50 | 3.46
129.8
9.27
1.41 | 3.31
124.3
8.88
1.24 | 3.59
134.2
9.59
1.35 | 3.55
133.8
9.56
1.35 | 3.59
133.9
9.56
1.32 | 3.88
144.4
10.31
1.22 | 3.60
135.0
9.64
1.32 | 3.76
141.9
10.14
1.32 | 3.54
132.5
9.46
1.19 | 3.80
140.1
10.01
1.21 | 3.76
140.8
10.05
1.23 | 4.24
160.2
11.44
1.28 | 4.62
173.6
12.40
1.21 | 4.68
176.1
12.58
1.27 | 4.31
160.1
11.44
.91 | 3.89
145.5
10.39
.71 | 4.05
152.1
10.86
1.0 | 4.18
157.7
11.26
.91 | 3.55
133.6
9.54
1.08 | 4.04
155.2
11.09
1,48 | 4.22
161.2
11.51
1.69 | 3.78
137.7
9.84
1.63 | | BROWNSVILLE RUNS #9 & #10 | SESSECTION CONTRACT SECURISHMENT SECURISHMEN | R U | N # 9 | and approximate the state of th | untida vasilar er eldalallangin, maksarı allalla valilalandı ülçün k | SERVICE OF THE PROPERTY | | RUN | #10 | tern. Elling to an algument to an exercision to the state of | and the second seco | |--|--|---|--|--|--|--|--|-------------------|---
--|--| | Date | 6-5-51
(10 Hrs.) | 6-6-51 | 6-7-51 | 6-8-51 | 6-9-51
(9 Hrs.) | $\frac{7-21-51}{(24 \text{ Hrs.})}$ | 7-22-51 | 7-23 to $7-28-51$ | 7-29-51 | <u>7-30-51</u> | 7-31-51
(18 Hrs.) | | Mols CO
CO Conv.
CO Unconv.
Mols H ₂
H ₂ % Conv. | 100
81.47
18.53
184.5
54.71 | 100
80.44
19.56
182:9
48.97 | 100
71.15
28.85
186.7
41.54 | 100
71.91
28.09
178.0
45.50 | 100
78.49
21.51
174.7
47.09 | 100
76.77
23.23
186.5
51.84 | 100
77.04
22.96
186.
61.87 | No
Data | 100
68.63
31.37
175.9
51.33 | 100
72.55
27.45
178.4
52.42 | 100
54.96
45.04
182.2
41.08 | | H ₂ Unconv. % H ₂ Unconv. Mols H ₂ Unconv. Lbs. | 45,29
83,6
167,2 | 51.03
93.3
186.6 | 58.46
109.1
218.2 | 54.50
97.0
194.0 | 52.91
92.4
184.8 | 48.16
89.8
179.6 | 38.13
70.9
141.8 | | 48.67
85.6
171.2 | 47.58
84.9
169.8 | 58.92
107.4
214.8 | | In Product: | CASE OFFICE ASSESSMENT OF THE PROPERTY | | | | | | | | | | | | Wt. % H ₂ Total Prod. Lbs. Unconv. CO Lbs. Unconv. CO Wt. % Calc. Unconv. CO Wt. % Actual | 3765.7
518.8
13.77
13.67 | 5.00
3732
547.7
14.67
14.55 | 5.80
3762
807.8
21.47
21.30 | 5.19
3738
786.5
21.04
20.36 | 4.86
3802
602.3
15.84
15.73 | 4.76
3773
650.4
17.23
19.09 | 4.14
3425
642.9
18.77
16.9 | | 4.71
3635
878.4
24.16
23.99 | 4.61
3683
768.6
20.86
20.68 | 5.76
3729
1261.1
33.81
33.55 | | CO ₂ Wt. % Lbs. Mols CO to CO ₂ Water Wt. % Lbs. Mols H ₂ to H ₂ O Mol % | 25.67
966.7
22.0
19.41
730.9
40.6
22.0 | 32.39
1208.8
27.5
8.37
310.9
17.3
9.5 | 28.84
1085.0
24.7
9.30
349.9
19.4
10.4 | 26.52
991.3
22.5
11.28
421.6
23.4
13.1 | 29.16
1108.7
25.2
12.43
472.6
26.3
15.1 | 23.69
893.8
20.3 | 21.89
749.7
17.0 | | 20.07
729.5
16.6 | 25.56
941.4
21.4 | 11.76
438.5
10.0 | | C ₃ + incl. Oxyg. Wt. % Lbs. Mols CH ₂ (Mols CO to C ₃ +) | 13.52
509.1
36.4 | 15.25
569.1
40.6 | 14.57
548.1
39.1 | 14.67
548.4
39.2 | 14.76
561.2
40.1 | 14.73
555.8
39.7 | 17.51
599.7
42.8 | | 16.03
582.7
41.6 | 14.71
541.8
38.7 | 14.31
533.6
38.1 | | CH ₄ Wt. % | 4.30 | 5.15 | 2.71 | 2.90 | 3.41 | 3.09 | 5.00 | | 2.79 | 2.82 | 0.62 | | Lbs.
Mols (CO to CH ₄) | 161.9
10.1 | 192.2
12.0 | 102.0
6.4 | 108.4
6.8 | 129.6
8.1 | 116.6
7.3 | 171.3
7.1 | | 101.4 | 103.9
6.5 | 23.1
1.4 | | C ₂ s Wt. %
Lbs.
Mols CO to C ₂ s | 2.01
75.7
5.2 | 2.54
94.8
6.5 | 1.03
38.7
2.7 | 2.12
79.2
5.5 | 2.17
82.5
5.7 | 1.35
50.9
3.5 | 2.17
74.3
5.1 | | 2.21
80.3
5.5 | 4.23
155.8
10.7 | 1.14
42.5
2.9 | | Oxy. Comps. Wt. %
Lbs.
CO to Oxygenates | 1,80
67,8
4,8 | 2.94
109.7
7.8 | 2.25
84.6
6.0 | 2.84
106.2
7.6 | 3.07
116.7
8.3 | 2.03
76.6
5.5 | 3.16
108.2
7.7 | | 3.31
120.3
8.6 | 3.28
120.8
8.6 | 3.73
139.1
9.9 | | R/FF | 1 33 | 1.50 | 1.55 | 0.81 | 0.63 | 1.69 | 1.46 | | 1,60 | 1.87 | 1.75 | | <u>Date</u> | 11-11-51
(24 Hrs.) | 11-12-51 | 11-13-51 | 11-14-51 | 11-15-51 | 11-16-51 | 11-17-51 | 11-18-51 | 11-19-51
(24 Hrs.) | |--|--|--|--|--|--|--|--|--|--| | Mols CO Mols CO Conv. Mols CO Unconv. Mols H ₂ % H ₂ Conv. Mols H ₂ Unconv. | 100
85.3
14.7
183
63.3
67.2 | 100
88.1
11.9
185
67.7
59.8 | 100
86.6
13.4
184
67.2
60.4 | 100
84.4
15.6
185
65.0
64.8 | 100
81.4
18.6
186
61.3
72.0 | 100
82.7
17.3
178
63.4
65.1 | 100
80.5
19.5
176
58.7
72.7 | 100
80.8
19.2
176
62.0
66.9 | 100
81.5
18.5
188
63.8
63.7 | | Lb. H ₂ Unconv. | 135.4 | 119.6 | 120.8 | 129.6 | 144.0 | | 145.4 | 133.8 | 127.4 | | Product | | | | | | | | | • | | Wt. % H ₂ Total Prod. Lb. Unconv. CO. Lb. Unconv. CO Wt. % Calc. Unconv. CO Wt. % Actual | 3.57
3800
412
10.82
10.82 | 3.16
3780
333
8.81
8.73 | 3.24
3730
375
10.05
9.95 | 3.43
3780
437
11.56
11.50 | 3.86
3730
521
13.97
13.82 | 3.50
3720
484
13.01
12.85 | 3.92
3710
546
14.72
14.58 | 3.61
3710
538
14.50
14.30 | 3.56
3580
518
14.47
13.44 | | CO_2 Wt. % CO_2 Lb. CO_2 Mols CO_3 Mol % | 24.98
949
21.56
21.6 | 23.22
878
19.95
20.0 | 23.08
861
19.56
19.6 | 21.71
821
18,65
18.7 | 23.97
894
20.31
20.3 | 22.76
847
19.24
19.2 | 22.14
821
18.65
18.7 | 22.68
841
19.11 | 20.60
737
16.74 | | Water Wt. % Lb. Mols Mol % | 19.25
732
40.7
22.2 | 23.78
899
49.9
27.0 | 22.74
848
47.1
25.6 | 22.20
839
46.6
25.2 | 16.83
628
34.9
18.8 | 20.36
759
42.2
23.7 | | 19.1
19.62
728
40.4
23.0 | 16.7
20.11
720
40.0
21.3 | | C ₃ + Wt. % | 17.69
672 | 16.74
633 | 18.28
682 | 18.88
714 | 19.94 | 17.24
641 | 18.39
682 | 17.92
665 | 18.56
664 | | Mols CH ₂ Mol %(CO to C ₃ +) | 48.0 | 45.2 | 48.7 | 51.0 | 53.1 | 45.8 | 48.7 | 47.5 | 47.4 | | CH ₄ Wt. %
Lb.
Mols Mol % | 3.31
126
7.88 | 4.01
152
9.50 | 3.37
126
7.88 | 2.94
111
6.94 | 2.95
110
6.88 | 3.50
130
8.13 | 3.40
126
7.88 | 3.18
118
7.38 | 3.21
115
7.19 | | ^C 2 Wt. %
Lb.
Mols Mol % | 2.65
101
7.0 | 2,98
113
7.8 | 2.5 8
96
6.6 | 2.41
91
6.2 | 2.44
91
6.2 | 2.44
91
6.2 | 2.57
95
6.6 | 2.65
98
6.8 | 2.74
98
6.8 | | Oxyg。Wt. %
Lb.
Mols Mol % | 4.06
154
11.0 | 3.99
151
10.8 | 4.24
158
11.3 | 4.36
165
11.8 | 4.22
157
11.2 | 4.45
166
11.9 | 4.08
151
10.8 | 4.33
161
11.5 | 4.14
148
10.6 | | R/FF | 1.49 | 1.37 | 1.31 | 1.42 | 1.53 | 1.43 | 1.13 | 1.36 | 1.16 | | BROWNS | VILLE | RUN | #12 | |--------|-------|-----|-----| | | | | | | <u>Date</u> | $\frac{11-29-51}{(24 \text{ Hrs.})}$ | 11-30-51 | 12-1-51 | 12-2-51 | 12 3 51 | 12-4-51 | 12-5-51 | 12-6-51 | 12-7-51
(6 Hrs.) | |--|--------------------------------------|------------|--------------|--------------|-------------|-------------|----------------|-------------|---------------------| | Mols CO | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | Mols CO Conv. | 82.41 | 85.28 | 85,87 | 85.11 | 85.22 | 84.48 | 84.34 | 86.13 | 85.90 | | Mols CO Unconv. | 17.59 | 14.72 | 14.13 | 14.89 | 14.78 | 15.52 | 1 5. 66 | 13.87 | 14.10 | | Mols H ₂ | 180 | 178 | 183 | 184 | 185 | 184 | 186 | 192 | 190 | | % H ₂ Conv. | 59.53 | 65.36 | 66.92 | 66.71 | 65.21 | 66.56 | 64.61 | 67.45 | 67.29 | | Mols H ₂ Unconv. | 72.8 | 61.7 | 60.5 | 61.3 | 64.4 | 61.5 | 65.5 | 62.5 | 62.1 | | Lb. H ₂ Unconv. | 145.6 | 123.4 | 121.0 | 122.6 | 128.8 | 123.0 | 131.6 | 125.0 | 124.2 | | Product | | | | | | | | | | | Wt. % H ₂ Total Prod. Lb. Unconv. CO Lb. Unconv. CO Wt. % Calc. Unconv. CO Wt. % Actual | 3.88 |
3.26 | 3.11 | 3.10 | 3.24 | 3.08 | 3.31 | 3.10 | 3.18 | | | 3750 | 3785 | 3891 | 3955 | 3975 | 3994 | 3976 | 4032 | 3906 | | | 493 | 412 | 396 | 417 | 414 | 435 | 438 | 388 | 395 | | | 13.15 | 10.88 | 10.17 | 10.56 | 10.44 | 10.89 | 11.01 | 9.62 | 10.12 | | | 12.99 | 10.79 | 10.07 | 10.45 | 10.31 | 10.74 | 10.92 | 9.55 | 9.60 | | CO ₂ Wt. % | 23.90 | 21.47 | 19.65 | 17.90 | 20.09 | 17.47 | 19.16 | 17.76 | 18,22 | | CO ₂ Lb. | 896 | 813 | 765 | 708 | 799 | 698 | 762 | 716 | 912 | | Mols Mol % Water Wt. % Lb. Mols Mol % | 20.4 | 18.5 | 17.4 | 16.1 | 18.2 | 15.9 | 17.3 | 16.3 | 16.2 | | | 19.17 | 22.04 | 24.11 | 24.14 | 18.48 | 22.73 | 20.40 | 21.56 | 22.79 | | | 719 | 834 | 938 | 955 | 735 | 908 | 811 | 869 | 890 | | | 39.9 | 46.3 | 52.1 | 53.0 | 40.8 | 50.4 | 45.0 | 48.3 | 49.4 | | | 22.2 | 26.0 | 28.5 | 28.8 | 22.0 | 27.4 | 24.2 | 25.2 | 26.0 | | Mol % C3+ Wt. % Lb. Mols Mol % | 17.13 | 19.00 | 17.27 | 18.10 | 20.18 | 18.26 | 18.03 | 17.48 | 17.19 | | | 642 | 719 | 672 | 716 | 802 | 729 | 717 | 705 | 671 | | | 4 5. 9 | 51.4 | 48.0 | 51.1 | 57.3 | 52.1 | 51.2 | 50.4 | 47.9 | | CH ₄ Wt. % | 2.85 | 2.86 | 2.78 | 2.67 | 3.18 | 2.91 | 3.39 | 6.21 | 4.09 | | Lb. | 107 | 108 | 108 | 106 | 126 | 116 | 135 | 250 | 160 | | Mols Mol % | 6.7 | 6.8 | 6.8 | 6.6 | 7.9 | 7.3 | 8.4 | 15.6 | 10.0 | | C ₂ Wt. %
Lb.
