to 1:1.25 middle oil pasting, the filtrability drops correspondingly at 300 atm. At 700 atm, the drop is even greater, which, however, is due only to the strong dispersion and colloiding of the residual constituents in passing thru the letdown valves. If this post-disintegration is eliminated by sluicing as done by Uhde, or by the use of alternately operated sluicing vessels, the filtrability is greatly increased, and the differences between 300 and 700 atm are practically eliminated. Normal letdown with centrifuge oil recycling is roughly 10 times worse in filtrability, though the knowledge gained herewith will probably also lead to progress there.

- 5 -

/pkl

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV.

793

T-330

KCBraun/kp 4-22-47

BINDERS AND THEIR COMPOSITION By Rank, Landwigshafen, 29 Jan. 1943

Results of experiments by various authors have shown that the principal carrier of the binding power in briquetting and binding media is to be found in those substances which are soluble in benzol or insoluble in gasoline, such as s-asphalt, B-pitch or solid bitumen. Due to too high softening points of these substances and the simultaneous presence of inert benzol solids, suitable briquetting media must contain larger or smaller quantities of oil.

The realization that the softening point alone is not a sufficient criterion of the binding power and suitability of a binding or briquetting medium, led to a number of experiments in which the substances mentioned were decomposed by means of solvents.

In the following discussion I refer to the most important results of these experiments:

H. Broche & H. Nedelmann: "Characteristics and composition of briquetting pitch." (Glückauf 69, 1933).

W. Demann: "Extraction of bituminous coal tar pitches." (Brennstoffchemie, Vol. 14, 1933).

Neukirch: "Investigations into coal binders." (Untersuchungen über das Birdemittel der Kohlenfabrication) (I. G. Bittorfeld, Report #395, 1933).

The solvent used in these experiments was benzol and normal gasoline or petroleum ether, so that good comparisons are possible with our usual methods of making analyses. The classes of substances obtained in the decomposition are named differently by the different authors:

TABLE I - DESIGNATION

Experiments by	Broche & Nedelmann; Demann	Neukirch, Bitterfeld	Ludwigshefen
Benzol insolubles	: A-Pitch 1)	Residue	: Benzol solids
Benzol solubles, but gasol. or petrol. ether insolubles	•	Solid bitumen	:S-Asphalt
Benzol & gasoline solubles	: G-Pitch : Alpha-, beta-, gam	Oil bitumen	\$

referred to herein.

The substances corresponding to each other are listed horizontally. While Broche, Nedelmann and Demann investigated briquetting media, Neukirch confined himself principally to electrode binders.

It should first be noted that briquetting pitches may have varying characteristics, in spite of the same softening points. The decomposition of such pitches by means of benzol and normal gasoline offers an explanation for this:

TABLE II

No. & Kind of Pitch	% : A-Pitch :	\$: B-Pitch ;		Softening : Point :	Bending 2) Strength
l - good normal pitch	25.0	38.3	36.7	68.5° C	18.1 kg/cm ²
2 - good blister pitch 3 - poor pitch	26.0 31.0	35.4 26.6	39.6 : 42.4 :		16.0 " 12.6 "
4 - poor blister pitch 2) as a measure	28.5 : of binding po	28,8 :	12°7 :	68,5	10,3 "

The various pitches are composed of different constituents of A-, B- and G-pitch, in spite of the same softening point.

A-, B-, and G-pitches were isolated and are characterized as follows by Broche and Nedelmann:

A-Pitch: (benzol solids) is a blackish-brown powder, consisting of substances similar to coal. The A-constituents of good pitches act somewhat differently from, e.g. the A-constituents of poorly blistered pitches. With good pitches, the A-pitch melts (sinters) between 400-500° C, while still showing tar separation. Molten and blistered coke is obtained from it when it is coked. With poor blister pitches, the A-constituents are practically unmeltable and produce only baked or sintered coke. The ability to absorb oils is greater with the A-constituents of poor pitches than with the A-constituents of good pitches.

The A-pitch not only has no binding power itself, but influences the binding power of the other pitch constituents as well. This is shown in Table III. Briquetts were made with (BtG)-pitches alone and also with additions of A-pitch as briquetting media. The percentage of briquetting medium is so proportioned that equal quantities of (B+G)-pitches are always present in the briquetts.

TABLE III

S: Binder	Briquetting Media	Bending Strength (Binding Power)
Birder : % : A-Pi	teh : (B+G)-Pitch : Soft. Point	
5.7 : 0		: 18.6 kg/cm ² : 17.9
	.0 : 81.0 : 64.5	: 17.9 ** : 11.9 **
7.9 : 28	.5 : 71.5 : 83.5 .0 : 62.0 : 79	3 7.2 n
	Normal Pitch : 66	: 17.8 kg/cm²

The table visualizes the strong effect of the A-pitch addition. The softening point is raised, the A-constituent absorbs (BtG)-constituents and thus takes these away from the coal to be bound together. Even increased additions of briquetting media can not counteract the deteriorating influence.

When A-pitch was extracted with tetraline, 29% solubles could still be The remaining 71% had completely lost its baking and blistering found. properties in coking.

B-Pitch: is an almost black, brittle hard pitch, with high softening point (+80°C) and good grinding properties. Because of its high melting point, it has little binding power in itself.

G-Pitch: represents the lowest molecular portion of pitch and is a soft, brown mass (oils and crystals) or a resincus substance. In itself, this constituent also has little binding power (too low softening point). Its binding power is all the better, the higher molecular it is (pitch content in distillation).

The binding medium in the pitch is rather the mixture of B- and G-pitches. In planting medium in the pitch as rather the mixture of B- and u-pitch it has been found that their proportion in good pitches is approximately 1:1, Table II, items 1 and 2, corresponding to a soft pitch with a softening point of about 30-40° C. In poor pitches, the proportion of B:G is about 1:1.5, corresponding to a soft pitch with a softening point of 10-20°C.

Poor pitches, with a necessary softening point of 20°C, contain much A- and G-pitch, Table II, items 3 and 4.

Poor blistering augments A-pitch by strong decomposition of (B+G)-pitch and dehydrogenation (93% of O2, separated as E2O, 7% as CO2), which changes the proportion of B:G with a definite softening point.

Good grades of pitch contain:

19 - 26% A-pitch 35 - 43% B-pitch 36 - 41% G-pitch.

ol;=

W.Demann gets similar results. He finds great variations in the composition of various pitches:

18 - 32% A-pitch 14 - 27% B-pitch 47 - 66% G-pitch.

The analyses of A-, B- and G- pitches from various pitches closely agree with each other:

TABLE IV. PITCH ANALYSES

	10		9.5				30.00		1.3		200		3.80		100	100	2.45			14.		i Phos	\$4.52		40.00	1.50			-			-	-		-
	_		_	-		-	4	tipes.		-	7.0		2.05	74.	1000	ψ. · .		1	(10)	5.00	\$	5.66	200	7.7		90.2	and the second		:	0				256	7.5
		~2~	_6	ree		C.	ha	to	77.7	A		17.	1,000		A	_P	it	ch	1	77			~]	3-1	71 1	cl	1				٠.	j —]	Pit	CII	
×.	u	BH	-7	Tak	7,1	IJШ		UC.		<u> </u>	200									0.00	3			-		_	N	_			_	-	_		_
	•				·		3.	10.0		9.9		5.	17.			97.7	4. 3	4.11	400			474			\$ S	37	der.	190	1	20	of 9	14			
7			(4)		200		713	33		-		. 1	•	-		-		30			•		Ν'n.			_				190	- 5.	Δ.		300	
	া				2	C					7			1.0	Wales	89	.2	7			1			୪).2	U.	Latin	10	. 3		£1.	٦.	L°(
					•	T . :	(pelle	٠.,	17.	٠.,		٠., ·	3. 3						100	ોલ		23	7.7		3.3	=	J.H.		•		38.	- 1	5.4		
(ve		100			3	н	. 333	jî d		20			•			4	.6	U.			2		30			7.0			•	9/7"	2.00	· .			
10	4ú.			2.3	ď	^			15.7		jar.	10				. 2	.6	.7	. W	20.4	•	13			3,0	и.	hv.	Si I	1	133	۱ü.	1	L.() :	
H.	Carlo	Na.		- Marin	0, ر	·		***	4.290	×	resta in	ceraja.		air.	Star W	W		3 3		Sign		M. eggs	71.0				- Kerser	H10 /KL			100	av. av.	~~~		alerre e
<u>. </u>	7			S. (4)	9	N		- 6-4	530	9.1	1,50		1	. 4	1.4	1	۵4	L		aj ir	1		500		L.E	*			3	900	25		0.7		
		100	1.370	w 10.			100	. 1	100		- 5 -		777		1.			2	77.4	31		99.7	1.		2.2	no.					. 1	٠.	0.8	77	
		·	i e e e e	1 6	2	S											ۍ.C	<u> 8</u>			1	****			305	٠.			٠.		_	_	4.0		_

G-pitch has the highest H2 and lowest 02 content.

Coking @ 1000°C:

A-pitch: 7.6 - 11.5% volatils, coke not baked, like fused coke.

B-pitch: 41.4 - 52.9% " strongly swelled and molten.

G-pitch: 87.7 - 94.5% " molten.

Baking property @ 90000 with sand (Darm):

A-pitch: baking property 0
B-pitch: " " 52-65
G-pitch: " " 0

Baking property @ 400°C with sand:

A-pitch: baking property 0
6-pitch has better baking properties than B-pitch.
After cooling, cake is hard with B-pitch, soft with a-pitch.

B-pitch: turns brown in heating, swells strongly, becomes partly insoluble in benzol, decomposes & 400°C, bakes at 400°C and above, characteristics of bitumen.

G-pitch: its binding power depends on the softening point, liquefies in heating, at first without appreciable decomposition, at higher temperature most of it (90%) is distilled, 6 900°C it loses its baking property. G-pitch possibly has softening properties for the surface of the coal, hydrocarbon character.

'n

		T	ABLE V				
Product Investigated	Pachice	Soft .	Hard :	Tar:	Fresol	Coal : Montan: Pitch :	From Petrol. Petrol. Pitch
Soft, Point, OC	: <20 :	45 s	78 :	76 :	82	78	97
Decomposed into: % Residue (A-pitch) % Solid bitum. (B- ") % Oil bitumen (G- ")	: 32 :		35 :	28	- 42	100	
Residue (A-pitch): Soft. Point, ^O C % Coke % Volatile	>210 : 83 : 17	79 :	>210 81 19	:. 7 3 :	66		
Solid bitum.(B-pitch): Soft. Point, ^O C % Coke % Volatile	73 58 42			: 5ઇ	: 50		
011 bitumen (G-pitch) Soft. Point, ^o C % Coke % Volatile	: ⟨ -30 €	-18 32 68	: 38	: 31	: 29	; : 77 : 22 : 78	85 7 30 70

In a similar manner, Neukirch investigated a number of birders of various origin, under consideration for the manufacture of electrodes.

Table V shows that the melting points (softening points) of the B and G constituents from brown coal products are higher than for the corresponding products from bituminous coal.

In order to determine the suitability of the individual pitch constituents for the production of electrode carbons, briquettes were made from bituminous coal pitch coke with A-, B- and G-pitch from Griesheim bituminous coal soft pitch. The amount of binder used was 15%, the briquette press pressure 500 atm. The pressing temperature was a maximum @ 150°C, or at least 20°C above the melting point of the binder. The briquettes were then burnt at a maximum temperature of 1000°C.

Table VI gives the results of these experiments.

TABLE VI

Production of Electrodes from Pitch Coke and Griesheim Coal Tar Soft Pitch (Addition of Binder = 15% in each case)

F	1.31		1,36	Tight pressure	3,*		 S		3
-	Texa	Can be broken	1 0 50 L		64	1 64	80	9 0	60
• •	17	3.0			***				
+	1.43	2	1.53	by hand	51	<20	<u>ි</u>	0	04
				Basseshio	45	(2)	80	8	20
	77.11	by hand	1.57		3)	}		
+	4940	Easily breakable	1.58	light pressure	322	-18	100	8	
•	•			Breaks up under				200	0
$\frac{1}{1}$	1.44	by hand	1,58	Soft	33	<u>`</u>	3	3	
		Bréakable	2000	nem to rep of uso	48	<20	8		
	1,46	Still strong	J Õ	Hot very strong,					
+	1.50	D	1,63	Strong	55	20		3)
		٦.					2	8	80
+	1,51	Э	1.63		8-	3	် ၁၈	3	
+	1 4022	Very strong	1.63	cannot be deformed	8	%	0	100	8 1
	3			Very strong,				00	20
\dagger	1,52	Strong	1,62	Strong	69	720		90	3
101	1,50	some cracks	1.60	hand by	72]]///		60	ò
-		Strong up	1,28	light pressure	79	>210	Q	• 63	3
to measure	22	Danalia un	}	Breaks up under					1
- -	for mind	NATIO	Dens1ty	XAnd	Coke Residue	Point 0	G-Pitch	B=P1toh	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Done i tu				24	Melting	yarını d	2	
lantatania i		- Acres 100	108	Inburnt briquetica	ball				

T-330

The following conclusions were drawn from these experiments:

A-pitch is suitable as binder for neither burnt nor unburnt coal; it decomposes before reaching the melting point.

B-pitch is the proper and practically the only carrier of binding properties and gives the best results for unburnt as well as burnt coal. It first melts in the burning of the coal, does not distill off, but decomposes and forms binding coke.

G-pitch has practically no binding power for unburnt carbon. For burnt coal it has little binding power. It first melts, but distills off, largely undecomposed, in further heating and forms only little binder coke.

Mixtures of A- and G-pitch are bad. B-pitch still produces good briquettes when 20% A-pitch or 40% G-pitch is added. Smaller additions of B- and G-pitch are favorable because the softening point is lowered.

Considering that binders containing A-pitch will probably always be used in practice and that considerable quantities of G-pitch must then be present to reduce the softening point, Neukirch's results agree very well with the experiences of Broche and Demann.

Further experiments by Neukirch showed that A-, B- and G-pitch from different bituminous coal products are practically identical, respectively, in their behavior as binders.

Briquette Binder from Scholven Letdown. Discussion at Scholven, April 16, 1943. (Abstract)

Dr. Urban said that the thruput thru the ball kiln (Kugelofen) in the topping of letdown for the production of briquette binder had been increased from 5.5 m³ to 8 m³ injection per hour by removing the balls and attaching overflow plates. The briquette binder production at the time was about 100 to 120 t/day. After enlarging the cooler and granulating equipment, the production is to be increased to the proposed 150 t/day. The coal thruput in hydrogenation could be increased 10%, increasing the gasoline yield by about 3 to 4% above the former normal yield, even though the oil remaining in the binder is lost to hydrogenation. Thus, the desired condition in the production of briquette binder in hydrogenation, whereby the oil losses sustained in the production of briquette binder should be equalized by a correspondingly increased thruput in residue processing, has been reached.

800

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV.

KCBraun 4-23-47

Operating Experiences at Politz
(Reg. Valve, Converters, Temperatures, Water Inj. Cold C.P.)

By Bastian, Ludwigshafen 12 March 1943

(Discussion held in Ludwigshefen, 4 March 1943)

Regulating Valve

Polits desires better regulation in its gas inlet valve to the stall for the purpose of providing reserve pressure for cold gas distribution. The present main valve is 60 mm with a 30 mm bypass. Politz proposes a 45 mm main valve with a 16 mm bypass. I. C. considers it more appropriate to use regulating valves with "Regulier-schwars" (possibly an elongated cone or needle).

The 30 mm cold gas valves should eventually also be similarly rebuilt.

Politz does not consider a regulating cone recessary for the 15 mm air valves.

Exchange of Converter 5 for Converter 3

To provide for the interchanging of the various long converters Politz has provided a movable concrete base for the short converters.

with respect to the position of the 10 m converier, the following has been determined:

Stettin exchanges converter 5 for convertor 3. No cold gas inlet to the catalyst space will then be provided.

· Operating Temperatures

The maximum permissible operating temperature in pipe lines will be reduced from 570 to 550 °C.

D. I. Schappert will get in touch with the individual plants for the purpose of determining a uniform measurement of the wall temperatures in hairpin tubes (570°C).

Kater and Lye Injection

No decision was reached on the quantities of lye and/or the dimensions of the pumps, containers, etc.

Dr. Burien will check this item and get an early decision in agreement with Dr. Denath.

1, 1

T-331

801

With regard to the pipe arrangement itself, the following agreement was reached: Separate lines will be used for soda solution and pure water to the stalls.

Each stall will be provided with a pH apparatus and a valve group, with 2 meters for dosing the quantities. Depending upon the most favorable operating conditions, water and lye will either be mixed on the way to the stall, suggested by Ludwigshafen, or injected separately into the circulating line between heat exchanger 3 and the cooler, suggested by Politz.

Inclination of the Product Catchpot

The slope of the product catchnot is to be 1%. The suction and pressure separators will have a slope of $4\%_{\rm e}$

/pkl

Viley

U.S. BUREAU OF MINES COAL TO OIL DEMONSTRATION DIV.

TOM Reel 163, frames 288-289

802

T-332

High Pressure Experiments, Leuna, 558 TEA 10/19/42

SOLID AROMATIC SUBSTANCES IN HYDROGENATION SLUDGES (New Submary)

1. Kind.

The <u>solid</u> aromatics obtained in today's industrial processes are characterized by their particularly symmetrical structure. When hydrogenating under pressure and at high temperatures there is dehydrogenation in addition to the cracking of the hydrogenated rings.

These hydrocarbons are principally: <a href="https://www.corenes.coren

11. Occurence.

The above mentioned hydrocarbons are formed in particular during the pressure hydrogenation of bitumindus coal, coal tar, somewhat less in the hydrogenation of brown coal, in still smaller amounts in the hydrogenation of petroleum residues.

III. The more accurate information has been found in the large scale test K 804 and at the Hydrogenation Forks Scholven. According to these sources, the amounts are as follows:

나일이 맛이 되어 되는 것 같다.	In Kilm Oil	Referred to 1000	te
		ure Coal	
Carlazol	2200 110	Core me.	With con-
Pyrene		sbt. 14 - 27 t	
Pyrene homologues		abt. 1.7 - 3.4	
Benzpervlene	Carre Court		possibly
Coroneng	abt. 0.5 - 1%	abt (. 3-1.7t	1/5-1/10 parts

nily

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES OFFICE OF SYNTHETIC LIQUID FUEL LOUISIANA, MISSOURI

803

TOM Reel No. 164, Frame 545

T - 333 W. M. Sternberg

High Pressure Experiments

Lu. 558

June 17, 1940

SOLUBILITY OF CORONENE AND BENZPERYLEND AT 20°

Coronene Bengerylone g dissolved in 100 g. saturated solution

Solvent:	Benzol	0.03	0.620
	Toluol		0.114
		0.01	0.110
	Tylo1		and the state of the
	Cycloherano	0.004	0.110
	CS ₃	0.224	3,45
	Methyl naphthaline	0.046	1.48
	Prod. converter 322	no principal di manara di Mariamani receni de manara de di di	aking manipul menangkan pengangan kan ang menangkan pengangan pengangkan pengangkan pengangkan pengangkan penga Pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan
	Fraction -180°		1.22
	Fraction 275 - 550°	0.096	1.24
	Ecavy 011, - 5250	0.003	0.66
		/s/ Holscher	

1/ The operations in converter 522 were as follows (Dr. Peters):
The heavy oil from hituminous coal-liquefaction (silesian coal)
was filtered, hydrogenated over the Welheim catalyst at 600 atm,
24. mv.

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES OFFICE OF SYMPHOTIC LIQUID FUEL LOUISIANA, MISSOURI

TOM Reel No. 164, Frame 784

804 r - 534

W. M. Sternberg

High Pressure Experiments

March 22, 1943

Lu. 558

ISOLATION AND DEFERMINATION OF CORONENE

_ IN THE HYDROG TIATION RESIDUES

The identification of small ancunts of coronens in the hydrogenation residues is made difficult by the distillation range of coronens being inside of those of the reales and amphalts.

The isolation of coronero as notecular compounds, e.g. as a picrate, which is very little scluble in the rure state, is almost impossible, because resins and apphalos provent the crystallization.

The coronage is best determined by distilling the solid-free hydrogenation residues in a vacuum of about 1 mm (Kp760 = abt. 400°).

A reddish resin distills first, and at Kp = abt. 330° a fraction is obtained when coronages present, which in part crystallizes. When this fraction is ground with benzel or acctone, coronane separates out almost quantitatively.

One may occasionally get along without distillation, by a refining hydrogenation at about 400°. The high molecular weight hydrocarbons present with the coronene will then be hydrogenated. The coronene will remain in the non-hydrogenated form, and is almost quantitatively

-805_-

T - 334

precipitated in the hydrogen-rich reaction product, especially after dilution with a 7-fold amount of cyclohemmo. The hydrogenation residues, which contain coronore and no "asphalts",

demosit coronene by simple dilution with gasoline.

/s/ Boento.

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES OFFICE OF SYNTHETIC LIQUID FUEL LOUISIANA, MISSOURI

TOM Reel No. 5, pp. 542 - 547

805 T-335

W. M Sternberg

CORONENE

By Dr. Boente, I.G. Farbenindustrie A. G. Ludwigshafen (A reprint of a magazine article, magazine and year not given)

Coronene, or, in other designation, here benzobenzene or dibenzperylene is a highly concensed hydrocarbon with 7 rings, and has always created great
interest. This hydrocarbon, with its exceptionally
symmetrical structure, offered particular attraction
for study. Several investigators have attempted in the
past to obtain coronena by synthesis, e.g. J.v. Braun
and K. Weinsbach in 1931 1/, E. Clar and J.D. Wallenstein
2/. R. Scholl and K. Mayor have succeeded in 1932 to
synthetics this hydrocarbon by a very complicated synthesis,
starting with molecules of anthracene and mylene 2/.

Synthesis of coronene (schematic)

Scholl and Mayer

--- - Ligure 1.

This synthesis proceeds over 14 intermediate ——
products. The individual reaction steps of the synthesis
are here indicated very briefly (figure 1). The
starting materials were anthraquinone 1, 5 - dicarboxylic
acid chloride and 2 melecules of m-xylene. By in-

1/ Ber., vol 64, 1951, p. 1787

2/ Ber. " 64, 1951, p. 2076

3/ Ber. " 65, 1932, p. 902.

teraction with aluminum chloride 9,10 di-m-xylene

9,10 dioxy-9,10 dihydroanthracene - 1,5 dicarboxylic acid is first obtained. Oxydation followed by reduction produces the hexacarboxylic acid. A few more reactions lead to the closing of the rings, etc, and to antiperi-dibenzoronene. Finally, passing by way of oxydation to the tetrecarboxylic acid of coronene, we get coronene.

The organic laboratory of the high pressure experiments of the I.G. Farbenindustrie A.G. at Ludwigshafen-Oppau succeeded in 1955 in isolating for the first time coronene from pressure hydrogenation products, i.e. a product obtained industrially. In this way, this interesting product, which has originally cost several thousand marks a gram, could now be obtained in larger quantities industrially.

The physical and chemical properties of coronene were primarily of interest to us within the limitations of our work on hydrogenation, at first principally the cuestion of hydrogenation of coronene, and later in the study of the composition of hydrogenation products.

We will first, however, describe in greater detail the hydrocarbon itself, and repeat briefly its physical and chemical properties, as far as they are known.

Coronene crystallizes in pale yellow, extremely fine long needles, m.p. 452° (corr.). The b.p. is 525°

at 760 mm pressure, and the hydrocarbon can be distilled without decomposition at this temperature. The solubility in most of the common organic solvents, such as toluene, xylene, etc., is exceedingly limited in the cold, about 0.1 percent. The solubility in the boiling solvents is somewhat greater, and coronene may be crystallized from boiling xylene, or better still, from o-dichloro benzene.

The easy sublimation of coronene is striking.

This property of the hydrocarbon may readily lead to trouble industrially. Conditions are here similar as with naphthalene, which is readily carried over with gases because of the ease of its sublimation, and later becomes deposited on the walls of the gas pipe lines. Coronene sublimes similarly with light oil vapors during the distillation of the hydrogenation products. Because of its low solubility, coronene may readily crystallize in the distillate and this may lead to plugging up.

Because of its high boiling point and high molecular weight, coronene extends into the field of the asphalts, and does behave in certain respects similar to these substances. Thus, a heavy oil obtained in the coal liquefaction deposited 1.1 percent "asphalt" with

benzol, and 25 percent of it consisted of coronene.

The power of adsorption of coronene by active materials,

like animal charcoal or bleaching earth, is almost

equal to that of the asphalts.

The technically produced coronene is colored deep yellow. This coloration is in part due to accompanying substances, the so-called chrysogen of the hydrocarbon. The nature of this chrysogen is unknown. It may be an intensely colored hydrocarbon, similar to naphthacene, which is known as a chrysogen of anthracene and chrysone, and colors these hydrocarbons yellow. It is extremely difficult to remove the traces of the chrysogen from coronene. Chrysogen is destroyed by hydrogenation followed by dehydrogenation.

Coronene fluoresces in the ultra-violet light, with a strong yellowish green fluorescence in the solid states, and blue in solution. We may add to the known chemistry of coronene, that it can be sulfonated with strong sulfuric acid. Halogen products are formed by the action of the halogens. Oxidation produces quinone-like substances. Dyes prepared from coronene as an intermediate are characterized by exceptionally great stability.

The constitution of the hydrocarbon will be discussed first in connection with the hydrogenation products. (figure 2)

Constitutional formula of coronene

Figure 2.

We can construct a number of formulas to represent the compound C24H12. An inside ring is surrounded by an outer, and the two are interconnected by some kind of spokes. In I and II they are single, in III they are double; in IV to VI they are of mixed types. All the formulas differ from each other by the arrangement of the bends, i.e. of the pairs of electrons (each bond is a pair of electrones). We know now, that in every case, when many formulas can be drawn, which differ from

each other only in the distribution of electrons, but in which the sequence of the atoms is the same, no concrete meaning can be attached to any of the formulas, i.e, there are no real isomers I to VI, but only a uniform coronene, and that the above formula are nothing more than symbols which limit the actual combination state of the coronene.

We speak here of course of a quantum-mechanical resonance, or mesomerism between the limiting cases, which may be pictures as a very rapid oscilation. Such mesomeric systems are of lower energy content then computed for each individual formula. The limiting formulas may however occur as reaction formulas. It is therefore entirely possible that one or another formula may appear "in the form of one of its reaction product", without proving in this way anything about the correctness of the formula. If then the dodeca hydro compound be obtained by careful hydrogenation of coronene, and the formula for the hydrogenated compound is as represented in figure 3, we must assume that coronene had reacted according to formula III. It is however to be suspected, that formula III does not generally represent all the properties of coronene. Formulas I and II with simple spokes and a circle of

conjugated double bonds may be the favored two. In agreement with this, intermediate stages are very difficult to obtain in the hydrogenation of coronene; one gets essentially immediately a perhydrogenation, similarly to the symmetrically constructed benzol, which does not produce by direct hydrogenation with hydrogen under pressure the di and tetrahydro benzols, and the hexahydrobenzene is alone obtained.

The perhydrogenation of coronene was accordingly performed first. The low solubility of the hydrocarbon is here unfavorable. We choose a suspension of coronene in a five fold amount of decalene. Tungsten sulfide was used as a catalyst. The partial precsure of hydrogen was 500 or 600atmthe temperature 270° C. (Naturally at 450° and above, even under a high partial pressure of hydrogen there are simultaneously reactions of hydrogenation and dehydrogenation of the hydrogenated coronene).

Such perhydrogenated coronene prepared in a single step crystallizes from benzene in long, fine, white

needles, m.p. 370° (corr.). It boils at \$30° and is unaffected by hot sulfuric acid. Heating with selenium to 360° results in the back formation of coronene.

Numerous isomers of perhydrogenated coronene are possible (figure 3). Thus, the mother liquor of the hydrogenation products of coronene contained an isomeric perhydrocoronene. It is considerably more soluble in benzene than the principal product. It also forms white needles, but more mat in appearance. M.p. 203°, This product as well-was dehydrogenated by selenium. The proportion in which the two isomeric perhydrocoronenes, m.p. 370° and 203° are formed is about 1:10. A somewhat higher proportion of the lower melting isomer is obtained with a nickel-containing catalyst.").

with Ni as catalyst, the isomer with the lower melting point appears to be preferentially formed. This is particularly well shown in the perhydrogenation of pyrene. The Ammoniakwerke Mersoburg used Ni as catalyst; there is in addition the work of Ituo Kagehira (C. 1932, I,p. 1359). A liquid perhydrated product is here principally obtained, b.p.760 = 290 - 310°; and in addition small amounts of a solid perhydropyrene, m.b. 88 - 89°. When, however, pyrene is hydrogenated with a tungsten sulfide catalyst, we obtained a new isomer, as the almost exclusive solid product, glass clear prismatic crystels. m.p. 104°, with a trace of some other isomer, mat-whiteneedles, m.p. 67°.

