Return to Books

Catalysis: An Integrated Approach
Second, revised and enlarged edition

Editors
Van Santen, R. A.
Schuit Institue of Catalysis, Eindhoven University of Technology, Eindhoven, The Netherlands

Van Leeuwen, P.W.N.M.
Department of Inorganic Chemistry, University of Amsterdam, Amsterdam, The Netherlands

Moulijn, J. A.
Section for Process Catalysis, Deft University of Technology, Delft, The Netherlands

Averill, B. A.
E.C. Slater Institute, University of Amsterdam, Amsterdam, The Netherlands

Elsevier Scientific Publishing Company

First Edition 1993
Second, revised and enlarged edition 1999

 Table of Contents

Chapter 1

History of Catalysis
A. P. Kieboom, J. Moulijn, P.W.N.M. van Leeuwen and R.A. van Santen
1.1 Introduction

3

1.2 Industrial Catalysis 4
1.2.1 Sulphuric Acid 5
1.2.2 Ammonia Synthesis 5
1.2.3 Coal, Oil, Natural Gas 9
1.2.4 Catalytic Reforming 12
1.2.5 Hydrorefining 13
1.2.6 Acetaldehyde 13
1.2.7. Butanol 14
1.2.8 Acetic Acid 15
1.2.9 Polymerization 16
1.2.10 Metathesis 16
1.2.11 Motor Vehicle Emission Control 17
1.3 Biocatalysis 18
1.3.1 Fermentation 18
1.3.2 Microbial Transformation 19
1.3.3 Enzymatic Transformation 20
1.4 Summary 20
References 28
Chapter 2
Catalytic Processes in Industry
A.P.G. Kieboom, J.A. Moulijn, R.A. Sheldon and P.W.N.M. van Leeuwen
2.1 Introduction 29
2.2 Catalytic Processes in the Oil Refinery 29
2.2.1 Catalytic Reforming 31
2.2.2 Catalytic Cracking 33
2.2.3 Hydrotreatment 36
2.3 Total Isomerization Process of Paraffins 39
2.4 Isotactic Polypropylene 42
2.5 Catalysts for Automotive Pollution Control 45
2.6 Ethene Oxide 47
2.7 Styrene and Propylene Oxide (SMPO Process) 49
2.8 Higher Olefins 52
2.9 Rhodium Catalyzed Hyrdoformylation of Propene 54
2.10 Methanol Synthesis 57
2.11 Maleic Anhydride 61
2.12 Methyl t-Butyl Ether (MTBE) 64
2.13 Caprolactam 68
2.14 Vitamin A Intermediates 70
2.15 Ibuprofen 72
2.16 Aminopenicillanic Acid (6-APA) 74
2.17 High Fructose Corn Syrup (HFCS) 76
2.18 Low-PHosphate Pig Faeces as Fertilizers 78
References 80
General Literature 80
Chapter 3
Chemical Kinetics of Catalyzed Reactions
F. Kapteijn, J.A. Moulijn, R.A. van Santen and R. Wever
3.1 Introduction 81
3.2 Rate Expression (Single-Site Model) 82
3.3 Rate-Determining Step - Quasi-Equilibrium 85
3.4 Adsorption Isotherms 87
3.5 Rate Expressions - Other Models and Generalizations 89
3.6 Limiting Cases - Reactant And Product Concentrations 91
3.7 Temperature And Pressure Dependence 95
3.7.1 Transition-State Theory 95
3.7.2 Forward Reaction - Temperature and Pressure Dependence 96
3.7.3 Forward Reaction - Limiting Cases 98
3.8 Sabatier Principle - Volcano Plot 102
3.9 Concluding Remarks 104
Notation 105
References 106
Chapter 4
Bonding and Elementary Steps in Catalysis
B.A. Averill, I.M.C.M. Rietjens, P.W.N.M. van Leeuwen and R.A. van Santen
4.1 Introduction 109
4.2 Bonding 110
4.2.1. General Introduction 110
4.2.2 Bonding in Transition Metal Complexes 117
4.3 Elementary Steps In Organometallic Complexes 129
4.3.1 Creation of a Vacant Site 129
4.3.2 Coordination of the Substrate 132
4.3.3 Insertions and Migrations 133
4.3.4 ß-Elimination and Deinsertion 136
4.3.5 Oxidative Addition 137
4.3.6 Reductive Elimination 139
4.3.7 α-Elimination and Reactions 140
4.3.8 Cyclometallation 142
4.3.9 Activation of a Substrate toward Nucleophilic Attack 143
4.3.10 σ-Bond Metathesis 146
4.3.11 Heterolytic Cleavage of Dihydrogen 147
4.4 Elementary Surface Reaction Steps 148
4.4.1 Elementary Surface Reaction Steps at Transition Metal Surfaces 148
4.5 Elementary Reaction Steps on Solid Acids 164
4.5.1 General Introduction 164
4.5.2 Mechanism of Protonation 169
4.5.3 Brønsted Acid-catalyzed Hydrocarbon Activation Reactions 172
4.6 Elementary Steps in Biocatalytic Reactions 175