Mols Mol % | 2.49
93 | 2.21
84 | 2.45
95.3 | 2.46
97.3 | 2.67
106 | 2.54
101 | 2.64
105 | 2.65
107 | 2.78
109 | | Oxyg. Wt. % Lb. Mols Mol % | 4.06 | 4.30 | 4.57 | 4.58 | 4.34 | 4.08 | 4.21 | 4.22 | 3.74 | | | 152 | 163 | 178 | 181 | 173 | 163 | 167 | 170 | 146 | | | 10.8 | 11.3 | 12.8 | 12.9 | 12.7 | 11.3 | 12.0 | 12.2 | 10.7 | | R/FF | 1.60 | 1.41 | 1.31 | 1.41 | 1.55 | 1.40 | 1.52 | 1.50 | 1.42 | | <u>Date</u> | $\frac{12-21-51}{(13 \text{ Hrs.})}$ | 12-22-51 | 12-23-51 | 12-24-51 | 12-25-51 | 12-26-51 | 12-27-51 | 12-28-51 | 12-29-51 | 12-30-51 | 12-31-51 | 1-1-52 | $\frac{1-2-52}{(3 \text{ Hrs.})}$ | |--|--|--|--|--|--|--|---|--|--|--|--|--|--| | Mols CO Mols CO Conv. Mols CO Unconv. Mols H ₂ % H ₂ Conv. Mols H ₂ Unconv. Lbs. H ₂ Unconv. | 100
81.25
18.75
181
61.55
69.6
139.2 | 100
84.28
15.72
187
64.65
66.1
132.2 | 100
82.84
17.16
186
63.24
68.4
136.8 | 100
79.98
20.02
185
59.22
75.4
150.8 | 100
80.81
19.19
183
59.37
74.4
148.8 | 100
79.50
20.50
189
60.21
75.2
150.4 | 100
79.99
20.01
186
58.06
78.0 | 100
77.27
22.73
189
53.38
88.1
176.2 | 100
74.10
25.90
189
51.27
92.1
184.2 | 100
75.66
24.34
189
53.52
87.8
175.6 | 100
76.03
23.97
190
53.37
88.6
177.2 | 100
76.53
23.47
189
54.45
86.1
172.2 | 100
76.85
23.15
189
55.09
84.9
169.8 | | In Product | | | | | | | | | | | | | | | Wt. % H ₂ Total Prod. Lb. Unconv. CO Lb. Unconv. CO Wt. % Calc. Unconv. CO Wt. % Actual | 3.56
3910
525
13.43
13.31 | 3.36
3930
440
11.20
11.11 | 3.44
3980
480
12.06
11.97 | 3.80
3970
561
14.13
13.99 | 3.79
3930
537
13.66
13.51 | 3.74
4020
574
14.28
14.15 | 3.89
4010
560
13.97
13.87 | 4.44
3970
636
16.02
15.86 | 4.53
4066
725
17.83
17.64 | 4.36
4030
682
16.97
16.62 | 4.32
4100
671
16.37
16.32 | 4.24
4060
657
16.18
16.03 | 4.18
4060
648
15.96
15.81 | | CO ₂ Wt. %
CO ₂ Lb.
CO ₂ Mols - Mol % | 17.71
692
15.7 | 20.25
796
18.1 | 17.98
716
16.3 | 18.07
717
16.3 | 18.93
744
16.9 | 17.09
687
15.6 | 18.42
739
16.8 | 21.51
854
19.4 | 19.49
792
18.0 | 19.64
791
18.0 | 19.43
797
18.1 | 19.81
804
18.3 | 19.34
785
17.8 | | Water Wt. % Lb. Mols Mol % C ₃ + Wt. % | 20.13
787
43.7
24.1
20.06 | 19.50
766
42.6
22.8
19.54 | 34.39
1369
76.0
40.9
16.65 | 21.81
866
48.1
26.0
16.67 | 21.55
847
47.1
25.7
17.22 | 21.01
845
47.0
24.9
18.20 | 19.78
793
44.1
23.7
17.62 | 18.04
716
39.8
21.1
14.67 | 16.66
677
37.6
19.9
15.08 | 16.73
674
37.4
19.8
16.83 | 18.51
759
42.2
22.2
14.27 | 17.85
725
40.3
21.3
15.29 | 19.43
789
43.8
23.2
14.66 | | Lb. Mols Mol,% | 784
56.0 | 768
54.9 | 662
47.3 | 662
47.3 | 677
48.4 | 732
52.3 | 707
50°5 | 582
41.6 | 613
43.8 | 678
48.4 | 585
41.8 | 621
44.4 | 595
42.3 | | CH ₄ Wt. %
Lb.
Mols Mol % | 3.00
117
7.3 | 3.26
128
8.0 | 2.20
88
5.5 | 2.31
92
5.8 | 2.62
103
6.4 | 1.85
74 | 2.07
83
5.2 | 2.29
91 | 1.34 | 2.18
88 | 1.64 | 1.56 | 1.49
61
3.8 | | C ₂ Wt. % | 1.78
70 | 2.45 | 2.35 | 2,20 | 2.25 | 4.6
2.26 | 2.34 | 5.7
2.21 | 3.4
2.28 | 5.5
2.15 | 4.2
2.15 | 3.9
2.54 | 2.50 | | Mols Mol % Oxy. Wt. % Lb. Mols Mol % | 4.8
3.04
119
8.5 | 96
6.6
4.33
170
12.1 | 94
6.5
4.21
168
12.0 | 87
6.0
4.04
160
11.4 | 88
6.1
4.05
159
11.4 | 91
6.3
4.12
166
11.9 | 94
6.5
3.72
149
10.6 | 88
6.1
3.97
158
11.3 | 93
6.4
4.57
186
13.3 | 87
6.0
4.10
165
11.8 | 88
6.1
3.71
152
10.9 | 103
7.1
4.02
163
11.6 | 102
7.0
4.33
176
12.6 | | R/FF | 1.55 | 1.66 | 1.38 | 1.38 | 1.49 | 1.65 | 1.32 | 1.42 | 1.47 | 1.41 | 1.47 | 1.41 | 1.28 | | DDOWNOUTLIE DUN #31 | 1 0 50 | 1 10 50 | 2 22 50 | 1 10 50 | 1 12 70 | 3 34 50 | 3 3 5 50 | 2 2/ 50 | 3 35 50 | | | * ** | | | |---|---|---|---|---|---|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---|---|---|---|-------------------| | BROWNSVILLE RUN #14 | $\frac{1-9-52}{(13 \text{ Hrs.})}$ |) 1-10-52 | 1-11-52 | 1-12-52 | 1-13-52 | 1-14-52 | 1-15-52 | 1-16-52 | 1-17-52 | 1-18-52 | 1-19-52 | 1-20-52 | 1-21-52 | $\frac{1-2}{(5)}$ | | Mols CO
CO Conv.
CO Unconv. Mols
Mols H ₂ | 100.00
83.53
16.47
187 | 100.00
83.27
16.73 | 100.00
83.00
17.00 | 100.00
82.09
17.91
185 | 100.00
81.92
18.08 | 100.00
83.25
16.75 | 100.00
86.78
13.22
187 | 100.00
86.54
13.46
185 | 100.00
85.92
14.08
186 | 100.00
83.88
16.12
179 | 100.00
84.94
15.06
186 | 100.00
85.53
14.47
186 | 100.00
80.41
19.59
190 | 1 | | H ₂ % Conv.
H ₂ % Unconv. | 63.51
36.49 | 61.74 | 60,10
39,90 | 57.05
42.95 | 57.85
42.15 | 61.46
38.54 | 67.25
32.75 | 67.21
32.79 | 62.66 | 61.78 | 62.83 | 63.42 | 56.91
43.09 | | | H ₂ Unconv. Mols | 68.24 | 70.40 | 75.01 | 79.46 | 77.98 | 73.23 | 61.24 | 60.66 | 69.45 | 68.41 | 69.14 | 68.04 | 81.87 | | | H ₂ Unconv. Lbs. | 136.48 | 140.80 | 150.02 | 158.92 | 155.96 | 146.46 | 122.48 | 121.32 | 138.90 | 136.82 | 138.28 | 136.08 | 163.74 | 1 | | IN PRODUCT | | | | | | | | | | | | | | | | Wt. % H ₂ Total Product Lbs. Unconv. CO Lbs. Unconv. CO Wt. % Actual | 3.32
4111
461.2
11.22
11.14 | 3.48
4046
468.4
11.58
11.49 | 3.71
4044
476.0
11.77
11.70 | 3.94
4034
501.5
12.43
12.36 | 3.95
3948
506.2
12.82
12.74 | 3.61
4057
469
11.56
11.48 | 3.02
4056
370.2
9.13
9.06 | 3.07
3952
376.9
9.54
9.48 | 3.51
3957
394.2
9.96
9.90 | 3.51
3898
451.4
11.58
11.03 | 3.44
4020
421.7
10.49
10.40 | 3.40
4002
405.2
10.12
10.02 | 4.10
3994
548.2
13.73
13.60 | 4(| | CO ₂ Wt. % Lbs. Mols. | 16.44
675.8
15.4 | 20.51
829.8
18.9 | 20.87
844.0
19.2 | 23.30
940
21.4 | 24.16
953.8
21.7 | 21.41
868.6
19.7 | 17.66
716.3
16.3 | 17.30
683.7
15.5 | 21.24
840.5
19.1 | 17.09
666.2
17.1 | 19.19
771.4
17.5 | 16.80
672.3
15.3 | 20.29
810.4
18.4 | 8 | | Water Wt. %
Lbs.
Mols
H ₂ to H ₂ O Mol % | 21.78
895.4
49.7
26.5 | 18.28
739.6
41.1
22.3 | 19.08
771.6
42.9
22.8 | 14.32
577.7
32.1
17.4 | 15.43
609.2
33.8
18.3 | 19.11
775.3
43.1
22.7 | 24.6
997.8
55.4
29.6 | 26.92
1063.9
59.1
31.9 | 22.93
907.3
50.4
27.1 | 23.65
921.9
51.2
28.6 | 22.44
902.1
50.1
26.2 | 27.81
1113.0
61.8
33.2 | 22.94
916.2
50.9
26.8 | 8 | | C ₃ + Wt. % Lbs. Mols CH ₂ (Mol % CO to C ₃ +) | 19.49
801.2
57.2 | 18.30
740.4
52.9 | 16.95
685.5
49.0 | 19.15
772.5
55.2 |
16.97
670.0
47.9 | 17.05
691.7
49.4 | 18.15
736.2
52.6 | 17.32
684.5
48.9 | 16.70
660.8
47.2 | 17.03
663.8
47.4 | 16.42
660.1
47.2 | 16.47
659.1
47.1 | 14.02
560.0
40.0 | 4 | | CH ₄ Wt. %
Lbs.
Mols - Mol % | 2,40
98.7
6.2 | 3.36
135.9
8.5 | 2.72
110.0
6.9 | 2.55
102.9
6.4 | 2.89
114.1
7.1 | 2.54
103
6.4 | 2.79
113.2
7.1 | 2.15
85.0
5.3 | 2.74
108.4
6.8 | 2.58
100.6
6.3 | 2.94
118.2
7.4 | 1.83
73.2
4.6 | 2.25
89.9
5.6 | | | C ₂ Wt. %
Lbs.
Mols - Mol % | 2.19
90.0
6.2 | 2.46
99.5
6.9 | 2.61
105.5
7.3 | 2.55
102.9
7.1 | 2.47
97.5
6.7 | 2.76
112
7,7 | 2.47
100.2
6.9 | 2.50
98.8
6.8 | 2.48
98.1
6.8 | 2.45
95.5
6.6 | 2.37
95.3
6.6 | 2.12
84.8
5.8 | 2.17
86.7
6.0 | | | Oxy。Comps. Wt. %
Lbs.