Attempts first made of producing pertially hydrogenated coronene were unsuccessful. All we obtained was a mixture of the unaltered and the perhydrogenated coronene. A partially hydrogenated product was first obtained with a mixed sulfide catalyst, the ultimate analysis of which agreed with the formula for hydrocoronene Coullet. It crystallizes in small yellow quadratic platelets, m.p. 353° (corr.). It forms no picrate. Coronene dissolves in hot sulfuric acid with the formation of a beautiful green solution with a blue fluorescence, dodecahydrocoronene forms a blood red solution with red fluorescence. This dodecahydrocoronene is only present, to-gether with the unaltered and perhydrogenated coronene, in exceedingly small proportion in the reaction product. When examining the formula for dodecahydrocorenene shown in figure 3, the product appears rather unstable. It apparently is very readily hydrogenated further.

Properties of Coronene and its Hydrogenation Products

	Formula		b.p. 760 mm	picrate	hot H ₂ SO ₄
coronene	C ₂₄ H ₁₂	4320	525 ⁰	308°	green; red fluorescence
dodeca- hydro-		353°		no	
coronene	c ^{5/; H} 5/4			pierate	red; red ? fluorescence
Perhydro- coronene	C ₂ 4H 36	370°	500°	and the second s	unattacked

-335

	Formula	M.p. (corr)	Ъ. ⊋• - 760 ⊞	pic m	rate	hot H ₂ SO ₄
Isomeric hydroco- ronene	С ₂₄ H ₃ 6	204°	, 500°		<u>-</u>	-
Molecular compound: Coronene + hydrocorone	. С24 _С 2‡	¥58 <mark>0</mark>			Ė	-

Figure 4 shows the properties of coronene and the hydrogenation products discussed here, as well as a molecular compound, about which more will be told below.

Perhydrocoronene forms a stable molecular compound with coronene. Mixing the two components in the proportion 1: 1, and crystallizing from xylene, the molecular compound is deposited forming needles, m.p. 406 - 408. This molecular compound is so stable, that coronene, which forms an exceedingly insoluble picrate, can not be extracted from this tompound with picric acid. When therefore some unaltered coronene and perhydrogenated coronene are present in the reaction mixture from the hydrogenation of coronene, there must also be some of the molecular compound, and one may be readily misled into believing in the existence of dodecahydrocoronene, because the analysis gives the exact values for it.

This molecular compound can also be very clearly recognized from an examination of the (uncorrected)

melting point diagram of the components (figure 4).

The curve of the melting points of mixture of coronene and perhydrocoronene (m.p. 412 and 3500, resp.)

-12-

shows a distinct maximum between 406 and 408°, with a proportion of 1:1, i.e. at the composition of the projecular compound. This mixture produces minima of melting points in the usual way with the two individual components. ").

*) Pyrene behaves quite similarly. Its melting point is 150°, a minture with hydrogenated pyrene melts at 104°. The melting point diagram (figure 5) indicates here as well the existence of an undoubted molecular compound, m.p. 155-157°. This complex decomposes however very readily back into its components.

An other poculiarity of the perhydrogenated coronene is the strong phosphorescence it exhibits with about 2 percent coronene, i.e. it emits a strong orange yellow glow after a short illumination with

ultra-violet, daylight or artificial light. The phenomenon is entirely similar to that seen with other crystalline phosphorus, e.g. zinc sulfide.

In the phosphorescent sulfides traces of other heavy metal sulfides must be intercalated. The phosphorescence of the hydrogenated coronene contaminated with coronene must be connected with the crystalline state: the two substances are permitted to crystallize to-gether from solutions or from the molten state.

This compound is of further interest in that it fluoresces in a short-wave blue light, but phosphoresces with an orange-yellow color. When the substance is heated, the color of the phosphorescence changes reversibly to blue at 74°, evidently as a result of a change of modification. The illumination lasts about 1 to 2 minutes, a long time for the phosphorescence of an organic substance.

The two phenomena just mentioned, the relatively stable molecular combination and the phosphorescence is possibly caused by the hydrogen atoms in the inside of the hydrogeneted molecule, in coronene on the inner benzel ring, in pyrene at the inner double bond (hydrogen bridges)

Figure 5.

Wiley

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MIMES OFFICE OF SYNTHETIC LIQUID FUELS LOUISIANA, MISSOURI

TOM Reel No. 162, Frames 423 - 426

T-336

W.M. Sternberg

High Pressure Experiments

Lu. 558

Feb. 9, 1943

PRODUCTION OF PYRIDINE FROM THE LIQUID PHASE PRODUCTS FROM BROWN COAL

Preliminary Experiments

Summary

Bases and phenols from brown cosl liquefaction products were washed out in glass columns with 10 percent sulfuric acid and 10 percent sodium hydroxide. The bases were set free by neutralization with gaseous ammonia, separated, and pyridine determined in them analytically.

The amounts in the different products were as follows:

Liquid phase gasoline, - 165°, from Lu. Cotchpot 0.012 - 0.014 percent pyridine

> - 2000, from Rhenish brown coal 0.019 - 0.022 percent pyridine

Liquid phase middle oil, + 165°, Lu. Catchpot 0.042 - 0.056 percent pyridine

According to information in literature, pyridine forms compounds with the phenols present in solution, and it is to be suspected that it will be found in higher fractions than corresponds to its boiling

820-

point (116°). This fact scome to be confirmed in the higher percentage of pyridine content of the middle oil.

No reduction in quality of the products is to be feared from the removal of the bases. The experiments are being continued.

/s/ Botter

With Dr. Donath Wittmann Furst

Apparatus and Recovery of Bases (Phenols).

For the scrubbing of the liquid phase products from bases and phenols glass columns about 160 cm long (135 cm with Raschig rings about 3 x 6 mm) and 6 cm diameter were used. The products were fed from below counter currently to the 10 percent sulfuric acid or sodium hydroxide (fed dropwise from above). Between the two scrubbers and behind them was a water scrubber consisting of a 85 cm column, also filled with Raschig rings.

Attempts to distribute the feed as fine as possible by using fritted glass inlets were successful only with gasoline; with middle oil there was a plugging up.

At first the breaking up of the double compounds of phenols and pyridine was done by means of sodium hydroxide solution. Water scrubbing was followed with sulfuric acid wash, and then again with water. A thruput was raintained of 1000/g of the feed, 200 g 10 percent NaOH, 200 g water, 200 g 10 percent HaSO4 and 200 g water.

The total wash acid (the alkali was only studied once) was separated from the entrained oil in a separatory, funnel, and distilled for the separation of alcohol, etc.

Gaseous ammoria from a steel cylinder was fed under cooling (below 15°C) into the acid solution until the solution reacted alkaline. The liberated bases were recovered in part by separation in a separatory funnel and in part by extraction with ether.

Pyridine was determined by titration (Astruc, C.R. vol. 129, 1899, p. 1021) in the 70 - 160° fraction after distilling off the ether and fractionation, or by the precipitation method with cadmium chloride (Melatesta and Germain, Bull chim. et farm., vol. 53, 1914, p. 225).

Changes in the product are shown in table 1, the results of the determination of bases in table 2.

Table 1 shows that only the bases and the phenol contents have changed (no figures given). The washing has not however been sufficiently thorough to remove all the bases.

Table 2 shows that the cruse base contents of the products was more reduced in the higher boiling point range, - about two to three times as much in the middle oil than in gasoline, -, and that the three products contained similar proportions of pyridine in the crude bases.

Table 1.

	· 1. 10 · 10 · 10 · 10 · 10 · 10 · 10 ·	phase gas. P 1251		hase m.c. P 1251	Liquid phase gasoline from Rhenish brown coal K 229, -200°
	before sci	after mbbing		efter ubbing	before after scrubbing
Spec. grav, 20°	0.750	0.753	0.936	0.927	0.781 -
Aniline point, °(26.5	27	9.5	12.5	18 -
Start. b.p.°C	53	66	178	158	70 -
porcent - 100°	46	41.5-2009	2 4	7 –1 00°	19 -
- 150°	95	95.5-250	52.5	51.5-150°	80 -
- 170°		300°	90.0	88.5-1709	95
Final b.p.	164/98	163/98.5	321/99	330/98	253/99
Phenols	0.125		24.43		.0.92
Bases (mg NH3/11)	984.0	56,6	\$78.0 (?)	76.5	168 40.8

Table 2.

Analyses of the recovered crude bases

	P1251,	-165°C	Pl251+165°	K 239 S g	as 200°
kg starting mattor	95		18	80	
g crude bases, ether- free, moist,	135		194	189	
Decomposition of grade bases			And the second of the second o		
upper layer, percent	6 6.3.	(89.5)	59 . 0 (75.5)	77.0	(145.6)
percent pyridine (titrat,)19.2	(26.0)	and the state of t	1.1	(2.0)
percont pyridine (CdCla)	14.5	(19.5)	61.0 (118.5)	21.8	(41.4)
Lower layer:					
percent pyridine (titr.)	3.7	(1.0)		9,0	(0.2)
g crude bases, dry		118.2	141.1		171.8
percent crude bases in orig. product	0.125		0.786	0.215	
g pyridine in crude bases after titration		12.8	10	and the family and th	17.2
after OdCla pption		10.8	7.5		14.9
percent pyridine in crude bas.	9.1-10	.8	5,3-7.1	8 .7-1 0	.0
percent pyridine in original product	0,012-	0.014	0.049-0.056	0.019-0	.022

T-337

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV.

KCBraun 4-24-47

De-ashing Experiments on Brux Tar

(See also T-204)

By Lemme, Ludwigshafen 28 January 1942

825

Erux tar (P 1397 original) has an ash content 0.05 to 0.065%. The possibility of an eventual separation of dissolved ash constituents in converter operation impelled us to experiment on separating the ash. We tried to accomplish this by chemical and physico-chemical means.

1). Chemical Deashing

Because we might have to deal with iron or possibly zinc-phenolate in case the ash was dissolved, the tar was intensively sgitated for several hours with a 2% aqueous solution of equal parts of ammonium bicarbonate and ammonium sulfide s about 60°C, then separated from the aqueous phase and freed of the adhering water by stirring \$105°C. It was then filtered twice \$100°C. The filtrate, practically free of solids, showed practically no change in its ash content, rather slight increase to 0.075%, which, however, is within the range of possible errors.

2) Physice-Chemical Beaching.

Here we tried to obtain some effect by means of adsorbants. In one case, 1/25 Grude, clarge 12, (carbonization coke) was stirred with the tar w 100°C and then filtered twice. In another case, the tar was similarly treated with 1/25 terranc. Here, also, the filtrates showed practically no change in ash content, 0.065 with Crude, 0.15 with terrana.

Apparently, both methods were inadequate to effect a deashing under the given conditions. Possibly similar treatments under pressure might be more successful. The microscopical examinations were very interesting. While the original tar shows a copious flake formation and no solid constituents, the filtrates show practically no solids. (?). It is further remarkable that in the tars treated the addition of bensel improved the separation of asphaltic substances, as compared with the untreated. The original tar contains 2% bensel solids, that treated with ammonium carbonate or sulfide 4.5%, that treated with Terrana 4.3%, and that treated with Grude 2.6%. In spite of these solids contents, the total ash values are practically the same. The topicus flakes in the original tar are likewise of apparently asphaltic nature, since they do not increase the ash content either.

DR. STORCH

T-338

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV.

826 KCBraun 4-24-47

Gasification in Aromatization at 250, 450 and 600 atm

By Peters & Wehm Ludwigshafen 23 March 1941.

A. When Running to 50-50%/st. Aromatics (Table 1)

The higher pressure reduces gasification by 1 to 25. In comparison with catalyst 7019, 3 to 45.

The C_4 constituent in the gas is the same at 250 and 450 atm. The iso- C_4 content in the butane is at 450 at least twice as high as at 250 atm.

B. When Running to 20 - 45% Aroustics (Table 2)

When operating to less than 50% arcmatics in the gasoline, the high pressure reduces gasification by about 5%.

The butane content in gasification is increased at high pressure only when the concentration of arcmatics in the gasoline is very low, e.g. 20%. The iso-butane content of the C_A -fraction is considerably higher at 450 and 600 atm. than at 250 atm. The residual gasoline is, therefor, also somewhat better at high than at low pressure.

The following tables contain individual values of the gas analyses and the C, and icc-C, determinations. However, the entire experimental data for the past year is being statistically checked by Dr. Gunther in order to obtain reliable mean values.

TABLE 1

Aromatisation of Bit. Seel Liquefaction Middle Oil # 250 & 450 atm. H2-Pressure, with Refluctover 160°C run to 160° Gasoline with 50 - 55%/mt. Aromatics

		250 atm.	600 atma	450-e	tels.
Catalyst ————————————————————————————————————	7019	Act. Alum. 8 SiO ₂ 10 Cr ₂ O ₃ 2 2n O 0.5 McO ₃	-7019	Chromium silicate 2 MoO3	Turana 3 Cr ₂ 03 0 1 Mo0 ₃
160° Gasol, Yield Wt.X Aromatics	0.3 56	0,28 52	0.4 55	0.3 54	0.3 .49
Vol. % Aromatics (not corrected)	51	47	50	49	44
% Gasif/Gasol. + Gasif. (unstab)	21	18	18	= 16	16
n .n + Gasif. (stab.)	23	20	20	19	19
۶°C ₄ in Gas	20	ca 25	20	, 20	26
isc-C ₄ in C ₄	12	20	30 \$	35	/D ?
Yield % Gasol.	77	80	80	81	81.
% Gascl. + C4	81.6	85	84	85	36
Resid. Gasol. C. N. Resid. Gasol. > 100 C. N	58 14 48	68.5 54	57.5(cc	1c) 55(calc)	58(calc)

TABLE 2

828

Aromatization of Bit. Coal Liquefaction Middle 011 # 250 & 450 atm H2 - Fressure, with Roflux over 1609c run to 1600-Gaseline with 20 - 35%/wt. Aromatica

Probauto	236 atm.	011	ഗാ	750	000	750	009
Catalyst	Act. Alum. 10 2n0 4 MoO3	Terrana 10 ligo 20 ligwolyb	Torrana 1 % MoO ₃ or 6434	6108 10 Gr F3 5 Al F3 0.5 Me03	Now Welhelm	New Welheim	Old Welheim
160° Gasol. Yiold	07.0	0,27	29°0	0.53	0.50	86,0	0,27
Wt. & Aromatics	35	£7	21	35	5		o.
(not corrected)	32	39	19	31	31	33 '-	34
% Gasif/Gasol + Gasif.	13	1.25	19	2	10.5	7	7
% Gasif/Gasol + Gasif. (stab)	7,	76	A	76	n	1.0	18
% C, in Gas 180-C, in C,	35 25	33	25 05	25 57	3 C	87 26	30
Yield & Gasol. & Gasol.	76 84	87.	83.82	78	98	38 30	82 87
Residual Gasol. O.N.	63	54.5(calo)	02		66.5(0010)) 64.05 (calo)	63.5
Rosidual Gasol. 100 O. N.	7		3		.	a	52.5
180º Gasol, Yield	0.51	0°34	o°.0	99.0	9°0	£7°0	76°0
Casif/Gas	ત	ຈ	&		& &	6	17
A " + Gasif.	20	72	4		1	н	7,77

Consmigation

U. S. BUREAU OF MINES HYDRO, DEMON, PLANT DIV.

829

T-339

KCBraun 4-24-47

PRODUCTION OF ELECTRODE COKE BY PRESSURE CARBONIZATION (L.T.C.)

By Pfirmann, Ludwigshafen 27 Jan. 1942

(See also T=330)

A. Hvdrogenation

Two cases are possible:

- 1) The filtrate obtained in filtering the letdown, which includes the pasting middle oil, is used as feed (Ausgangsmaterial). When pasting 1:1, therefor, at least 100 parts of middle oil must be evaporated for each 100 parts of bitumen.
- 2) The hot bitumen coming from distillation $= 200 250^{\circ}$ C is used for injection.

The processing is as follows:

The filtrate from filtration or the molten bitumen is pumped, while still hot, into the pressure coking chamber, by way of a preheater heated to 400 - 475°C. The pressure in the coking chamber is maintained @ 4-15 atm. The coking temperature is about 460 - 500°C. To provide the necessary coking heat, an alternate quantity of flushing gas (Spülgas) or steam (0.3 - 2 m3/kg) is heated to a temperature of 500 - 600°C and mixed with the liquid L.T.G. Feed at its entrance into the coking chambers. There are several of the latter and these are alternately emptied after filling.

The coke, still containing 5 - 10% volatile constituents, is broken up and heated for about 2 - 3 hours to 1000 - 1150°C in a coke even, then dumped into cooling cars and is now ready for shipment.

The distillate coming from the carbonization chambers together with the flushing gas is cooled under pressure and stored in supply tanks. The high temperature tar obtained in heating the carbonization coke, about 2 - 3% of the latter, is also stored there. Both are distilled together. From the fraction 200 - 300°C obtained in distillation, the amount required for pasting is recycled and the residual oil is utilized as fuel oil. All gas is freed of gasoline under pressure and recycled and the excess gas is decompressed after recovering the liquid gas components.

B. The Processing of Carbonization Tar.

This is about half way between the carbonization of filtrate and melted bitumen. The tar must first be filtered with filter aid, to reduce the ash to a maximum of 0.1%. In pressure carbonization it requires about

830

T-339

10 - 20° higher carbonization temperatures than primary bitumen. In appearance, the coke resembles that from bitumen, is possibly a little denser. The ash, up to now, has always been higher than in hydrogenation bitumen coke.

The following table contains the results obtained in carbonization:

Feed Material	L.T.G., 011	Coke -	- Gas - Loss	Ash in coke	Mi-oil in L.T.C. oi
Bitumen filtrate, 23.5 mV, 300 atm	76.0	19.5	5.5 E	0,20	75.0
Bitumen, free of past- ing oil, 23.5 mV, 300 atm.	41.5	49.0	9.5	0.1	25.0
Bitumen filtrate * 25 mV, 700 atm.	76.0	17.0	7. 0	0.15	75.0
Bitumen, free of past- ing oil, 25 mV, 700 atm.	31.0	60.0	9.0	0.25	29.0
Flush. gas ter, filtered	63.0	30 . 5	6.5	0.6	45.0
Schlesag tar, filtered	64.0	28.0	8.0	0.5	52.0

The results of the above experiments my vary with the carbonization conditions. The middle oil content, e.g. can be increased by higher temperature or pressure or less flushing gas, whereby the coke yield rises and the L.T.C. oil yield drops correspondingly. If, e.g. we figure on a yield in bitumen of 80% of the pure coal, we get 7 - 10% middle cil @ 325°C, based on pure coal, in the carbonization of this bitumen.

Production of Electrode Coke F339 General Flow Sheet Molten ash-free distillation residue or silterate

832

T-340

KCBraun 4-25-47

Steps to be taken as a Result of the Explosion at Politz, June 26, 1942

Ludwigshafen, 2 July 1942

(See also T-307)

A. - Operation.

1) Emergency Letdown at Gas Failure.

The failure of coal stalls 15/16 again showed that the stalls are seriously endangered, even with partial gas failure. This is particularly true if the cold gas also fails at the same time. When this happens, the stalls in question should be emptied immediately (emergency letdown), without trying to force the gas to flow.

2) Course of Temperature Rise.

The temperature in Converter 2 rose from normal 25.0 mV to 27.0 mV in about 5 minutes. From here on the temperature rises to about 40 mV and above in another 3 to 5 minutes. Consequently, emergency expansion must be conducted so that the converters are largely emptied of liquids in about 5 minutes.

3) Cold oil connection to the top of the converters or the connecting lines. Oil reserve in accumulator to bridge over period till pumps can be started.

B. - Design. -

- 1) Each stall should properly have a separate line to the emergency letdown tower. Also, the letdown nozzles (valves) at each converter should be of such a size that the 5 minute period can easily be met.
- 2) Automatic temperature control, even if only the most important elements.
- 3) The use of full-wall tubes for all rising lines even for old installations, as specified for new installations since the spring of 1941. The risers should not be insulated or should even be provided with fins.
- 4) Reinforcing the partition walls and increasing the height of the back wall of the stalls.
- 5) Fastening the connecting lines between the converters preferably at their highest point to prevent them from being harled away.
- 6) Electrical ignition device at the top of the stalls. (To prevent accumulation of explosive gases by immediate ignition on their escape from converters or lines.)
- 7) Protection against flash flames of unprotected buildings in the vicinity.

- 8) In order to prevent liquid pockets in dead portions of circulating lines, a suitable by-pass between pressure and suction side should be provided so that there is some flow in these parts, e.g. 1000 m³/h.
- Provide separators at the ends of the circulating lines before the stalls.
- 10) Provide intermediate expansion with at least 3 valves between each 2 shut-off valves in circulating lines.
- 11) Since the circulating lines are not of equal length and, consequently, do not have equal flow thru them, the flow could be controlled by measuring the pressure differences, e.g. every 100 m in each circulating line.

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES OFFICE OF SYNTHETIC LIQUID FUEL LOUISIANA, MISSOURI

834

TOM Reel No. 162, Frame 370

T-341

W. M. Sternberg

High Pressure Experiments

Lu. 558

Feb. 18, 1943

CORONENE'

The principal solid aromatic substances obtained during the industrial hydrogenation of coal and coal ter in Scholven and Politz are pyrene and coronene.

Amounts: pyrene abt. 1 - 2 percent calculated to gasoline coronene 0.1 - 0.3 percent

Coronene: formerly only accessible in small amounts from complicated synthesis.

Properties: melting point 425° (corr.)

boiling point 5500 (corr.) at 760 mm

mol. weight 300 (C24H12)

Uses of coronene:

- 1) In dye manufacture
 - a) vat dyes (I. G. Lu., alizarine lab. patent)
- b) Sulfur dyes (I. G. Wolfen patent)

 These dyes are distinguished by a particular light-featness

. .

5

--

2) for fluorescence (glow in ultra violet
light) and phosphorescence (afterglow)

Coronene fluoresces yellowish-green does not phosphoresce

Perhydrated coronene fluoresces blue, with 2 percent

perhydrocoronene phosphoresces yellow.

The fluorescence and phosphorescence properties are occasionally found in other organic compounds, but are particularly strongly expressed in coronene.

The phosphorescence lasts 1 - 2 minutes; is therefore at present only of scientific interest. (Inorganic phosphors are known which glow for many hours).

These values have been calculated from the present contents of the kiln oils. Nothing is known about the production of these arematics if they are continuously extracted.

It must be observed that these amounts of the solid aromatic compounds are produced at 500 atm pressure, and that at 700 atm the amounts are greatly reduced. (At any rate, no crystals are formed in the fractionation distillation of the kiln oils, possibly because they are present in a partially hydrogenated form, or else because of the presence of other substances which interfere with the crystallization.)

More carbazol is found in the hydrogenation of tar (about the double amount, preformed in the tar), much less pyrene, and about half again as much of coronene (about 1.5 percent in the kiln oil).

IV Production.

Cerbazol and pyrene are produced by the fractional distillation of kiln oil.

Coronene can be readily produced during the refining hydrogenation of kiln oil distillation residue at 400° and 760 mm pressure. The coronene may then be readily separated from the oil by filtration.

All these hydrocarbons are formed preferentially during the hydrogenation, and during their isolation their direct formation in a pure state after a single recrystallization offers a distinct advantage.

V Applications.

Carbazol: As polyvinyl carbazol (Lovican) plastic,

- b) tetranitrocarbezol (Nitrozan) for pests control, I.G. Hochst. Pyrene. Generally in dye production.

 I.G. Hochst.
- Coronene:
- 1) Technical: as intermediate in the production of lumogenes (fluorescing dyes)
 - b). in the manufacture of dyes:

 Vatodyes; Alicarin Division, Lu.

2;

Sulfur dyes, I. G. Wolfen; dye cotton khaki brown shades. The dyes posses, in addition to good stability, also a good light resistance.

- 2) Scientific: Coronene has some interesting properties, such as:
 - a) Formation of phosphorescing compounds
 by the addition of coronene to perhydrogenated aromatic compounds (afterglow),
 with a strong and long phosphorescence
 (about 2 minutes), such as has been
 unknown so far in organic substances.
 - b) Strong tendency to formation of complexes with, e.g. perhydrocoronene)
 - c) As an intermediate for a large class
 of compounds, extending into the field
 of asphalts, coronene may assist in
 the studies of such compounds.

VI Properties of the principal aromatic compounds:

crystalline melting boiling
form point point
Carbazol flakes 2380 3380
Pyrene " 1500 2700
Coronene needles 4320 (corr) 5500 (corr.)

VII Chrysene: In the dehydrogenation of vapor-phasegasoline (160 - .1900 fraction) over K 7360-some chrysene is formed, in amounts of the order 0.05 percent of the rav material. Chrysene is formed from 2 moles of indene, which is present in the 160 - 190° fraction.

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV.

T-342 839 KCBraun

4-25-47

Phenol Recovery with Liquid Ammonia
By Dr. Heilmann, Ludwigshafen, 3 August 1943

Summary.

The phenol recovery plant was completely destroyed by the explosion on July 27, 1943.

This article is a report on the results obtained to date, as far as this is possible without operating data, which were also destroyed.

From a hydrogenation middle oil from Gelsenberg containing 18% phenol, 86 to 96% concentrated raw phenol was obtained. Since the neutral oil obtained was free of phenol, and no phenol losses can occur in the process, e.g. thru oxidation, dehydroxidation, etc., we may assume that the yield was quantitative.

No data are available on the recovered neutral oil.

PROCESS.

The middle oil entered the top of a column 4m high, e.g. 5 Litr/h, in which liquid ammonia rose from the bottom at the rate of 4 Litr/h. The phenol was quantitatively absorbed by the liquid ammonia. The ammoniumphenolate solution also absorbed a certain portion of neutral oil. The charged ammonia, whose density could not be determined, was carried over at the head of the column, while neutral oil free of phenol accumulated at the bottom of the column and could be drawn off. The quantity of this neutral oil varied somewhat and averaged 2.8 Ltr.

The amorium-phenolate solution carried over was washed with light gasoline in a second column 4m high, in which the ammonia entered at the top and the gasoline (15 Ltr.) at the bottom. The light gasoline, density 0.672, almost quantitatively absorbed the neutral oil, which was probably dissolved in the ammonium-phenolate solution, either molecular or colloidal, as well as a small amount of phenol (abt. 1%) and ammonia. Its density rose to 0.710 to 0.720 in this process. It was carried over at the top of the column and caught in a storage vessel. It was freed of its dissolved constituents by pressureless distillation and then returned to the process.

The ammonium-phenolate solution, which left an evaporation residue with approx. 40% phenol before the gasoline wash, produced a raw phenol with 86 to 96% pure phonol after washing with gasoline.

The density of the mashed ammonium-phenolate solution could not be determined because of technical difficulties. The product accumulated at the bottom of the second column and was drawn into a storage vessel from there. The phenol was freed of ammonia by pressure distillation and the ammonia returned to the circulating system.

The equipment was in operation 4 days. Towards the end it was run with twice the thruput (10 Ltr. oil, 8 Ltr. NH3, 30 Ltr. gasoline, per hour) without appreciable difficulties.

No balance could yet be made.

/fkp

U.S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV. T-343 (5)

840

KCBraun 4-25-47

Substituting Gooling Oil for Cold Gas Dr. Pier's Files, 13 June 1942

Cooling oil (catchpot heavy oil) was substituted for cold gas in the coal stalls at Wesseling, whereby the formation of caviar was greatly reduced though not quite entirely eliminated. Dr. Peukert of Wesseling mentioned this further advantage of cold oil over cold gas, that the cold oil has a notable wash-effect and thus greatly relieves the circulating gas washing.

However, the complete elimination of cold gas and its replacement by cold oil also has one disadvantage, briefly mentioned here:

Ehen operating with cold gas the H2-consumption of each converter is more than covered by the cold gas. The H2-partial pressure in the following converters is somewhat lowered only by gasification (G1H4, etc.), because converter input gas and cold gas have the same composition.

Mhen operating with cold oil, however, not only is the input gas reduced by the H2-consumption of each converter, but gasification also sharply depresses the H2-partial pressure, since less H2 passes thru the converters in total.

With full thruput conditions in Wesseling are the following:

Paste thruput/stall 45.2 t/h of which pure coal, about 17.0 t/h	
Input gas (Converter 1) 30000 of which H ₂ (80%) 24000	50000 m ³ /h 40000 "
H ₂ -consumption/stall 17000	10000_
H ₂ remaining in last conv. 7000 Pollutions in last converter 9000	23000 * 13000 *
Total gas in last converter 16000 Ho-partial press. in last conv. 290	36000 * 430 atm
(0670 atm total press.)	

It is apparent that even with a gas input of 50000 m³/h, the H₂-partial pressure in the last converter is only 430 atm. Since this quantity of gas would give too high velocities in the preheater, part of it would have to be added, preheated, to converter I directly, as done at Leuna.

One possibility to improve the H2-partial pressure would be:

- a) either to inject cold oil only into the endangered converters I and II, but to leave the cold gas on the other converters,
- b) or to use cold oil and cold gas at the same time, in which case the cold oil takes the basic load, unregulated, while the cold gas regulates the peaks. The cold gas here must be sufficiently preheated to prevent any harmful, excessive cooling.

/fkp

U.S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV.