4.6.1 Introduction 175
4.6.2 Classification of Enzymes 175
4.6.3 General Features of Enzymes 175
4.6.4 Factors Important in Enzymatic Catalysis 182
4.7 Elementary Steps in Biocatalytic Oxidation Reactions 186
4.7.1 Introduction 186
4.7.2 Electron Transfer Reactions 188
4.7.3 Heme-based Peroxidases 190
4.7.4 Monooxygenases 192
4.7.5 Dioxygenases 203
References 206
Chapter 5
Heterogeneous Catalysis
B.K. Hodnett, F.J.J.G. Janssen, J.W. Niemantsverdriet, V. Ponec, R.A. van Santen and J.A.R. van Veen
5.1 Introduction 209
5.2 Synthesis Gas Conversion 210
5.2.1 The Fischer-Tropsch Mechanism and its Consequences for the Technology 210
5.2.2 Kinetics of the FTS and Methanation Reaction 212
5.2.3 Function of Promoters in the Hydrocarbon Synthesis 216
5.2.4 Synthesis of Higher Oxygenates 216
5.2.5 Synthesis of Methanol 218
5.3 Automotive Exhaust Catalysis 220
5.3.1 Air Pollution and Regulations 220
5.3.2 The Three-way Catalyst 222
5.3.3 The Catalytic Converter 223
5.3.4 Function of the Catalyst Components 223
5.3.5 Catalyst Deactivation 224
5.3.6 Catalytic Reactions in the Three-way Catalyst: Mechanism and Kinetics 225
5.3.7 Concluding Remarks 233
5.4 Selective Catalytic Reduction of NO by NH3 235
5.4.1 Introduction 235
5.4.2 SCR Catalysts 236
5.4.3 Species at the Catalyst Surface 237
5.4.4 Kinetics 239
5.4.5 Mechanisms 243
5.5 Selective Oxidation 249
5.5.1 Propene Oxidation to Acrolein 249
5.5.2 Epoxidation of Ethene 262
5.5.3 The Wacker Reaction; Vinylacetate Production 267
5.5.4 Epoxidation using Hyrdo- or Hydrogenperoxide 269
5.6 Electrocatalysis 270
5.6.1 Introduction 270
5.6.2 Electrochemical Evolution of Hydrogen 273
5.6.3 Electro-oxidation of Hydrogen 274
5.6.4 Electrochemical Evolution of Oxygen 276
5.6.5 Electroreduction of Oxygen 278
5.6.6 Electrochemical Oxidation of Alcohols 279
References 283
Chapter 6
Homogeneous Catalysis with Transition Metal Complexes
G. van Koten and P.W.N.M. van Leeuwen
6.1 Introduction 289
6.2 Rhodium Catalyzed Hydroformylation 291
6.2.1 Introduction 291
6.2.2 Rhodium-based Hydroformylation 292
6.2.3 Ligand Effects 294
6.2.4 Phosphine Ligands 294
6.2.5 Ligand Effects in Rhodium Catalyzed Hydroformylation 296
6.2.6 Kinetic Studies 302
6.2.7 The Characterization of Intermediates 308
6.3 Zirconium Catalyzed Polymerization of Alkenes 314
6.3.1 Introduction 314
6.3.2 Supported Titanium Catalysts 314
6.3.3 Isotactic Polypropylene 315
6.3.4 The Cossee-Arlman Mechanism 316
6.3.5 Homogeneous versus Heterogeneous Catalysts 317
6.3.6 Site Control versus Chain-end Control 317
6.3.7 Chain-end Control: Syndiotactic Polymers 320
6.3.8 Chain-end Control: Isotactic Polymers 321
6.3.9 Site Control: Recent History 322
6.3.10 Site Control: Isotactic Polymers 323
6.3.11 Double Stereoselection: Chain-end Control and Site Control 327
6.3.12 Effect of Hydrogen 328
6.3.13 Further Work 329
6.4 Asymmetric Hydrogenation 330
6.4.1 Introduction 330
6.4.2 Cinnamic Acid Derivatives 331
6.4.3 BINAP Catalysis 335
6.4.4 Chiral Ferrocene Based Ligands 338
References 339
Chapter 7
Biocatalysis
B.A. Averill, N.W.M. Laane, A.J.J. Straathof and J. Tramper
7.1 Introduction 343
7.2 Biocatalysis vs. Chemical Catalysis 344
7.2.1 Chemical Conversion vs. Biocatalysis 346
7.2.2 Isolated Enzyme versus Whole Cell 347
7.2.3 Free versus Immobilized Biocatalyst 351
7.2.4 Water versus Organic Solvent 351
7.2.5 Standard versus Novel Bioreactor 352
7.2.6 (Fed-)Batch versus Continuous Operation 353
7.2.7 Integration of Reactions/Process Steps/Overall Process 355
7.3 Areas of Enzyme Applications 357
7.3.1 Hydrolases 358
7.3.2 Lyases 360
7.3.3 Isomerases 362
7.3.4 Transferases 363
7.3.5 Ligases 364
7.3.6 Oxidoreductases 364
7.4 Conclusions 370
References 370
Chapter 8
Catalytic Reaction Engineering
F. Kapteijn, G.B. Marin and J.A. Moulijn