Mols | 3.39
139.4
10.0 | 4.16
168.3
12.0 | 4.46
180.4
12.9 | 3.82
154.1
11.0 | 3.35
132.3
9.5
1.64 | 4.21
170.8
12.2 | 4.65
188.6
13.5 | 4.19
165.6
11.8
1.95 | 4.26
168.6
12.0
1.45 | 4.13
161.0
11.5 | 4.36
175.3
12.5 | 4.53
181.3
13.0 | 3,86
154.2
11.0 |] | | Date | 2-2-52
(21-1/2
Hours) | 2-3-52 | 2-4-52 | 2-5-52 | 2-6-52 | 2-7-52 | 2-8-52 | 2-9-52 | 2-10-52 | 2-11-52
(10-1/2 | |---|---|---|---|---|---|---|---|---|---|---| | Mols CO CO Conv. CO Unconv. Mols Mols H ₂ H ₂ % Conv. H ₂ Unconv. % H ₂ Unconv. Mols H ₂ Unconv. Lbs. | 100
91 19
8 81
182
80 35
19 65
35 76
71 52 | 100
83.70
16.30
185
62.08
37.92
70.15
140.30 | 100
82.89
17.11
185
60.15
39.85
73.72
147.44 | 100
79.81
20.19
186
51.31
48.69
73.73
147.46 | 100
78.04
21.96
188
50.58
49.42
92.91
185.82 | 100
81.68
18.32
183
53.87
46.13
84.42
168.84 | 100
78.41
21.59
189
53.68
46.32
87.54
175.08 | 100
83.30
16.70
187
60.52
39.48
73.83
147.66 | 100
82.62
17.38
191
59.92
40.08
76.55
153.10 | Hours) 100 84.40 15.60 186 61.57 38.43 71.48 142.96 | | In Product Wt. % H ₂ Total Prod. Lbs. Unconv. CO Lbs. Unconv. CO Wt. % Calc. Actual | 1.42 | 3.54 | 3.66 | 4 56 | 4.60 | 4.24 | 4.06 | 3.64 | 3.80 | 3.50 | | | 5037 | 3963 | 4028 | 3234 | 4040 | 3982 | 4312 | 4057 | 4029 | 4085 | | | 246.7 | 456.4 | 479.1 | 565.3 | 614.9 | 513.0 | 604.5 | 467.6 | 486,6 | 436.8 | | | 24.90 | 11.52 | 11.8 | 17.4 | 15.22 | 12.88 | 14.01 | 11.53 | 12.08 | 10.69 | | | 4.82 | 11.41 | 11.78 | 14.07 | 15.15 | 12.90 | 14.99 | 11.49 | 11.97 | 10.59 | | CO ₂ Wt. % | 9.94 | 20.79 | 20.76 | 25,77 | 24.66 | 24.08 | 23.31 | 18.04 | 19.63 | 19.42 | | Lbs. | 500.7 | 823.9 | 836.2 | 833,4 | 996.3 | 956.9 | 1005.1 | 731.9 | 790.9 | 793.3 | | CO to CO ₂ Mol % | 11.4 | 18.7 | 19.0 | 18,9 | 22.6 | 21.7 | 22.8 | 16.6 | 18.0 | 18.0 | | Water Wt. % Lbs. Mols H_2 to H_2 0 Mol % | 21.04 | 20.22 | 18.49 | 14.73 | 14.95 | 17.01 | 15.49 | 24.98 | 22.39 | 20.89 | | | 106.0 | 801.3 | 744.8 | 476.4 | 604.0 | 677.3 | 667.9 | 1013.4 | 902.1 | 853.4 | | | 58.8 | 44.5 | 41.4 | 26.5 | 33.6 | 37.6 | 37.1 | 56.3 | 50.1 | 47.4 | | | 32.3 | 24.1 | 22.4 | 14.2 | 17.9 | 20.5 | 19.6 | 30.1 | 26.2 | 25.5 | | C ₃ + (incl. water chems.) Wt.9 | 613.65 | 17.11 | 17.95 | 13.17 | 13.08 | 17.01 | 13.12 | 14.43 | 14.62 | 16.22 | | Lbs. | 687.6 | 678.1 | 723.0 | 425.19 | 528.4 | 677.3 | 565.7 | 585.4 | 589.0 | 662.6 | | Mols CH ₄ (Mol % CO to C ₃ +) | 49.1 | 48.4 | 51.6 | 30.4 | 37.7 | 48.4 | 40.4 | 41.8 | 42.1 | 47.3 | | CH ₄ Wt. % | 8.65 | 3.57 | 3.00 | 3,92 | 3.08 | 2.69 | 4°21 | 2.39 | 3.14 | 2.91 | | Lbs. | 435.7 | 141.5 | 120.8 | 126,7 | 124.4 | 107.1 | 181.5 | 97.0 | 126.5 | 118.9 | | Mols Mol % | 7.2 | 8.8 | 7.6 | 7,9 | 7.9 | 6.7 | 11.3 | 6.1 | 7.9 | 7.4 | | C ₂ Wt. % | 1.63 | 2.11 | 2.36 | 2,25 | 2. 27 | 2.40 | 2.56 | 2.29 | 2.37 | 2.60 | | Lbs. | 82.1 | 83.6 | 95.1 | 72,8 | 91.7 | 95.6 | 110.4 | 92.9 | 95.5 | 106.2 | | Mols Mol % | 5.6 | 5.7 | 6.5 | 5,0 | 6.2 | 6.5 | 7.5 | 6.3 | 6.5 | 7.2 | | Oxy. Comps. Wt. % | 2.49 | 3.23 | 3.95 | 2,97 | 2,62 | 2.58 | 2.69 | 4.03 | 3.61 | 4.25 | | Lbs. | 125.4 | 128.0 | 159.1 | 96.0 | 105.8 | 102.7 | 116.0 | 163.5 | 145.4 | 173.6 | | Mols | 9.0 | 9.1 | 11.4 | 6.9 | 7.6 | 7.3 | 8.2 | 11.7 | 12.6 | 12.4 | | R/FF | 1.23 | 1.34 | 1.32 | 0.93 | 0.76 | 0.83 | 0.64 | 1.53 | 1.65 | 1.78 | | 2 | | | | | | |---|--|--|--|--|---| | | <u>Date</u> | 2-19-52
(17-1/2
Hours) | 2-20-52 | 2-21-52 | 2-22-52
(3-1/2 Hrs. | | | Mols CO CO Conv. CO Unconv. Mols Mols H ₂ H ₂ % Conv. H ₂ % Unconv. H ₂ Unconv. Mols H ₂ Unconv. Lbs. | 100.00
82.44
17.56
178
56.98
43.02
76.58
153.16 | 100.00
81.38
18.62
182
55.58
44.42
79.07
158.14 | 100.00
76.81
23.19
184
45.89
54.11
96.32
192.64 | 100.00
75.19
24.81
193
43.54
56.46
100.52
201.04 | | | In Product Wt. % H ₂ Total Prod. Lbs. Unconv. CO Lbs. Unconv. CO Wt. % Actual | 3.71
4128
491.7
11.91
11.83 | 4.04
3914
521.4
13.32
12.91 | 4.94
3900
649.3
16.65
16.03 | 5.24
3837
694.7
18.11
16.55 | | | CO ₂ Wt. % | 22.97 | 23.45 | 24.96 | 23.22 | | | Lbs. | 948.2 | 917.8 | 973.4 | 891.0 | | | Mols | 21.6 | 20.9 | 22.1 | 20.3 | | | Water Wt. % | 25.18 | 16.42 | 14.69 | 11.13 | | | Lbs. | 1039.4 | 642.7 | 572.9 | 427.1 | | | Mols | 57.7 | 35.7 | 31.8 | 23.7 | | | H ₂ to H ₂ O Mol % | 32.4 | 19.6 | 17.3 | 12.3 | | | C ₃ + Wt. % | 15.00 | 14.24 | 11.87 | 13.47 | | | Lbs. | 619.2 | 557.4 | 462.9 | 516.8 | | | Mols CH ₂ (Mol % CO to C ₃ +) | ԿԿ.2 | 39.8 | 33.1 | 36.9 | | | CHi ₊ Wt. % | 2.75 | 4.04 | 2.84 | 2.97 | | | Lbs. | 113.5 | 158.1 | 110.8 | 114.0 | | | Mols Mol % | 7.1 | 9.9 | 6.9 | 7.1 | | | C ₂ Wt. % | 2.90 | 2.61 | 2.29 | 2.3 ¹ 4 | | | Lbs. | 119.7 | 102.2 | 89.3 | 89.8 | | | Mols Mol % | 8.3 | 7.0 | 6.2 | 6.2 | | | Oxy. Comps. Wt. % | 3.76 | 3.56 | 2.88 | 3.57 | | | Lbs. | 155.2 | 139.3 | 112.3 | 137.0 | | | Mols | 11.1 | 10.0 | 8.0 | 9.8 | | | r/ff | 1.74 | 1.05 | 0.59 | 0.73 | | BROWNSVILLE RUN #17 Date | 21 Hours
3-4-52 | | 3-6-52 | <u>3-7-52</u> | 3-8-52 | 3-9-52 | 3-10-52 | <u>3-11-52</u> | 3-12-52 | Shut Down
2 PM 3/13
8 Hours
3-13-52 | |---|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--| | Mols CO Mols CO Conv. Mols CO Unconv. Mols H ₂ from H ₂ /CO ratio % H ₂ Conv. H ₂ Unconv. % H ₂ Unconv. Mols H ₂ Unconv. Lbs. | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | 84.13 | 67.17 | 66.46 | 70.94 | 63.51 | 66.30 | 56.55 | 63.43 | 67.78 | 65.57 | | | 15.87 | 32.83 | 33.54 | 29.06 | 36.49 | 33.70 | 43.45 | 36.57 | 32.22 | 34.43 | | | 180.9 | 189.4 | 183.1 | 188.3 | 183.6 | 185.1 | 184.7 | 183.1 | 180.2 | 183.7 | | | 57.23 | 41.57 | 40.26 | 44.39 | 35.52 | 39.19 | 35.78 | 38.25 | 42.5 | 44.14 | | | 42.77 | 58.43 | 59.74 | 55.61 | 64.48 | 60.81 | 64.22 | 61.75 | 57.50 | 55.86 | | | 77.37 | 110.67 | 109.38 | 104.71 | 118.39 | 112.56 | 118.61 | 113.06 | 103.62 | 102.61 | | | 154.74 | 221.34 | 218.76 | 209.42 | 236.78 | 225.12 | 237.22 | 226.12 | 207.24 | 205.22 | | In Product | | | | | | | | | | article de descriptor | | Wt. % H ₂ | 3.86 | 5.52 | 5.51 | 5.28 | 5.95 | 5.73 | 5.98 | 5.77 | 5.23 | 5.19 | | Total Prod. Lbs. | 4008.8 | 4009.7 | 3970.2 | 3966.2 | 3979.4 | 3928.7 | 3966.8 | 3918.8 | 3962.5 | 3954.1 | | Unconv. CO Lbs. | 444.4 | 919.24 | 939.1 | 813.7 | 1021.7 | 943.6 | 1216.6 | 1024.0 | 902.2 | 964.0 | | Unconv. CO Wt. % Calc. | 11.08 | 23.92 | 23.65 | 20.51 | 25.67 | 24.0 | 30.66 | 26.13 | 22.76 | 24.37 | | Wt. % Actual | 10.99 | 22.75 | 23.49 | 20.35 | 25.48 | 23.84 | 30.44 | 25.91 | 22.58 | 24.18 | | CO_2 Wt. % CO_2 Lbs. CO_2 Mols (CO to CO_2) | 22.32 | 23.38 | 22.49 | 24.91 | 21.7 | 23.61 | 17.06 | 21.70 | 20.86 | 17.77 | | | 894.8 | 937.5 | 892.9 | 988.0 | 863.5 | 927.6 | 676.7 | 850.4 | 826.6 | 702.6 | | | 20.3 | 21.3 | 20.3 | 22.5 | 19.6 | 21.1 | 15.4 | 19.3 | 18.8 | 16.0 | | Water Wt. % Lbs. Mols. H ₂ to H ₂ O Mol % C ₃ + Wt. % (incl. wsc) Lbs. Mols CH ₂ (CO to C ₃ +) | 19.87 | 11.97 | 12.10 | 12.53 | 12.23 | 12.25 | 13.73 | 13.57 | 16.98 | 20.88 | | | 796.5 | 480.0 | 480.4 | 497.0 | 486.7 | 481.3 | 544.6 | 531.8 | 672.4 | 825.6 | | | 44.2 | 26.7 | 26.7 | 27.6 | 27.0 | 26.7 | 30.3 | 29.5 | 37.4 | 45.9 | | | 24.4 | 14.1 | 14.6 | 14.7
 14.7 | 14.4 | 16.4 | 16.1 | 20.8 | 25.0 | | | 14.50 | 10.97 | 10.73 | 10.18 | 8.54 | 9.66 | 8.34 | 7.64 | 9.49 | 7.76 | | | 581.3 | 439.9 | 426.0 | 403.8 | 339.8 | 379.5 | 330.8 | 299.4 | 376.0 | 306.8 | | | 41.5 | 31.4 | 30.4 | 28.8 | 24.3 | 27.1 | 23.6 | 21.4 | 26.9 | 21.9 | | CH ₄ Wt. % | 3.16 | 2.05 | 3.33 | 3.38 | 2.68 | 2.76 | 2.01 | 3.04 | 2.40 | 2.21 | | Lbs. | 126.7 | 82.2 | 132.2 | 134.0 | 106.6 | 108.4 | 79.7 | 119.1 | 95.1 | 87.4 | | Mols (CO to CH ₄) | 7.9 | 5.1 | 8.3 | 8.4 | 6.7 | 6.8 | 5.0 | 7.4 | 5.9 | 5.5 | | C ₂ Wt. %
Lbs.