841

KCBraun 4-28-47

Quality of Hydrogenation Coal

By Dr. Ost, Bergwerksgesellschaft Hibernia, Herne, 10 Sept. 1942

In a letter of July 16, 1942, Hydro-Works Scholven reports of operating difficulties believed to be due to a deterioration of the quality of the coal, characterized by an increase in the C-content and the alkalinity of the ash.

1.) An increase in the C-content above 82% with a simultaneous decrease in volatile constituents below 38% would indeed have the effect of a more sluggish hydrogenation. Now, the figures for volatile constituents reported by Scholven are in sharp variance with the results of the mine laboratories for Scholven-Zweckel as well as for Blumenthal coal, variations such as were never found at the introduction of the coking test in the quartz glass crucible by the coal syndicate, even with high volatile coal (Gasflammkohle).

Hith Zweckel coal the differences are:

, N	ni trans a recommendation professione	eri, difficulty and the	大型化学 经联合帐间 经收款证据	والتعام والبيوار اسروا	girt - Nagitabara	Attitud North System for	ing the Participation (in girls	and the state of the state of the	HONOR TO HONOR HANGE
1.2	그 마고함으레마 뭐고요.	whale Ville gold		A47	Mon	- มีกรกส	Jul	UA.	rust '
1	942			M DX-1				. A . Names with the	To the second of the second of the
يعه	MARKET		granding a fighty transportunist grand	Man Stall And Lybert.	yekin giriya nekada ya sana Al-	والعطبة أفهوا وأبدأ بالإنهارين	الإرباط ويراجع المواجعة المراجعة	alogical green being	galeria del altregolica e della del
100									محمد مداف الفاردان
				26 1	35.	35.4	. 34.	3 DO	C ASC KHOWN
· E	lydro-Norks	PCTOTAS	113	2004				./ 200	t yet known .27
	<u> </u>			20 1	7 37.	97 36.6	ა8 პბ.	46 38	
·F	libernia la	in Lab:		2004		/ '			

The daily tests of the Hibernia main laboratory do not show the sharp deviations as the tests at Scholven. In order to eliminate all doubts, the Hibernia main laboratory will procure a Radmacher coking even and clarify the differences by an unpired analysis. The C-content in the seam samples obtained in the coal wash at Scholven will also be determined by an umpired analysis. In the meantime, the ash content has been lowered to below 45 by order of the board of directors.

2). According to statements by Scholven, the alkalinity of the ash has caused operating disturbances by the formation of salt encrustations. In the acidic operations (Sauren Fahrweise) at Scholven, the Ca and Mg content of the ash is converted into chlorides which form a sticky mass of melted salt and cause encrusted walls. Such a formation of melted salt is possible at a reaction temperature of 475°C, but only if the NaCl content exceeds a certain amount. The melting points of individual components as well as of the eutectic mixtures are given below:

MELTING POINTS & Content (Eutectic Eutectic Temp. Salt Combin. Salt 57.25/Nt. CaCl₂
52.85/Hol. NaCl
56.05/Nt. NaCl
26.55/Wt. KCl CaCl2-EgCl2 NaCl-CaCl2 605°C NaC1 50000 775°C KCl 430°C ىمىدد NaCl-MgCl2 CaCl₂ 600°C KC1-CaC13 33.0%/Nol. KC1 490°C RC1-MgCl2

3

If the formation of encrusted wall is not due to still other causes, a sufficiently large NaCl content of the coal can cause a sutectic mixture and therewith a precipitation of a melting sticky mass, whose melting or sintering point is possibly lowered still more by the lead salts present; we found up to 6% lead in the water soluble in the catalyst converter residue. The chlorides of calcium and magnesium can not produce such a low melting eutectoid by themselves. Since it was never intended to be the task of a bituminous coal wash to remove the constituents of the "inner ash", the nearest to it was to remove the most important constituents of the above mentioned salt mixtures, NaCl, by more intense washing. That is why the water circulation at both washes, Blumenthal and Scholven I, was increased by adding Ruhr water, the coal was heavily drenched before going to the bunkers or loading pockets, with very good results, see below. The analysis of the drip water was not suitable for the control of the washout, because the content of these waters varies greatly and very irregularly, depending upon the manner and time of removal. Better suited for operating control is to let the load samples stand in distilled water for 12 hours, followed by titration of the chlorine content. This method of determination not only includes the chlorine content of the coal but the drip water chlorine corresponding to the water content of the coal as well, and can be done in a short time. Analyses of the drip water from Zweckel hydrogenation coal indicated that the evaporation residue consists of 91 - 92% NaCl, 1 - 2% MgCl2 and 6 - 7% CaCl2.

losults:

When washing 400 t/day of hydrogenation coal, Scholven I wash now uses additional 800 m³ Ruhr water. The entire Ruhr water is used for hydrogenation coal wash, while the well water used in the past is used for washing coking coal. The hydrogenation nut coal is no longer sprayed at the loading hoppers, but by three sprays in the delivery trough to the classifying screen. In this manner the coal loses more water and taking samples at the loading hopper becomes quite satisfactory. The fine coal is also sprayed by three successive sprays on the dewatering screen in such a manner that the water is sprayed diagonally against the moving coal, thus increasing the residence time of the wash water a little. The runoff water below the sprays has only 1/10 the concentration of the circulating wash water, abt. 0.25 g NaCl/Ltr, but with this washing method it again runs into the circulating water. It would seem desirable to use the water more efficiently in future wash installations and to increase its residence time with the coal. At present there is only this advantage, that the total circulating water for both washing systems is diluted by the added water, thus also removing more of the salt from the coking coal, which is very desirable for the coke ovens and our efforts to lower the chlorine centent of the coke oven tar. At Scholven I the salt centent of the wash water has been reduced from abt. 2.7 g/Ltr. to 1.6 - 2.1 g/Ltr. At Blumenthal, where about 840 m³ additional Ruhr water is used for each 800 t hydrogenation coal, the salt content of the wash water has dropped from 2.64 g/Ltr. to 1.72 g/Ltr. Tho NaCl content of the loaded coal is shown for Zweckel on the attached diagram and is now uniform throughout. At Blumenthal the values are the same, i.e. 0.030 = 0.035% NaCl before the spray and 0.025 = 0.030% NaCl after the spray. Consequently, the salt content has been appreciably lowered from the former 0.060 = 0.100% of the raw coal.

The salt content of the hydrogenation coal from the Nordstern mine 3/4 is 0.012% NaCl, with a water content of 6 - 8%. The circulating wash water

there has a salt content of 0.7 g/Ltr. The water consumption was given as 1000 m²/4000 t; water from the Rhein-Herne canal @4 pf/m³.

However, a lower salt content of 0.013% has, at times, been obtained with Zweckel hydrogenation coal. It is to be expected that the NaCl content will be lowered further by the loss of drip water in transit.

According to a communication from Dr. Schonfelder, no further trouble has been encountered in operation. It is, therefore, desirable to find out from the hydro-works if the troubles in the catalyst converter have also been eliminated without the addition of ammonium-sulfate and if other causes of these operating difficulties have since been found, which have nothing to do with the salt content of the coal. Even though the washing and spraying of hydrogenation coal will receive more attention in the future, the mine desires to avoid too much additional water, for operating reasons, not because of the additional water cost.

الرمري. خاصوي

U.S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV. T-345

N.M.Sternborg May 1947

845

High Pressure Experiments, Leuna, 558.

> A Numerical Expression of the Splitting Efficiency of Benzination Catalysts, or the Benzination Property of Oils.

From Dr. Pier's Files

Summary

The splitting activity of catalysts have heretofore been expressed by the gasoline concentration obtained at certain temperatures. The other experimental conditions have already been standardized. A comparison of two experiments was impossible with such treatment; it was not clear, e.g., whether a catalyst giving 70% gasoline at 21 mw, is to be preferred to one giving 55% at 20 mw.

A formula has been derived on the strength of voluminous material on the relationship existing between temperature and the concentration of gasoline produced, which permits recalculating gasoline concentrations to any desired temperatures. The temperature of 19.5 mv = 382°C was selected as the standard. The gasoline concentration calculated for 19.5 mv is called the "splitting efficiency" (S), and when feeds are being tested for the readiness with which they are benzinated, it will be called their "benzination property" (B).

Another rule, as yet not based on a sufficient empirical foundation, is used in the calculation of thruputs; according to it, the gasoline concentration in tests performed under similar conditions is approximately inversely proportional to the (square?) root of the thruput.

/s/ Gunther

A. Discussion of the problem and the nature of the tests.

We may briefly summarize here the problems on the small scale experimentation in benzination:

- Testing the benzination catalyst delivered by the catalyst factory for its splitting efficiency.
- 2) Testing new catalysts for their splitting activity and other splitting properties (e.g. isomerization)
- 3) Testing the benzination properties of the a and b-middle oils, simultaneously establishing the quality of the gasoline produced.

These a-middle oils are here produced directly from the raw material by distillation (eventually to be refined), while the b-middle oils are produced either from a standard raw material with a newly developed prehydrogenation catalyst (problems of development of prehydrogenation catalysts), or of any raw material whatsoever, but using some standard prehydrogenation catalysts (problems of two-step vapor phase for any raw material for the conversion into 87 o.n. motor gasoline). The word "raw material" is used here to denote "the raw material for the vapor phase."

It would be sufficient to test a catalyst under set conditions regarding the type of converter, pressure, temperature, thruput, gas:oil ratio, etc., to pass judgement on the splitting efficiency of the catalyst or the hydrogenating property of an oil, in terms of concentration or production with a fixed final boiling point. In addition to the requirements to make gasoline with a predetermined boiling endpoint, there is in most cases also the requirements made at present of a "correct boiling behavior of the gasoline", and "the technically permissible efficiency and yield of gasoline", which can not, however, be satisfactorily answered under the fixed conditions. The experimental material collected with small converters during the last years show that all these requirements can be met by setting all the conditions except the temperature.

B. Fixed Experimental Conditions.

- 1) Type of converter: 50 ml converter, 17 mm clear width, with upward flow according to sketch RSK 3981a.
- 2) Pressure: a) for testing of batch (production of catalyst) 200 atm.
 - b) for testing new catalysts, 200 or 250atm.
 - c) to test the benzination property of oils 250 atm, except in Leuna tests (200 atm).
- 3) Thruput. a) for batch testing, 2.0 kg/li/h
 - b) for new catalysts 2.0 kg/li/h (occasionally 1.5 kg/li/h)
 - c) for testing benzination property 1.5 kg/li/h

- -3-
- 4) Gas: oil a) with thruput 1.5 m³ gas: 2.66 kg oil (=200 li gas/h)
 - b) with thruput of 2.0 m³ gas: 2.5 kg oil (= 250 li gas/h)
- 5) Other specifications:
 - a) 0.75% CS2 is always added to the starting material, unless otherwise specified for some definite reasons.
 - b) Catalysts are tested now (since about 1 1/2 years ago) with the Bruchsal Gasol (180 325°, a.pt. 68) in direct pass.
 - c) In the testing of benzination properties of oils, 6434 T pills from the catalyst laboratory are used, with a splitting activity of 0 70 (v.i.)
- 6) Temperature is set depending on results, to produce 40 70% gasoline from the unstabilized catchpot products, endpoint 150°, and the stabilized gasoline would contain 50 60% gasoline boiling below 100°. The start is made in such a way that the temperature would not have to be reduced.
 - C. Earlier Methods of Recording Results.

Data on the splitting activity are primarily important when testing the benzination property, also to estimate the yield of gasoline and its properties. The splitting activity is characterized by the concentration of gasoline and the temperature required for it, the yield of gasoline, the gasification; the properties of gasoline by its composition, octane rating, indine number, as well as some possible other data on the stabilized gasoline.

Indicating the splitting activity by two numbers, (temperature and concentration of gasoline) has the disadvantage of occasionally preventing a direct comparison of results; e.g., it is not immediately clear, whether a catalyst which produced 70% gasoline at 21 mv is a better aplitting catalyst than another, which produces 55% gasoline at 20 mv. For a comparative testing of feeds with respect to their benzination the following considerations may be used.

D. Derivation of the Characterization of Splitting
Activity of a Catalyst or the Benzination Property of a Feed by
a Single Number.

Attempts have been made to find the empirical effect of the benzination temperature upon the gasoline concentration in order to obtain a single number which would characterize splitting, and to permit then recalculating the gasoline concentration obtained at some operating temperature to a standard temperature by using some correction factor. The numerous runs made during the last years show, that when petroleum oils or coal products are benzinated with different catalysts, the concentration of gasoline increases about 1.2 times for every 0.5 my

a/.=

temperature rise, when the gasoline concentration is between 10 and 75%. This relationship permits us to recalculate gasoline concentrations obtained at any temperatures to "the gasoline concentration at 19.5 mv." This value is called the splitting activity (S) when testing the catalysts, and the ease of splitting, or the "benzination property" (B) when testing oils. The formula for calculating S or B is:

B (or S) =
$$c \times 1.2^{(19.5-T)}$$

The tabulated factors of 1.2 (19.5-T) used in the recalculation

are:

161

					19.5 - T)
Oper			ture (mv		
	and the second of	17.5 18			.07 .73
		18.5 19.		10.00	.44 .20
Value and recognision is		19.5	and the state of t	. 1	.000
		20 . 5		0	.833 .695
	and the second second	21. 21.5			.578 .483
	are state to a wife.	22			.403

22.5

Tests performed under other conditions than shown in section B can be recalculated to the established thruput by using a correction factor which has not as yet been sufficiently verified, on the assumption that in tests, where the other conditions were kept standard, the concentration of gasoline is inversely proportional to the square root of the thruput. E.g. when the thruput of 1.0 is to be recalculated to:
1.5, the values for S or B found by using the temperature formula, is to be multiplied by 0.81, while for the recalculation of a 2.0 thruput to 1.5, it is to be multiplied by 1.15. Practically no empirical material is as yet available for the recalculation of values at different pressures.

0.336

U. S. BUREAU OF MINES HYDRO, DEMON. PLANT DIV.

849 T-346

KCBraun 4-29-47

The Limits of Solids and Asphalt With Low H2-Supply in Liquid Phase.
By Rank, Ludwigshafen, 12 October 1942

The calculation of conversion and oil balance in the liquid phase is based on the determination of solids in the products of hydrogenation. A number of solvents may be used for the determination of solids, which, in general, will give different values. The question, therefore, arises, which solvent to choose for the determination of solids.

Table I

Insoluble in Solids	Benzol	Ру	Py;CS2	Pasting Mi-Oil
E.G.L.D. Colsenberg Scholven Extraction Lu 760 atm Extraction Lu 300 atm	21.5 30.0 9.8 21.3	18.9 21.2	19.5 18.5	 6.9 11.8

The solvents chosen must have the following properties:

- 1) The behavior of the solvent with respect to its solvent properties must be similar to pasting oil in which the coal is pasted or in which the hydrogenation residues are processed, e.g. by centrifuging or filtration.
- 2) The solvent may not dissolve anything, or only very little, of the coal substance proper under the conditions of the analysis.
- 3) The solvent must well dissolve the asphalts and resins obtained in hydrogenation. It must not precipitate asphalts or resins in any case and thus simulate too high solids content.

All of these conditions are naturally met best by the circulating pasting oil. However, this oil can normally not be considered for analysis because of its high boiling curve. For this reason, solvents have been proposed for the laboratory analyses, which are easily evaporated and resemble the pasting oil most closely in their solvent properties.

The solvent used most is benzol.

As may be seen from Table I, there is very little difference between the various solvents for good hydrogenation conditions, such as running to gasoline and middle cil @ 700 atm. From this we may conclude that benzel here very closely approaches the pasting oil itself in its solvent properties and will, therefore, give true conversion values, However, conditions change as soon as different hydrogenation conditions are employed. For example, when operating © 300 atm to gasoline and middle oil different solvents will give appreciably different values for solids and consequently different conversions. Benzol will give a comparatively high solids value for Scholven H.O.L.D., compared to pyridine, which dissolves asphalt and resin more readily. We must, therefore, ask ourselves if benzol does not simulate lower conversion values than the related (arteigen) pasting oil would give.

With still more unfavorable hydrogenation conditions, such as extraction with H2 addition, benzol can most certainly not be used, from our experiences. In this case, reflux middle oil from the process itself is used as pasting oil and thinning oil in let-down filtration. As shown in the table, an appreciably greater portion of the letdown obtained is soluble in middle oil than in benzol. This is particularly noticeable in 300 atm extraction, i.e. the worst hydrogenation conditions. If conversion here were calculated on the basis of the benzol insoluble, a value much lower than that obtained in the practical processing by filtration in reflux middle oil would be obtained.

From this, it must be concluded that with poor hydrogenation conditions substances are formed which are precipitated by benzol. With good hydrogenation conditions such substances are not formed, or they are formed in the initial stages and are subsequently changed by further hydrogenation so that they lose their benzol-insolubility.

For the extraction of Upper Silesian coal with H2 addition @ 300 atm, some figures are available which permit more definite conclusions about the properties of these benzol-insoluble substances.

Table II shows the elementary analysis of benzol solids and middle oil solids.

Table II

	Benzol Sclids	Mi-0il Solids	Calculated differential substance soluble in Mi-Oil and insoluble in Benzol
% C	88.73	91.29	86.30
H	3.70	3.77	3.63 (A. 1994) A. 1994
0	4.26	1.26	7.12
n	1.52	1.59	1.45
S(org)	1.79	2,09	1,50

The substance insoluble in benzol and soluble in middle oil shows a remarkably high oxygen content. An asphalt decomposition conducted by Suida and Motz with this substance gave the following results:

24.1% hard asphalt & carbene, 23.8% asphalt resin, 35.6% oil resin, 16.0% oil.

We are here concerned with a substance soluble in middle oil and precipitable in benzol, i.e. primarily resin.

The bitumina occurring in the various extraction processes contain these resins in greater or lesser quantity. By bitumen we

mean the filtrate freed of middle oil obtained in the extraction. These bituming are soluble in middle oil and must be considered converted.

Table III shows analyses of various bitumina, which, on the one hand, have been subjected to decomposition with benzol and standard gasoline (benzol-soluble and s-asphalt) and on the other, to asphalt decomposition according to Suida-Motz-Lemme (hard asphalts, asphalt resins, oil resins and oil).

Table III

Kiml of Bitumen	Welheim Bitumen	Bitumen Extraction Lu. 300 atm		Bitumen Extraction Lu. 700 atm
% insoluble in benzol (benzol solids)	62.0	28.5	21.2	9.2
<pre>% soluble in benzol (s-asph.) insoluble in gasoline % soluble in benzol and gasoline (oil)</pre>	184	24.1	24.8	26.0
	19.6	47.4	54.0	64.8
% hard asphalt & carbene	60.5	26.1	13.7	7.2
% asphalt resin	5.5	11.1	3.0	6.1
% oil resin	23.0	26.3	34.0	67.2
% oil	10.5	36.5	49.2	19.5

The products are so arranged in the table that the hydrogenation conditions are improved from left to right. Welheim operates only with middle oils giving off hydrogen © 100-150 atm without gaseous hydrogen. In the extraction experiments in Ludwigshafen, the 300 atm experiment with the addition of hydrogen already shows considerably better hydrogenation and splitting conditions than Welheim, at the higher pressures even more so.

The table indicates a dependence of the bitumen constituents on the degree of hydrogenation (Aufhydrierungsbedingungen) with respect to decomposition with benzol and gasoline as well as according to Suida-Motz-Lemme. In the Welheim bitumen, least hydrogenated and split, 62% are benzol-insoluble substances, in 700 atm extraction only 9%. The s-asphalt is somewhat increased here, due to increased hydrogenation.

According to Suida and Motz-Lemme large quantities of hard asphalts are found in the Folheim bitumen, which constantly decrease towards the 700 atm extraction, while the asphalt resins hardly show any change.

The characterization of the bitumina as well as the hydrogenation conditions employed can, therefore, very well be done by means of the asphalt decomposition method of Suida and Motz, as well as by means of the separation with pasting oil, benzol and gasoline. The given example indicates that a comparison of the determination of solids with pasting oil, e.g. liquid phase middle oil, with the benzol solids determination could eventually be used as a criterion for well or poorly chosen hydrogenation conditions, because it is easily possible that the occurrence of benzol insoluble oil constituents in coal hydrogenation is always connected with incomplete or poor hydrogenation.

A parallel to bituminous coal hydrogenation is also offered in this connection by the coking and carbonization (L.T.C.) of coal. High -4-

temperature pitches and products of hydrogenation from them also contain benzol insoluble substances, as do L.T.C. tars from bit. coal. In the flushing gas tars, e.g. the so-called red resins are insoluble in benzol. These resins are largely destroyed by cracking in heating surface carbonization. It is known that these resins consist largely of unsaturated hydrogarbons, are unstable and very sensitive to temperature. It is thought that these substances, precipitable with benzol, are primarily products of the decomposition of coal bitumina, in hydrogenation as well as in carbonization, which become soluble in benzol only by further hydrogenation or eracking.

/fkp

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV. T-347 W.M.Sternberg June 1947

High Pressure Experiments, ... Leura, 1.

5/17/44

853

TUNGSTEN-FREE SPLITTING CATALYSTS OF THE TYPE OF THE SiO2-Al203-Fe203 HYDRATED OXIDE MIXTURES,

TREATED WITH HF.

Summary

- 1). The splitting activity of the SiO₂ Al₂O₃ Fe₂O₃ catalysts, mixed in different proportions, was tested after being treated with different amounts of hydrofluoric acid (benzination of Bruchsal mineral oil).
- 2). It has been found that with an amount of HF equal to 50 equivalent percent of Al + Fe, very active catalysts for splitting were obtained with a 20 90% SiO₂, when the Al₂O₃ content was greater than Fe₂O₃. The results are shown in the appended triangular diagram.
- 3). The most active SiO₂-Al₂O₃-Fe₂O₃ splitting catalyst obtained from these tests (80:15:5) comfirmed the effect of HF treatment. The maximum splitting activity was found after treatment with less than 35%, preferably with 5 20 equivalent percent of HF, calculated to Al + Fe (Splitting activity 135 140; for comparison, splitting activity of 6434 about 100).
- 4). Long time tests with the a-middle oil from moneral oil and with b-middle oil from coal were run with two of the best of these catalysts, with 50% if / Al&Fe (splitting activity 100 and 90). They produced a better splitting, with the other results about the same as with 6434. No loss of activity was observed in spite of the frequent troubles resulting from aerial marfare. The sensitivity of these catalysts towards nitrogen is somewhat greater than of 6434.

On the strength of suggestions brought by Dr. Pier from the ANIC in Italy, the HF treated SiO₂ - Al₂O₃ - Fe₂O₃ benzination catalysts were systematically studied, with Drs. v.Fühner and Wittmann. First of all SiO₂-Al₂O₃-Fe₂O₃ mixtures with 90 - 10% SiO₂ were prepared, with the Al₂O₃: Fe₂O₃ in the proportions of 3:1,2:1,1:1,1:2 and 1:3, and the hydrated oxide mixtures so obtained were treated with 50 to 100 equivalent percent HF, calculated to Al+Fe. A fairly large number of untreated catalysts, and catalysts treated with HF were tested under strictly comparable conditions for their splitting activity against Bruchsal gasoil. These tests showed:

Rather wide limits are permissible with respect to SiO₂ content in the production of actively splitting catalysts. The Fe₂O₃ content of the catalyst has to be lower than the Al₂O₃. When treated with 50 equivalent percent of HF, referred to Fe + Al, very active splitting

Jointly with

Dr. Peters Dr. v.Fühner Dr. Mesee Dr. Wittmann D.C.Trofimow. catalysts are obtained. On the other hand, when treating with 100% HF, the splitting activity becomes almost completely lost, and is even appreciably lower than that of the untreated hydrated oxide mixtures.

For the reasons just mentioned, the first step in the investigation was the study of the effect of H treatment of a mixture composed of 80 SiO2, 15 Al2O3, 5 Fe2O3, which has been found satisfactory. The mixture of hydrated oxides was treated with 0, 5, 10, 20, 35, 50, 70 and 100 equivalent percent of HF referred to Al+Fe, and the catalysts tested with Bruchsal Gasoil for their splitting activity. The most active splitting catalysts were treated with between 5 and 30% HF/(Al+Fe), but even with 50% HF/(Al+Fe) the activity was as good as with 6434.

Another series of catalysts with 80% SiQ, treated with 50% HF/(Al+Fe) was used to study the effect of the Al: Fe ratio. The catalysts made contained 100, 95, 85, 75, 60, 50, 25 and 0% Al203 in the Al203+Fe203 mixture. For some unknown reasons, possibly the results of aerial war activities on the experimental work, or possibly because of the preparation of the catalysts, the splitting activity in this series, of catalysts did not prove to be as good as was expected. The effect of the Al203: Fe203 ratio did however manifest itself very plainly: the activity of the catalysts was much lower with 0 - 15 and again with over 50% Al203 in the mixture, than with 15 - 50% Al203 (sic).

To complete the series of tests on the Si-Al-Fe triangular diagram, the catalysts located on the corners and along the sides of the triangle were treated with 50% HF, and tested. The pure SiO₂ and the Al₂O₃ and Fe₂O₃ treated with HF, as well as the SiO₂ - Al₂O₃ and SiO₂ - Fe₂O₃ two component systems have extraordinarily slight splitting activity. While the Al₂O₃ - Fe₂O₃ mixture is not yet a splitting catalyst, its activity is appreciably greater than of the other catalysts along the sides of the triangle and the corners.

Details of the results with the Bruchsal oil are given in tables 1 - 6.

More exhaustive tests were made with a few of the best catalysts of that time as soon as the first promising results had been obtained. A 43 day test with the Bruchsal oil was run with catalyst 9233 (splitting activity 100), with which the gasification and the quality of the gasoline were tested three times, carrying out an exact fractionation test, and testing the catalyst for its sensitivity to nitrogen. No reduction in the catalyst activity was found in 30 days without the addition of nitrogen compounds. The nitrogen sensitivity is comewhat greater than of the 6434 catalyst. The residual gasoline was also tested. A 42 day rum with coal b-middle oil was made with catalysts 9242 (splitting activity 90) after an 8 day run with Bruchsal gasol. There was no loss of activity. During this rum, gas analyses were also made, also large scale investigations, fractionation tests and testing of residual gasoline. Table 7 contains some of the characteristic results with the SiO2 - Al2O3 - Fe2O3-HF catalysts and their comparison with some older results with the 6434 catalyst. Fith almost identical results with catalyst 6434, the tungstenfree Si-Al-Fe catalyst gave somewhat better splitting activity. No long time tests are as yet available with the best catalysts known today, 9297, 9298 and 9299 (splitting activity 135 - 140). Some of these catalysts produced better octane numbers with the Bruchsal oil than 6434.

-3-Table 1.

071					

% Si0 ₂	Compos % Al ₂ 03	ition of % Fe ₂ 0 ₃ P	catalyst ercent equivl HF: Al+Fe	I No.	Cat.No.	Exper. No.	Start	Split. activ.
· 90	5	- 5	100	1582a	9184	5439	10/22/43	4.
80	10	10	100	1583a	9185	5442	10/22/43	2
60	20	20	100	1584a	9186	5443	10/22/43	6
40	30	30	100	1585a	9187	5446	10/24/43	. 7
20	40	70	100	1586a	9188	5447	10/24/43	7
10	4 5 ÷	45	100	1587a	9189	5449	10/24/43	15
100	0	0	50	2094ъ	9353	5766	5/ 4/44	1
	5	5	50	1582b	9241	5562	1/18/44	59
80	10	1 0	50	1583b	9226	5519	12/18/43	28
60	20	20	50	1589b	9190	5450	10/24/43	37
	30	30		15856	9239	5557	1/15/44	80
20	20	40	50	1586Ъ	9240	5569	1/19/44	58
10	45 45	45	50	1587Ъ	9237	5550	1/12/44	64
0	50	50	50	2093ъ	9352	5765	5/ 4/44	31

 Series of t	ests 2a,	2b and	2c.	
				Splitting

				Date	Cat.No.	activity	
90	7.5	2.5	100	11/13/43	9208	7	
==80	<u>15</u>	anima 5 marin baran	100	12/27/43	-9231		*****
60	30	10	100-	12/27/43	9229	21	
40	45	15	100	1/12/44	9234	7	
20	60	20	100	1/22/44	9244	22	
10	67.5	22.5	100	1/12/44	9235	26	
90	7.5	2.5	50	1/24/44	9242	90	
-80-	15	5	50	1/10/44	9233	100	
60	30	10	50	12/27/43	9230	78	٠, :
40	45	15	50	1/27/44	9243	80	
20	60	20	50	2/4/4	9245	90	
10	67.5	22.5	50	1/11/4	9236	60	
90	7.5	2.5	0			_	
80	15	5	0.4	2/11/44	9274	70	
60	30	10	0	2/2/44		47	-
40	45	15	0			and the second	-
20	60	20	0	2/11/44	9275	25	467
10	67.5	22.5	Ô	-/	- 3		

Table 3.

Series of Tests 3a and 3b.