8.1 Introduction 375
8.2 Industrial Reactors 376
8.2.1 Batch Reactors 376
8.2.2 Continuous-flow Reactors for Gas-Liquid Reactions (Homogeneous Catalysis) 377
8.2.3 Continuous-flow Reactors for Solid-catalyzed Reactions 379
8.3 Ideal Reactors - Mathematical Description 386
8.3.1 Batch Reactor 387
8.3.2 Plug-Flow Reactor (PFR) 390
8.3.3 Continuous-flow Stirred-Tank Reactor (CSTR) 391
8.3.4 Comparison of PFR and CSTR 393
8.4 Reaction Combined with Transport 395
8.4.1 Heterogeneous Catalysis 396
8.4.2 Homogeneous Catalysis 409
8.5 Experimental Determination of Reaction Kinetics 417
8.5.1 Scope 417
8.5.2 Reactors 417
Notation 427
References 430
Chapter 9
Preparation of Catalyst Supports, Zeolites and Mesoporous Materials
E.B.M. Doesburg, K.P. de Jong and J.H.C. van Hooff
9.1 Introduction 433
9.2 Preparation of Silica Supports 434
9.2.1 Preparation of Silica Gel 434
9.2.2 Silica Precipitation from Vapour: Pyrogenic Silica 438
9.3 Preparation of Alumina Supports 439
9.3.1 Preparation of γ- A12O3 and η-A12O3  439
9.3.2 Structure of γ- A12O3 and η-A12O3  440
9.4 Carbon Supports 442
9.5 Synthesis of Zeolites and Mesoporous Materials 443
9.5.1 Introduction 443
9.5.2 Synthesis of Zeolite A 446
9.5.3 Synthesis of Zeolite Y 447
9.5.4 Synthesis of Mordenite 447
9.5.5 Synthesis of ZSM-5 448
9.5.6 Synthesis of mesoporous A1-MCM-41 448
9.6 Shaping of Catalyst Bodies 449
9.6.1 Introduction 449
9.6.2 Spray Drying 450
9.6.3 Granulation 451
9.6.4 Extrusion 453
9.6.5 Oil-Drop Method/Sol-Gel Method 454
References 456
Chapter 10
Preparation of Supported Catalysts
J.W. Geus and J.A.R. van Veen
10.1 Introduction 459
10.2 Selective Removal 461
10.3 Application on a Separately Produced Support 462
10.3.1 Support Surface Chemistry 463
10.3.2 Impregnation 467
10.3.3 Deposition-Precipitation 477
Further Reading 484
Catalyst Characterization with Spectroscopic Techniques
J.W. Niemantsverdriet
11.1 Introduction 489
11.1.1 Aim of Catalyst Characterization 489
11.2 Techniques 490
11.2.1 X-Ray Diffraction (XRD) 491
11.2.2 Electron Microscopy 494
11.2.3 Temperature Programmed Techniques 496
11.2.4 Surface Spectroscopy 498
11.2.5 Infrared Spectroscopy 508
11.2.6 Extended X-Ray Absorption Fine Structure (EXAFS) 513
11.2.7 Mössbauer Spectroscopy 516
11.3 Concluding Remarks 521
11.3.1 Research Strategies 522
References 523
Chapter 12
Catalyst Characterization and Mimicking Pretreatment Procedures by Temperature - Programmed Techniques
F. Kapteijn, J.A. Moulijn and A. Tarfaoui
12.1 Introduction 525
12.2 Application of TPR 527
12.3 Thermodynamics 527
12.4 Apparatus 527
12.5 Example 1: Temperature-Programmed Reduction (TPR) of CoO/A12O3 529
12.6 Example 2: Temperature-Programmed Sulphiding (TPS) of MoO3/A12O3 531
12.7 Modelling 533
12.7.1 Theory 533
12.7.2 Reduction Kinetic Models 536
12.7.3 Activation energy 536
12.8 Example 3: Modelling of TPR of Fe2O3 537
References 541
Chapter 13
Adsorption Methods for the Assessment of the Specific Surface Area and the Pore Size Distribution of Heterogeneous Catalysts
J.A. Lercher
13.1 Introduction 543
13.2 Physical Adsorption 544
13.3 Adsorption Isotherms 546
13.4 Classification of Pore Sizes 547
13.5 Porosity of Porous Substances 548
13.6 The Yardstick in the Determination of Specific Surface Areas 549
13.7 The Langmuir (Monolayer Adsorption) Description of Adsorption 550
13.8 The BET (Multilayer Adsorption) Description of Adsorption 551
13.9 The t Method, a Concept of a Standard Isotherm 554
13.10 Assessment of Mesopore Radii and Volumes via the Kelvin Equations 557
13.11 The Corrected Kelvin Equation 559
13.12 Mercury Porosimetry 560
13.13 Assessing Microporosity 561
13.14 Distribution of Micropores 563
13.15 General Conclusions and Recommendations 564
Acknowledgements 565
References 565
Subject Index 567