(CO to C ₂) | 2.41
96.6
6.7 | 1.94
77.8
5.4 | 2.04
81.0
5.6 | 2.00
79.3
5.5 | 1.76
70.3
4.8 | 1.83
71.9
5.0 | 1.39
55.1
3.8 | 1.73
67.8
4.7 | 1.88
74.5
5.1 | 64.5
4.4 | | Oxy. Comps. Wt. % | 2.87 | 2.60 | 2.57 | 2.95 | 2.24 | 2.30 | 2.30 | 1.93 | 2.33 | 2.42 | | Lbs. | 115.1 | 104.3 | 102.0 | 117.0 | 89.1 | 90.4 | 91.2 | 75.6 | 92.3 | 95.7 | | Mols | 8.2 | 7.4 | 7.3 | 8.4 | 6.4 | 6.5 | 6.5 | 5.4 | 6.6 | 6.8 | | R/FF | 1.00 | 0.51 | 0.66 | 0.59 | 0.56 | 0.67 | 0.69 | 0.67 | 0.62 | 0.63 | ď TABLE II BROWNSVILLE REACTOR DATA |) | Run #5 | Sp. Vel. | C3*Yield* | C ₃ +Yield*
BPH/MMSCF FF | Reactor
Bed Temp. | Reactor
Effluent T. | Reactor
Btm. T.
Feed | R/FF | Pressure
Reactor
Top | Cat.
Holdup
Tons | Cat.
Dens. | Bed** Htg. | F.F. to Reactor | Tot.
Feed | % Contr. | % H ₂ + CO. | % Fe. | C3+/C1+
Selectivity | (B2) (CO2)
(CO) (H2O) | |--|---|---|--|--|---|---|---|--|---|---|---------------------------------------|--|--|--|--|--|--------------------------------------|------------------------|--------------------------| | D | 1/16/51
17
18 | 801
1012
972 | 39.2
42.0
40.3 | 21.6
19.5
18.9 | 665
630
647 | | 574
610
639
-No data- | 1.23
1.10
1.08 | 260
305
310 | 131
137
183 | 134
137
150 | 10.6
10.6
10.9 | 1.81
2.16
2.13 | 4.04
4.54
4.44 | 24.71
23.66
22.93 | 31.9
34.2
33.8 | 74.2
71.8
74.0 | | | | Proc.
Engr.
Calcs.
Water Sol
Chems.
305#/Bbl. | 19
20
21
1. 22
23
24 | 770
782
840
707
761 | 48.8
50.1
51.2
49.5
49.8 | 24.6
24.9
23.7
23.2
23.2 | 659
659
646
612
610 | No data | 615
610
583
579
554 | 1.33
1.34
1.20
1.30
1.31 | 318
318
320
320
320 | 177
178
180
203
210 | 149
150
152
145
154 | 12.8
12.8
12.8
14.9
14.0 | 1.98
2.01
2.16
2.13
2.14 | 4.63
4.70
4.75
4.90
4.95 | 32.21
34.47
31.87
28.15
30.22 | 50.6
53.7
50.6
44.5
48.6 | 75.0
74.3
74.0
72.7
76.8 | No data | No data | | Ave. | 2 days
17 & 18 | 992 | 41.2 | 19.2 | 639 | | 625 | 1.09 | 318 | 160 | 144 | 10.8 | 2.15 | 4.49 | 23.30 | 34.0 | 72.9 | No
da t a | No
data | | Ave.
1st day S | 5 days
20 to 25
Sep. | 772 | 49.9 | 23.9 | 637 | | 588 | 1.30 | 319 | 190 | 150 | 13.5 | 2.08 | 4.79 | 31.38 | 49.6 | 74.6 | uubu | ua da | | | Run #6 3/13/51 14 15 16 17 18 19 | 1365
1347
1222

753
772
840 | 35.6
61.0
59.8
55.7
54.0
49.1 | 11.8
19.1
18.5

18.6
17.6
16.1 | 660
693
653
645
664
656
659 | 660
675
670
645
666
655
660 | 624
650
630
610
575
515
505 | 0.59
0.51
0.42

0.53
0.60
0.61 | 310
305
305
305
305
305
290 | 131
118
121
153
189
185
183 | 128
104
99
105
104
102 | 11.0
12.2
13.1
15.6
19.5
19.5 | 3.03
3.20
3.24
2.30
3.06
3.05 | 4.80
4.60
4.80
4.60
4.90
4.90 | 34.85
34.65
37.30
12.18
32.10
29.40 | 53.1
57.6
58.7
58.8
53.9
53.9 | 75.0
75.2
75.8
73.3 | No data | No data | | Ave. | 2 days
14 & 15
3 days
17,18,19 | 1285
788 | 60.4
52.9 | 18.8
17.4 | 673
660 | 673
660 | 640
531 | 0.47
0.58 | 305
300 | 120
186 | 102
103 | 12.7
19.4 | 3.22
2.80 | 4.75
4.80 | 35.98
24.6 | 58•2
55•5 | 75.0
74.6 | No
data | No
data | | Run #7 | | |-------------------------------|---------------------------| | 4/8/51
9
10
11
12 | Data
not
worked up. | ^{*} Including water sol. chemicals. Actg. Dept. WSC=318 #/Bbl. ^{**} Effective reactor area = 187 sq. ft. | <u>Run #8</u> | | % H ₂ | C3+
Yield
BP# | C3+
Yield
BP H /
MMSCF | Reactor
Bed
Temp. | Reactor
Effl.
Temp. | Reactor
Btm.
T. | R/FF | Pressure
Reactor
Top | Cat.
Holdup
Tons | Reactor
Vel. | Cat. Dens. | Bed
Htg. | FF to
Reactor
MMSCF | Tot.
Feed | %
Contr. | % H ₂ + CO % Conv. Fe | C ₃ †/
C ₁ +
Select. | (H2) (CO2)
(CO) (H20) | |--|--|---|---|--|---|---|--|--|---|--|--|---|--|--|--|---|---|--|---| | 4/22/51
23
25
26
27
28
29
30 | 1197
1272
1093
1141
1125
1148
1237
1030 | . • | 74.9
79.15
87.39
93.36
77.1
96.11
95.07
83.94 | 25.1
25.4
28.4
28.9
24.4
29.8
30.0
26.0 | 675
675
680
670
675
670
685
678 | 680
678
670
684
668
670
675 | 270
285
281
360
375
380
380
380 | 1.50
1.40
1.36
1.29
1.32
1.21
1.31 | 365
365
358
355
358
359
360
360 | 132
122
146
147
142
138
126
154 | 0.50
•54
•50
•52
•50
•50
•50 | 112
107
112
114
108
105
105 | 12.6
12.2
14.0
13.8
14.1
14.0
12.8
15.2 | 2.981
3.116
3.074
3.231
3.157
3.222
3.168
3.224 | 7.463
7.507
7.240
7.406
7.348
7.148
7.342
7.295 | 47.5
46.8
47.1
43.8
50.1
50.5
47.0
48.3 | 66.1 75.6
64.2 74.3
68.5
70.7 75.4
68.4 76.7
69.2 75.6
65.2 74.9
69.2 | · · · · · · · · · · · · · · · · · · · | | | 5/1/51
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1001
1085
1142
1029
1027
1087
1146
1186
1188
1183
1081
941
979 | | 87.56
85.82
86.53
82.83
91.98
94.95
83.89
79.22
82.46
68.86
64.49
57.21
55.19 | 27.3
25.8
25.8
27.8
27.8
24.1
24.2
23.8
21.6
19.6 | 675
680
671
668
673
672
677
660
672
669
678 | 670
696
676
682
663
675
671
676
669
685
674 | 382
370
380
380
370
425
420
395 | 1.19
1.21
1.22
1.29
1.23
1.24
0.91
0.87
1.02
0.93
.51
.68 | 358
350
355
350
350
350
355
365
350
350
350 | 162
151
141
151
166
158
149
146
141
145
156
160 | •50
•51
•54
•51
•51
•51 | 110
106
104
106
112
110
110
108
106
107
123
120
114 | 15.7
15.3
14.5
15.8
15.4
14.5
14.5
14.5
13.9
15.2 | 3.205
3.326
3.382
3.216
3.307
3.399
3.460
3.465
3.159
3.062
2.924
2.973 | 7.010
7.353
7.528
7.374
7.394
7.477
6.514
6.467
6.850
6.715
7.100
4.628
4.906
4.931 | 48.3
48.8
47.8
47.4
48.4
47.3
37.3
36.1
31.8
334.9 | 79.9 74.3
71.5
70.0 74.7
69.9 73.9
71.6 74.0
71.0 70.7
67.4 73.2
63.8 73.9
61.7 74.0
62.5 73.2
63.5 73.7
63.0 73.2
61.0 74.9
61.4 73.8 | 76.3
76.9
78.0
79.3
79.17 |
2.402
2.336
2.265
2.666
2.666
2.697
3.582
3.878
3.110
3.462
3.669
4.092
3.374 | | 15 days
Ave 22
50 7
8 days | 1115 | | 86.91 | 27.05 | 676 | 677 | 352 | 1.29 | 357 | 145 | | 109 | 14.3 | 3.211 | 7.342 | 47•7 | 69.0 74.6 | 78.05 | 2•508 | | 8 days
Ave 7
to 15
5 days | 1108 | | 71.7 | 22.1 | 673 | 673 | 489 | 0.91 | 352 | 152 | | 113 | 14.4 | 3.229 | 6.014 | 36.5 | 63.0 73.7 | 72.94 | 3.631 | | 7 to
11
3 days | 1167 | | 78.49 | 23.46 | 671 | 671 | 402 | •93 | 353 | 146 | | 111 | 12.3 | 3.373 | 6.729 | 37.2 | 63.7 73.6 | 74.46 | 3.582 | | 12 to
14 | 1000 | | 58.96 | 19.76 | 676 | 676 | 605 | •62 | 350 | 160 | | 116 | 14.8 | 2.986 | 4.821 | 35.7 | 61.8 74.0 | 70.39 | 3.711 | | Run #9
6/5/51
10 Hrs.
6
7
8
9
2 days | 1411
1384
2146
2347
2471 | 57.71
48.97
41.54
45.50
47.09 | 57.1
97.4
98.3 | 17.8
20.3
19.5
20.6
20.8 | 675
660
650
650
650 | 648
643
630
641
644 | 675
630
325
350
385 | 0.80 | 290
350
350
350
350 | 152
156
147
139
139 | 0.58
.52
.88
.98
.92 | 160
160
141
139
156 | 10.2
10.4
11.2
10.7
9.6 | 2.825
2.814
5.003
4.769
4.806 | 3.716
4.212
7.779
8.609
8.196 | 42.2
35.4
30.6
35.5
37.1 | 64.1 81.6
60.1 79.6
51.9 78.4
53.0 77.5
58.5 77.1 | 70.16
67.78
81.23
75.65
73.43 | | | Ave 5
and 6 | 1398 | b | 53.7 | 19.1 | 668 | 6 46 | 652 | | 320 | 154 | | 160 | 10.3 | 2.820 | 3.964 | 38.8 | 62.1 80.6 | 68.97 | 3.267 | | 3 days
Ave 7,8
and 9 | 2321 | | 98.5 | 20.3 | 650 | 638 | 353 | 0.82 | 350 | 142 | | 145 | 10.5 | 4.857 | 8.195 | 34•4 | 54.5 77.7 | 76.57 | 5.63 | | | * * * ; | 1 200 |--|--|---|--|--|--|---|---|---|--|---|---|--|--|--|--|--|--|--|--|--|-------------------------|--| | i e | <u>Run #10</u> | CO
Conv | Sp.
Vel. | H ₂
Conv. | C 3 ⁺
BP H | C3+
BPH/
MMSCF | Reactor
Bed
Temp. | Reactor
Effl.
Temp. | Reactor
Btm. T.
Nozzle O | R/FF | Pressure
Reactor
Top | Cat.
Holdup
Tons | Reactor
Vel. | Cat.
Dens. | Bed
Htg. | FF to
Reactor
MMSCFH | Tot.
Feed | %
Contr. | % H2+CO C | Conv. | % Fe | C3/
C1+
Select. | (H ₂) (CO ₂)
(CO) (H ₂ O) | | 24 Hrs.
7/21/51
22
23
24
25
26
27
28
29
30
31 | 76.7°
77.0 | 7 699
812
761
769
791
736
827 | 51.84
61.87 | 51.3
62.2
No
data | 20.4 22.1 | 600
620
600
600
610
600
590
600 | 600
630
630
614
636
639
626
627
591
628
644 | 1.55 | 1.69
1.46
1.39
1.47
1.38
1.63
1.63
1.60
1.84 | 350
350
350
350
350
350
350
350
350 | 254
252
248
245
233
230
223
218
213
209
208 | .86
.77
.78
.81
.81
.82
.84
.81 | 150
158
158
160
156
150
144
144
144
142 | 18.2
17.1
16.8
16.4
16.0
16.4
16.2
15.8
15.7 | 2.51
2.82
2.61
2.57
2.68
2.53
2.70
2.96
2.67
2.51
2.48 | 6.76
6.48
6.25
6.37
6.40
7.04
7.10
6.88
7.14
7.06 | 38.7
39.5
38.0
40.0
36.1
35.5 | | 60.54
66.85 | 88.6
84.7
84.1
83.5
83.5
83.0
83.7 | 76.81
70.96 | 2.66
2.40 | | 27
28
29
30
31 | 68.6
72.5
54.9 | 919 | 51.33
52.42
41.08 | 58.9
52.8
47.2 | 22.0
21.0
19.1 | 600
620
650
640 | 627
591
628
644 | 455
460
470
475 | 1.32
1.60
1.84
1.85 | 350
350
350
350 | 218
213
209
208 | .81
.81
.85
.67 | 144
144
142
143 | 16.2
15.8
15.7
15.6 | 2.96
2.67
2.51
2.48 | 6.88
6.85
7.14
7.06 | 36.1
35.5
36.9
32.4
33.3
37.9 | | 57.60
59.65
46. | 83.7
81.4
81.4
81.5 | 76.24
74.57
89.04 | 2.26
3.39
1.222 | | Ave 4
days (1
day run
lst day
Sep. | L1
n) | 816 | | 55.3 | 21.1 | 633 | 624 | 465 | 1.69 | 350 | 221 | | 147 | 16.1 | 2.62 | 6.91 | 36.1 | | 57.5 | 82.3 | 77•52 | 2.39 | | Run #11
6 AM
11/11/
12
13
14
15
16
17
18
19 | 51 85.