	Co \$5102	mposition %Al ₂ 03		catalyst Equivale, percent	Date	Splitting activity	· · · · · · · · · · · · · · · · · · ·
				F/Al令Fe			
	90	2.5	7.5	100			
· • · · · · · · · · · · · · · · · · · ·	80	5	15	100	1/27/44	7	and the stage of the speciment of the stage of
$\chi : \underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline$	60	. 10	- 30	100	7/21/44		
4.54	_40	15	45	100		.	
	20	20	60	100	2/7/44	3	
	10	22.5	67.5	100	c/ 1/44	7	
					2/ 2/44	40	
entire processor	90.	2.5	7.5	50	2/10/44	18	
에 150 기본 공항 보고 있는 기기	80	5	15	50	2/2/44	i3	
	- 60	10	30	50	2/7/44	`-7	
	40	15	45	50	2/ 1/44	5	
	20	20	ି 60	50	1/28/44		
حالا مدهديان استداحة حزبيان	10	22.5	67.5	50 samples and superior a superior as a superior and supe	and a series of property of the series of the series of	معافل للبيان للمعافضة والمعافضة والمتالية الاياران	والمنافقة والمراجع فيستر والمنافقة والمنافقة
				Table 4.			
				Series 4.			
							Cat.No.
				0	3/10/44	35	9293
	80	15	5 5	 The Charles of Computation of the Charles of the Charles of Charles of 	3/11/44	цо́	9299
* 1	80	15			3/10/44	138	9298
	80	. 15	5	10	3/10/44	136	9297
	80	15 ~	5.	20	3/11/44	67	9300
Spirit d	80	. 15	5	35	3/18/44	112	9285
	80	15	5	<u></u>	3/12/44		9302
	80	15	5		3/10/44	56	9302
	80	15	5_	100	3/10/44	4	**
-	de la grande de la composition del composition de la composition d	are and a second	ere termino e de la composição de la compo	Table 5.		en engliseer gen skirrenteer en 15 ek en 160 eeu en 17 ek en 1	the antique of the property of the result of the second section of the second
				Series 5.			s e eg ja
	~~	20	•	50	4/29/44	18*	
1 32 3	80	20	Ō	50	4/28/44	$\vec{1}$ 4	
	80	19	, 1		4/28/44	32 .	
	80	17 85	3	50 20	4/28/44	47	
	80	15 75		50	4/28/44	35	
	80	12 60%		50	5/ 3/44	60	
	80	10 50		",	4/24/44	10	
	80	5	15	50	- 4/24/44		
	- 80	. 0	20	50	- 0+1+1+100	3	
	a CI	text abou	t the a	bsolute values of these	SCOTATOTES.		
				Table 6.			
**				Tante of			
	60	40	0		4/30/44	5	
	60	0	40	50	5/4/44	Ž	
4. " \$ 1" + 4	~~~~~	<i>5</i> 0	50	50	5/ 4/44	31	Salar de les services de la
44.	100	- 0	~	50	5/ 4/44	ī	
1	100	100	ŏ	50	5/ 5/44	3	the single
. :	0	100	100	50	5/ 5/44	3 ™	
	U	U .	700		21 2144		

Table 7.

Comparison of Si - Al - Fe Catalysts and 6434.

Feed Catalyst No.	Bruchsal Gasol 6434 9233,		Coal B-Middle 011 6434 9242	
Composition	Terrana /- 10% WS2	table 2.	Terrans + 10% VS2	table 2。
Pressure, atm	200	250	250	250
Thruput, kg/li/hr	2.0	1.5	1.5	1.5
Temperature, mv.	19.5	18.7	19.5	19.0
Gasoline con, not				
stabilized, -150°	.50	68	56	.58 — — .70
Splitting activity	65 ↑	. 90	56	₂ 70
Gasoline prod.,				
stabilized	0,77	_0.85	0.76	0.78
Gasification			19.6	22.0
% C4 in gas:iso				
in the C4	70:70	60:67	70:70	967:61
Gasoline to:	1500	150°	1500	1450
a.p. I/II	55/61	55/62	51/53	49/52
Start boiling	54/00	54/00	57/00	58/00
% - 70°	9	_9		- 4 - 56
%-100°	55 3.53.400	54, 151/99	54 153/98	145/99
End point	152/99	121/33	155/98	145/99
% paraffines	66	65	- 43	38
% naphthenes	26	26	54	<i>5</i> 7
% aromatics	8	8	3	4
% unsaturated	0	I	0	
Octane number, motor	70.0	69.0	73.5	75.0
M 0,12	91.0	88.5	93.8	89.0
Gasoline residue				
\$ -100°	55	51	56	53
o.ro., motor	66	68.5	73.0	75.0
M 0.12	89.5	88.0	91.2	91.0
75 - 100° fraction				
% paraffines	62	66	34	27 -
naphthenes	32	30	63	69
aromatics	5	4	2	3
0.no Notor/m 0.12	71.7/93.0	70.5/90.5	76.5/93.0	77.5/91.0
Gasol, residue				til der etter flagten i det et Det etter flagten i det etter
75-100°, Mot/H 0.12	70.7/90.5	71.5/90.5	77.0/94.5	76.5/92.0
140-160° fract.				
\$ paraffines	68	67	43	43
naphthenes	17	13	51	, 49
aromatics	14	20	5	8
0.no Mot./M 0.12	55/80.2	54.5/76.5	63/82.5	58/77.0
Res.gas.Mot/N 0.12	44/74.5	44.0/73.5	59.2/-	54.5/-
the contract of the contract o				

TRIANGULAZ LIAGRAM OF THE SIOZ-AUO3-FEZOS CATALYSTE WITH SO EQUIVALENT PERCENT HE CALCUMIED TO FE TAL

THESE TWO CATALYSTS WERE TREATED NITH 35 EQUIVALENT HE BY MISTAKE THE RESULTS WOULD BE SOMEWHAT LOWER WITH 30 EQUIVALENT PERCENT, HE

ro +T-348

KCBraun 5-1-47

Pretreatment of Bituminous Coal

for Hydrogenation
(Older Experiments)

By Hupfer, Ludwigshafen, 29 March 1943

Coal pasts becoming plastic within certain temperature limits, which may cause plugging in the preheater tubes, has been observed only with bituminous coal. It does not, as a rule, occur with brown coal. This phenomenon, called "swelling" of coal and explained as such, has, therefore, been placed in parallel to the increase in volume of the coal in coking or carbonization, which has been observed with melting bituminous coal, but not with brown coal, which latter produces a powdered coke.

It may be remarked in passing, that this parallelism does not exist in all cases. The French coal, lignite Gardanne, which is between a bituminous and a brown coal, according to its composition, shows very heavy swelling in the preheater, although it produces a sandy coke.

Otherwise, the very frequent occurrence of both phenomena at the same time caused us to entertain the possibility that those treatments of coal which reduce its baking ability, also improve its behavior in the preheater. Since such effects are difficult to measure with small apparatus, unequivocal results of experiments are not available. However, certain predictions may be made about the influence of a pretreatment of coal for hydrogenation.

The following kinds of pretreatments have been considered:

1) - Prehecting.

An influence of preheating of Brassert coal on the pressure plugging of the preheater could not be detected. Scar coal Louisenthal, which was preheated in an E2-stream @ 250 atm for 3 hours, produced a better asphalt content and lower gasification in an autoclave experiment.

2) - Anoxidation.

The change in the coal by the absorption of oxygen increases the viscosity of the coal paste, measured without pressure, while preheating in vacuum has no effect. Commercially dried Saar coal (Püttlingen), i.e. possibly anoxidized to some extent, produces increased splitting and gasification and higher asphalt content.

3) - Sulfur Treatment.

The baking ability of Saar coal could be destroyed by the addition of 2.5% pulverized sulfur and heating to 110°C for 1-1/2 hours in a stream of H2S, without appreciably diminishing the volatile content. On heating to 200-250°C the volatile content dropped sharply.

Then neutralized Saar coal Louisenthal, dried in an H_SS-stream, is used, a slight but bearable deterioration of the yield with about equal gasification would be observed. To be sure, the processing of the residue would be changed at the same time by the absorption of the centrifuge oil topping with its certainly unfavorable effect. In general, a more or less distinct improvement might be expected from an absorption of sulfur.

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV.

860

T-349

KCBraun 5-1-47

Regeneration of Coal Paste by Dilution with Middle Dil

By von Muffling and Hupfer Ludwigshafen 17 February 1943

In order to heat a greater portion of the scal in the heat exchangers, it was proposed to dilute the paste at Blechhammer from the present 45.5% to 40% solids by adding middle oil and thus make it more receptive to heat exchange, and then again remove the added middle oil from the scal paste in vapor form by a separator before the converter.

The attached calculation shows that in Bleckhammer the quantity of paste gas would have to be increased from 2.6 m³/kg pure coal to a meximum of 5.0 to 6.5 m³, in order to remove the added middle cil as vapor at roughly 400°C, or above the swelling range. Accordingly, roughly 2 m³ gas/kg pure coal would have to be added to the coal paste in order to produce the proposed conditions. In consequence, the quantity of circulating gas would almost have to be doubled, which would require additional circulating pumps.

By increasing the quantity of paste by roughly 13% and the gas by about 100%, the number of calories transferred to the paste mixture in the heat exchangers would be increased, to be sure, but in the opinion of Dipl. Ing. Schappert, such a severe drop in the outlet temperature of this mixture would have to be expected that the preheater in Bleckharmer would be unbearably overloaded.

Rough Calculation of the Quantity of Gas Required to Veperize the Middle Oil

The Problem:

It is required to compute the quantity of gas necessary to remove a given quantity of middle oil from the coal paste at a given final preheater temperature, assumed to be 400° C in this case.

Basis for Calculation:

The Engler boiling curve of the middle oil looks like this:

Initial	boil:	22000
- 2500		30%
= 275°		62.5%
_ 300°		84%
_ 325°		96%

. . .

Course of the Calculation:

It is first determined how the vapor pressure of the middle oil changes at constant temperature with increasing vaporization of the lighter constituents. If we assume the conditions of the Engler distillation, we get the following, based on the above Engler curve:

At 220°C the middle oil reaches a vaper pressure of 1 atm. After 30% has been distilled off the remaining oil reaches this vapor pressure at 250°C. At 220°C the remaining 70% of the original oil would have a lower vapor pressure, which we take from a vapor pressure-temperature diagram drawn by Wilson and Bahlke for a number of n-paraffins and benzel, and which we also assume to be applicable to our oil. From this we get a vapor pressure of 0.48 atm. for the remaining oil after evaporation of the first 30% of the oil. The application of this process to the entire boiling curve at 400°C is given in Curve I for a decrease in vapor pressure with an increase in the quantity of oil driven off.

We can now give a mean vapor pressure for approximately each 10% of the vaporizing middle oil, under the assumption that for such short pieces the sections of the curve can be replaced by straight lines with sufficient accuracy. For example, the first 10% @ 400° C would vaporize at a mean partial pressure of 16.7 atm. With a mean mol weight of 200 for the oil the first 100 g of the oil (with 1 kg to start) assume a volume under these conditions, according to the gas lew, of

V₁ = 22.4 x 100 x 673 = 1 = 1.65 Ltr.

The hydrogen contained in these 1.65 Ltr. at an H2 partial pressure of 600 atm. and a compressibility factor C = 1.18,

 $V_2 = 600 \times 1.18 \times 1.65 \times \frac{288}{673} = 500 \text{ Ltr},$

measured at 15° C and 1 atm.

The anologous calculation for the other middle oils is given in Curve 2, which shows, how many liter H2/kg of middle oil are required under the given conditions to vaporize the oil constituents indicated in the abscissa in \$5.

Consideration of the following two cases is based on Curve 2:

1) - All of the gas, including that going thru the converter, goes thru the heat exchanger. Sehind the heat exchanger as much gas is drawn off as is required to remove the added oil. Since under conditions applicable to Bleckhammer, 62% of the middle oil contained in the diluted coal paste passing thru the heat exchanger must be removed before entry into the converter, at least 62%, in case all of the middle oil is in vapor form, of the gas leaving

Ľ.,

the heat exchanger must be drawn off. The quantity of paste gas to be charged into the converter is 2.6 m³/kg pure coal. Since the diluted coal paste (40% solids) that can be regenerated contains 31% pure coal, the oil constituent 27.8% middle oil, and the entire paste, therefore, has a middle oil content of 16.7%, the quantity of gas going into the converter is equivalent to 4.8m³/kg middle oil. With this quantity of gas the middle oil is vaporized, according to the values from Curve 2. If we assume that this calculation is too unfavorable, because, in reality, some heavy oil constituents will already be vaporized, so that the quantity of oil present in the vapor phase (Dampfphase) is really greater than the entire middle oil quantity, the result would, therefore, be a little too unfavorable and we could assume the quantity of gas to be run thru the heat exchanger as about 2 to 2.5 times that to be injected into the converter; or 5 to 6.5 m³/kg pure coal.

2) - As a second possibility to any consider the case in which practically all of the gas going into the heat exchanger is drawn off again behind the heat exchanger and new gas is injected into the converter. According to Curve 2, 4.5 m3/kg middle oil is required to vaporize 625 of the middle oil, or 2.4 m3/kg pure coal. To this must be added 2.6 m3/kg pure coal, which must be injected into the converter, so that the entire quantity of gas required will likewise be in the neighborhood of 5 m3/kg pure coal.

We may, therefore, assume that the minimum amount of gas to be added before the inlet to the converter is about twice as much with this operating method as with the normal operating method, regardless of how the gas streams are run.

T-350 KCBrsun 3/24/47

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV.

All Legis

PROCESS FOR DE-ASHING LIQUID CARBONACEOUS FUELS

German Patent 722406 Class 12c, Group 105 18 Sept. 1936

Issued To

I.A. Forbenindustrie A. G. Frankfury A. M.

3y

Dr. Nathias Rier, Heidelberg, and Dr. Walter Kronig, Ludwigshafen, Rh.

DRP. 722406

In the processing of liquid or semi-solid products of pressure hydrogenation or extraction of substances, as coals, oil shale or peat, it has been found extraordinarily troublesome and disadvantageous, if said substances contain ask so finely distributed that it can not be removed by machanical treatment, such as filtration, centrifuging or precipitation. This is of particular disadvantage, if the substances are to be subjected to pressure hydrogenation or splitting, possibly in the presence of catalysts.

For example, the ash may be retained on the surface of the catalyst at elevated temperatures when the liquid substances are conducted over it, thereby effecting a premature deterioration of catalytic effectiveness. It has further been found that, in using these kinds of oils for pasting coal for pressure hydrogenation or pressure extraction, the ash may at times, be separated in the reaction vessel in relatively coarse form, either by itself or combined with the ash in the coal to be processed. It may accumulate and thus reduce the available reaction space.

It has now been found that said substances may be de-ashed in a simple manner, if they are treated with CO₂ or ammonium carbonate in the presence of water at increased temperature and preferably under pressure. About 0.2 to 10% of water, based on the quantity of oil to be de-ashed, should be used for this purpose. In this treatment, the ash in solution or fine distribution assumes such a coarsely dispersed form that it may subsequently be removed without difficulty by machanical means, such as filtration, centrifuging or precipitation.

For example, the feed oils may be directly treated with ammonium-carbonate and the water added separately-if-it-isn't already present in sufficient quantity. But the oils may also be mixed with a watery solution of ammonium-carbonate. When using CC, alone or together with ammonia gas it is proper to use increased pressures varying between 5 and 100 atm. The temperatures to be maintained may vary between 100 and 400°C. It is advisable to use additional H2 under pressure, in order to avoid undesirable decomposition of the oils. The products of pressure hydrogenation and extraction may also be treated in the described manner immediately after their production, while they are still hot, e.g. on the cooling run from the reaction converter.

Compared to the use of H₂ SC₄, as is customary for de-ashing tars, the process at hand has this advantage, that no losses occur due to the formation of acid resins. In the known process a viscous mass resembling pitch is separated, which is not the case in the process under consideration. In the well known use of alkali-humate solutions, also, H₂SO₄ is added, so that here, too, losses due to the formation of acid resins must be counted on. Apart from this advantage, the process at hand uses simple and inexpensive media, which separate

themselves and do not pollute the substance to be processed.

Example 1.

Central German brown coal is pasted with oil and subjected to pressure hydrogenation in a high pressure converter in the presence of an iron catalyst at a pressure of 200 atm and a temperature of 4650C. The reaction material is conveyed from the converter into a catch-pot, from which the sludge (letdown) is drawn off at the bottom and the products of reaction, consisting of gasoline, middle oil and a part of the heavy oil, is taken off the top, together with the H2. The heavy oil constituents of these products of reaction, boiling above 3250C, are separated by distillation and added to the letdown. The resultant mixture is then centrifuged, in which process an oil is obtained containing 2.7% ash, which will pass through even the finest filters.

To this centrifuge oil containing ash is then added 5% water and the resultant mixture heated for 30 minutes to 340°C in the presence of a mixture of H₂ and CO₂ at a pressure of 75 atm, wherein the H₂ partial pressure is 40 atm and that of the CO₂ is 35 atm. In subsequent filtration an oil containing only 0.1% ash is obtained.

If the centrifuge oil containing ash is mixed with 10% ammonium-carbonate and 3% water and heated to 310°C for 1 1/2 hours in a closed vessel at 5 atm, the filtered oil will contain 0.3% esh.

Example 2.

An extract obtained from Rhemish brown coal by pressure extraction with tetra-hydromaphthalene and containing 0.7% unfiltrable ash, together with the extraction medium (80% extract and 20% tetra-hydromaphthalene), is stirred and hosted to 130°C for 24 hours while CO2, ammonia and steam are passed thru it, the evaporating totra-hydromaphthalene being constantly replaced. The liquid is then filtered at 180°C and the filtrate freed of tetra-hydromaphthalene. The extract obtained contains only 0.1% ash.

Patent Clain.

Process for de-ashing liquid and semi-solid products of pressure hydrogenation or extraction of substances, such as coals, oil shales, or peat, characterized by treating said substances with CO2 or ammonium-carbonate at elevated temperatures in the presence of water, preferably under pressure, and separating the ash herein converted to a coarsely dispersed form by mechanical means.

867 T-351

KCBraun 5-2-47

COMPARISON BETWEEN ACID AND ALKALINE H.O.L.D. AT SCHOLVEN and THE INFLUENCE OF PASTE THRUPUT IN STALLS ON CONVERSION OF COAL.

Gelsenkirchen Buer 29 Nov. 1943

I. Comparison between Acid and Alkaline Operations.

During the months of January to June 1943 a number of letdowns (Absochlarms 5 sludges) from acid and alkaline operations were investigated, following a method formerly proposed by us. (Compare combined reports of 2 March 1942 on tests conducted at Scholven to provide a suitable method for the decomposition of asphalt). In most cases, such stalls were compared, in which the paste thruput and other factors of influence on the composition of the letdown were kept equal and which were operating smoothly at the time of the tests. Tests of pasting oil were made at the same time, see Table 1.

Figure 1 shows the composition of the letdown and the A-,B-, C- asphalts. Table 1 shows the average composition of the acid and alkaline let-downs.

From these figures it may be seen that the letdowns obtained in acid operations generally contain less salts soluble in water and less oil resins and neutral oils, but more ash free of salt, and particularly more ash-free pyridine insolubles (organic solids) and A=, B=, G=csphalts than the letdowns obtained in alkaline operations. The difference in the A=, B=, G=asphalts is especially great. While the alkaline letdown contains an average of only 11.5% A=, B=, G=asphalts, that in the acid letdown is 15.1%. That this difference is not alone due to the fact that in alkaline operations the letdown is diluted by the addition of soda oil can be proved, if the soda oil added before the hot catch pot is mathematically eliminated. This soda oil contains 10% soda and for the rest consists of pasting oil, the mean composition of which is given in Table 1. On the assumption that 12.5 t of alkaline letdown contain about 1.5 t of soda, the soda oil contained in the alkaline letdown can be mathematically eliminated with the mean composition of the pasting oil given in Table 1. This mathematically determined composition of the pasting oil given in Table 1. This mathematically determined composition of the alkaline letdown free of soda oil is compared with that of the acid letdown in Table 2. It may be seen therefrom, that the slkaline letdown free of soda oil also contains less asphalt, 12.0 compared to 15.1%, and less ash-free pyridine insoluble than the acid letdown.

This result is contrary to the former opinion that alkaline additions in hydrogenation are polymerizing and that, therefore, these alkaline products must contain more organic solids and asphalts than the letdowns obtained in acid operations. To clarify this contradiction, emperiments were made in a revolving autoclave in cooperation with Dr. Schmidt, in which a letdown obtained in acid operations was again hydrogenated, both with and without the addition of 1% soda (not suspended in oil). This letdown was also mixed with a quantity of

thinning oil proportioned to the soda oil and then hydrogenated. The letdowns so hydrogenated were also decomposed by our method, wherein the thinning oil added to the letdown in the preceding case was mathematically eliminated. The results are summarized in Tables 3 and 4. Unfortunately, the two influences cannot be directly compared with each other because of the different H₂ partial pressures used in the experiments. In spite of the few experiments and the scattered values obtained, it nevertheless appears probable that, in the case of the addition of 1% soda to the letdown, the hydrogenated letdown contains more ash-free pyridine insoluble and more A-, B-, C-asphalts than the letdown hydrogenated without the addition of soda, and that, on the other hand, a product with less ash-free solids and less A-, B-, C-asphalts is obtained with the letdown mixed with thinning oil and then hydrogenated than with the letdown hydrogenated without the addition of thinning oil. Accordingly, soda has indeed a polymerizing effect, as had been previously assumed. If this effect cannot be recognized when soda oil is added, it is probably due to overlapping effects, i. e.;

- 1) the polymerizing influence of soda,
- 2) the influence of the added thinning oil in reducing the asphalt and solids, as previously determined by us. (Compare report on the influence of the addition of thinning oil to the hot catchpot of coal stalls on the composition of the letdown, the report on asphalt decomposition, of 9 May 1943, and report on improving the carbonization yield in the L.T.C. of letdown by adding thinning oil to the hot catchpot, of 16 Dec. 1943.)

Apparently, the second influence is the stronger, so that the polymerizing effect of soda is completely covered up.

We may, therefore, well assume that in alkaline operations letdowns with low asphalt and solids content are obtained only because of the favorable influence of the oil in the soda oil, and that a like favorable effect could be obtained in acid operations by adding thinning oil before or into the hot catchpot.

II. Influence of the Coal Paste Thruput and the H2 Partial Pressure in the Coal Stalls on Coal Conversion.

In Fig. 2, the A-, B-, C-asphalt content of the letdowns investigated and the conversion, based on insolubles in pyridine benzol and carbon-tetrachloride, calculated from the salt-free ash with the aid of the content of salt-free ash in the coal paste, is compared with the coal paste thruput, H2 partial pressure, and the C-content of the hydrogenation coal. The calculation of the conversion on pyridine-, benzol- and carbon-tetrachloride insolubles, which, of course, is dependent upon our letdown decomposition into organic solids, ash-free pyridine insoluble and A-, B-, C-asphalt, was done in order to determine how far the pyridine-, benzol- and CCl/-insolubles put into the coal paste were actually liquefied or converted into asphaltic or A-, B-, C-asphalt-free oils. The degree of liquefaction of the coal can probably best be seen from the conversion calculated from the pyridine insoluble, because the solubility of pyridine corresponds approximately to that of A-middle oil or heavy oil, while benzol precipitates a number of substances, which are first dissolved in letdown

oil. Carbon-tetrachloride, for its part, does not dissolve all of the As, Bs, C-asphalts. The conversion calculated from the CCl_z-insoluble accordingly corresponds to the coal converted to As, Bs, C-asphalt-free oils.

Because of the multitude of varying factors, to those already mentioned must be added the changes in catalysts and catalyst quantities summarized in Table 5, not too much can be determined from Fig. 2. However, the influence of high paste thruput (acid letdown tests of 22 April to 17 May 1943) on conversion is clearly recognized. The conversion calculated from the salt-free ash in these tests is strikingly low in proportion to the high paste thruputs. This sharp decrease in conversion, however, might also be due to the comparatively low H₂, partial pressures at the time.

It is of further interest that the decrease in conversion is particularly noticeable in the figures calculated from the CCl₄-insoluble. The conversion in the above mentioned changes in thruput drops from about 75% to 63%, or by 12%, while the conversion calculated from the benzol-insoluble drops only from 82% to 73%, and that calculated from the pyridine-insoluble from 86% to 79%. This observation can also be made with some of the letdowns obtained in alkaline operations. It would mean that with poor hydrogenation properties the asphalt conversion is particularly lowered, while the liquefaction of coal to asphaltic oils is not influenced so strongly. Further investigations in this field are under way.

Suppory.

The investigations of acid and alkaline letdowns indicate that the alkaline letdowns have a lower content in organic solids (ash-free pyridine insoluble) and A-, B-, C-asphalts than the acid letdowns. This decrease, however, is not due to the alkaline operation as such, or the addition of soda, but to the oil addition into or before the hot catchpot, which had proviously been shown to be favorable. As shown by small scale experiments, an actual increase in organic solids and A-, B-, C-asphalts is obtained, if, instead of soda suspended in oil, soda alone is added.

The experiments further indicate that, with higher paste thruputs in the coal stalls, the liquefaction of coal to asphaltic oils is not influenced as much as the conversion of the asphalts to oils.