88.
86.
81.
82.
80.
80. | 4 101
4 101
7 107
5 86
8 98 | 63.3
67.7
67.2
65.0
61.3
63.4
58.7
62.0
63.8 | 75.2
69.4
75.2
80.5
82.1
69.3
82.4
83.0 | 28.1
23.1
24.4
26.0
26.7
23.3
26.3
27.3
25.7 | 647
660
655
645
630
650
620
640
655 | 660
655
655
660
630
630
590
650 | 495
560
430
431
475
412
443
465
410 | 1.49
1.37
1.31
1.42
1.53
1.43
1.13
1.36
1.16 | 350
350
350
350
350
345
350
350 | 231
226
220
213
210
203
262
255
248 | .83
.84
.88
.89
.91
.84
.87 | 152
154
152
150
148
154
158
168 | 16.3
15.7
15.5
15.2
15.2
14.1
17.8
16.3
15.8 | 2.68
3.00
3.08
3.10
3.07
2.99
3.05
3.09
3.23 | Gradual decrease | 55.3
56.2
55.4
53.4
53.8
49.0
49.0 | 6.68
7.12
7.13
7.51
7.16
7.25
6.50
7.11
6.96 | 71.0
74.9
74.0
71.8
68.3
70.4
66.6
68.8
69.9 | 85.1
83.5
82.7
82.6
81.8
81.0
80.1 | 74.35
75.51
75.56 | 3.42
2.89
2.63
2.43
3.10
2.44
2.62
2.30
2.35 | | 8 days
Ave 12
20 lst
day Se | &
p. | 99 | | 77•9 | 25.4 | 644 | 641 | 453 | 1.34 | 350 | 230 | | 157 | 15.7 | 3.08 | | 52.2 | 7.09 | 70.6 | 81.9 | 74.55 | 2.68 | | | > | CO Run #12 Conv. | Sp. | H ₂
Conv. | C3+
BPH | C ₂ +
BPH/
MMSCF | Reactor
Bedl.
Temp. | Reactor
Effl.
Temp. | Reactor
Btm.
Temp. | R/FF | Pressure
Reaction
Top | Cat.
Holdup
Tons | Reactor
Vel. | Cat. Dens. | Bed
Htg. | FF to
Reactor
MMSCFH | Tot.
Feed | %
Contr. | % H ₂ +
CO
Conv. | % Fe | C3 [†] /C1 [†]
Select. | (H ₂) (CO ₂)
(CO) (H ₂ O) | |--|--|--|--|--|--|---|--|--|--|---|---|--|--|--|--|--|---|--|---|--| | 11/29/51 82.41
30 85.28
12/1/51 85.87
2 85.11
4 84.48
5 84.34
6 86.13 | 1040
1081
832
882
891
891 | 59.53
65.36
66.92
66.71
66.56
64.61
67.45 | 68.3
81.6
73.1
76.1
76.1
71.8
68.5 | 23.5
26.9
24.2
25.4
26.2
25.6
24.5 | 650
650
660
650
630
630 | 618
648
628
638
645
657
670 |
455
468
478
473
470
455
447 | 1.60
1.41
1.31
1.41
1.40
1.52
1.50 | 350
350
350
350
350
350
350 | 215
210
210
281
252
246
243 | •97
•94
•89
•91 | 162
160
168
168
166
166
166 | 14.2
14.1
13.4
17.9
16.3
15.9 | 2.91
3.03
3.02
3.00
2.90
2.81
2.80 | 7.575
7.298
6975
7.222
6950
7.067
6999 | 50.41
53.75
50.46
51.07
50.21
49.76 | 67.69
72.51
73.62
73.19
72.85
71.50 | 85.9
86.1
85.4
82.6
81.6 | 76.22
78.92
76.76
77.93
76.99 | 3.00
2.49
2.31
2.17
2.24
2.74
2.70 | | 7 85.90 | 918
956
820 | 67.29
65.21 | 66.1 | 24.2 | 650
650 | 650
648 | 460
470 | 1.42 | 350
350 | 236
266 | 89 | 168
168 | 13.4 | 2.73 | 6598
6516 | 50.92
41.60
51.60 | 73.84 | 80.9
80.5 | 66.37
71.40 | 2.70
2.69
3.22 | | Ave 29 & 30 - 2 days 6 days Ave 1 to 8 | 1061 | | 75.0 | 25.2 | 650 | 633 | 462 | 1.51 | 350 | /2 13 | | 161 | 14.2 | 2.97 | 7436 | 52.1 | 70.1 | 86.0 | 77.60 | 2.75 | | Ave I to8 | 895 | | 72.0 | 25.0 | 645 | 648 | 464 | 1.43 | 350 | 245 | | 168 | 15.4 | 2.88 | 6969 | 49.0 | 73.1 | 82.1 | 75.59 | 2.48 | | Run #13 12/21/51 81.25 22 84.28 23 82.84 24 79.98 25 80.81 26 79.50 27 79.99 28 77.27 29 74.10 30 75.66 31 76.03 1/1/52 76.53 2 76.85 6 days Ave 22 to | 1004
1050
1043
993
944
971
1128
1115
1071
1044
947
1039
1000 | 61.55
64.65
63.24
59.22
59.37
60.26
53.38
51.27
53.52
53.57
54.45
55.09 | 77.6
73.5
68.4
71.9
76.5
81.0
63.3
65.7
58.4
61.6 | 27.3
26.6
22.8
23.4
24.1
27.5
25.5
20.0
20.4
21.9
19.8
21.3
20.5 | 640
620
625
635
635
620
615
612
620
610
660
654 | 615
606
617
640
640
630 | 545
455
477
425
450
380
450
480
480
480 | 1.55
1.65
1.38
1.48
1.65
1.42
1.47
1.41
1.47
1.40
1.28 | 330
350
350
350
350
350
350
350
350
350 | 195
188
200
204
211
210
200
192
183
190
203
200
215 | 1.0
.92
.90
.88
.95
.93
.98
.94
.92
.91
.84 | 150
148
150
150
148
148
146
144
144
144 | 13.6
14.6
15.3
15.3
14.6
14.8
14.9
14.9 | 2.84
2.76
3.00
2.93
2.98
2.79
3.17
3.03
2.99
2.92
2.98
3.02 | 7247
7345
7144
6984
7355
7400
7359
7678
7483
7221
7205
7165
6888 | 44.3
54.4
50.6
46.8
47.0
46.8
43.7
43.1
42.8
43.7
43.7 | 68.56
71.49
70.08
66.50
66.92
66.91
65.73
61.63
59.16
61.23
62.61 | 84.9
85.4
80.4
80.9
80.3
80.3
80.3
80.3 | 80.76
77.40
78.52
78.72
77.94
81.59
79.98
76.52
80.92
78.66
79.02
78.88
78.58 | 2.30
2.87
2.06
2.10
2.29
2.19
2.57
3.03
2.91
2.93
2.70
2.88
2.61 | | Ave 22 to
28
6 days | 1022 | | 73.3 | 25.0 | 626 | 625 | 452 | 1.48 | 350 | 202 | | 148 | 14.6 | 2.94 | 7260 | 48.8 | 67.9 | 81.6 | 79.00 | 2.36 | | Ave 28 to | 1036
1029 | | 62.3 | 20.1 | 629 | 625 | 454 | 1.41 | 350 | 197 | | 147 | 14.3 | 3.02 | 7273 | 43.2 | 61.3 | 80.4 | 78.76 | 2.86 | | CO Sp. Run #14 Conv. Vel. | H ₂ C ₃ + C ₃ Conv. BPH M | | Reactor
Bed
Temp. | Reactor
Effl.
Temp. | Btm. | R/FF | Pressure
Reactor
Top | Cat.
Holdup
Tons | Reactor
Vel.
Ft./Sec. | Cat.
Dens. | | FF to
Reactor
MMSCFH | Tot.
Feed | %
Contr. | %
H2 + C0
Con v . | % Fe | C3 [†] /C1 [†]
Select. % | (H ₂) (CO ₂)
(CO) (H ₂ O) | |---|--|----------------------------------|-------------------------|---------------------------|---------------------------|----------------------|----------------------------|------------------------|-----------------------------|-------------------|----------------------|----------------------------|----------------------|-------------------------|---------------------------------------|----------------------|---|---| | 1/9/52 83.53 791
10 83.27 801 | 63.51 72.0
61.74 61.4 | 24.1 | 639
671 | 605
620 | 630
480 | 1.80 | 350
350 | 225
210
200 | •95
•96
•92 | 146
144
144 | 16.5
15.6
14.9 | 2.65
2.55
2.65 | 7.44
6.99
7.04 | 50.15
51.11
46.34 | 70.49
69.32
68.06 | 82.9
79.7
79.8 | 81.0
74.9
76.1 | 2.375
3.204
3.227 | | 11 83.00 876
12 82.09 872
13 81.92 894 | 60.10 60.3
57.05 65.9
57.85 59.5 | 25.9
23.7 | 676
676
682 | 660
660
635
660 | 500
525
490 | 1.65
1.68
1.64 | 350
350
350 | 190
181 | .90
.87 | 142
140 | 14.3
13.8 | 2.54
2.50 | 6.80
6.61 | 48.68
47.64 | 65.85 | 79.2
79.4 | 78.4
76.0 | 4.614
4.10 | | 14 83.25 867
15 86.78 850
16 86.54 924 | 61.46 57.9
67.25 59.2 | 24.1
25.6
24.0 | 669
667
671 | 660
650
650 | 475
495
460 | 1.87
2.00
1.95 | 350
350
350 | 172
164
156 | .86
.90 | 136
134
130 | 13.5
13.1
12.8 | 2.40
2.31
2.38 | 6.90
6.93
7.03 | 48.02
56.76
52.26 | 68.98
74.06
74.00 | 79.9
80.0
79.7 | 76.9
77.5
78.8 | 3.207
2.396
2.066 | | 17 85.92 1044
18 83.88 1003 | 67.21 57.0
62.66 59.9
61.78 58.5
62.83 59.9 | 23.1
23.3
23.0 | 674
667
669 | 660
645
635 | 470
445
470 | 1.45
1.75
1.80 | 350
350
350 | 152
143
115 | | 132
124
130 | 12.3
12.3
11.5 | 2.59
2.51
2.60 | 6.35
6.91
7.28 | 48.31
49.48
48.99 | 70.80
69.50
70.55 | 79.4
79.5
80.2 | 76.2
77.3
75.9 | 2.967
2.453
2.738 | | 20 85.53 1220
21 80.41 1734 | 63.42 60.9
56.91 63.5 | 22.2
18.9 | 679
669 | 645
645
595 | 470
450
445 | 1.60
1.13
0.99 | 350
350
350 | 122
106
110 | 2.8 | 120
116
134 | 11.0
9.5
8.8 | 2.74
3.35
3.77 | 7.02
7.13
7.43 | 48.64
42.86
38.11 | 71.14
65.00
57.56 | 79.0
79.8
80.6 | 80.7
76.1
78.0 | 2.738
2.079
2.45
2.42 | | 22 74.34 2115
7 days | 48.71 64.4 | 17.0 | 653 | 777 | 447 | | | 110 | 2.00 | -)+ | 0.0 | 2011 | 1 • 42 |)0 4.11 | 71.00 | | , , , | | | Ave 10 to
17th 869
3 days | 60.2 | 24.3 | 673 | 665 | 489 | 1.79 | 350 | 182 | | 139 | | 2.48 | 6.90 | 50.1 | 69.5 | 79 .7 | 76.9 | | | Ave 17,18
19 1008 | 59•4 | 23.1 7 8 | 670 | 647 | 462 | 1.67 | 350 | 137 | | 129 | | 2.57 | 6.85 | 48.9 | 70.3 | 79•7 | 76.5 | | | Others Sep. Run #15 | | eg.
pro | | | | | | | | | | | | | | | | | | 20½ Hrs. | | Aw | | 4 | . | | | | 0.40 | 7 | 10.0 | 2 02 | 4 50 | E E 07 | d1 2 | 70 A | 56.67 | | | 2/2/52 91.19 1168
3 83.70 1220
4 82.89 1280 | 80.35 71.0
62.05 68.5
60.15 74.5 | 24.3 650
23.9 690
18.8 | 650
645
640 | 645
635 | 695
490
50 0 | 1.57
1.35
0.73 | 350
350
350 | 141
137
133 | 0.82
.84
.88 | 128
126
122 | 12.3
11.5
11.3 | 2.92
2.86
3.95 | 6.52
6.70
6.83 | 55.07
46.19
44.61 | 84.2
69.7
68.1 | 78.0
80.3
79.4 | 75.15
77.02 | | | 5 79.81 1587
6 78.04 1769 | 51.31 67.9
50.58 81.4 | 18.2 675
18.3 700 | 650
690 | 655
650 | 495
470 | 0.93 | 3 <i>55</i>
380 | 131 | .90
0.98 | 120
114
112 | 11.5 | 3.73
4.45 | 7.21
7.82 | 38.03
40.72
40.37 | 61.3 | 79•9
77•5 | 67 .99
70 . 96 | | | 8 78.41 1676 | 53.68 75.5
60.52 47.7 | 24.6 700
18.4 700
20.2 675 | 650 | 650
625 | 540
165
675 | 0.65
1.53
1.65 | 250
250
242
350 | 140
124 | 1.18
1.0 | 124
116 | 12.0
11.5
12.5 | 4.10
2.36 | 6.76
5.98 | 29.42
48.75
39.80 | 62.3
68.5
67.7 | 78.3
81.9 | 65.99
75.54 | | | 9 83.30 998
10 82.62 1043
10½ Hrs. | 59.92 54.4 | 20.2 675
20.4 675 | 600 | 640 | | | | 136 | 0.86 | 116 | | 2.66 | 7.06 | | | 78.5 | 72.64 | | | 11 84.40 1114 | 61.59 57.4 | 22.8 675 | 630 | 640 | 470 | 1.78 | 350 | 132 | 0.87 | 128 | 11.0 | 2.52 | 7.02 | 45.97 | 69.6 | 78.2 | 74.60 | | | 4 days
Ave 3,9, | | • | | | | | | | | 3.00 | | 0.60 | 4 40 | 15.0 | 44 O | 70 7 | 71 6 | | | 10 & 11 1094
4 days | 57.0 | 21.8 | 594 | | 450 | 1.58 | 323 | 132 | | 122 | | 2.60 | 6.69 | 45.2 | 68.9 | 79.7 | 74.6 | | | 4,5,6 & 8 1578
5 day period | 74.8 | 18.4 | 658 | | 501 | 0.77 | 334 | 133 | | 120 | | 4.06 | 7.16 | 38.2 | 63.0 | 78.8 | 70.5 | | | 1st day Sep. | H2CO/ in FF | Run #16 | CO Sp. Conv. Vel. | H ₂
Conv. | C3+
Yield
BPH | C3
Yield BPH/
MMSCF FF | Reactor
Bed
Temp. | FF
Preh e at | R/FF | Pressure
Reactor
Top | Cat.