TABIE 1

	Mean Composition of acid letdown betw. 1/13 & 6/25/43	Mean Composition of alkaline lete down betw. 1/13 & 6/15/43	Hean Composition of pasting oils betw. 1/13 & 6/25/43
% Salts % Salt-free ash % Ash-free pyridine insoluble % A-asphalt	1.5 5.2 11.3 6.2)	2.2 4.1 9.5 4.5)	0.8 1.7 5.9 3.2)
% B-asphalt % C-asphalt) % Oil Resin % Neutral Oil	0.8) 15.1 8.1) 13.3 53.6	1,4) 11,5 5,6) 16,4 56,2	1.0) 9.1 4.9) 14.1 68.3

TABLE 2

	Mean Composition — of acid letdown betw. 1/13 & 6/25/43	Mean Composition of acid let- down betw. 1/13 & 6/15/43, from which the soda paste added be- fore the hot catchoot has been
		mathematically eliminated.
% Salta	1.5	-1.05
Salt-free ash Ash free pyridine insoluble	5.2 11.3	4. 5 10.0
\$ A-asphalt \$ B-asphalt	6.2) 0.8) 15.1	4.7) 1.5) 12.0
% C-asphalt	8.1)	5.8)
% Oil Resin % Neutral Oil	13.3 53.6	16.9 55.5

TABLE 3

							lowns	
				THE THE				

Composition of hydrogenated letdown		ydrog. @ 95 atm reas, without 23 mV	Letdown hydrg. @ 95 atm H2 filling press, with 1% Soda. Temp. 23 mV		
gan ang kanalangan dan kanalangan dan kanalangan dan kanalangan dan kanalangan dan kanalangan dan kanalangan d Kanalangan dan kanalangan dan kanalangan dan kanalangan dan kanalangan dan kanalangan dan kanalangan dan kanal	Exper. 1	Exper. 2	Exper. 1	Exper. 2	
 Salts soluble in H₂0 Salt-free ash Ash-free pyridine insoluble 	2.3	2.2	2.9	3.0	
	6.6	6.6	6.8	6.8	
	23.4	20.5	23.0	30.5	
% A-asphalt % B-asphalt % C-asphalt % Oil Resin % Neutral Oil	5.1)	5.2)	4.9)	4.6)	
	2.3) 11.6	2.6) 10.9	1.1) 12.2	1.6) 12.5	
	4.2)	3.1)	6.2)	6.3)	
	11.5) 56.1	13.1) 59.8	11.2) 55.1	7.7) 47.2	
	44.6)	46.7) 59.8	43.9)	39.5)	

TABLE 4

Influence of hydrogenated letdown	ega je karal ga se karal sa sa jiya sa e	Addit. on Hydrog rog. © 140 atn pressuro	Istdown 7 143 hydrog. 8 140	State Character of the State State State
	, 6 27, 67 E		was later mater Tempo 23 mV	
	Expor. 1	Exper. 2	Exper. 1	Exper. 2
% Salts soluble in H ₂ 0 % Salt-free ash % ash-free	2,2 6.4	2.6 7.3	2.2 - 6.7	2.3 6.4
pyridine insoluble A-asphalt B-asphalt	15.3 4.6) 1.7) 11.6	21.4 5.3) 1.0) 11.2	13.9 4.1) 1.4) 9.3	13.9 4.1) 2.2) 10.
% C-asphalt % Oil Resin % Neutral Oil	5.3) 11.0) 53.5) 54.5	4.9) 9.3) 57.5 43.2)	3.8) 67.9	3.9) - 67。

OPERATIONAL CHANGES IN THE STALLS

<u>Sta</u>]	Dat <u>la Day/N</u>	e 0								
i IV i IV i IV	21/1 29/1	. 56.7 - 58.6 -	43.3 41.4	- 2.0	0.12 n	CE DP	п 2 7 2	36 1.	.5 24.0 .5 23.0 .0 23.0	(.) , , , , , , , , , , , , , , , , , , ,
]] 	2/3 11/3	45.0 - 45.8 -	55.0 54.2	0.5	0.12 n	0.03 ().6 22 • 23	25 P 37 P	23.0 23.0	
ı II ı IV	5 -1/	32.5 - 39.1 - 54.8 -	60.9	n n	n n	# - 13 - 13	F 2	36 ° 36 ° 43 °	22.0	
		59.6 - 46.3 - 56.3 -	40.4 53.7	n n	р В	ា ឥ	n 2/	43 ° 43 °	23.0 24.0	3
II &	} 2/4	54.8 47.3 -	45.2 52.7	n n	n n	09 68	n 2	31 °° 31 °° 31 °°	24.0 23.0 25.0	old pas paste
, I	22/4 	(1)52.6 - (2)38.8 - (1)40.5 -	61.2 59.4	ero e e e e e e e e e e e e e e e e e e	n n	0 . D 	.7 22	18 ° 21 °	23.0 28.0	out co
III IV	.)	(3) 54.8 - (2) 50.2 - (3) 57.1 - (45.2 49.8		19 19 51	0 9	" 22 " 2]	29 1. L5 1.	5 26.0 5 28.0	with with Low
, III , IV , IV	} 17/5 2/6	(2)46.4 - 1 58.1 - 1	53.6 41.9		n n	8 1	" 21 .0 23	LO " 38 O.	28.0 5 22.0	<u>පුගිත</u>
, IV V	} 17/6	48.6 - 52.8 - 49.3 - 5	47 . 2 50.7		tt tt tt	и и	.7 23 23 23	31 0.	5 22.0	
, IV	} 25/6	47.8 - 4 49.6 - 4			f\$	er B	n 20	0.	5 21.0	
					.\$		" 20	9 1.	0 26.0	
			g	3	Acetate		20		0 26.0	arrandom de principal de la compansión de
			g	(F0S04 (II.		T. Mil, G)	Pross.		0 26.0	Access of the second
			g	7,7			Partial Presso.	Thruput,	Thruput, N	
Y	13/1 21/1	CLight G. oils & Proportion Gas			Catalyst <		9 4 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Thruput,	O Thruputs Co. t coal pasts/h .90	
; A ; A ; A	21/1 29/1 5/2 (4	748.45 7.5.46 7.5.4.65 7.5.4.65 7.5.5.65 7.55 7.5	0.5 1.3 5.1 2.9	0.	0 Catalyst <	.03 0. 1.06 0.	555 555 6 537 575 7 Partial Press.	" = ". Thruput, that'g, oil/h	0.000 t coal pasts/h .90	
, A	21/1 29/1 5/2 (4 2/3 11/3	7.1. 60 43.1 55 40.1 60 40.1 60 40 40 40 40 40 40 40 40 40 40 40 40 40	0.5 1.3 1.9 0.9 0.9	- 0. -0 -	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.03 0.	4 235 6 235 229 6 234 7 244 8 244	Thruput, 1.0 . Thruput, 5.20.01/N	0 26.0 t coal pasts/h .90.0 c 25.0 c 25.0 c 25.0 c 25.0 c 25.0	Conv.
TA IA	21/1 29/1 5/2 (4 2/3 11/3 17/3 25/3	79.7 - 55. 43.1 - 55. 43.1 - 55. 43.1 - 55. 44.7 - 55. 44.7 - 55. 44.7 - 55. 44.7 - 55. 44.7 - 55.	0.5 1.3 1.3 1.9 1.3 1.9	- 0. -0 -	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.03 0. .03 0. .03 0.	6 234 232 229 6 235 244 236 236 243 243 243 243	", truunut, 1. " " 5.00.00.00.00.00.00.00.00.00.00.00.00.00	0 26.0 u/strad Ino. t 25.0 2	Ĕ
TA IA	21/1 29/1 5/2 (4 2/3 11/3 17/3 25/3 2/4 2/6	7 - 5.5 39.7 - 5.5 39.7 - 5.5 40.1 - 6.5 44.7 - 5.5 40.3 - 5.	0.5 1.3 5.1 2.9 0.9 0.9 1.9 1.7	- 0. -0 -	12 0.0 (atalyat	.03 0. .03 0. .03 0.	6 234 232 229 6 235 244 236 243 242 233 242 233 242 233 242 233 242 233 242 233 242 233 242 233 243 24	0.5 " " " Thruput, " 1. " " 1. " " " 1. " 1. " " 1. " 1. " " 1. " 1. " " 1. " 1. " " 1. "	0 26.0 25.0 25.0 25.0 25.0 25.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21) Neut. 3rd
Alkaline Stalis-	21/1 29/1 5/2 (4 2/3 11/3 17/3 25/3 2/4 2/6	176 176 176 176 176 176 176 176 176 176	0.5 0.3 0.9 0.9 0.3 0.9 0.9 0.8 0.9 0.8 0.9	- 0. -0 -	12 0.0 (atalyat	03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	6 234 232 242 233 242 233 243 244 233 244 233 244 233 244 233 244 233 244 233 244 233 244 233 244 234 23	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0 26.0 25.0 25.0 25.0 25.0 25.0 21.0 23.0 21.0 23.0	Ĕ
Alkalina Stalia-	21/1 29/1 5/2 (4 2/3 11/3 17/3 25/3 2/4 2/6	176 (176) 39.7 - 560 39.7 - 550 43.1 - 60 43.1 - 550 44.7 - 550 44.7 - 550 44.7 - 550 45.7 - 40 45.7 - 550 45.4 - 54	unopper)	- 0. -0 -	12 0.0 (atalyat	03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	6 234 232 229 9 221 6 235 242 233 242 233 242 233 242 233 242 233 242 233 242 233 242 243 244 244	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0 26.0 25.0 25.0 25.0 25.0 25.0 21.0 21.0 22.0 21.0 21.0) Neut. 3rd

KCBraun 5-5-47

Comparison of Liquid Phase Operations, Politz and Gelsenberg.

By Dr. s. Gromann & Berger, Politz Dr. Jakob & O. I. Egli, Gelsenberg Dr. Becker & D. I. Schappert, I. G.

Gelsenkirchen-Horst 18 June 1942

1) G Coal:

	r	Ölitz		Gelgenberg			
	% H ₂ O Raw Ccal	\$ H ₂ O	\$ Ash Dry Coal	& H ₂ O	5 H ₂ O Dry Coal	% Ash Dry Coal	
Jan.	5,4	2,6	6.6	7,6		4.3	
Feb. March April	5.4 4.5 4.5	2.4 2.7 3.0	7.2 1.1 6.8	8.1 8.4 8.0	2.0	4.5 4.3 7-4.6	
	1 80	SH n pure cos	5 0°	·s c	g H in pure co	3 0 al	
Jen. Feb.	81.5 82.2 82.2		11.6 11.4 11.4	83.0 83.3 83.0	5.5 5.6 5.5	8.7 8.4 8.7	

To determine the quantity of coal charged into the stalls in Gelsenberg, the coal is weighed before crushing. Belt conveyor scales and Hilburg scales (proportioning scales?) are available. The pure coal is then determined by deducting the water and ash in the coal.

In Politz the coal is weighed dry and, because of difficulties in weighing, the quantities are checked by the number of paste press strokes. The volumetric efficiency of the paste presses was established at 0.95, based on calibrated containers. In order to compute the pure coal, the solids in the paste and pasting oil must be taken into consideration.

2) = Catalysta based on Dry Coali-

Politz		Gelsenberg
Bayermass 2.	5 Aug 198 No. 18	i ne grafejajan se ektjarate 2,0 e ja o ne ektrike e kuyana e i
Ircn sulfate 1.	7	1.3 1.3
Sulfigran 0.	15	0.33
3) = Coal Paste:		
Total Solids 51-8	3	52 .9 1 1 1 1 1 1 1 1 1
4) - Letdom		
Solids - 20.0)	20 - 24
% Asphalt 18.0)	16 - 18

KCBraun 5-5-47

Comparison of Liquid Phase Operations, Polits and Gelsenberg,

By Dr.s. Gromann & Berger, Politz
Dr. Jakob & O. I. Egli, Gelsenberg
Dr. Becker & D. I. Schappert, I. G.

Gelsenkirchen-Horst 18 June 1942

1) - Coml:

		Ölita		Gelgenberg			
	% H ₂ O Raw Coal	% H ₂ 0 Dry Ccal	% Ash Dry Coal	\$ H ₂ O	% H ₂ O Dry Coal	% Ash Dry Coal	
Jan.	5.4	2.6	6.6	7.6		4.3	
Feb. March April	5.4 4.5 4.5	2.4 2.7 3.0	7.2 1.1 6.8	8.1 8.4 8.0	2,0	4.5 4.3 4.6	
	aming o	% H in pure cos	% 0	\$ C	# H -	**************************************	
Jan. Feb. March	81.5 82.2 82.2 83.1		11.6 11.4 11.4 10.4	83.0 83.3 83.0 82.9	5.5 5.6 5.5 5.6	8.7 8.4 8.7 8.8	
		de martin beneart majorin nicht missen der mit der	-	The state of the s	and the same of th	Commence	

To determine the quantity of coal charged into the stalls in Gelsenberg, the coal is weighed before crushing. Belt conveyor scales and Hilburg scales (proportioning scales?) are available. The pure coal is then determined by deducting the water and ash in the coal.

In Politz the coal is weighed dry and, because of difficulties in weighing, the quantities are checked by the number of paste press strokes. The volumetric efficiency of the paste presses was established at 0.95, based on calibrated containers. In order to compute the pure coal, the solids in the paste and pasting oil must be taken into consideration.

Politz	Gelsenberg
Bayermass 2.5 Iron sulfate 1.7	2.0 1.3
Sulfigran 0.15 3) - Goal Paste:	
Total Solids 51.8 4) - Letdown	52.9
\$ Solids 20.0 \$ Asphalt 18.0	20 - 24

Reaction Water in the Coal Phase:

Referring to a report from HP-Research, Lu, Stettin states that in the liquid phase 75% of the caygen contained in the coal is obtained in the reaction water. Another 10% is obtained as $\rm CO_2$ and $\rm AS$ as $\rm CO$, the rest in phenols.

At first, Gelsenberg figured on 10% new water formation based on pure coal, including salts. Recent checks of analyses of pure coal and the cold catchpot liquor (Abstreiferwasser) indicated that 6.6% new water formation plus 1.7% for salts and phenols should be figured. This corresponds to the values used in Pölitz, so that it was agreed to use the Stettin formula for computing the reaction water in the future.

5) - <u>High pressure oil yield</u>, based on the available oil yield, plus the losses occuring in los pressure operations:

	Politz		Gelsenberg	
	HP=0il Yield Kg/t Pure Cocl	% Gasol. - # M1_01]	HP-0il Yield	ち Gasol。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
Jan. Feb. March April	544 533 569 576		637 640 646 649	96.9 94.6 80.0 81.7
	Available 011 Yield	% Gasol.	Available 011 Yield	% Gasol. % Mi-Oil
Jan. Feb. March April	472 459 - 497 484	98.8 100.0 105.9 111.0	588 585 601 603	104.5 103.2 85.5 87.7

6) - Difference between HP-oil yield and available oil yield 3 loss in residue processing:

ં		Politz		Gelgenberg	
			Diff. in % of		Diff. in % of
			HP-011 Yield		HP-011 Yield
ì	Jan.	72	13.2	49	7.7
à	Feb.	74	13.9	53	8.6
	March	72	12.7	48	7.4
	April	92	76	16	7 1

7) - HP-Oil Yield, including indeterminable losses in gas and oil:

<u></u>		Polit.	3		Gelsenberg	
				ross		Loss
Jan.		567		23	685-	18
Feb.		559	un are si	26	705	63
March April	Sept.	596	i la la com	27	688	1 42
whyth	1	orr	The second	<i>3</i> 5	693	1 at 44 au teatrach

8) - Conversion, based on analyses:

P	litz	Gelsent	erg
	lids in Lugo Residua	kg solids	
Jan. S	2.5	Centrifuge 96.4	
	10.5 12.2	96.5 96.0	
	1.7	96.0	And the second control building majority and majority of majority of the second of the

9) = L.T.C. (Schwelerei)

with the design that is the contract of the co	and the second of the second o	lids L.I	.C. Kg sol		lids L.T.C.
Rosi	due Resi		old in Cer Residu		entrif, Yield lus
Feb. 2	i.o 3	8.5 79	3.4 10.0 3.2 11.3	36. 35.	.4- 79.4
	and the second of the second o	A CONTRACTOR OF THE PROPERTY O).7 11.3).0 11.0	35. 35.	and a contract the bound of the second of th

10) - Theoretical Liquefaction: kg C x Conversion/0.86

) Pos	en ko	e e e		- 117	**	1	٥,	1	1 t	Z				19.5 19.6 19.6			in o	r tra	i vi Anarodo		ne.	ne.	i de la companya de l	-	Gε	1	86	n	be	r	3	100	h. ye.		la el			
F	an ob	o										á	8	67	٠,		947 93 93					1130 131 13				_						93	15						5.44 7.7				
A	ar Pr	1])			Re-				· ·			_	82 86						S.	79. 133 86											93	6		y in Syr Sarr			W.					7.44

11) - Casification: C as oil in hydrocarbons (C₁ to C₄) / CO₂ / CO including 1% circulating gas loss:

	Politz		Gels	enberg		
Jan. Feb.	Monthly figures not available a		23 21			
March April	individual dail figures vary too		22 20	T 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			~ ~~			

The calculation of gasification does not rest on a very sound basis. It seems, therefore, more accurate to compute gasification from the difference between the theoretical liquefaction and the HP-oil yield. In this the indeterminable gas and oil losses are added to gasification. These values can be determined very accurately:

12) - Gasification calculated from the difference between the theoretical liquefaction and the HP-yield:

				. T		S		S.			1	20	1	lt	z								723 74.	.30 			G	0	8	9 2)	be	Ľ	7		S	2.70	× .		
j	á	n,			راونور کا وارد	SON SON		ALZ VIX		被	(0)	-	_	<u> </u>	_					nt Ni	774	147				g (12)	72	100	24	1.0	54		332.		irele	764	e çes	791	
F	100												-	27							40.7								23. 23.	- 25									
	100 .	37.1	ch Ll					ğ.				2 12		36 75			70		13					5					23	-			7						
 	μ.	1.7			3			4		13.			~				100	300	1	3						730	2.0		100	99.	× 11	2.	100	- willie					

13) - Summarizing the Balance:

Attached Table 1, shows a comparison between the monthly balances of both plants.

14) - Differences in Operating Results:

The differences for the month of April are taken as an example, from which we get a difference in the available oil yield of

This difference of 119 kg may be explained as follows:

e)	varying c-content of coal: 82	- 83	a haray ask	والمرافية والمستندوة	والهرار ما جم	and the second	O k	-
b) variable conversion: 91.5 - 96	٠5	de de la company	িল জোগত লাগী প্ৰকাশ কৰিছেল	2	5	0 "	
c	variable losses in residue pro	cessi	ing					
	(lower conversion, higher ash)					!5 "	
ત) variable gasification and inde	termi	lnabl	.8				
	gas and oil losses						8 "	
е	variable gasoline concentration	n in	oil	yiel	ì		7 11	Y I Jaka
	" lub. oil "	11	13	11			5 "	

Abt. 115 kg.

TABLE 1

San	Daylar	PÖLIT	z			(Belsene	ERG
Month, 1942	Jan.	Feb.	Mar.	April	Jan.	Feb.	Mar.	April
Pure coal/kg Conversion/s Theoret. Liquef/kg Gasific. based on	1000 91.5 867	1000 90.5 866	1000 92.2 882	1000 91.7 886	1000 96,4 931	1000 96.5 935	1000 96.0 926	932
C converted/% Gas / Oil loss indeterminable/% based on C-converted HP-011 Yield/kg Loss in residue	34.6 2.6 544	35.4 3.0 533	32.4 3.1 569	31.0 4.0 576	26.4 5.2 637	6.7 641	25.7 4.5 646	25.6 4.7 649
processing, based on HP-Oil yield/\$ Available oil yield	13.2 472	13.9 459	12.7 497	15.9 484	7.7 588	8.72 585	7.0 601	7.1 603
Aviat. gasoline yield					vower of the	87%	25 24 6 1 2 8 2 8 4 1 4 1 2 8 2 5	

880 T-353-1

> W.M.Sternborg June 1947

Two Papers on the Effect of Nitrogen Contents on the Solitting Properties.
From Dr. Pier's Files

EFFECT OF ADDED NITROGEN COMPOUNDS ON THE SPLITTING OF MINERAL OIL AND GASOL OVER 6434 CATALYST.

High Pressure Experiments Leuna, 558

r.

April 19, 1943

Summary

It has been found in the study of the effects of nitrogen of the oils upon their splitting properties, that the prehydrogenated brown coal and bituminous coal middle oils from low temperature carbonization were still readily hydrogenated with a considerably higher nitrogen contents, than the prehydrogenated middle oils from bituminous coal tar or from bituminous coal or brown coal liquefaction products. The assumption was here made, that the nature of the nitrogen products exerted some influence.

In order to get an insight into this question, a number of splitting tests were run under strictly comparable conditions, but with the addition of certain amounts of nitrogen in the form of different compounds (dibutylamine, aniline, n-dimethyl aniline, methyl naphthyl amine, pyrrol, pyridine and quinoline). No mpthenic nitrogen compounds or saturated heterocyclic compounds have so far been

The differences in the specific splitting interfering action was so slight, that the effects mentioned above could not be attributed to the individual nitrogencompounds

/s/ Gunther.

.... The conditions under which the effects of nitrogen were studied were as follows:

> Type of converter: 50 ml converter with upward flow 6434 T pills, 50 mls = 40 g. 250 atm gas (= abt 245 atm H₂) 19 mv = 373° C Catalyst: Pressure: Temperature:

1.5 kg oil/li catalyst/hour = 75 g/hr. 2.67 m²/kg = 200 li/hr. Thruput Gas : oil:

011:

Additions

Redistilled P 1203 gasol, -325° C (Bruchsal) produced 8/25/42
0.75% CS2 / 0.015 % N in the form of the compound studied.

The following organic nitrogen compounds have been studied: dibutyl amine; aniline; methyl naphthaline; pyrrol; pyridine; quinoline; i.e. aliphatic nitrogen compounds, aromatic nitrogen compounds with the N atom in the ring, and unsaturated heterocyclic nitrogen compounds; but not maphthenic and saturated heterocyclic compounds.

The tests were always first run for 2 - 3 days without the addition of the nitrogen compounds. In the individual tests 64, 62, 63, 66, 67, 69 and 67% -150° gasoline were obtained in the catchpot. These results were in good agreement among themselves.

At a continuation of the above tests, the compounds of nitrogen were added to the starting product, and the catchpot was tested daily for the next 5 days for its content in the -150° fraction. After these five days, the addition of nitrogen was again suspended, and the gasoline determinations made in the production for the next three or four days. The results are entered in table I and evaluated on Table II. The N compounds are arranged in the table in the sequence: alignatic N compounds, aromatic amines of increasing molecular weight, unsaturated heterocyclic compounds of increasing molecular weight. Towards the end a test was run with the 8797 catalyst (terrans-FeF3) with the addition of aniline. The addition of nitrogen compounds eaused a reduction of the amounts of gasoline produced to 30 - 55% of the original value (Column K II/K I, table II). The concentrations rapidly increased after suspending the addition of nitrogen, and again reached the values between 78 and 102% (K III/K I, table II) of the original concentration; i. e. while the bases present with the splitting catalyst did result in a reduced amoung of splitting, no harm was done to the catalyst. In addition, the values K II/K III are also given in the table. The average of K II/K I and K II/K III (i.e. the ratio between the gasoline concentration during the periods before ani after the addition) is a measure of the interference with splitting of the nitrogen compounds used.

Attempts to systematize the information were unsuccessful. When examining molecular weights, we do notice, that substances with the lowest molecular weight have the least splitting-inhibiting action, those with the highest molecular weights the greatest. Other values, however, in particular dibutyl amine and aniline do not occupy their proper places. Neither can any system be obtained by arranging the compounds by their chemical characteristies. It is however worthy of notice, that the heterocyclic compounds do not have the same splitting-inhibiting action as the compounds with nitrogen in the side chains.

The catalyst 8797 seem to be somewhat more sensitive to nitrogen, than 6434.

In view of the relatively low splitting inhibiting action of nitrogen on the B products from the bituminous and brown coal low temperature carbonization tars, it might be desirable to run some tosts with naphthenic nitrogen products (of the hexahydroaniline type), also with saturated heterocyclic compounds (pyrollidine, piperidine, etc.). Dr. Eueren and Dr. Wittmann supplied us with the nitrogen compounds.

Table 1

Splitting of Brushaal Gagol, over the catalyst 6434 with the addition of different nitrogen compounds.

1.5	II on 5th	٤
1.0 2.0 3.0 4.0 1.0 1.0 2.0 3.0 4.0 59 64. - 4.9 4.6 38 2.7 3.2 58 66 63 56 37 36 28 27 66 66 - 67 71 66 44 28 67 68 - 64 69 4.7 34 36	3. 4. 5. 27 32 38	I concentr. ILL on last day
59 64 - 49 46 38 27 32 59 62 62 56 43 38 23 22 58 66 63 56 37 36 28 27 67 67 77 66 47 34 36 67 68 - 67 67 47 34 36	27 32	m
59 62 62 56 43 38 23 22 58 66 63 56 37 36 28 27 65 66 66 67 71 66 44 38 67 68 64 69 47 34 36		59 99 6
58 66 63 56 37 36 28 27 65 66 6 57 67 72 68 27 67 68 5 58 57	8	28 45 43 54
95 75 77 69 79 89 49 64 65 77 89 64 65 65 65 65 65 65 65 65 65 65 65 65 65	শ্ব	6 53 53 55
96 76 17 69 79 - 89 19	3	42 56 58 =
	**	43 46 53 50 52
유 유) 26 30 26	39 60 60 66
66 55 31 29 24	ି ୧၃	38 61 62 =
P 1203+0,100% Aniline 50 57 47 28 18 19 17 1 7 7 0 0 19 17 1 1 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P	28 50 ° °

3.1

mination of Results Tabulated in Table I

					144	2		TLL
Nitrogen compound added	Mol.s Welght	Garoline condent at start of test P 1203 alone	demoline concentration in catching at at start of at end of test test test poriod with addinalone alone tion of nitrogen compound	at end of test P 1203 alone			829 829	KI
0,1,0% Dibutylacino	129	79	SC	99	. 55	75	.55	102
0,100%/Aniline	S	79	8	75	32	37	35	87
0.130% N-Dimethylaniline	7	8	77	55	38	4	7	87
0.157% Mothylnaphtylamine	157	***************************************	82	58,	8	*	33	æ.
0.072% Pyrrole	<i>1</i> 9	59	29	52	7,	8	જુ	78
0.085% Pyridine	62	9	8	79	ব	4	9	66
0.170% Quinoline	129	5	7	g		39	38	93
0.100% Aniline (ontalyst 8797)	83	57	T.	50	R	76	32	88 88
				The same of the sa	The particular of the last	-		The second secon

883

884.

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV. T-353-2 W.M.Sternberg May 1947

EFFECT OF THE NITROGEN CONTENTS ON THE SPLITTING PROPERTIES AND THE DETERMINATION OF THE NITROGEN CONTENT.

High Pressure Experiments Leuns, 558 'April 19, 1943.

The nitrogen content is one of the factors affecting the splitting properties of the middle oils. We have selected the concentration of the fraction boiling -150° as a measure of the splitting properties of an oil, benzinated under some specific experimental conditions. These experimental conditions were as follows:

Type of converter 50 ml. converter with upward flow.

Catalyst: 6434 T pills, new catalyst.

Pressure: 250 atm = abt 245 atm partial pressure of H2

Thruput: 1.5 kg/li catalyst/hr = 75 g/h.

Gas : oil 2.67 m³/kg = 200 li/hr

Sulfur addition to oil: 0.75% GS2

Temperature: set to obtain about 5% gasoline -150° in the catchpot.

The splitting property is then obtained from the concentration found and the temperature by dividing the concentration by 1.2 for every 1/2 mv above 19.5 mv (or multiplying by 1.2 for every 1/2 mv below 19.5 mv).

We consider splitting property above 50 as good.

Fig. 1 and 2 show the splitting property of a number of cils in relation with the analytically obtained Kjeldahl nitrogen values, or the so-called "basicity". No regularities could be observed in the Kjeldahl nitrogen, but the basicity values do nevertheless permit us to recognize some relation to the splitting property. The following figures were obtained:

Besici	ty	Splitting
(methyl	orange)	property.
0.0 to	1.0	65 - 80
1.0 -	2.0	50 - 80
2.0 -	3.0	35 - 65
	5.0	30 60
5.0 -		20 - 55
8.0 -	15.0	5 - 40
OVER 1		0 - 20

The scattering of the results (width of the band in the diagram) follows from:

1) The oils included in the diagram are of the most diverse origin (high temperature coking tar, bituminous coal liquefaction oil, brown coal liquefaction oil, petroleum A middle oil, liquid phase middle oil from petroleum distillation, cracking residues and DED residues, but not low temperature carbonization oils of bituminous or brown coals, because somewhat different relationships exist for the prehydrogenation of the latter).

- 2) The oils differ occasionally greatly in their boiling point curves, especially the boiling end point, aniline point, phenol content, and proportion of unsaturated.
 - 3) Limits of reproducibility of a splitting property test.
 - 4) Limits of errors of the analytical determination of basicity.

On the strength of the experimental material obtained in small scale runs at Ludwigshafen we consider basicity a suitable factor to evaluate the splitting properties of an oil, in line with other analytical data, such as the aniline point, phenols, etc. It may also be used for the control of efficiency of prehydrogenation.

Different methods have been proposed for the determination of the nitrogen content of oils, none of which have proved acceptable, except a modification of a method developed in Leuna.

Kjeldahl and Dumas methods for the determination of nitrogen in middle oils give no concordant results. The scattering of the nitrogen values with them is way outside the permissible limits. Thus, in pure cogasine (Fischer-Tropsch dissel oil) the following values have been obtained, all the samples being taken from the same flask:

Kjeldahl method: 0.006% N 0.011% N

Dumas_method: 0.071% N 0.140% N.

It must be borne in mind in this connection that pure cogasine is a nitrogen-free synthetic product.

The values obtained by both methods fluctuate by 50%, and moreover, the values obtained by Dumas' method are some 10 times higher than obtained by the Kjeldahl. The scatterings in the Dumas method are occasioned by a higher blanc value, necessitated by a larger weight of the sample, while in the Kjeldahl method the catalyst fails with the necessarily large samples used, which results in a variation in the losses of nitrogen.

The ter Meulen method is inapplicable to the determination of nitrogen in middle oils, because the middle oils are partially cracked during the determination, and some of the nitrogen fails to become hydrogenated. It can not be used for readily and completely volatile substances.

Neither does the diazo method give usable results, because different dyes are formed after diazotization and developing because of the different constitution of the bases to be determined; moreover, no diazotizable nitrogen is probably present in many of the middle oils.

Leura has informed us in January 1941 of a method for the determination of "basicity". Values obtained by this method are in a substantially better agreement with the splitting property. The directions for the determination of "basicity" by the Leura method is as follows:

500, 1000 or 2000 mls of the substance to be tested are shaken 6 times for 10 minutes in a separatory funnel with 10% sulfuric acid, using 5% of the

acid, referred to the product tested. After the separation of the layers, the acid layer is drawn off. The six extracts are collected in a distilling flask, which is connected to an ammonia distillation outfit. Ammonia and organic bases are then steam-distilled from a solution made strongly alkaline with sodium hydroxide, and the distillate received in N/10 sold.

When the distillation is complete, the acid in the receiver is titrated with M/10 NaOH, using methyl orange as an indicator. The acid consumed represents the total organic bases and ammonia present in the substance.

Calculations:

500 mls substance

5.5 mls N/10 acid. 5.5 x 1.7 s 18.7 mg (NH₃ + organic bases), calculated as mg NH₃/liter

This method therefore includes only the basic nitrogen of the middle olls.

Since the receipt of the directions, the method has been used for the determination of nitrogen in the middle oils, but the resulte obtained by this method were also scattered.

We may show the reproducibility of the results obtained on two series of mixtures of middle oils, the basicity of which was determined. The starting oils were:

- 1. Coal liquefaction middle oil prehydrogenated over 7846 W (designated A. Nitrogen-poor).
 - 2. Bruchsal gasol 180 330° C (marked N; intermediate N content).
 - 3. Teitbrook gasol (marked R; high in nitrogen).

The two tables below give the values found in the determination of a series of mixtures:

I. Series of Mixtures.

011 : Used	"Basicity" found, mg NH3/11	ng NB3/ 11	aver.	Fract. aver.	Average Deviations from the average
1000 mls R 800 mls R + 200 mls A 600 mls R + 400 mls A 400 mls R + 600 mls A 200 mls R + 800 mls A	48.61 46.61 43.99 4 32.71 37.11 42.8 28.99 28.99 28.1 19.61 20.31 19.6 10.91 11.99 10.7	42.2) 42.0	44.7 36.2 27.6 19.1 10.5	74.7 27.5 19.8 11.2	
mis R + 850 mis mis R + 900 mis mis R + 950 mis 1000 mis	10,2; 7.7 6,8; 7.7 13,4; 7.7 2,4; 2,1; 1,6		* 0 4 % 4 6 % 0 %	2,00 2,00 2,00 2,00	0.5 6.9 6.9
II. Series of Mxtures.			1900-1900 A. V. S.		
1000 mls N 750 mls A 500 mls A 500 mls N + 500 mls A 250 mls A 750 mls A 7000 mls A	16.25 16.9 17.35 17.7 11.1 7.5		16.6 13.0 9.3 5.7	16.6 17.5 11.1 7.5	. 00,3 4,65 1,8 1,8 0,3

The "basicity" of the two series of mixtures should theoretically be located on a straight line. The two curves (sheets I and II) give the deviations from the theoretical values.

The potentiometric titration of the bases in the distillate gives information on the principal causes of the scattering of results mentioned above. Fig. 3 presents the course of titration of 1000 R, as well as the titration curve of the coal liquefaction middle oil of Scholven. The two curves have the same in commons

- 1. A strong change in the slope is found at pH 2.5, which is certain to have been caused by an equivalence of the acid and base. The point of equivalence is therefore considerably different from the point of inversion of methyl orange, and when titrating with methyl orange as indicator, only part of the bases are indicated. The arrows drawn in Fig. 3 represent the titration values obtained in titration with methyl orange.
- 2. The curve does not represent the titration of a single weak base with a strong acid, but of a mixture of bases present.

The law of mass action gives the following relationship for the equivalent point of a weak base and a strong acid:

where pB is the negative log. of the dissociation constant of the base KB, and c the total salt concentration.

Potenticmetric titration permits therefore the calculation of the dissociation constant of the base, or, conversely, when the dissociation constant is known, the concentration of the hydrogen ion at the equivalent point can be calculated.

For the titration shown in Fig. 3,

pH = 2.5

and Kp is therefore 10-11.

Bases with a dissociation constant of $K_B = 10^{-10}$ can be titrated with indicators like dimethyl yellow, thymol blue or Tropeclin 00 using a N/1 acid solution, with an accuracy of about 15, while with a N/10 acid solution the errors made will amount to 10%. Bases with still smaller dissociation constants can therefore no longer be titrated with indicators.

The middle oil bases must therefore be titrated potentiometrically with N/1 acid, because with N/10 acids the equivalent point is located almost in the pH range of the dilute acid, and the change in the potential becomes very slight. The two series of mixtures were therefore titrated potentiometrically with N/1 acid. Fig. 4 shows the titration curves with the mixture series A-R.

The table below averages the values found in the two series of mixtures:

Series of mixtures A-R

	"Basicity" found,			De vi ation f	roin
Oil used		Theoretical	the section of the section of the section of the section of the	and in condition about the first the property of the	and the second of the second o
1000 mls R	67.1; 66.3		2 2 3 3 3		Sanda and Sanda
750 mls R + 250 mls A		52.1		€ 0.6	
500 mls R + 500 mls A		− 37 . 6-		0.2	ent la production
250 mls R + 750 mls A	22.1	23.1		1.0	
1000 mls A	8.5				
Series of Mixtures A-M:					
1000 mls M					
750 mls M → 250 mls A		19.9		0.5	
500 mls N + 500 mls A		16.2		0.1	
250 mls M +750 mls A		12.4	i de la composition de la composition La composition de la	0.5	
1000 mls A	8.5			-	

The results agree well among themselves, but it must be remembered that the evaluation of such curves has so far not been done either theoretically or experimentally. Fig. 5 shows the characteristic differences between the titration curve of a single base and the titration curve of a mixture of bases from the gasol Reitbrook. A distinct change in potential (inversion point) is observed in the titration curve of aniline (dissociation constant $K = 3.5 \times 10^{-10}$) which permits a definite determination of the endpoint. 50 mls aniline were taken (N/10) and correspondingly 85 mg HH3 were found. In the titration of the mixture of bases from P 1338 there is only a change of slope, which permits a comparison between different middle oils.

Three variables enter the titration curve of a mixture of bases, namely the dissociation constants of the individual bases, their relative proportions and their absolute concentrations. A theoretical-mathematical treatment of such titration curves has not so far been done. The experimental investigation of this problem will be continued at the proper time.

We may mention in addition that the endpoint value obtained with a potentiometer are always appreciably higher than obtained by titration with methyl orange. The results obtained potentiometrically and with methyl orange are presented in Figs. la and lb at the end of the article.

DIRECTIONS FOR THE DETERMINATION OF "BASICITY".

The material to be tested is washed three times in a separatory funnel with vater (oil: water = 1:3). The layers are separated and the material is distilled, collecting the cut from 150 or 180°, to an end point of 325 - 350°, depending on the origin of the oil.

1000 mls of the middle oil are vigorously shaken in a shaking machine 6 times with 50 mls of 10% sulfuric acid for 10 minutes. The acid solution is drawn off after the layers have separated. The six extracts are combined in a distillation flask, which is a part of an ammonia distillation outfit. The solution is made alkaline with sodium hydroxide and the organic bases are distilled over with steam into a receiver containing 50 mls N/1 sulfuric acid. After 30 minutes uniform boiling the distillation is interrupted. The acid in the receiver is back titrated potentiometrically with N/1 sodium hydroxide. It has been found advisable to finish the titration of the lest 10 mls of NaOH using

a microburette and adding 0.1 ml at a time to the endpoint if the basicity is up to 100 mg $NH_3/11$. The electrodes of the potentiometer are antimony and a N/1 calomel electrode. A very sensitive galvanometer with compensation—
connections is to be used as a zero point indicator (sensitivity about 10⁷ A;
i.e. Pehavi). The titration curves are evaluated graphically, by plotting
on a system of coordinates the mls NaOH added against the pH readings. The
50 mls N/1 sulfuric acid need not be accurately measured because the endpoint
of the titration is characterized by pH = 7. (The basicity is the difference
between the volumes of NaOH used at the inversion point and at pH = 7. Translator)

Calculations: mls NaOH used x 17.0 = basicity of solution (in mg NH2/li)

With high-nitrogen oils an emulsion is frequently formed during shaking with 10% sulfuric acid, which can not be broken. Premixing the oil with n-heptane in preportion of 1: 3 has been found in every one of the cases encountered to be effective.

Results: It has been found that potentiometric titration gives comparable results in nitrogen determination ("basicity") in middle oils, with scattering limited to \$1 mg NH3.

/fkp

RELATION BETWEEN SPLITTING PROPERTY OF OILS AND THEIR KIELDAHL NITROGEN CONTENT

RELATION BETWEEN SPLITTING PROPERTY OF OILS. AND THEIR BASICITY

U. S. BUREAU OF MINES HYDRO. DEMON. PIANT DIV. T-354

KCBraun 5-6-47

893

Saving Bolybdemum in the Liquid Phase High Pressure Research, Ludwigshafen, 3 February 1941

At the present time, the raw materials available in Politz, bituminous coal tar pitch, gas producer tar, and bituminous coal tar oil are processed in a mixture of 1:1:1 to heavy oil in a 10 Ltr. converter above 325°C with 2½ iron-titarium-Grude (coke). According to results obtained to date, it appears possible to process this mixture with a space-time thruput of 0.5, a reflux of 1:0.4 heavy oil (light oil bottoms) and 1:0.3 letdown. The heavy oil reflux is necessary to be able to control the converter at a temperature of about 484°C required for the conversion of solids and asphalt. The new letdown obtained in quantities of 15 - 20% of the fresh oil could be carbonized without any trouble in a small ball kiln. The attached Table 1 shows a comparison of the raw material and the operating method with those formerly used and Mo-catalyst.

Former experiments with bituminous coal tar pitch (17% solids) in a 1 Ltr. converter at 600 atm yielded 0.36 middle oil with Mo-Grude catalyst + Cl, and 0.21 - 0.26 with FeS-catalyst (sulfured laxmass), or a yield lower by about 30 - 40%.

An experiment with bituminous coal gas producer tar residue, specgravity 1.085/100°C, 7% solids, 33% asphalt and 7 available N/100°C, ran for 2 weeks without any difficulty, after the letdown reflux had been increased to 1 part for each part fresh oil feed. The catalyst used was 1% Grude with PeSO₄ and O.2% Na₂S. It should, however, be noted that this tar residue is easier to work than coke oven tar pitch.

In summary, it may be said on the basis of small experiments in 1 and 10 Ltr. converters that the Folitz bituminous coal tar nixture, which contains only 1/3 bit. coal tar pitch, can be processed with iron catalyst without molybdenum. It is probable that with the present iron catalyst the yield will be decreased at least 20%.

On the basis of other experiments in a 10 Ltr. converter it appears that this tar mixture could be added to the coal, about 15% of the coal, without decreasing the yield.

/fkp

<u>Table 1</u>
Processing Bituminous Coal Tar Pitch

-2-

Catalyst	Mo-Grude	Fe-Tit-Grude	Fe-Tit-Grude
Raw Material	Ruhr Tar Mixture		Pölitz
Properties:	area et alle le		
Sp. Grav/100°C	1.062	1.062	1.104
% Solids	8	8.1	12.9
% Ash in Solids	4.5	4.5	4.8
% Asph. in Oil	26.7	26.7	16.9
% -325℃ in Oil	2.4	2.4	9.8
Thruput	0.64	0.62	0.5
Letdown Reflux	and and in the second and and the second and an action of the second second second second second second second	and the contract of the second of the contract of	est in de l'independent interview de la proper de la company de
% of Fresh 011 Feed	0	0	- 40
Heavy Oil Reflux,			
% of Fresh Oil Feed	50	50	30
Converter Temp. OC	478	476	484
Catalyst Quantity, %	1.0	1.5	2.0
Yield (gasol. > mi-oil			
+ Heavy Oil)	0.51	0.48	0.4
L.T.C. of Letdorn			
in ball kiln	not possible	not possible	
Converter	411	411	411
Date -	Sept. 1940	Sept. 1940	Feb. 1941

U. S. BUREAU OF MINES HYDRO. DEWON. PLANT DIV.

T-355

KCBraun 5-6-47

Using 700 Atm. in the Vapor Phase
at Blechhammer Extension II

(Discussion at Welheim, 29 January 1941)

By Dr. Walter Kronig, Schlesien-Benzin, 29 January 1941

Dr. Kronig pointed out that benzination in Blechhammer I had been definitely set 6 300 atm, and that this could not be changed, but that the question of 300 or 700 atm in the vapor phase was still open for Blechhammer II. This question should be settled not later than April 1, 1941.

For extension II were available 120000 t liquid phase gasoline to 325° C, of which an estimated 48000 t to 200° C.

Dr. Winkler of Ruhrol declared that this quantity was about right for 2 double aromatization converters, though the high proportion of liquid phase gasoline in the injection was a disadvantage.

To this Dr. Krönig remarked that it appeared fundamentally possible to make an exchange between extensions I and II in such a way that extension II would supply liquid phase gasoline to extension I and extension I supply extension II with a corresponding quantity of middle oil. The limits for such an exchange are given by the following considerations:

- 1) In extension I the quantity of liquid phase gasoline must not increase so much and the quantity of middle oil drop so much that the two double 6434-stalls will be underloaded.
- 2) The shifting between gasoline and middle oil in extension I must not go so far as to reduce the anti-knock value of the gasoline from extension I to any extent.
- 3) The exchange must not go so far as to reduce the fraction of heavy gasoline available in extension I for DHD too much.

It may be assumed, without making detailed investigations, that the liquid phase gasoline fraction to 125°C from extension II, which amounts to about 60% of the liquid phase gasoline to 200°C, 29000 t/arm. more or less, can be exchanged for middle oil from extension I. From the standpoint of distillation also, cutting out the fraction to 125°C could be done. Dr. Krönig promised Dr. Winkler to notify him, if an exchange to such a degree were possible in I.G.'s opinion. Dr. Winkler would then discontinue his small experiments along this line. Dr. Winkler will also investigate one 10 Kg sample each of liquid phase gasoline and liquid phase middle oil obtained from running Upper Silesian coal to fuel oil at ludwigshafen, particularly for their phenol content, since phenols in higher concentration, especially carbolic acid, damage the catalyst, in order to establish a basis for his opinions. On the basis of Dr. Krönig's data and the results of the then discontinued experiments, Dr. Winkler will prepare a flow sheet for extension II at Schlesien-Benzin, which will include all important details for such a decision.

Dr. Winkler submits the following data on VT-706-b, end point 165° C, from pitch liquid phase middle oil @ 700 atm and stabilized in Scholven. (The gasoline is refined with 0.5% of 96% H2SO, and then washed with a 10% solution of caustic soda. It is then redistilled to 3% residue, which is returned to the vapor phase):

	0.000
Sp. Grav./15 ⁰ C	0.800
Turbidity point	=60₀0 =4₀0
Beginning of crystallization	
Vapor pressure Initial boil	0.40 atm 42 ⁰ 0
현실 사용 전에 가는 아니다. 그 모든 전하는 그렇는 그는 그 바람들은 그리다가 지하는 것은 하라면 가입니다.	
10%	75.5°
208	83,50
30%	91.00
40%	97.00
50%	103°
603	1130
ika di katan tingka makan pertahan di 1705 kengani dan terbahan dan di menganbang berandi kanadi terbahan di 200	125° 137°
80% 90%	153.50
95 %	164.50
Boiling end 98% 0	1700
Residue	0.9%
Reaction of residue is neutral.	. Uo 7 <i>p</i>
100° point	45%/vol.
Kennziffer (Nean boiling point-?)	
Aniline point	114.1
	-4.5°
" (dearomatized)	+47.50
Corrosion test	negative
Doctor test	
Glass dish test	0.02 mg
Bomb test	0.12%
Resin not absorbed (permissible)	18:4 g/100 cc
(limit is 10 mg)	8.6 mg/100 cc
Lead sludge	12 mg/200 cc
Iodine number	2.4
Aromatics - Olefins	51%/vol.
Kaphthene	37%/vol.
Paraffins	12%/vol.
Elementary Analysis:	
는 전문 C 보다 그 가는 가면 하는데 됐다.	88.38%
	11.61%
	0.0072%
Octane number, M.M. without lead	81
with 0.05% "	87.5
0.12%	91.0

Dr. Winkler recommends that Schlesien-Benzin get in touch with Dr. Dehmlow of the ministry of aviation in Berlin regarding the evaluation of the Welheim gasoline, as well as CV2b or DHD gasoline. As far as Dr. Winkler knows, the CV2b from Scholven could not meet the specifications of the air force with respect to iodine number, resin test and light stability. DHD gasoline could not meet the lead sludge test. This group of high test fuels must basically have a minimum aromatics content of 50%. Welheim gasoline is added

to the 87 octane gasoline to the extent of 70%, so that the aromatics content of the mixture is 40%.

Welheim gasoline is produced in a stall containing 10.5 m² catalyst. The stall consists of:

2 heat exchangers 1 gas fired preheater, with 23 hairpin coils (fuel gas consumption = 4000 m³/h @ 5500 kcal).

2 converters
1 @ 900 mm Ø x 12 m long, and
1 @1000 mm Ø x 15 m " .
Both converters have standard insulation.

The converters have no trays or baffles. Nevertheless, the temperature distribution in the converter is excellent. With an injection x) of

9 t/h fresh oil : B-middle oil = 1:1 $\frac{xx}{2}$ 28000 m³/h inlet gas (72-74% H₂ = 450 atm H₂ partial pressure) 5000 m³/h cold gas

the converter temperatures were:

Converter I

Elements 1, 2, 3, 4, 5, 6.
Willivolt 25.1, 25.5, 25.7, 26.2, 26.2, 26.2.

Converter II

Elements 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101. Hillivolt 25.0, 25.1, 25.5, 25.8, 26.0, 26.2, 26.0, 26.2, 26.0, 26.2, 26.0.

- x) Triplex beam pumps were formerly used. These were entirely unsatisfactory because they could not be satisfactorily regulated. At present, 5 m3 paste presses are used, which, though more expensive, can be accurately regulated.
- xx) The reflux is held around 1:1, if possible, because the converter operates most uniformly with a strong reflux, even when starting a new catalyst. This is also important because of the phenol content, which should not exceed 10% in the injection, since a higher content deteriorates the catalyst appreciably.

Controlling the temperature with a thruput (space time) of 0.4 offers no greater difficulties than a 5058 stall in operation for some time. Within 2 years of operation the stall temperature has risen beyond control only 3 times, in each case for mechanical reasons not connected with the process. With an injection of 10.5 t/h the inlet gas is 28000 m²/h. the cold gas 6000 m²/h. The cold catch pot product concentration is 50-55%/vol. (Abstreiferkonzentration). In the benzination of liquid phase gasoline + liquid phase middle oil from the pitch stall the high pressure losses are 12.4%, the losses in stabilization and transportation to Scholven 3.1-5.1%. Dr. Winkler will make up a C-balance, from which the accurate composition of gasification, including stable gas, can also be determined. In previous experiments the composition of the gasified C, without stable gas, was as follows:

1			1.0						115		41.00		1. 1.			7.		3.0			-	24.00		1.16	753	30.00	Personal Property	4.7				7.0	3 - 1 ()	_::::::::::::::::::::::::::::::::::::::	. iferen		100
1	O. Oak					14.70		resur.					100	40.00	150			F 140		110	20.00	22.30		100	11.	1.30	Tarre Yes	1950	100	2.00	1.5	Section 1			35		473
100	100		10.134	2000				2.00	12.30	A				100				_		VEV.	Section 1	1.00	1 44 - 12		J. Sec. 1				the rest		1 4 4 4 7		42.00	4.00	17.7		11.5
132									The state of		17 . 17			A	7.5		~~	400			100		18.00	4.7						A 31.		1000					
	4.5		1.00(0)		1.0			5 15		14.	1 10		75				25.70	51.00	1. 16.	3.20					5 7 5	16		1									-
1			2	7. 4. 10. 60		200	100	200	100	31.5				C 10	. Cr	100	Sec.	200	11000	1.00	G = 52		100				A 15 2 63		1577			200	100				16.6
200	1.1	18.112	11.0	1.5		100		100			3-5-4	1.75	100		0.3						200			Sec.		4.04			Sec. 25	200		1 3 6			100	11.	
		3.5						17.474			11.5	would.		4		110		3.1	1.		2.1	1150		Sec. 15.	200	100	100			3.14	11.14			14.0	50.5	10001	er.
34		- 0	1.1	er (60)			100	40.5	-	243			1.0					2.46									Win en		1 1					1000		100	
			100				40.00					1	120		44.			100	200	200				A 144	-		1200	2000	4.11.00								
17				11.0	2.0			310	٠.		100		1.00	a							100		200	1.29	11	~	A 1/2	100		5 800			~~	-			
				100	13.15	4. 3		050		100	100		1	2.00		114 4 3			1.00		1.1	1	1.34	3.7	1 100		1. 17.	51.0		3.50	4. 94.6			•		1.00	
			100	7	1	1000		2.5		100			40.00	12.00				-	Sec. 2	0.00	*****	145 155	27	2.1	100				100		transition with	Sec. 11		-	400	100	
15		1.12	100	118.15			7.0			7.00		1					11.1	. 45		0.5	Serve					1.37	1.75		a comme	2.15		100		100		100	
				A 13. 10.	7.5	100		de de			A 100 M	Vista.	777	5 10 1		وهوا والما		20.00	to the		N 8 2		1. 2.						15	Shire	45.00	7		er att		04°	
		100			1000	15.0	-100	15.50	1 1	1					71.0		1			7			1.0	25277	7.					11		100.0					
ö.	111800	200	Syrake.	1.00	Carrier.	A	Seine		442.54	77.75	440.00	175.763	20.00	1200	der.	200		2766	15.10		C 5000	ca) a fi	· 5 W ***		dent	10.	5.7	40.00	200	Sec. 16.	12.37 5	100	to the re	distant	diam'r.	Berry M.	
					150			200	4.0			to see and			2.0	100		200		1.	344.34	200			_		494		7	1,000	100			-	A 18.00	ed at you	
	~ /		•						•		4.0	2.0						4.4	are it			110 7	100		-27	1.12		4 795			100					100	
+10	17	٦.		N. M. r.			and the fi	× 2	-	- 1				49.50	10.00		11	^	3	3.	5.4.70	0 m c				-0		4.11	100	3: 35	2.76		vo	•	A. 12.60	4	28.5
	_		2		27.00	A				-		100	1000			1.		•				200			21.00	7.	1400				2.2.5	100	200			-	4.7

The H_2 consumption is 700 $IG = m^3/t$ (0 735 mm & 15°C) of unstabilized gasoline. There is no circulating gas wash. On the contrary, the aromatization stall acts as a gas wash for the liquid phase stall, since it is on the same gas circuit.

Dr. Winkler figures on a catalyst life of at least 1/2 year, possibly over 1 year. The longest catalyst life so far obtained in large scale production has been 180 days. A check of this catalyst in a small converter showed that it was still quite active. In any case, the deterioration of the catalyst is much less than with 7019 in Scholven. The catalyst is used in pills of 10 mm. It is practically free of government controlled metals. It would be supplied by Welheim. The cost of the catalyst was roughly estimated at about RM. 1500/m³. Its bulk weight (Schuttgewicht) is 0.65. Its strength is outstanding. The latest catalyst differs from that formerly used in that it produces gasolines rich in aromatics from the very start, while the former catalyst had to be run in for some time before it would produce highly aromatic gasoline.

To the question of using 700 atm vapor phase in peace time, Dr. Winkler declared that in peace time the gasoline would be cut off at 185°C. He was convinced that a premium would also be paid for its use in automobiles, compared to 70 octane gasoline, that Welheim gasoline to 185°C possesses benzene-gasoline blend quality (Aralqualitat) and is a desirable blend gasoline for Fischer gasoline as well. If gasoline rich in aromatics should really find no sale in peace time, there was always the possibility of producing H₂-rich gasoline with a different catalyst at a temperature of 22 mV.

Summary.

The discussion brought out that the use of 700 atm in the vapor phase would appear to be very advantageous for Blechhammer II, assuming that:

- an exchange of liquid phase gasoline and liquid phase middle oil between extensions I and II is possible without harming the requirements of extension I.
- 2) a high test gasoline able to meet air force specifications can also be obtained from Scholven middle oil @ 700 atm.
- the government (Reichsamt) is satisfied with the reduced quantity of isobutane.

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV.

KCBraun 5-7-47

Sulfur Balance in Hydrogenation Works

High Pressure Research, Ludwigshafen, 1 Dec. 1943

Attached Table 1 shows the sulfur processed in combined or elementary form in the various German Hydrogenation Works. Combined sulfur is found in the raw material and the liquid phase catalysts, elementary sulfur is added to the coal in some works and to the a and b middle oils, to the latter generally to the coal in some works and to the a and zeitz.

The total production of all hydro-works, expressed in auto gasoline, is 3,550,000 t/ann.

For each 100,000 t/ann auto gasoline, 5110 t sulfur is obtained, or a surplus of 4240 t, divided as follows:

1050 t in mater 2 gas for H2 prod.

2500 t-in-hygas, 1120 t-in residues mater & product, less 870 t for own use 8 2030 t

The sulfur from the water gas for H_2 production (Nullwassergas = ONG), the hygases and make-up water can be recovered = 3120 t. The yield is approximately 80% = 2500 t.

Table 2 contains detailed figures for the sulfur input in the raw material and catalyst and that combined with the residues.

TABLE 1
SULFUR BALANCES OF HYDROGENATION WORKS

Facinated for 1944

10 mm	Scholven	Galsenberg	Polits	Blechhammer Blechhammer	Lewa	Rhein- braun	Brüx	Bählen	Hagdeburg	Zeitz	Welheim	Probability of the control of the co
Production in t/smm auto gasoline	210, c no	. 300,000		430,000	530,000	215,000	395,000	200,000	190,000	265,000	125,000	51,000
Aydrogenation raw mater- isl	Bet. Coal	Biv. Coal	Bit. Coal, Pitch Tar &	Bit, & Br. Coal	br. Coal	Br. Cool	Br. Coal Tar	Br. Coal Tar	Br. Coal Tar	Br. Coal Tar	H. T. Pitch	Mi-Cile fr. Bit & Br.
Quantity, t/ena .	-460°000	595,000	Petrol 868;000	946,000	5,,470,000	465,000	500°C00	250,000	240,000	320,000	180,000	Gosl 57,000
Sulfer concent, %	0,73	0,65	0.56	0,63	5.4	± 0.45 ±	⊤ 0.39	1.5	1.5	1.5	6.8	0.15
Sulfur in ray mot?l.	J,360	3,840 <u> </u>	4,865	5,945	75,000	s,100.	3,950	3,750	3,600	4,800	1,440	85
liq. Ph. Cot. & quanti- tion, %/ann	Snor	AAOO FeSO, 5800 Bayerm. 1600 Swlfigr.	5300 FeSO, 13000 Bayerm. 1330 Sulfier. 3650 Cleaning	6750 FeSO, 8900 B. M. 2500 Sulfigr	125,000 , Bayeru.	23,700 Bayorz.	1,500 Grude-liron	500 Grude-Iron	500 Grude-Iron	GO	900 Grude-Iran	
Surfee ecologica is	and the second s	rene Tederal	Mass		en i de la companya da la companya d			6,5	6.5	0.5	6.5	
Sulfur in cat, t/ann Sulfur added as elemen- tery S (S f HeS) t/ann	1,320	1,590 1,900	1,700 . 1,670	2,440 1,425	13,500	5,550	100 4,060	33 = 1,200	33 1,200	80	\$0.	
Quantity OWG 5 Sulfer in OWG, % Sulfur in OWG, A/Ann	390 <u>-10</u> 6-3 0.3 1,350	800::10 ⁶ :: ³ 0,3 3,800	260x10 ⁶ x ³ 0.3 1,100	1160=10 ⁶ = ³ 0.3 3,420	1460=10 ⁶ =3 0.6 11,700	600x10 ⁶ x3 0,8 6,400	690:10 ⁶ m ³ 0.8 5,500	215x10 ⁶ m ³ 0.8 2,300	215 _{×10} 6 _× 3 0,8 2,300	175x10 ⁶ m ³ 0.8 1.850	100m10 ⁶ m ³	43 5 2.0 ⁶
- CCC, Afacty (Canton, Real)	minimal si (Bo masionisis)	······································	6,235	9,810	88,500	7,650	5,110	1,553	4,033	4,800	400 1,500	170 85
ose 30% Sal.) Salier incer with owe,	ಕ್ಕಿ ಜ್ರಾರ	10,530	9,335	13.290	100,200	1/5,050	11,610	7.283	7,133	6,650	1,900	255
Frire. Proline, t/ann Smilter in resid, 3 Suiter come in rega, When (y bit, ecal ter)	73,000 3,35 2,300	67,500 5.0 3,400	124,000 &.2 5.210	127,000 4.9 6.200	440,000 ⁸) 526 19,700	7 6,000 6,5 6,950	12,000 2.23 274	1,000 6,0 60	1,000 6.0 60		5,000 3,55 177 -	Creat Creat Article
Rocetuable S in t/cris	2,350	3,920	3,025	3,610	68,800	2,700	5,836	4,325	4,773	4,800	3,323	-85
Nacomerable S in m/arm	1.00	7,130	4,125	7,690	60,500	9,100	11,336	7,228	7,073	6,650	1,723	255
Out consumption, t/ann Recoverable 3 pr. 100000 t/ann (mithout 050)	1,220 1,130	1,900 1,310	1,670 475	1,425	13,500 13,600	5,550 1,250	4,060 1,460	3°770 3°500	1,200 2,500	1,850	_, 	167
7/812 (710) 010)		2,960		1,650	15,700	4,220	2,850	3,600	3,700	2,560	1,3:0	580

.

T=357 (Table 2)

	Ю.		10.3	٠.
 	***	-		٠.
	10			
		40.0	70.0	sec.

			Ship of the Control o			nd nyderthan den edd	N. April de profession de Cappa de paragrament accom,	The region of the state of the	and the second s	and the off-child being the	COUNTY BANKS IN LEWYS A PARENTE	LOUIST CLASS CONSTRUCTOR	
	Scholven	Celsen- berg	P81itz —	OHW	Leuna	Rhein- braun	Brlix	Bohlen	Magdoburg	Zeltz	Welheim	Lutzkendorf	Total.
in raw mat'l。方		0.65	0.56	0.63	5.4	0,45	ó.39	1,5	1.5	1.5	0,8	0,15	
t/ann per 100000 t <u>c</u> asolins	3,360 1,600	3,840	4,865	5,945	-75 ₃ 000	2,100	1,950	3,750— 1,875	3,600 1,890	4,800 1,850	1,440 1,150	85 167	110,735
in catalyst t/ann		1,280 1,530	760 1,700	1,385 2,440	14,150	975 •••	//9 5	33	33	enables on	60		5,812
in residuo t/ann	3,15 2,300	5.0 3,400	4。2 5 ₂ 210	4.9 6,200'-	5.6 19,700	6 _s 5 4 _s 950	2 . 3 274	6,0 60	6.0 60		3.55 173		31,731
100	1,100	1,130	815	1,440	3,720	2,020	70	30	32		341		
												(1)	

The Sulfur Situation in German Hydrogenation Works (condensed)

Louna Werke 13 Dec. 1943

An attempt has been made to report as exhaustively as possible on the input of sulfur in the raw materials, the production of sulfur or products containing sulfur, as well as the sulfur consumed by themselves, of German hydrogenation works. The report can make no claim for completeness, because it is very difficult to grasp and compare the different conditions in each plant to any extent. The purpose of this report was to determine as quickly as possible, whether the production of sulfur could be increased within a short time or whether requirements could be reduced. In addition, it was determined, whether additional sulfur could be utilized by the construction of new plants. The investigation was limited to hydrogenation works, though for Leuna the proportions applicable to other divisions were taken into consideration. Litsgendorf, which is mainly a Fischer plant, was also taken into consideration. It is proposed to make a separate report on the Fischer plants, though it is doubtful if appreciable additional quantities of sulfur can be obtained from them.