Holdup
Tons | Reactor
Vel.
Ft./Sec. | Cat.
Dens. | Bed
Hgt. | FF to
Reactor
MMSCFH | Tot. Feed | %
Contr. | % H ₂ +
CO
Conv. | % Fe % C | C ₃ +/ C ₁ +
Select. | |---|--|--|--|--|--|---|---
--|---|--|-----------------------------|---|--|--|--|---|---|------------------------------|---| | 1.780
1.824
1.836 | 17½ Hrs.
2/19/52
20
21
3½ Hrs.
22 | 82.44 818
81.38 1283
*76.81 1808
75.19 1606 | 56.98
55.58
45.89
43.54 | 51.9
66.9
75.9 | 22.2
20.2
16.8
18.8 | 650
680
650 | 470 | 1.74
1.05
0.59 | 350
350
350
350 | 153
142
134
137 | 0.78
0.81
0.79 | 120
120
114
134 | 13.6
12.7
12.7 | 3.30
4.51 | 6.40
6.75
7.16
7.04 | 58.1
43.1
35.0 | 66.1
64.7
56.8
54.3 | 80.9
79.3
77.6
80.5 | 72.7
67.8
69.8
71.1 | | H2CO/ in FF | Run#17 | 1.809
1.894
1.831
1.883
1.836
1.851
1.847
1.831
1.802 | 21 Hrs.
3/4/52
5
6
7
8
9
10
11
12
8 Hrs.
13 | 84.13 1414
67.17 2516
66.46 2357
70.34 2726
63.51 2552
66.30 2696
56.55 2614
63.43 2846
67.78 2708 | 57.23
41.57
40.26
44.39
35.52
39.19
35.78
38.25
42.5 | 63.4
68.8
63.5
63.3
53.7
60.1
55.1
50.4
62.6 | 20.8
15.3
15.1
14.3
12.1
13.7
12.2
10.9
13.7 | 685
500
650
660
675
690
665
650
645 | 640
420
580
635
640
635
635
635
635 | 1.00
0.51
0.66
0.59
0.56
0.67
0.69
0.62 | 350
350
375
375
375
375
375
370
375 | 91
73
68
51
83
67
50
72
55 | | 94
92
86
64
104
88
58
98
72
60 | 10.5
8.75
8.25
8.00
8.50
8.00
8.25
7.25 | 4.20
4.44
4.42
4.38
4.52
4.62
4.56 | 6.08
6.76
6.98
7.06
6.92
7.31
7.65
7.70
7.40 | 47.06
28.52
32.77
31.48
28.90
28.26
24.08
24.55
30.68 | 66.80
50.42
49.52
53.60
45.39
48.70
43.08
47.14
51.52 | 78.9 9.0 no samples | 72.25
78.23
66.64
65.42
65.82
67.81
71.08
61.60
68.73 | ^{*} Started reducing preheat temp. stepwise at 3 PM. # PR TDC802 37 P # TABLE V | Run No. | Sp.
Vel. | C ₃ +#/
MMSCF
Y H ₂ +CO
Fed. | % H ₂ †CO
Present
<u>In Gas</u> | C3 #/MMSCF | C ₃ +Bbls./ | H2 [†] GO
Conv.% | |---------|-------------|---|--|------------|------------------------|------------------------------| | 46-1 | 2825 | 5960 | 91.51 | 5454 | 22.82 | 58.4 | | 46-2 | 2314 | 6460 | n | 5912 | 24.84 | 64.6 | | 46-3 | 2178 | 6640 | 11 | 6076 | 25.52 | 67.5 | | 45-1 | 1646 | 7070 | H. | 6469 | 27.18 | 71.4 | | 49-2 | 1215 | 8210 | n | 7513 | 31.56 | 76.4 | | 49-1 | 1072 | 8370 | n | 7659 | 32.18 | 78.0 | | 29-3/6 | 939 | 8570 | 11 | 7842 | 32.95 | 85.1 | ^{*} Use ave #/Bbl. of $C_3^+ = 238 \#/Bbl.$ ## SUMMARY OF OPERATIONS | | | | | | charge Rate
gn Capacity | | Production Barrels Raw Chemicals to | Type of Gas | • • | Catalyst
arge | | | |-------------|-------------------|------------------|------------------|--------------------|----------------------------|----------------------------|--|--|-----|------------------|--|---| | Rus
No a | | Shutdown
Date | Days
Duration | Plant (for 1 Unit) | Generator | Reactor
(for 1 Reactor) | Primary Oil Stanolind (Total Run) Lbs. per Day | Generator | | d Catalyst | Cause of Shutdown | Corrective Steps Taken Prior to Succeeding Run | |] | 1 8-24-50 | 8 –26– 50 | 2 | 52
(58) | 19
(23) | - | Nil | First Slot Type | 0 | 0 | Blade failure
Steam Turbine
Oxygen Plant
V-201 B Air
Compressor | Replacement of zirconia brick lining of generator combustion space with Alundum. Oxygen slots of burners were filled by welding, and replacing by drilling smaller (5/16*) holes. | | | 2 9-16-5 0 | 9-17-50 | 1 | 63
(70) | 21 (31) | - | N11 | Modified First
Slot Type
Field Drilled
Oxygen Holes | 0 | 0 | Fire, resultant from split in lh* synthesis gas discharge line to B Reactor. | 1. Extensive steps taken in Section 350 to avoid trapping of catalyst and to protect metal walls where it occurs, such as elimination of dead ends, removal of insulation from feed lines, installation of check and control valves, and new purge connections and lining inside bottom of reactors with insulating cement. 2. Repair of fire damage. 3. Changes in pipe work and instrumentation in Section 300 to avoid spentaneous fires in synthesis gas lines. 4. Installed gas oil flushing connections to eliminate plugging in M-352 Exchangers. | | 3 | 10-28-50 | 11-3-50 | 6 | 67
(72) | 29
(31) | 30
(-) | 690 | Same | 0 | 0 | Failure of Gas Generator Burner cooling water supply. | Installed emergency boiler feed supply to burner cooling water circuit and continuous use of 2 pumps in this service. Replaced corroded 25-20 soot blow with chrome alloy and patched baffles and initiated engineering of water cooled soot blowers and refractory protected baffles. Installed new slot type burners with 3 rows of oxygen holes and placed castable refractory on burners. | tor to permit reduction of catalyst between runs. 5. Resurfaced gasket area of M-352 Exchangers. | | | | | Charge Rate - 1% of Design Capacity Reached | | | Production | | | Type of Catalyst | | | |------------|------------------|---------|------------------|---|------------|-------------------------|----------------------------|---|--|---|--|---| | Run
No. | Starting
Date | | Days
Duration | Oxygen Plant (for 1 Unit) | Generator | Reactor (for 1 Reactor) | Barrels Raw
Primary Oil | Chemicals to
Stanolind
Lbs. per Day | Type of Gas
Generator
Burner | | Cause of
Shutdown | Corrective Steps Taken Prior to Succeeding Run | | . | 12-28-50 | 1-1-51 | ħ | 71
(73) | 30
(33) | 30
(-) | 1461 | - | Second Slot Type
3 Rows Oxygen
Holes | 50 Tons A.W. used in Run#3 142 Tons Raw A.W. 30 Tons 76% Fe A.W. 75 Tons 91% Fe A.W. | Failure of
Thrust Bear-
ing V-202 B
Oxygen Compress
or | Enlarged Balance Piston and Thrust Bearing on Oxygen Compressor V=202 B and made certain changes to oil system. Installed cross-over piping so that the A & B Oxygen Compressors could be used on opposite units. Retubed V=201 A Surface Condenser. Installed Centrifix in low pressure Tower A Oxygen Unit. Patched generator baffles and connected steam purge to oxygen header. | | 5 | 1-16-51 | 1-25-51 | 9 | 72
(76) | 33
(35) | 47
(63) | 4167 | 36,840
(57,000) | during | 24 44 140 Tons used in #4 (40 Tons MS Red. (to 88%`Fe g(40 Tons MS Red. (to 90.5% | Failure of
Baffles and
Soot Blowers
due to
corrosion. | Retubed V-201 B Surface Condenser and made miscellaneous changes to attempt increased capacity of oxygen unit. Installed new water cooled soot blowers and refractory protected baffles in Gas Generator. Installed new type slot burners with 2 rows oxygen holes. Removed all steam bundles from both reactors, removed baffles from bundles, walded up holes in bundles and reassembled reactors without baffles. | | 6 | 3-11-51 | 3-20-51 | 9 | 80
(83) | 38
(39) | 58
(66) | 6287 | 62,200
(68,800) | Holes | 100 80 115 Tons Freshly reduced Mill Scale + 55 Tons red. cat. 100 Tons Mill Scale of red. cat. added during run. | Failure by
burn-out of
Gas Generator
#5 Burner. | Plugging end oxygen holes to decrease exposure of slot cooling chamber. Repaired castable refractory on #3 Baffle. | ^{*} Figures not in parenthesis are average for run. ^{*} Figures in parenthesis are maximum attained during run. # IN S ERT 0 2 PJS. ### SUMMARY OF OPERATIONS | |
| | | | Rate - % capacity Res | | Production | | | Type of Catalyst | | | | | | |------------|---------------|------------------|--------------------|---------------------------|-----------------------|----------------------------|--------------|---|--|------------------|----------------------------|---|--|--|--| | Run
No. | Starting Date | Shutdown Date | Days du-
ration | Oxygen Plant (for 1 Unit) | Generator | Reactor
(for 1 Reactor) | Primary 011 | Chemicals to
Stanolind
Lbs. per day | Type of Gas
Generator
Burner | ed Catal | % Reduc-
yst.
Finish | Cause of
Shutdown | Corrective Steps Taken Prior to Succeeding Run. | | | | 7 | 4-8-51 | 4-13-51 | 6 | *
76
(83) | (†0)
* | 56
(62) | 4,450 | 79,300 (1)
(85,000) | Third Slot Type - plug- ged end holes | 80 . | 86 | Sticking of air revers-
ing valve Oxygen Plant -
Oxygen Compressor kick-
ed out. | Installed Perlite packing in Regenerator "A" Oxygen Unit. Installed ferrules in holes of grid of "A" Reactor. | | | | | | | | | | | | | | | | | 4. Modified seal system of V-202-B Oxygen Compressor. | | | | 8 | 4-21-51 | 5 -15-5 1 | 5/1 | 83
(86) | цо
(58) | 62
(65) | 22,391 | 103,000 (1)
(134,000) | Same | | + 57 of | Failure of Gas Generator Burner. | Installed fourth slot-type burners (V-slot). Replaced castable refractory on center and water cooled baffles of generator. Repaired finger baffles. Installed ferrules in holes of grid of "B" Reactor. | | | | 9 | 6-5-51 | 6-9-51 | Ţ | 61 72
(67) (74) | 52
(62) | 80
(100) | 3,059 | 74,000 (1)
(109,500) | Fourth Slot
Type - V
Slot | 100(2) | 100 | Bad start-up. Exces-
sive soot blowing
caused by by-passing
of generator baffles. | Installed Enco finger baffles. Reverted to use of Third type slot burners. Installed new rotors in Recycle Compressors for higher compression ratio. Modified seal system V-202-A Oxygen Compressor. | | | | 10 | 7-20-51 | 8-1-51 | 11 | 70
(72) | 25
(26) | 50
(52) | 11,692(a) | 66,630 (1)
(75,200) | Third Slot
Type - Same
as Runs 7&8 | 100(3) | 100 | Hot spot in Boiler section of Generator. | Completely dismantled generator internals. Installed new brick piers and incomel shields at water tube wall joints. Installed new incomel baffles in steam bundles. | | | | 11 | 11-10-51 | 11-20-51 | 10 | 82
(87) | 39
(40) | 60
(63) | 12,517(b) | 98,250 (1)
(106,800) | Third Slot Type - Inconel | 100 | 100 | Power failure shutting
down Oxygen Plant.