Works included in this report are:

- 1. Leuna
- Brabag Böhlen 2.
- Brabag Lagdeburg
- 4. Brabag Zeitz
- Scholven, Gelsenkirchen-Buer
- Galsenberg, Golsenkirchen
- Welheim (Ruhröl-Stinnes)
- Union Rheinische Breumkohle, Wesseling Bruz (Sudetenländische Treibkraftstoff-W) Politz
- 10.
- Wintershall, Lützgenderf, Krumap/Kerseburg Blechhammer (Oberschlesische Hydr-Werke) 11.

-In all works only raw material was considered, the sulfur content of which could be recovered. For that reason, the coal for power production was not included, because it would not be practical to recover the SO2 in the flue

In summary, it can be said for all hydrogenation works, that large quantities of sulfur, receverable in a normal way, have not been withheld from production anywhere to date. On the contrary, production within the period 1943/44 will run to about 72,000 t elementary sulfur, 12,000 t S in SO3, and 6,000 t S in gas cleaning media, or a total of about 90,000 t/enn S, of which about 90,000 t/ann will be consumed again in the plents. The additional production or reduced consumption in this period of time is about 17,000 t/ann S \(\frac{1}{2} \) SO3 = S. By comparatively little additional equipment, an additional 2,000 = 3,000 t/ann elementary sulfur could be recovered, by larger plants 7000-10,000 t/ann el. S, and between 6,000 and 7,000-t/ann SO3 -S by building wet catalysis plants.

The detailed figures are shown in the following tables:

1). Estimated sulfur production for 1943 to end of 1944.

	Elen. S t/ann	S0 ₃ -S V/aun	S in gas clean. media without coke oven gas. t/ann	Conc. liquor to Leuna t/ann	Addit. S consumption t/ann
Leura Bohlen Magdeburg Zeitz	48000 4600 3800 5900	8000 1450	2185 2400 1150		
Scholven Gelsenberg Welheim Wesseling	2300 2100	2100 420	150	890	.6000 2000 → 170
Brux Polits Lütsgendorf Blechbanner	5 2 00	660	The second secon		1700 - 3240

2). Additional production or reduced requirement in period 1943/44:

3). Quickly obtainable by comparati ely little additional equipment, which should be done in any case:

```
Louna 1000 t/ann S

Böhlen 320 " "

Zeitz 700 " " (present condition # 1200 S begin. mid-1944.)

abt. 2020 - 3000
```

4). To be recovered by building new gas desulfuring plants:

Leuna 2500 t/am S (perhaps not worth while)

Gelsenberg 1000 n n

Lutzgendorf 6000 n n

Sooo t/am S

T=357

5). Recoverable by building wet catalysis plants behind Claus fur-

	And the same and the same of the same	the state of the s				_		and the second of the second	a service to activities	West Course & Burney Warter
28	and the second state of the second of the second	CAZAR AM LANGUARDA	34 54 54 C Services	BERROTTIAN	arrander van		Total same and	2000		
90										
	n	3000 4	/ cn_			TO PRIMITE YEAR OF BUILDING			printer value in the	
	Böhlen	TE 10 0	ann SO3		and the seconds	and the second second	deservations.			and the property of the
, .		700	n the state of the	war and the			and the second second	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	all the state of the state of	ries a set freely visit in
	Magdeburg	100						A CONTRACTOR	100	
		3100	Trans. Da	Serie Ville					3 8 3 1 1 2 70 7	
	Zeitz		de la la companya de la companya	Acres Salaring	Adams Adams	A Section Section 2	and a some of the	No and Administra	Service of the second	And the second second second second second
Π.	0-1-1	1080		contraction in the	10-17-5				Lawrence Fire	
	Scholven	TOOO	Samuel Color		1.67	46.55	A 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VIII. TARRETT SE		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	W	3.200 ?	19 17	Skaller bever			F-0.22 () (27.72)			STALL THE TWE
50	Wesseling	2200 6							9-000680 1/04/49	
	7 114	1200	a n	A STATE OF THE PARTY OF THE PAR	Select Harry Same	Section of the second section of	Care Contract Contract	Section of section by the section		
4	Lutzgendorf	that the Level of the latest the	ajan tima lajan dastina astropia, se se timb	i na nago jou segue agla praegitational de	and introduction that the control of	ya ili bayasi daga kababa fasadan ya salit ili	لروا معاليك مع "الرائز بالالالام" الرادة	Carried and Commission of the	Section and the section of the section	
÷.	The second second second second second	Land Corn	7	dise of an arrive of	N. 53 Sec. 103 . 158 . 158 . 1	Continue party of the		"我们的是一个时间,		
- 7		こうりし てん	ann SO3		A Act of the	运动或用的电影			A STATE OF THE STA	1997年中央下海160g。

Special consideration is given the question; how can the sulfur in hydrogenation residues be recovered? Experiments to reast the residues for H2SO4 production or to liberate H2S by acid failed.

Experiments to dispose of Leuna L.T.C.-residue in the gypsum sulfurio acid process at Niedersachswerfen or Wolfen have not been made. The sulfur hereby recoverable would at most be 20000 t/am S, if all the sulfur could be recovered, and 11000 t/ann S by using the sulfide-sulfur. The experiments are to be extended to the residue from Wesseling and the bituminous coal residues from the Ruhr hydrogenation works.

The reduction of elementary sulfur consumption in Wesseling, Bruz and Politz, is receiving primary consideration in Ludwigshafen, where other catalysts and operating conditions are being tried out.

Furthermore, experiments are to be made to see if the recovery of $\rm H_2SO_4$ could not be increased by using brown coal multiclone dust in the $\rm CaSO_4 - \rm H_2SO_4$ at Wolfen from other works also.

Leuna

naces:

In the lower sulfur balance, other production divisions, such as nitrogen and methanol, which are closely connected with hydrogenation, were naturally also taken into consideration, since they participate in the production of sulfur to a considerable extent. In order to avoid possible fluctuations, the sulfur balance was adjusted to 1942. It will vary little for 1943, except for unavoidable losses due to repairs in the sulfur recovery plants.

Sulfur 1	n raw materials (total S) t/sun
1.	Hydrogenation 56811
2.	Gas Production 32886
3.	Concentrated liquor processing) 2743
	(Storier eservarerheitung

Total 92440

The synthesis gases required for the three operating divisions mentioned above are desulfured partly in an active coal plant and partly in an alkazid plant. The recycle gases originating in hydrogenation are also largely desulfured in alkazid plants before further processing. The H2S from the alkazid plants are conveyed to a Claus furnace plant, together with the H2S driven off in concentrated liquor processing and reduced to elementary sulfur, and the maste gas from the Claus

furnace is processed in a Peterson tower to 75% concentrated $\rm H_2SO_{L_2}$, with a yield of 9%.

Brought in S		92440 t/ann
Recovered: Elem. S over active ccal S in Claus furnace S as 75% H ₂ SO ₄ S in eatalyst	9395: t/ann 35473 " 7811 " 269 "	
S in amon-bisulfite	<u>56</u> " · · · · · · · · · · · · · · · · · ·	53004 t/ann
Losses		
a) - unavoidable 1 in processing cokes water gas 210, ash, sludge cir water 1500, in pure gases 960, errors 94.	c. ccol : 4864 t/ann	
2 in raw brown coal & Grude unusable treating gas, stage I 3830, ash, dust & to dump 2890.	I	ng ng mga kata at tang sajah mga mga mga gang tang at
3 in hydrogenation: hy-residue 19344, oil losses & pure gasoline 381	• - 19725 t/am •	
'A rest of thin gases: concentration 1085, repairs in circuit 72, in armon-sulfate 3 missing 1483		
Unavoidable lo	sses 34339 t/ann	34339 t/am
b) Conditionally recoverable Waste Claus gas for lack of co	oling	entige is the control of the control
capacity in HoSO, plant Sulfur in phenol treating gas	/1199 t/ann	하는 11 등 시간 10 등 전략 경험 1 - 12 등 전기 12 등 전략 12 등 전략 1 - 12 등 전기 12 등 전기 12 등 전기
Stage II. In pixed fuel gas	- 1058 t/enn 28/3	
	5100 t/ann	5100 t/am 92440 t/ann

The following may be said about the conditionally recoverable sulfur in Leuna, now going to waster

The Claus waste gas discharged into the atmosphere (uber Dach) at the rate of about 1200 t/ann sulfur, which will probably be increased to 2000 t/ann during the course of 1943, can be recovered by means of the increased gas cooling capacity added recently. On the other hand, this is offset, to some extent, by increased interruptions due to repairs of waste heat boilers and converters because no reserves are available. A remedial program is being prepared and the Reichsaut has

been advised of the present condition, thru which a loss of 2000 t/ann S must be expected in the Claus furnace and 1000 t/ann of acid by repairs on boilers.

The 1000 t/ann S as low percentage H2S in the II stage of the phenol treating gas (Phenolbegasungsgas), now being burnt in a boiler house, could be recovered, if a suitable line were laid. The iron for the line has been approved, but it has been impossible so far to get the material to build it.

The 2800 t/ann S in the mixed fuel gas, which is also burnt at present, could be removed from the gas and recovered, if a suitable plant were built. Since this quantity of sulfur is contained in a total of more than 900 million m^2 of gas, or only $3g/m^2$, only an active coal or dry cleaning plant can be considered, which will probably require considerable steal per t/ann S.

Proposals and Experiments for Utilizing the Sulfide-Sulfur Going to Waste in Hydrogenation Carbonization Residues

The problem to recover the approximately 11000 t/ann sulfide-sulfur contained in the approximately 20000 t/ann sulfur in the hydrogenation residue is of particular interest. The former suggestion to make this sulfur available for H2SO, production by reasting has been investigated in Ludwigshafen. These experiments, however, have not been successful, due to the low sulfur concentration.

The second suggestion, to recover the sulfide-sulfur as H₂S by the use of waste acid and convey it to a Claus furnace, has been thoroughly investigated at Leuna by extensive experiments. It was found that of the approximately 11000 t/ann sulfide-sulfur contained in 440000 t/ann sulfur residue, about 6000 t/ann H₂S could be recovered as 25% Vol. H₂S by using 18000 t/ann concentrated aqueous hydrochloric acid. This could be increased by 800 t/ann H₂S by processing another filter cake containing H₂S with an expenditure of 12000 t/ann concentrated aqueous hydrochloric acid. The hydrochloric acid could be partly replaced by H₂SO₂. However, there are nowhere near the quantities of waste acid available to make this scheme workable, apart from the equipment difficulties, which would have to be overcome by extensive experiments. For the cost of transportation media for waste acid and equipment for processing, an equivalent amount of sulfur could surely be made available elsewhere in a shorter time, e.g. from L.T. carbonization gases.

At the last meeting of the technical committee in Nordhausen a third suggestion was made to utilize the residue in the gypsum reduction to gas containing SO2 on the sintering machine in the new sulfur plant at Micdersachswerfen, whereby the carbonization residue could possibly be transported in the empty gypsum cars returning from Leuna. Since the L.T.C. residue contains a lot of iron, the additional iron, which, in any case, is required for the production of cement on the sintering machine, could, at the same time, replace a part of the reaction coke by the combustible constituent contained in the L.T.C. residue (?) and the SO2 content of the reaction gas could be increased by the sulfur content of the residue. Suitable samples of the L.T.C. residue have been sent to Lurgi. A sample of the residue has also been sent to Dr. Reissmann, I. G. Wolfen, for the same purpose.

II. Brabas Boblen.

Tars and oils are hydrogenated. The hydrogenation H2 is produced by gasifying Bohlan ASM-Grude.

The present rate of operations, after reopening the $\rm H_2SO_4$ plant, has been used as a basis for a one year sulfur balance.

The second of th
/ann_S
6870
and the country of th
6390
125
1385 + /enn

The sulfur constituent from the Grude, appearing in the Winkler water gas as H₂S, is removed about 1/3 by an alkazid rough wash and the rest in a dry cleaning plant.

The sulfur going into hydrogenation, which reappears in the rich and poor gas, is removed in alkazid plants.

The HoS recovered in the alkazid plants is processed to elementary S in a Claus plant, and the residual Claus gas is processed to 78% HoSO4 in a Lurgi wet catalysis.

The gas cleaning mass accrues in such a form that it can be delivered completely for roasting to the Heyden chemical plant in Dresden, where the sulfur is also processed to $\rm H_2SO_{A}$.

Considering the described operating conditions, we get the following balance:

Brought in S		화고 부모하다.		13385 t/ann
Recovered: as	EleS in Clau	a furnace.	4580 t/ann	
	78% H2SO/	- 1/	1450 n	
\$P\$ 1、 克尔尔大学 医二氯甲基酚 1、1000mm 1		開放日期 化抗量性抗体 医神经样的	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	n gas cleaning		<u> 2185</u> ", '	
and the second party and the second second second	المتناع في المناطق المناطق المناطق المناطقة المن	The state of the s	8215_t/ann	8215

Losses.

a) unavoidable
in multiclone dust and power plant ash, 2590 t/ann
in " dump 323 "
2913 "

pure gasoline 36, hy-residues gummed 225, sulfide and phenolate liquors 149, rest in hy-poor gas (fuel gas) 59, with pure water gas 33, H₂SO, plant stack 92, Winkler waste water treating II 120

714 t/enn

3627 t/ann

3627

b) conditionally recoverable
1. In the hy-poor-gas delivered to ASW
(power plant) as fuel gas, not desulfured,
which cannot be desulfured because of
overload or present location of the line,

323 t/ann

2. Part of the H2S obtained in the gas treatment (Begasung) of waste water is processed in a Claus furnace, another part, or 690 t/ann, is unfit for the Claus furnace and later goes up the stack after burning, but could be processed to $\rm H_2SO_4$, if sufficient capacity were available,

690 t/ann

3. The set catalysis plant, originally intended for Magdeburg, is too small for Bohlen. For this reason 580 t/ann S cannot be processed to acid,

580 t/ann 1593 t/ann

Total b)

To item b) above may be remarked, that the 323 t/ann in hy-recycle gas delivered to ASN may possibly be recovered with the rest of the recycle gas. Whether, and by that means, it will be possible to run the necessary line, is being investigated at present by Brabag. Similarly, Brabag is also working on rebuilding the overloaded Claus furnace, with yield of only about 80%, to increase the yield to 85 - 90%, whereby about 300 - 500 t/ann of the 1593 t/ann conditionally recoverable S would be obtained as elementary sulfur. In any case, only about 1000 t/ann could be recovered as H₂SO₄, if it were possible to push the wet catalysis plant or to enlarge it.

V. Hydrierwerk Scholven A. G.

Bituminous coal and gas tar are hydrogenated. The hydrogenation $\rm H_2$ is produced by coke gasification. Current daily averages were taken as a basis for the sulfur balance for the year.

Sulfu	r Input i	n Raw Ma	terials	1
Same of the second	Hydrogena	tion	The Healthan	an a sa
(Coke-0-lia	tergas (only H	₂ S–S)

t/ann 4980 _970 5950 t/a

5950 t/ann

The coke watergas and the hydrogenation gases are desulfured in alkazid plants, the H₂S produced, together with the hydrogenation water treatment H₂S (Begasums-H₂S) is conveyed to the Claus furnace.

Considering the processing conditions described above, we get the following balance:

Brought in	(+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,
Property In	in Claus furnace 2270 t/ann
vaccaeted:	(sent to Leuna in con-
	(centrated liquor(Stark- 3100 t/ann
10 - Samuel 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	(wasser)

Lesses.

mayoidable
rest in treated mate mater 130 t/ann
L.T.C. residue
rest in hy-poor gas 240 m
not identified 660 m

b) <u>conditionally recoverable</u> Claus waste gas, possibly after installing a wet catalysis,

1080 t/ann

or 5950 t/ann

It may be said hereto, that, until resently, Scholven had to buy sulfur for desulfuring, but that they will now produce about 2000 t/ann S by improvements in their sulfur recovery plant. The Claus furnace waste gas, as elsewhere, could be processed to H2SO, by the installation of a wet catalysis. The distribution of about 2900 t/ann S in the gas cleaning media to synthesis and coke oven gas is yet to be determined, though it is recovered by the Ruhrgas Co.

VIII. Union Rheinische Braunkohlen - Kraftstoff A. G. Hesseling

Rhemish brown coal, poor in sulfur, and some tar, is hydrogenated. The hydrogenation H₂ is also produced from rhemish brown coal in Pintsch producers and by hy-gas splitting. Since the water gas does not need to be desulfured at all, because of its extraordinarily low sulfur content, we need not consider the coal for gas production in the sulfur input in raw materials. Sulfur is added in the coal phase of hydrogenation for the purpose of breaking up, or decomposing, the coal. The greater S consumption at the start of operations could be reduced to 400 - 500 t/mo. or 5000 - 6000 t/ann. For the replacement of this sulfur or its partial recovery from the residue, see below.

Su1	fur I	nout	in	Raw	Mate	rials.	

t/ann

Hydrogenation Elementary Sulfur

4970. 5800 10770

With the sulfur-poor coal the sulfur going into hydrogenation is naturally absorbed as iron sulfide by the high-iron residue. Whatever is found as H₂S in the hy-gases is removed in the albazid plant, in order to use the cleaned gases for splitting. The losses in the water and the waste gases are very large. There may be a possibility to reduce these losses and to recover part of the sulfur in a Claus furnace or a wet catalysis plant.

Brought in (total S)
Losses

10770 t/ann

- a) unavoidable
 in hydrogenation residue,
 losses in dephenolizing, decompression in residual gases,
 in waste water containing NH3,
 dirty water, phenolate liquor, etc.
- 2870 "

6700 t/ann

b) conditionally recoverable going into atmosphere in combustion of a waste gas

1200 t/ann

10770 t/am

It might be possible to increase the quantity of H_2S still further by treating all available waste water with gas, in which their NH_3 content would, of course, effer certain difficulties. It might also pay to recover the sulfur as H_2SO_4 in a wet catalysis plant,

The situation with respect to the sulfur contained in the residue is similar to that at Leuna. 6700 t/ann S are lost in the residue, or somewhat more than the bulk sulfur added. Reasting it to a gas containing SO₂ or utilizing it in the form of waste acids can hardly be considered. Since there are no gypsum H2SO₂ plants in Western Germany, utilizing it in a manner similar to that being investigated for Leuna would also be out of the question. One possibility to save at least the major sulfur consumption of about 5000 - 6000 t/ann is perhaps the introduction of sulfur in gas cleaning media containing iron, which are not used for extraction or reasting. Such experiments are now under way with gas cleaning media supplied by the Rubrgas Co. for high pressure research at Ludwigshafen.

It should be noted that Wesseling has had particular difficulties with coal, which make it doubtful that gas cleaning mass can be substituted for sulfur without jeopardizing gasoline production.

XI. Wintershall A. G., Werk Lutzgendorf. Krumep/Merseburg.

Although Lutzgendorf is principally a Fischer gasoline plant, besides a small hydrogenation unit, it was taken into consideration in this report because it uses brown coal rich in sulfur for gas production. The Fischer synthesis gas is produced in Schmalfeldt generators from brown coal, the same as the producer gas used for fuel purposes. The month of October 1943 was taken as a basis for a sulfur balance.

Sulfur Input in Raw Laterials (only HoS.S)

t/ann

Coal for gas production

18700

Only the synthesis gas is desulfured in a rough stage with alkazid liquor and in a fine dry cleaning stage. The H2S of the alkazid plant is converted to elementary sulfur in a Claus furnace. The sulfur in the dry cleaning mass cannot be recovered because of its low charge and the spent mass goes to the dump. If the plant were expanded to max. capacity, which, however, cannot be foreseen at present, the sulfur input for both producer (generator) gases would be increased by about 30%.

Considering the above described processing conditions, we get the following balance:

8600 t/ann

145						programme for		They alway	e free		J-194 3	1 4,5 43	11.00	٠.
drough	t in	(total S	3)				Warry :				18	700	t/ann	
Re cove	red:	element	ary sul	fur.		5200 1	t/ann	, in the		1.0				
Lesses						= .								ï
	navoid	lable					r ng Pili					25 - 2		,-
		cleanir	OF TASS		tani dipagali T	880 1	/ann	And Garage	adip in a		and a sub-	1907	andrikasyi. Ta	
		water.	_	er ber 12 haller	er discheration	<u> </u>	THE SECTION	the property	e especial de la company			أرجي بشتوع		.2.,
			of spinses		grafia (de grafia)	4980 1	· lann	20 julija (h.	a kaji ni		Market State			
h) c	and4t4	one 11st	recever			4,00 .	·/ e		1.5	.1	100			
			lesulfur			7400 1	Jann	7				7.5	1	
			waste g			14400	o) ann		4.1	e da i			· · · · · · · · · · · · · · · · · · ·	
				18		7.200	Ħ	100				100		
1	or u5:	504 prod	iucolon .	1 4 6 3 ST 18		1200	· •				e Sine		100	

Concerning the conditionally recoverable quantities of sulfur it should be noted that:

For desulfuring the producer gas a recoverable quantity of 9500 t/ann sulfur was at first figured on. Closer investigation, however, revealed that only 7400 t/ann are present, of which 6000 t/ann could be recovered if an alkazid plant were built. The company itself is inclined towards an alkazid plant, because such a plant is already on hand and servicing would thereby be simplified. The Claus furnace waste gas could be processed to H2SO4 by a wet catalysis.

Note:

Conditions at only a few of the plants included in the original report have been described herein, since much of the information is repetitive. The plants selected for translation are representative in character and give us all essential information.

/pkl

U. S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV. T-358

KCBraun 5-13-47

Velocities and Residence Times in Liquid Phase Converters. By D. I. Schappert, Ludwigshafen, 13 July 1942

Velocities in High Pressure Converters.

Table I shows the most important data required for calculating the velocities in high pressure liquid phase converters. Three operating methods were considered for Wesseling:

- a) projected full thruput when using cold gas as cooling medium,
- b) projected full thruput when using cold gas and cold oil as cooling medium,
- c) present low thruput when using cold oil as cooling medium.

Velocities and Residence Times When Running Bituminous Coal in Liquid Phase, Indwigshafen, 8 July 1941

Table II shows velocities and residence times when running bituminous coal for the converters and catchpots at Nordstern, Scholven, 10 Ltr. Converter 411 and Stall 804. The report of 15 May 1939 was used as a basis for the first 3 plants, the experimental data of 29 June 1941 for Stall 804.

Contrary to the former method of calculation, in which a spec. grav. of 1.1 was used for the letdown at converter temperature, these calculations were made with a corrected value of 0.5, which is approximately correct at the high temperatures.

The residence times were calculated:

- 1) as formerly, with the assumption that the gas and the liquid form a homogeneous mixture in the converter, and
- 2) with the assumption that a degree of filling of only 40% is obtained, which corresponds to operating conditions in large plants. For this second case, the mean converter velocity was calculated by dividing the total converter length by the residence time.

/fkp

_ ====================================	2668888888888 ——————————————————————————	Lema	22 22222 222 Scholven	Pordstorn		Wesseling		P8litz	Welheim	Blechhammer
Pressure	atm	200	300	700		700		700	700	700
Number of Converters Jacket Ø of Converters (I ₂ C ₅) Clear I ₀ D ₉		4 1200 800 1044 690	4 1200 1044	4. 1000 860		4 1000 860		4 1000 860	4 1000 - 860	1000 860
Cross=Section	2	0,65 0,375	0.86	0.58		0.58		0.58	0.58	0,58
Thruput Inlet gas	*/2 m ³ /h	28 28 000	2 <i>1</i> , 28 000	35 35 000		45.2 38 000	26 30 000	42 32 000	36 20 000	68 49 000
Cold gas to Conv. I Cold gas to Conv. II Cold gas to Conv. III Cold gas to Conv. IV	m ³ /h o c	& 500 5 000 3 700 5 000	4 500 5 000 3 700 5 000	7 000 8 000 6 000 8 000	12 000 13 000 10 000 13 000 2)	12 000 8 000 + 2,3x) 4.8 x) 6.7 x) b)	7 ₂ 0 ×) e)	7, 000 8,000 6,000 8,000	7 000 8 000 6 000 8 000	10 500 12 000 9 000 12 000
Volumes Operating Condition Converter I Converter II Converter III Converter IV	±3/± € € €	406 / 466 466 / 533 533 / 583 589 / 649	283 / 325 325 / 371 371 / 405 405 / 451	189 / 219 219 / 253 253 / 279 279 / 314	213 / 264 264 / 320 320 / 363 363 / 419	213 / 264 264 / 301 301 / 307 307 / 419	157 159 162 165	184 / 214 214 / 249 249 / 274 274 / 309	126 / 156 156 / 191 191 / 216 216 / 251	286 / 331 331 / 382 382 / 421 - 421 - 472
Velocity in the Converters Convertor I Converter III Converter IV	n/sec. n n	0.132 /0.151 0.151 /0.172 0.395-/0.431 0.431 /0.480	0.105/0.120	0.091/0.105 0.105/0.122 0.122/0.134 0.134/0.151	0.102/0.127 0.127/0.153 0.153/0.174 0.174/0.201	0.102/0.127 0.127/0.145 0.145/0.147 0.147/0.150	0.073 0.074 0.076 0.077	0.085/0.103 0.103/0.120 0.120/0.132 0.132/0.148	0.061/0.075 0.075/0.092 0.092/0.104 0.104/0.121	0.132/0.158 0.153/0.123 0.133/0.202 0.202/0.226

x) Cooling Oil

7- 4 2 2 3	350211 804	77.0	230 mm 1 138.4 mm 1 15.0 cm 1 250 mm 1 7 m 1)	6 cm/sec 8.35cm/ecc 2.14.0 4.55 "	314 Bec. 861 n 863 n n 6238 n n 6238
17	Conversor 411 (vith Uppe. Silesian Bicamiros Cort.)	600	(70 nm) 2250 nm 7,651	1.22cm/sec 1.6cm/sec 0.29 " 1.18 " 0.23 "	1.161 Sec. 1.2.1 n 1.2.2 n 1.0.8 u 1.0.8 u 1.0.8 u
TY ZEGE	Scholryan	23.50c \\ \(\) \(10.0 10.0 3.500 3.500 3.500 3.6000 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.600 3.6000 3.600 3.	13.9cm/s.co., 13.9cm/s.co., 22.23cm/sed 1.14.11	248 596. (1) 24.6 (1) 296.0 (1) 396.0 (1)
		11005 33.00 33.00 55000 65	25.50 mm (2.00 mm) (2.00 m	30.4 cm/sec	458 390. 236 # 2380 # 550.7 ii (40.8")
		Converse of Calestation Carte Conversion Coal (Calesto) Converse of Cale (Calesto) Converse of Cale (Calesto) Converse of (Quality) Converse of (Quality) Converse of (Quality) Converse of (Quality) Converse of Calesto Converse of Ca	Strons. No. per Stall. Conval. No. per Stall. Longth boty, labet a Outlet from Cross-Section Votal Conv. Vol. Catelmote, I.D. Length From Cross-Section From Cross-Section Cotyl Volume of Which for Interval	Mann Velogities in: L. Gongortes 1.) Ges plus Lantid Cateulated Heacgeneous History 2.) © 40% Full a) For Erchert Ges b) for Liquid A) in Proc. Ges Seation a) in Proc. Ges Seation b) in Liquid Section b) in Liquid Section ce catchrob)	Regulfence There in I. Converter 1 Cas plus Liquid Calquid Calquid Calquid Calquid Calquid Calquid Calquid Calquid Calquid Catchar 1 Catchar 1 Calquid Section Calquid Section Calquid Section Calquid

1) Cylindrical Spano.

U.S. BUREAU OF MINES HYDRO, DEMON. PLANT DIV.