(Burners found with
carbon toadstools and
badly burned in Oxygen
slots.) | Installed emergency power generator for Oxygen Plant. Decided use 5% Steam in gas to generator and up to 500°F gas preheat and to raise temperature burner cooling water - all in effort reduce carbon forming tendency. Replaced burners with new third slot type burners of same design. | | | FAM ^{*} Figures in parenthesis are maximum for run, those not in parenthesis are average. (1) Total Chemicals production: Run 7 - 396,300 Run 10 - 737,300 Run 8 - 2,460,159 Run 11 - 982,500 Run 9 - 355,461 ⁽²⁾ Theoretical only - batch was not started fresh. (3) Reduced to 95% Fe. (a) Includes 3,399 Poly Gaso. (b) Includes 4,256 Poly Gaso. ¹¹⁻²⁶⁻⁵¹ 138 | | | | | | Charge Rate - 9 | | Pro | duction | | Type of Catalyst | | | |------------|-----------------------|---|-------------------------|---|-----------------|----------------------------|--|--|---|--|--|--| | Run
No. | | Shutdown
Date | Days
<u>Duration</u> | Oxygen
Plant | | Reactor
(for 1 Reactor) | Barrels Raw
Primary Oil | Chemicals to | Type of Gas
Generator
Burner | Charge % Reduced Catalyst Start Finish | Cause of Shutdown | Corrective Steps Taken
Prior to Succeeding Run | | 12 | 11-28-51 | 12-7-51 | 9 | 79
(83) | *
36
(38) | *
58
(60) | 9330 (1) | 94,000 (2)
(112,400) | Third Slot Type - Inco- nel | 100 (3) 100 | M-352 A&B Exchangers caused loss of Boiler Feed Water to K-301 | l. Installed automatic valve to tie generator boiler feed water line into 600 area. To provide boiler feed in emergency. | | | | | | | | | | | | | Generator steam drum. | 2. Installed gunite liners in channel and floating heads of M-352 Exchangers on K-351 B reactor and are Monel lining similar parts of M-352 Exchangers on K-351 A Reactor. | | | | | | | | | | | | | | 3. Planning installation of catalyst scrubbers on Reactor Effluent and attempting locate six field boilers to increase 175# steam availability. | | 13 | 12-20-51 | 1-2-52 | 13 | 83
(87) | (37) | 62
(67) | 10,246 (1) | 89,500 (2)
(113,000) | Third Slot Type - Inco- nel | 100 (4) 100 | Thrust bearing failure of third stage of V-202 A oxygen compressor. | V-202 B compressor with 12.5% over
sized thrust bearing placed in ser-
vice while V-202 A undergoing re-
pairs. | | | | | | | | | | | | | | 2.V-202 A compressor third stage thrust bearing rebuilt with 50% larger bearing surface. | | 14 | 1-8-52 | 1-22-52 | 14 | $7\frac{A}{1}$ $5\frac{B}{2}$ (78) (58) | 36
(48) | (76) | 11,205 (1) | 88,200 (2)
(104,600) | Third Slot
Type - Stain-
less Steel | 100 (5) 100 | Failure of "D" cooling water circuit on #3 burner. | <pre>1.Installed improved instrumentation for
measuring generator burner pressure
drop.</pre> | | | | | | | | | The second secon | | | | | 2.Finished installation acetylene absorbers on both oxygen plants. | | | | | | | | | | | | | | 3. Switched from K-351 B to K-351 A reactor in order stainless steel line channel and floating heads on reactor exchanger system (B Unit), since gunnite lining not giving desired corrosion protection. | | 15 | 2-1-52 | 2-11-52 | 10 | 70 75
(72) (82) | 35
(48) | 67
(91) | 11,445 (1)
1313 BPD | 90,800
(96,000)
16.6% of
design | Third Slot Type - Stain- less Steel without capil lary tubes. | duced & 96% Cat. | Leak at upstream flg. of valve on inlet & M-352 A. Leak in #5 Burners. Niggerheads found on all burners. Installed 3 new burners | | | 16 | 2-18-52 | 2-22-52 | 4 | 50 75
(68) (78) | 38
(49) | 71
(91) | 3355 (1) | 103,000
(106,900)
34.3% of
design | Third Slot Type - Inco- nel. No cap- illaries. | vious run and 24 | Hot Spot around generator nozzle due to running with two Φ_2 plts. All three burner badly burned at ends of slots. | rs
f | | 17 | Started Gen
3-3-52 | erator 9 Al
3-13-52
2 PM
Burner f
Leak in 1 | ailure | | | | | | | Entire run with low cat. level. Added 40 Tons 80% Fe poorly reduced cat. & a little more later didn't do
any good. | | | *Figures in parenthesis are maximum for run, those not in parenthesis are average. ⁽¹⁾ Includes poly gasoline - Run 12 - 3070 Barrels Run 14 - 2817 Barrels Run 13 - 5093 Barrels ⁽²⁾ Total chemicals production Run 12 - 800,000 Run 14 - 1,146,000 Run 13 - 1,165,000 ⁽³⁾ Reduced to 96% Fe. - Same catalyst as used in Run 11. ⁽⁴⁾ Comprised 130 tons used catalyst from Run 12 and 127 tons fresh reduced catalyst. 60 tons reduced mill scale and 49 tons reduced and carbided mill scale added during run. ⁽⁵⁾ Comprised used catalyst from Run 13 plus 55 tons fresh reduced (245°F.) mill scale catalyst. Entire batch conditioned before run for 24 hrs. with fresh feed rate of 500 MSCFH in circulating natural gas stream at 620°F. bed temperature. (3) Stanolind Data a BLE 1 OPERATING & YIELD SUBLARY RUN #6 K-251-R REACTOR 7.00 PERIOD 13 MAR 14 MAR 15 MAR 16 MAR 17 MAR 18 KAR 19 KAR Operating Conditions Point No. Total Reactor Feed MNSCFH 4.80 4.90 4.60 4.80 4.60 4.90 4.90 FAR Synthesis Gas (1) MMSCFH 3.03 3.20 3.24 3.06 3.05 Recycle Gas MMSCFH 1.77 1.62 Life 1.36 1.85 1.84 Reactor Top Pressure PSI 310 305 305 305 305 305 290 Reactor Gas Feed OT **#20** 516 535 540 440 540 560 OF. Reactor Bed 660 693 653 645 664 656 659 Catalyst Holdup Tons 131 118 121 153 189 185 183 #/CF Catalyst Density 128 104 99 105 104 102 102 % Fe in Catalyst no sample no sample 75.01 75.78 75.17 no sample 73.27 % Reduced Catalyst Charged to Reactor 100 100 100 79.85 88.38 79.85 79.85 Spare Velocity - V/V/Hr. 1365 1347 1222 753 772 840 RESULTS Conversion CO 70.78 74.71 76.51 75.28 73.15 73.76 H2 43.54 48.138 49.24 48.53 43.36 42.49 H27 00 53.08 57.62 58.67 53.89 53.86 58.79 Contrastion 34.85 34.65 37.30 1218 92.10 29.40 Production - Gals 03 +/MSCF 00+H2 FF 0.629 0.737 0.736 0.787 0.674 0.600 Yields - Output Basis Wt. S BPH Wt. BPH Wt. S BPH WIN BPH WT. S BPH WT. S BPH CO 20.80.2 17.82 17.63 16.89 19.01 18.89 H₂ 4.79 5.36 4.59 4.60 5.28 5.21 36-75-25.46 COa 36.75 25,29 32.43 21.94 33.49 23.67 39.1226.44 30.11 2636 ¥2 4.05 3.31 4.33 4.74 5.87 7-51 2.93 9-12 6.97 CHA 6.14 5.10 12.75/1.17 6.03 H. 40 6.57 4.83 C2HL 1.41 1.39 1.21 1.30 1.67 1.57 CoH 0.81 0.80 0.66 0.74 1.11 0.80 C3H6 2.07 11.6 1.72 10.61 1.84 11.29 1.70 9.74 2.06 11.80 1.73 9.98 Calle 0.59 336 0.97 6.10 0.59 368 0.77 4.52 0.42 2.45 0.75 4.41 1.64 7.95 1.68 8.97 1.52 808 Calla 1.40 6.94 1.77 8.76 1.77 8.85 Cultin 0.18 0.92 0.29 1.61 0.59 2.84 0.29 1.50 0.46 2.36 0.34 1.77 C5 + PPO 4.90 4.70 6.42 25.78 6.24 26 14 6.78 24.69 5.19 19.83 3.55 15.04 Water Soluble Chemicals 2.2022417#2.2425167#2.23 2479 2 55 2652 2 69 2790 2 74 2867 13.11 7.10 14.50 7.9, 16.91 7.80 Process Water 10.74 8.34 10.77 8.77 1208 9.02 Tut C3+ Intl 35.63 60.05 52.83 55.73 53.97 42,07 (1) Calculated by Output Basis Dominion 11.76 18.58 18.47 12.00 1764 16.09 (2) Methane Bleed Gas Subtracted Note; Periods are 6AM To. 6AM, except till 4:50AM March 20 for March 19 Period. 3 77 5 | CHI 5-60-4, CS 5-14 3.70 8-38 7.98 767 5.51 5-63 4.05 5-14 3.75 6-66 3.82 6-34 3.52 6- | | |--|--| | PENIOD Point No. N | | | Operating Conditions | 2000 | | Total Associor Read P1 333 ASSOCIA 3, 922 2, 427 2, 920 5887 4, 900 3.077 3.797 4.051 3.0 4.0 4.3 5.797 Symthesis Gas [1] MSD77H 9.997 4.051 3.197 3.797 4.051 9.99 3.257 1.000
1.000 1.00 | | | Synthesis is in [1] MSDOTH 2.78 | 3274 | | Reactor Top Pressure 951 \$45 \$35 \$35 \$35 \$35 \$35 \$35 \$35 \$35 \$35 \$3 | 3.3 , | | Resolve Top Pressure Fold 1860 | 3 3 7 | | Reactor See Feed OF 615 4450 4450 560 405 646 420 625 625 Reactor Beau OF 615 457 477 580 670 675 676 676 675 170 675 Reactor Beau OF 615 477 570 580 670 675 676 675 676 675 170 675 Reactor Beau OF 615 472 172 175 185 172 183 172 185 172 Getelyst beheity Beneity 9/68 112 107 105 112 1/4 108 105 105 105 105 Results Deneity 9/68 112 107 105 112 1/4 108 105 105 105 105 Results Catalyst Charged to neactor 885 313 Share Velocity - V/I, dr. 1/17 1272 1399 1095 114/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 1237 1090 1091 RESULTS Scalingly 764 77.2 15.8 72.9 12.4 641/ 1/25 1144 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 | 135 | | Searchar Fac. OP 115 675 670 680 670 675 670 685 171 675 Gatalyst Holdup Tons 732 722 715 744 747 742 728 72 728 72 727 Stellyst Bonalty \$/07 772 775 743 743 743 743 743 747 747 727 746 75 76 72 Figured Catalyst Charged to Reacter 885 913 729 743 | | | Gatalyst Holdup Tone 72 | 335 | | Catalyst Denwity 9/08 1/2 197 105 112 114 108 105 105 105 112 % Fe in Satalyst 7.56 743 743 M maps 75.36 7.71 70.0 74.94 is many 75.36 7.71 70.0 74.94 is many 75.26 | - | | \$ Reduced Carlyst Charged to heacter 68.5 \$ Reduced Carlyst Charged to heacter 68.5 \$ Spare Velocity - V/Virt. | 155 | | Spare Velocity - V/V, dr | 150 | | Spare Velocity - V/V, dr. | An second | | RESULTS Selection 19 76.4 77.2 75.8 72.9 12.4 6.12 78.0 71.7 78.4 71.3 Conversion CO 79.5 77.09 75.57 12.22 82.11 11.71 11.87 77.51 82.35 81.2 | | | Conversion CO 79.5 77.09 75.57 72.22 83.11 91.77 91.87 77.57 82.25 73.24 | 1000 | | Conversion CD 79.5 77.09 75.57 72.22 83.11 81.77 81.87 77.57 82.25 73.24 Ho | The second secon | | H2 55.28 51.20 54.42 60.34 60.40 61.65 51.57 61.41 61.55 H2 + 00 66.64 64.20 62.30 63.45 70.72 63.42 69.22 55.55 61.2 70.74 Contraction R | 76.3 | | H_2 + CO | 1372 | | Contraction \$ \$4.8 \$4.1 \$42.1 \$3.8 \$50.7 \$50.5 \$47 \$43 \$41.3 \$8 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ | 13.36 | | Respect Ratio (total recycle: fresh | 7,4 | | Production-Gala C3+/MSGF C04H3 \$7 | 48 0 | | Production—Gals C3+/MSGF COttin PT 0.912 0.905 0.88 0.94 1.150 1.255 1.105 1.132 1.309 1.387 Tields - Output Basis WH BPH | 1 11 | | 1201cs - Dutput Basis | 1.500 | | A 252 243 229 244 257 240 236 232 246 242 246 242 246 242 246 242 246 242 246 242 246 242 246 242 246 242 246 242 246 246 | | | CO | | | H2 CO2 382 401 410 3.57 3.30 3.57 3.44 501 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 | _1 : | | CO2 33.16-23.5 31.18 23.41 31.70 22.15 31.40 21.92 32.22 3.01 32.14 22.70 31.04 22.6 3.01 32.40 N2 3.94 3.94 3.10 3.95 3.10 | <u> </u> | | No. 3.94 3.19 2.07 2.07 3.20 3.20 3.21 3.10 3.51 3.22 CH. 5.60-4.05 5.44 3.70 438 2.98 3.57 5.63 4.05 5.44 3.75 6.65 3.82 5.43 3.70 438 2.89 2.59 4.05 5.44 3.75 6.65 3.82 5.43 3.70 5.45 3.59 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28 | 322 | | CH, 560=4.05 5.24 3.70 8.38 7.98 7.67 5.57 5.43 4.05 5.47 5.75 6.56 3.82 5.43 5.75 5.43 4.63 5.49 3.59 6.24 6.2 6.24 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 | | | C2H6 1.41 1.71 1.37 1.93 1.46 1.62 1.70 660 1.59 1.68 C2H6 0.65 0.62 9.76 068 1.76 0.78 0.79 0.79 0.74 0.75 2.72 C3H6 1.52 1.328 1.96 11.58 2.89 13.21 236 14.18 2.30 14.11 2.31 14.12 2.45 15.15 2.33 16.41 2.31 14.12 2.45 15.15 2.33 16.41 2.31 14.12 2.45 15.15 2.33 16.41 2.31 14.12 2.45 15.15 2.33 16.41 2.31 14.12 2.45 15.15 2.33 16.41 2.31 14.12 0.73 4.12 0.13
4.12 0.13 4 | الكائم المعالم | | C2H6 C3H6 | 59 38 | | C3H6 235 13.28 1.96 11.58 2.09 13.21 236 14.18 2.30 14.11 231 14.12 245 15.52 23 16.07 2.37 C3H8 9.63 3.70 0.64 3.85 1.04 6.69 0.59 3.64 0.62 3.86 0.64 4.24 0.78 4.25 0.73 4.22 0.00 42 0.77 4.15 C1H8 1.91 9.52 1.94 9.94 1.64 8.99 1.73 2.90 2.59 15.74 1.77 237 204 11.07 1.89 12.07 1.88 2.16 2.16 | <u> </u> | | G3H8 0.63 3.70 OLA 3.85 LON 6.67 0.57 3.66 0.62 3.86 0.61 4.24 0.78 4.20 0.73 4.22 0.23 42: 0.73 4.15 C4H8 1.91 9.52 1.94 9.94 1.64 8.99 1.73 8.98 2.57 15.74 1.77 2.37 200 11.07 1.89 12.07 1.88 2.1 1.35 | 3.74 | | 1.91 9.52 1.94 9.94 1.64 8.99 1.75 2.90 2.59 15.741.77 2.37 2.00 11.07 1.89 12.07 1.88 2 1.30 | 15 15 | | | 27 44 | | CH : 100 A20 140 A20 141 A20 A20 141 A20 | 8 41 | | C. H. O. SZ 1.45 0.34 1.00 0.85 1.96 0.73 817 0.92 1.76 0.33 1.86 0.34 1.57 0.75 1.46 0.46 | 4.43 | | C. FRPO 9.30 3(2) 33.54/00 42.00 455/01 4451/1/2 50.39 1 30 50.00 43.00 | | | Water Soluble Chemicals (2) 305 /05/ 314 314 314 315 3717 331 374 357 301 315 402 316 402 316 402 316 402 316 | | | Process Water (2) N.A. 10.5154 1220 1521 1775 1625 17 1 1839 18.01 118 13.13 17.11 14.52 1534 17.27 1.14 13.02 24.53 13.03 | | | Statelyst Bei Age - Days 29.7 807 241 261 261 271 281 20.1 21 | | | (1) Calculated by Gutput Basis | and the same of the same of | | | an e e e e e e e e e e e e e e e e e e e | | TAN DPH 25.7 25.7 27.8 28.4 28.9 24.4 29.8 30.0 20.0 27.3 | 25.52 | K-351-A REACTOR TABLE 1 RUN #7 OPERATING & YIELD SUBMARY 4.472 | | | W-))1-W | REACTOR | RUN 71 | ALBITA I TR | | | | · | | | |--|-------------|-------------|-------------|-------------|-------------|------------------|--------------|--|---|--------------|--| | PERIOD 1995 | 3May51 | 4 May 51 | 5 May 51 | 6May 51 | 7 May 51 | 8 May 51 | 9 May 51 | 10May 51 | 11 11/251 | 1211-51 | 13My 51 | | Operating Conditions Point No. | | | | | | | | The state of s | | | | | Total Reactor Feed FI 303 MISCFI | | 4.034 | 3.932 | 3959 | 3 480 | 3.952 | 3.985 | 3,997 | 4.437 | 4.628 | 4.906 | | Synthesis Gas (1) MMSCFI | 3.382 | 3.216 | 3,307 | 3.339 | 3,402 | 3.460 | 3.390 | 3,465 | 3.159 | 3.062 | 2.9.4 | | | | 3.340 | 3.4.2 | 9:374 | 3,402 | 2315 | 2:865 | 2,718 | 2,669 | 1. 100 | 1.382 | | Recycle Gas from V-351 MMSCFI Reactor Top Pressure PSI | 355 | 350 | 3.4.2 | 9:378 | 345-2 | 3350 | 355 | 3365 | 1958 | 33632 | 1950 | | heactor Gas Feed OF | 1.00 | 640 | 640 | 640 | 640 | 640 | 440 | 640 | 630 | 650 | 640 | | heactor Sed OF | 680 | 671 | 468 | 683 | 673 | 672 | 677 | 660 | 672 | 669 | 678 | | Catalyst Holdup Tona | 14 | 15/ | 166 | 158 | 149 | 146 | 141 | 145 | 154 | 15 | 163 | | Catalyst Density #/CF | 104 | 106 | 1/2 | 110 | 110 | 108 | 106 | 107 | 123 | 120 | : 114 | | | 74.7 | 73.9 | 74.0 | 70.7 | 73.2 | 73.9 | 740 | 73.2 | 73.7 | 73,2 | 74.9 | | h Fe in Catalyst | * ··· | / 4 1- | 95.5 | Like Land | | | 1 | | 96.8 | | | | & Reduced Catalyst Charged to Acad | 1142 | 1029 | + O27 | 1087 | 1146 | 11.01 | 1162 | 1188 | 1183 | 1081 | 941 | | Spare Valuetty - V/V/Hr. | 1 | 1029 | , FUX | | | 11.86 | 17.6 | 1 | 1 | | | | | 76.9 | 75.0 | 79.3 | 79.2. | 77.67 | 75.81 | 75.56 | 74.35 | 71.02 | 720 | 67.33 | | MISULTE Selectivity | | 82.94 | 14.30 | | | 79.47 | 77.24 | 77,95 | 79.19 | 77.94 | 79 49 | | Conversion CO | 83.04 | | 1 | 83.0 | 78.76 | Ì | | T | 53,99 | 54.47 | 50.46 | | | 62.12 | 62.31 | 64.29 | 63.37 | 60.30 | 54.95 | 52.7/ | 53.63 | 63.46 | 63.01 | 61.22 | | H2 + CO | 70.0 | 69.91 | 71.64 | 70.99 | 67.38 | 63.81 | 61.71 | 62.48 | *************************************** | | 7 | | Contraction 5 | 45.8 | 47.7 | +8.8 | 47.4 | 43 | 38 | 97.3 | 36.05 | 31.81 | 36.3 | 343 | | Recycle Ratio (total recyclesfresh | 1.23 | 1.29 | 1,23 | 1243 | 1 092 | 0.81 | 1.02 | a94 | 1 25 | 0.19 | 0.61 | | Production-Gale Col/waCF Colly FF | 1.039 | 1,084 | 1.139 | 1.176 | A 999 | 1.007 | 0.958 | 0,967 | 2.915 | 0.854 | 0.785 | | Yields - Output basis | UHTO BPH | WHY BPH | Luth BPh | with Bin | NHE BPH | WITH BAH | WH6 BA | WHO BAY | witte BPH | WHE BLE | 100 BA | | <u> </u> | 2.31 | 2.31 | 2.36 | 2.32 | 2.4 | 2.44 | 2.41 | 2.29 | 2.++ | 2,30 | 1237 | | GO . | 1264 | 12.51 | 11,57 | 11.96 | 15590 | 15.27 | Ke. 77 | 14.27 | 15.37 | 16.01 | 14.32 | | Кo | 3.36 | 313 | 327 | 3.27 | 3.44 | 1,00 | 1:33 | 4.30 | 406 | 4.15 | 454 | | CO2 | 3448 22,69 | 323 23 45 | 3171 12.79 | 32.10 -3.17 | 19362 25,23 | 34413 2621 | 34.87 25.75 | 1222486 | 3413 2584 | 35.75 26.64 | 135 HO 26.9 | | | 3.39 | 5.03 | 3.59 | 3,69 | 3.18 | 3.57 | 3.52 | 2.32 | 3.89 | 4.28 | : : 1 1 | | Cit. | +5,5\$ 3.60 | 565 3.58 | 572 3104 | 5.71 371 | 15,23 3.26 | 5.89 3.83 | 587 3,84 | 6.17 4.11 | 6.29 4.42 | 6.22 4.31 | 61. 422 | | | 1.08 | 1.51 | 1.64 | 1.58 | 1.47 | 1.61 | 1.67 | 4.76 | 1.69 | 1.47 | 1.46 | | | G 78 | a # | 0.78 | 0.73 | 081 | 0.66 | 0.64 | 0.69 | 0.78 | 0.70 | 1.00 | | C.H. | 254 117 | 47 74 | 42.30 | 12.71 19.32 | 2.36 14.59 | 2// /3.9 | 4 2.39 15.2 | 62.49 N.M | 1,40 1.51 | 212 1401 | 1250 /3.89 | | 3 6 | 10.27 A 2 | A (2 2 9) | 1 0.12 A +2 | 3.0.76 44 | AA 279 | A5B 204 | 40.71 44 | 0 4.53 8.52 | 0.55 3.39 | A57 3.94 | AST 3.25 | | | I WILL IT! | 1 140 40 | alout Tida | A 12 BUR | 143 620 | 1 19 10 1/ | 9.11 146 | 2 1.57 871 | 167 976 | 2.02 1010 | 168 781 | | | | 13.0 | 11.04 11.05 | 14114 1163 | 1 126 2- | 3 4 45 2 4 | tand 1.2 | 410 505 | 1.64 740 | 0.17 3 1/ |) 21 184 | | | .0.35 /,74 | - 00= | THIS LILL | 2.40 | 100 | 4.5 74 42 | 1. 4.20 | 7 7 30 | | | <u>العنا العب</u>
ما /. وح ن * | | C RPO | 15.91 34.8 | 50.5 | 10,14 13.14 | 1.75 44 | F46 30.74 | 18.72 3/10 | 1.11 2/10 | 41.30 97.44 | | And st | - 7:33 15 A | | water coluble Chemicals (2) | 3.16 4413 | 4.24 3673 | TAGK 37.09 | 7.60 500 | 7 16/ | 1 3.57 <u>张红</u> | 760 769 | 710 - 4765 | 7/1 | TIPT . 41.55 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | Process Weter -12) | 21.04 17.4) | V1.79 17,70 | 19,10 17.0 | 1851 | 14.17 | 14.31 | 13.17. 13:38 | 1611 1408 | A 33 _ / - / - | 19.37 | 1441 1337 | | C(+) + $R(-)$ $A(-)$ | 5 J 4 | 197 | 1207 | 1311 | | 1 4 5 7 | 1 1 4 1 | 121 | · 17 1 | ≖ 3.7 | - re (| | 12) Galoulated by Output basis (Tux | DVH) 9653 | 42.73 | 91.28 | 27.25 | 82.03 | 93.42 | 79 2 | 82.46 | 1 PA. 10 | V 7. 79 | 57,21 | | , \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | - 77 | • | 1 | 7 | 24,1 | · · · | Į. | | | | | | | • | | | | | | į. | Sneet | - 5 | | | |--|-------------
--	--	--	--
--	--		
2081 15.73 1207 14.55 H2 4.44 5,00 5.80 3/1055 5.67 Anot 32.39 3889 2884 37 A D Lato 1 4407 29.16 502 2.91 3 313 3.34 615 4.30 43+ 5.15 200 2.11 3.41 2.90 144 3.41 1.76 0.78 0.25 Care 151 7.72/16 951/189 MARCH 1872 214 MA 0.61 \$20 a.62 322 aug 5.70 0.51 450+0.59 5.50 9.26 1.43 6.33 639 10901.94 14.85 654 12.10 63/ 1.43 055 2.60 0.23 LEB OVA 507012 3,71 8.03-2 21/3 785 21/5 BM 50 90 43 40.25 7.0 Ester Soluble Themiesta (2) 180 5.16294 84 225. 1A66 2 44 1435 307 19.44 1.37 9.30 14.30 11.43 Process Water 3/14 Cot Ame (T) Maleulated by Output Basis 121 Stanoline Oate 2 Hz I. FF 60.568 √x. of a second	AV	CHB-118	ro
--	-------------------------	--------------	--------------
--	---	---	--
₁ C ₂ H ₄ C ₂ H ₆ C ₃ H ₆ C ₃ H ₈	1.99 12.99 3.88 23.90 3.31 2.85 1.54 .95 2.74	2.20 10.79 3.26 21.47 3.04 2.86 1.23 .98 2.62	2.05 10.07 3.11 19.65 3.88 2.78 1.40 1.05 2.75
0155		v17	
RESERVE THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT I	.25 1.0		
1.30	19.5		27:3
--	-----	---	---
BPH	WtX	врн	Wt%