915

5-13-47

Application of Mo- and W-Sulfides as Catalysts in Pressure Hydrogenation, By Göhre, Ludwigshafen, 13 May 1943

Patents Issued

Day-No-Yr	<u>Patent</u>		The second secon
14,- 2-25,	-DRP-608466,	T C	Coal & Eolybdenum
16- 2-25,	DRP=609538,	T.G	Tar & Molybdenum
19- 3-25.	DRP-643141,	T.G	Hineral Oil & Molybdenum
14- 2-25,	DRP-633185,	2.00. 7.0	Coal & Sulfide as Catalyst
16- 2-25,	DED GIONO	7 C	
	DRP-619739,	7. C	Tar & Sulfide es Catalyst
19-3-25,	DEP-664563,		Mineral Oil & Sulfide as Catalyst
. 26 4 &425,	DRP-657703,	3.473	Wolfram or Wolfram Compounds (WS2) as catalyst.
French	Patent-616237,	I.G.	Compounds of sulfur, ammonium sulfide,
(Foreig	n Sulfur Combi	nation)	sulfide mixtures of several sulfides,
			alone or with metals, metalloids or oxides, hydroxides, cerbonates or analogous compounds, sulfides of heavy metals, e.g. the iron group, alone or with other substances. Sulfites, sulfates, 5 + metals, metal oxide, Fe+H2S treated at high temperature.
14-8-25,	F.P620735,	I.G.	Fine distribution.
31- 3-26,		I.G.	H2+ H2S addition. First publication of
			the foreign sulfur combination by Belg. Pat. 332018. F.P616237 published 29-1-27.
1- 6-26,	F.P634820,	I.C.	First liquid then vapor phase.
14-6-26,	F.P620735,	I ₄ G ₀	High Ro partial pressure,
26- 6-26,	DRP-614916,	I.G.	Widdle oil pressure hydrogenation.
30- 6-26,	DRP-626171,	I.G.	First splitting, then hydrogenating
1- 4-27,	DRP-560626 ,	I.G.	catalysts, (wolfram and compounds, e.g. NS2) Slightly corroded (angoatzte) metals or
20 5 24 .	DOD CIGAIC	$\mathcal{L}_{\mathbf{A}}$	metallic alloys as catalyst carriers.
28- 5-27,	DRP618315,	1.00	Hot gus circulation.
24- 7-26,	F.P.~638109,	1.00	bying (Tenzende) catalysts.
31- 7-27,	DRP-489279,	1.60	Pretreating catalysts with non-reducible gas.
~12-11-27,	F.P666683,	Tele	Hot liquid circulation.
19-11-27,	DRP-727921,	Letto	Refining hydrogenation in vapor phase.
24-11-27,	F.P663539,	T*6°	Rising temperatures.
24-11-27,	F.P664375,	T.G.	Several converters.
15-12-27,	Z.P302354,		Pressure hydrogenation of coal and tars in
	F.P659462,	Eling &	the presence of:
er en	The state of the s	Florentin	
			1) - dehydrogenating catalysts (Al ₂ 0 ₃ , Si0 ₂)
			2) - non-hydrogenating catalysts (metallic substances, helogenides)
			3) - hydrogenating catalysts (NoS2, NS2)
7- 1-28,	DRP-595234,	I.G.	Strengthening catalysts with metals of the
			2. & 3. groups.

1- 3-28, 8- 5-28, 15- 6-28, 13- 6-28, (Austr	U.S1935188,Silica- gel DRP-720002, I.G. DRP-669804, I.G. DRP-639762, Degussa ian Pat-133142), (Varga)
22- 6-28, 24- 8-28,	DRP-729769, I.G. DRP-678622, I.G. F.P685564
15-10-28, (together 14-10-28,	F.P37394, I.G. with F.P666683) DRP-633245, Degussa, (Varga)
13-10-28,	E.P333453, Degussa, F.P683069
7=11 - 28,	F.P684718, Shell,
20=12 - 28,	DRP-671884, Degussa,
20- 1-29,	DRP-578567, L.G.
8- 2-29,	F.P690911, Shell,
27- 1-29,	DRP-620746, Shell,
21-11-29,	F.P745468
27- 8-29,	F.P700891, I.G.
31- 8-29,	DRP-670717, I.G.
14- 9-29,	F.P694192, Shell,
6-12-29,	E.P336689, Shell,
6-12-29,	F.P707210, Shell,
23- 1-30,	DRP-616427, I.G.
20- 2-30,	F.P348243, Shell,
20- 2-30,	DRP-646916, Degussa,

Austrian Pat,

-134989

Patent

Day-Mo-Yr

Porous gel charged with HoS, then soak with catalyst. Refining hydrogenation in liquid phase. Prehydrogenation. Pressure hydrogenation with Mo- and Wcatalysts and 1 to 6% addition of HoS until max. increase in effectiveness is reached. Lubricating oil refining in vapor phase. Triple combination: three different catalysts, two of which originate from a higher than the V. group. Finely distributed catalysts, held suspended. Naphthalene hydrogenation with Mo and W catalysts and more than 1% H2S, e.g. 1 to 10%, particularly 2 to 5%. Benzol by splitting hydrogenation of naphthalene with Mo and W catalysts plus H2S. Luxmass and lio. Press. hydrog. with No & W catalysts and 6-15% B2S addit. Co, Fe metals of 5. to 7. groups or their compounds, possibly with addit. of Pb, Sn, Zn, Cd or their compounds, after pretreating above 200°C with gaseous or vaporous compounds of solid metalloids of the 5. & 6. groups (H2S) as dehydrogenation catalyst. Phenol reduction with Mo to A-coal. MoSo on adsorption coal.

High product partial pressure. Heavy metals or their compounds with volatile sulfur compounds in presence of H2 at elevated temperatures, with or without pressure. Hydrocarbons finely distributed on coal. Compounds of Cr. N. U. Mn. Co. Ni. Fe on A-coal or finely dispersed coal. Colloidal catalysts adsorbed on coal. Finely dispersed catalysts held in suspension. Metallic oxides treated with Hos. Circulating gas partially decompressed, so that the H2S required to maintain the increase in catalytic effectiveness is adjusted within the limits of 1 to 15% and recycled without removing hydrocarbons. Colloidal No on coal. Press. hydrog. with Fe-Co-Ni-catalysts with H2S addition to 15%. Max. increase in effectiveness.

8-10-30, 31-5-30, 23-6-30, 19-9-30, 7-10-30, 8-10-30,	Patent U.S204230 U.S190421 DRP-607363 F.P40849, addit. to F.P683069 DRP-674444,	S,Stand., , Stand., Degussa, Degussa, (Varga)	Low H ₂ partial pressure made possible by sulfides. Catalyst surface treated (atzen) with NH ₃ or steam. Roast used Mo and W catalysts, dissolve MoO ₃ in acid, separate WO ₃ undissolved, precipitate Mo from solution. Benzol by splitting hydrogenation of naphthalene with Fe-, Ni- and Co-oxides, plus H ₂ S. Naphthalene hydrogenation with Fe-, Co-Ni-catalyst and more than 1%, e.g. 1 to 15%, H ₂ S.	
23- 6-30, 19- 9-30, 7-10-30, 8-10-30,	U.S.=190421 DRP-607363 F.P.=40849, addit. to F.P.=683069 DRP-674444, DRP-732112,	S,Stand., , Stand., Degussa, Degussa, (Varga)	Sulfides. Catalyst surface treated (atzen) with NH3 or steam. Roast used Mo and W catalysts, dissolve MoO3 in acid, separate WO3 undissolved, precipitate Mo from solution. Benzol by splitting hydrogenation of naphthalene with Fe-, Ni- and Co-oxides, plus H2S. Naphthalene hydrogenation with Fe-, Co- Ni-catalyst and more than 1%. e.g. 1 to	
19 9-30, 7-10-30, 8-10-30, 8-10-30,	DRP-607363, F.P40849, addit. to F.P683069 DRP-674444,	Degussa, Degussa, (Varga)	Catalyst surface treated (atzen) with NH3 or steam. Roast used Mo and W catalysts, dissolve MoO3 in acid, separate WO3 undissolved, precipitate Mo from solution. Benzol by splitting hydrogenation of naphthalene with Fe-, Ni- and Co-oxides, plus H2S. Raphthalene hydrogenation with Fe-, Co-Ni-catalyst and more than 1%. e.g. 1 to	
7-10-30, 8-10-30, 8-10-30,	F.P40849, addit. to F.P683069 DRP-674444,	Degussa, Degussa, (Varga)	Reast used Mo and W catalysts, dissolve MoO ₃ in acid, separate WO ₃ undissolved, precipitate Mo from solution. Benzol by splitting hydrogenation of naphthalene with Fe-, Ni- and Co-oxides, plus H ₂ S. Naphthalene hydrogenation with Fe-, Co-Ni-catalyst and more than 1%. e.g. 1 to	
8-10-30, 8-10-30,	addit. to F.P683069 DRP-674444, DRP-732112,	Degussa, (Varga)	Benzol by splitting hydrogenation of naphthalene with Fe-, Ni- and Co-oxides, plus H ₂ S. Naphthalene hydrogenation with Fe-, Co-Ni-catalyst and more than 1%, e.g. 1 to	,
8-10-30,	DRP-674444, DRP-732112,	(Varga)	Naphthalene hydrogenation with Fe-, Co- Ni-catalyst and more than 1%. e.g. 1 to	
		Demises		
30-10-30,	경기 역사 경기의 역사에게 되었다.	, ~ogusse,	Benzol by splitt. hydrog. of naphthalene with Fe-, Co-, Ni-catalyst, plus H.S.	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Austrian Pat, -136670	alkanikan propinsi di perengan berangan berangan berangan berangan berangan berangan berangan berangan beranga Berangan berangan be	Adjust required H2S concentration in the	in the second
15-11-30,	Brenstoffchen	ie, Tropsch,	MoS ₃ from sulfo-salt decomposed with acid as catalyst for phenol reduction.	
18-12-30,	E.P379587, F.P728287	and the second s	Scak carrier in solution of metallic compounds of the 6. group.	e principal de la Partie Principal de la Partie de la Par
. 1931,	(5/6。244)	Prokopetz.	MoS ₃ plus S.	
12- 1-31,	E.P370909,	Gas Light,	Mo + Si, B, Li, P or Ca + H ₂ S.	
30= 7-31	DRP_6867.56	T C	사람들의 사람들이 하나 경험하다면, 회원 이렇게 가장 사람이 나라들이 살아가는 사람들이 살아가는 사람들이 아니다면 이 것들이 나무를 가지 않는데 그렇게 되었다.	
)ĭ- î-3î,	DRP-685371,	I.G.	Sulfides from thermally decomposed	ATTENDED TO THE PARTY.
26- 3-31,	F.P729913,	I.G.	Metals of the 4. to 7. groups treated at elevated temperatures with volatile sulfur compounds under pressure. e.g.	
1- 4-31,	DRP-617236,	Stand.,	Processing used sulfides with HCl until the soluble constituents, except sulfides	
7- 4-31,		I.G.	or, mo and w, are dissolved. Pseudomorphous W & Mo catalysts	
2- 5-31,		Bit.Coal Liquefact.	Elementary S without other catalyst.	
5- 7-31,	Reports 1931, Pg. 2631	Orlow,	Hydrogenation (according to Bergius) of hetero-cyclical compounds with MoS ₂ or	
9- 7-31.		I.C.	Coto Tret added - At-	
4- 9-31,	DRP-577628,	I.G.	Thermally decomposable or volatile com- pounds of Mo and/or W heated to sintering	ne estimate
5-10-31,	n.s3029100	U.U.F.	molybdate or wolframate, e.g. of Cu, Ag, Au, Sr, Ba, Eg, Zn, Cd, Hg, Sn, Pb, En, Fe, Co, Ni, Pt, Ce for Ho, also Ca, Be, Cr, but not Ce, for W. Also caythio-	
	1931, 12- 1-31, 10- 1-31, 15- 1-31, 15- 4-31, 17- 4-31, 15- 7-31, 19- 7-31, 19- 7-31, 19- 7-31,	15-11-30, Brenstoffchem 115.449 18-12-30, E.P379587, F.P728287 1931, Ukrain. Chem (5/6.244) 12-1-31, E.P370909, 10-1-31, DRP-685371, 16-3-31, F.P729913, 1-4-31, DRP-617236, 17-4-31, DRP-659233, 18-4-31, DRP-659233, 18-7-31, Reports 1931, 1931	15-11-30, Brenstoffchemie, Tropsch, 115.449 18-12-30, E.P379587, Shell, F.P728287 1931, Ukrain. Chem.7, (5/6.244) Prokopetz, & Jeru. 12-1-31, E.P370909, Cas Light, & Coke Co. 10-1-31, DRP-686456, I.G., 1.G., 1.G.	15-11-30, Brenstoffchemie, Tropsch, acid as catalyst for phenol reduction. 11S.449 18-12-30, E.P79587, Shell, Soak carrier in solution of metallic compounds of the 6. group. 1931, Ukrain. Chem.7, MoS ₂ plus S. (5/6.244) Prokopetz, & Jeru. 12-1-31, E.P370909, Gas Light, Mo+Si, B, Li, P or Ca+H ₂ S. & Coke Co. 8 Coke Co. 8 Lotallic sulfides treated with S. 11-1-31, DRP-685371, I.G. Sulfides from thermally decomposed sulfo-salt Metals of the 4. to 7. groups treated at elevated temperatures with volatile sulfur compounds under pressure, e.g. 5 to 15 atm. 1-4-31, DRP-617236, Stand., Processing used sulfides with HCl until the soluble constituents, except sulfides of Cr, No and N, are dissolved. 7-4-31, DRP-589968, I.G. Pseudomorphous N & No catalysts F.P735295 2-5-31, DRP-659233, Bit.Coal Elementary S without other catalyst. Liquefact. 5-7-31, Reports Orlow, Hydrogenation (according to Bergius) of hetero-cyclical compounds with MoS ₃ or sulfured ammonium-molybdate. Catalyst added after preheating. Thermally decomposable or volatile compounds or Me and/or W heated to sintering or malting. pressible Colleged by H.S.

Day-Mo-Yr	<u>Patent</u>	310
	To deliver and the substitution of the	
16-10-31,	U.S1948408, Stand.,	Precipitate sulfides of the 6. group from an acidic solution (H3POL; HF) with
		1 to 4% excess acid, with E.S.
6-11-31,	DRP-626462, I.G.	Catalyst added in stages.
14-11-31,	DRP-695432, Shell,	6. group on de-ashed carrier.
16-11-31,	3. Coal Tropsch, Conference,	With acid or thermally decomposable sulfo- salts as catalysts for press. hydr. and
21-11-31,	Pittsburgh F.P745468, Shell,	phenol reduction. EOS2 from thermally decomposable sulfo-
22-12-31,	DRP-681518, I.G.	salts. Mo+Si+S or H ₂ S, atomic relation of
22-12-31,	DRP-678485, I.G.	Si:Mo = 1-3.5 or 5-8:100. Mo +B+S or H ₂ S, atomic relation of
13-12-31,	DRP-681519, I.G.	B:Mo = 7-10:100. Mo+P+S or HoS, atomic relation of .
29-12-31,	DRP=722405, I.G.	P:No = 4-4.5:100. Solid metalloids containing halogen
that is a consequence and standard and translation for the standard property of	and the second control of the second second control of the second control of the second control of the second	compounds together with compounds of metals of the 5. and 6. groups, or
		sulfides, oxides, etc. of other metals.
29-12-31,	DRP-678808, I.G.	Halogen compounds of sulfur.
1932,	J. Int.Fuel, King & Mathews,	Press. hydrog. of tars with MoS2+S.
2- 1-32,	DRP-646405, 1.G.	Sulfides & metallic halogenides.
- 7 - 1-32,	DRP-647741,	and the state of the
30- 1-32,	1 .G.	First publication of our sulfo-salt patent thru Belgian Pat. 385293, F.P728913
9- 3-32,	DRP-699656, I.G. F.P750296	Sulfides plus acid.
18- 5-32,	E.P401724, I.C.I.	Aromatic hydrogenation with WS2 @ 1-10
		atm & 170-300° C.
21- 5-32,	DRP-660074, I.G.	Add catalyst before preheating, activating substance (sulfur or sulfur compounds), after preheating.
2- 6-32,	DRP-611922, Deutsche	Dissolving sulfides of the 6. group in
	Hydrier- Werke	primary or secondary organic bases.
14-10-32,	DRP-651473, I.G.	Pretreat catalyst carriers with Ho.
18-10-32,	DRP-603763, I.G.	Acidify carriers.
14- 3-33,	U.S2037781,U.O.P.	Co-thiomolybdate + Na-aluminate for press. refining.
24- 4-33,	F.P754664, Shell,	Sulfides from halogenides by sulfuringa
15- 6-33,	Brennstoffchemie, 14.221 Szeszich,	Sulfurs part in press, hydrog.
30- 6-33,	U.S2037791, U.O.P.	Metallic oxide (e.g. Fe, Ni, Co, Al, Zn,
Name of the state	er er ar allander og for er til at pårktingt om er til som i det er here.	Co, Th) plus thiomolybdate and alkali or zink-aluminate for press. refining.
	Ind.Eng.Chem, Pease & 25.1012 Keighton,	MoS2 treated with H2 and ammonium-sulfo- molybdate decomposed by acid.
10= 1=34,	DEP-709940, 1.G.	Pretreat carrier with halogen or halogen- hydrogen.
12- 1-34,	¬DRP-693985, I.G.	Double sulfides dissolved by conversion of sulfo-salts with metallic compounds or
		suspended in the presence of kater or organic solvents.

separation of C in endo-thermal reactions.

Day-Mo-Yr	<u>Patent</u>	$\frac{1}{2\pi i} = \frac{1}{2\pi i} \left(\frac{1}{2\pi i} + \frac{1}{2\pi i} \right) \left(\frac{1}{2\pi i} + \frac{1}{2\pi i} + \frac{1}{2\pi i} \right) \left(\frac{1}{2\pi i} + \frac{1}{2\pi i} + \frac{1}{2\pi i} + \frac{1}{2\pi i} \right) \left(\frac{1}{2\pi i} + \frac{1}{2\pi i}$
21- 7-36,	DRP-725740, I.G.	Sulfide on carrier as catalyst for press. hydrog, to at least 20% gaseous hydrocarbons.
19- 9-36,	J.Soc.Chem. Ind.Japan. (1936) #12	Ammon-molybdate+acidic fuller's earth+S for hydr. shale oil.
10-10-36,	DRP-724667, I.G.	Refining and splitting press. hydrog. Diluted catalyst in both stages.
30-12-36,	v.s2145657, v.o.p.	Alkali-aluminate + metallic sulfides for refining hydrogenation.
Begin37,	J.Inst.Petr. Techn. 23. #1, Pg. 209.	(ML)2MS4 for desulfuring converters.
1937,	<u>C.1938.1.</u> , Putschko 4739	w, No S2 for low temp. hydrogenation of Masut. (Russian).
11- 6-37,	(I.G.#10035)I.G.	No and/or W-sulfide + Ni and/or Co-sulfide for hydrog. diisobutylene.
8- 8-37,	F.P841898, I.G.	Sulfide on synthetic Al/Mg-silicate carrier.
11-12-37,	DRP-711470, 1.G.	Add sulfur from time to time.
15- 2-38,	Brennstoff-Zerbe, chemie, Grass- 1908, Pg. 61 kopf	Labricating oil from distillation products of coal by press. hydrog. with MoS2
1- 4-38,	DRP-711348, I.G.	Neutralize highly active catalysts with R2-poor hydrocarbons.
28-12-38,	E.P.=525813/4, York- shire Tar Dist,	Thiomolybdate or wolframate for refining hydrogenation.
14- 1-39,	Z.f.angew. Fuchs & Ch, 1939, Brendleir Pg. 49	Agitate MoO ₃ with H ₂ O, dry @ 110°C, crush and sulfur with H ₂ S + steam in the proportion of 1:1°C 450°C.
6- 5-39,	F.P859311, Comp. francaise de Raffinage	Catalytic cracking in the presence of organic sulfur compounds, e.g. sulfured oil, with sulfides of Mo or W as catalysts.
6- 4-40,	DRP-725604, 1.G.	Sulfides by heating dry prepared mixtures of ammon-sulfo-salts containing metals of the 6. group in the residual acid, and finely dispersed metals of the iron group recovered from the carbonyls.
5- 4-40,	(I.G.#12088),I.G.	Make iron-chloride + (NH ₄) ₂ S.FeS harmless by thorough washing or addition of HgO- ammonia salt, add sulfo-salts and heat.

/fkp

U.S. BUREAU OF MINES HYDRO. DEMON. PLANT DIV. T=360

KCBraun 5-16-47

The Topping of Hydrogenation Letdown and Centrifuge Residue

I. - Experience in Topping Centrifuse Residue and Letdown Scholven, 30 January 1941 (See also T-330)

Beginning 1940 we started experimenting with concentrating the centrifuge residue in a topping column before L.T. carbonization in the ball kiln. This topping column had a height of 10 m and a diameter of 1.2 m. On the inside of the column were 4 perforated baffles at an angle of inclination of 45° for the purpose of dispersing the centrifuge residue falling from the top, so that the super-heated steam or heated by-gas in counter current could more effectively distill the oil in the residue. The residue was heated to about 18 mV, or 350° C, in the product preheater of the L.T.C. kiln before injection into the column, while the steam or by-gas was heated to about 25 mV, or 465° C, in the superheater of the L.T.C. kiln. The steam or gas with the vaporized oil constituents passed off the top of the column. The latter were condensed in a cooler and recovered as topping oil. It was possible to concentrate the residue from a solids content of about 40% to one of about 55% in this manner. This corresponds to an oil recovery of about 150 kg oil per ton of centrifuge residue. The concentrated centrifuge residue was pumped from the bottom of the column and injected into the kiln at a temperature of about 15 mV. However, no special advantages could be detected in the carbonization of this topped centrifuge residue.

If the concentrated product is not carbonized at all, but permitted to cool, it gradually bardens. It has the following approximate composition:

55% solids, 45% ash in solids, 25% asphalt in oil, 90° C softening point.

It may be used as a briquetting medium or for similar purposes. For further processing (grinding, etc.) and to recover as much oil as possible, it would be desirable to concentrate the centrifuge residue still further. However, all attempts in this direction, e.g. increasing the temperature of product and steam, varying the thruputs, etc. brought only slight results. Due to the short residence time in the column, it was possible to obtain a topping residue of at most 60%. Experiments in topping the letdown brought the same results.

These experiments showed that the topping column is ill suited to the intensive concentration of hydrogenation residues, because of the short residence time and the low supply of heat energy.

In addition, it has been clearly demonstrated that, when operating with steam in counter current, new solids are formed, thru which valuable substances, oils and asphalts, are destroyed.

At the suggestion of Dr. Urben, therefore, another method of concentrating hydrogenation residues, particularly letdown, was tried out. Letdown, which had been heated to 15 mV in the preheater, was injected into a carbonization kiln at a temperature of 23 mV = 4350 C. At these temperatures no appreciable cracking takes place yet, while the oil constituents boiling to 4350 C distill off. The residence time of the product in the kiln is about 1/2 hour. A second discharge device is attached to the kiln proper, as compared to the normal carbonization kiln, in the form of an overflow trap, so that the hot liquid topping residues can run off. We succeeded, on the one hand, to obtain a greater thruput. On the other hand, more oil could be topped off. The thruput we obtained, of about 4t letdown per hour, can very likely be further increased, if the temperature is correspondingly changed. If, for example, a letdown with 25% solids is concentrated to 50% solids, 1/2 ton of topping oil is obtained from one ton of letdown. This corresponds to an oil yield of 66-2/3%, based on the original amount of oil and asphalt.

The kiln runs quite satisfactorily and trouble-free with this operating method. Since there is a demand for the topping residue obtained, and this operating method also relieves the residue processing to a certain extent, this process appears entirely profitable. Furthermore, by taking out a certain amount of solids and asphalt from the hydrogenation circuit, the greater recycle of these substances, such as would occur in subsequent centrifuging, for example, can be partly nullified. The entire residue processing would thereby be put on a more profitable basis.

The combination of centrifuging and topping is of particular importance, if letdowns with specially high asphalt contents must be processed, as is the case in the production of fuel oils, for example.

An attempt is also to be made on an operating basis to find out how much the centrifuge residues can be topped and what oil yields can be expected. Since with the present carbonization method an oil yield of only about 75% is obtained, this new method also promises success, if, for example, the topped centrifuge residue can be suitably utilized.

II. - Report on the Investigation of Two Samples of Topped Residue and Topped

Letdown from Scholven

Main Laboratory Mathias Stimes By Hoffman, Essen, 17 July 1941

The present necessity to save bituminous coal tar pitch in briquetting in order to use it for other purposes, led us to seek substitutes for tar pitch. Hydro-Works Scholven put 2 samples of hydrogenation residues at our disposal for the solution of this problem. We were to investigate the composition of these materials and their properties as briquette binders.

Analytical Data

าง เพราะเกษาสมัย เพียงใหม่เห็น เพราะนะ เพาะเกษาที่เพียง เพยะ เพราะนะ เพราะนะ เพราะนะ เพราะนะ เพราะนะ เพราะนะ เ เพราะนะ	Table I					
	Topped Residue	Topped Letdown				
Softening Point, OC Ash	96 11.37	104 10,32				
Volatile Constituents, \$ Solids	47.99	47.22				
CS ₂ - Solubles	39.80 54.70	36.40 59.50				
	and the second second					

As seen from the above table, both materials are very similar in composition. The softening points are in the neighborhood of 100°C, which is a drawback for briquetting. The ash content of 10 to 11% is atill bearable, since with small additions the ash content of the briquettes is only slightly increased. The solids, i.e. the constituents insoluble in tetralin-cresol (80:20), have no binding properties. With a constituent of nearly 40% solids, it is to be expected that the binding power of the products is much less than for bituminous coal tar pitch. The same conclusions may be drawn from the CS2-insoluble constituents of 55 to 60%.

Determination of Binding Power

Even though these analytical data do not give us a particularly favorable picture, these characteristics are not enough to pass a safe judgement on the suitability of the products as binders for briquetting. For this purpose we use the determination of the binding power, a briquetting method developed by Broche and Nedelmann from practical operations. A kneading machine, in which the mixing and heating is done, is used for making the briquette mixture of coal and pitch. The finished mixture is poured into molds and formed into briquettes by a hydraulic press.

The conditions of the experiments are based on coal particles below 3 mm and pitch particles below 0.5 mm, a mixing time of 10 minutes 0 115° C, and a pressure of 225 kg/cm² at a press forming temperature of 135° C. These standard conditions, determined for tar pitch, were used in a similar manner in the testing of the hydrogenation residues.

The test briquettes so produced are tested for bending strength and the value thus obtained expressed in kg/cm², is the criterion for the binding power of the pitch.

Strength of Briquettes made from Hydrogenation Residues in the Experimental Apparatus

	Table				
- Binder	6.5 %	7.0 %	8.0 %	19-0 %	10.0 %
Topped Residue, kg/cm2	67	72	01	77 0	3 000
Topped Residue, kg/cm² Topped Letdonn, kg/cm²	2.7	100	0,4	11.~	14.0
- TPPEC -COMONIA AE/CM	. O.U	0.5	8,0	10.1	12.3

In order to judge the figures in the above table, it is necessary to know the strengths obtainable with tar pitch.

Strength of Briquettes made from Mathias Stinnes
Tar Pitch in Experimental Apparatus

Tar Pitch Addition Strength (Bending	Tabl	50160	6 50 1 7	
Strangth (Rending	1 10/002 10	200 1000	10.20	aU

In comparing these 2 tables, it may be seen that the hydrogenation residues are only half as strong as tar pitch in the range between 6.5 and 10% content, based on the briquette mixture. Consequently, these residues can hardly be used in their original form as briquette binder, for economic reasons.

<u>Properties of Nixtures of Hydrogenation Residues</u> and Tar Pitch

The samples in question have this defect, that their softening point is too high for the briquetting process. The clearly observable advantage of the topped residue over the topped ledown is partly based on the fact that the former has a softening point of 96° C, while the latter reaches the same degree of viscosity only at 10% C. At the experimental conditions of the laboratory apparatus, which, with reference to the softening point, are very favorable, the difference of 8° C is clearly expressed in the melting property.

Tar pitch, as normally used for briquetting, has a softening point of about 70°C. It was, therefore, to be expected that molter mixtures of tar pitch and hydrogenation residues would behave better than the original samples without tar pitch, for this reason alone. The mixture proportion was always taken as equal parts of tar pitch and hydrogenation residue. The results obtained with the same apparatus and under the same test conditions are shown in Table 4.

Strength of Briquettes made from Molten
Mixtures of Tar Pitch and Hydrogenation Residue
in the Proportion of 1:1, (kg/cm²)

Table		40.00			
Addition .	6.5	7.0	8.0	9.0	10.0
Topped Residue & Tar Pitch, (1:1) Softening Point: 790 C	13.6	14.3	16.4	19.4	21.9
Topped Letdown & Tar Pitch, (1:1) Softening Point: 81.50 C	12.1	12.4	14.6		TENERAL DE

The figures in Table 4 show the following:

With an 8% binder mixture, consisting of 4% tar pitch and 4% topped residue, we get an index of 16.4. As seen from Table 3, 4% tar pitch alone gives a strength of only 8.7. The residual 4% topped residue, therefore, gives a strength of 7.7 kg/cm², i.e. the hydrogenation constituent enters the mixture at roughly 90% of the binding power of the tar pitch.

If, on the other hand, we ask ourselves what quantity of ter pitch must be use to obtain a strength of 16.4 obtained in the 8% mixture, we can see from Table 3 that less than 6% is required. In this calculation, therefore, 2% ter pitch corresponds to 4% topped residue, or, in other words, the topped residue has only half the binding power of pure ter pitch.

The different conclusions, depending upon the method of reasoning, can be explained by the fact that the relations between the amount of tar pitch and strength of briquettes can not be represented by a straight line passing thru the point of intersection of the coordinate area in a graphical representation. This is clearly seen in Table 3. While 7% tar pitch gives a strength of 21.4 kg/cm², only 1/3 the strength, or 7.0 kg/cm² is obtained with 1/2 or 3.5%, the amount of pitch.

1

With the necessity to save tar pitch and the assumption that only 4% tar pitch may be used, the briquette quality can be advantageously improved by adding an equal amount of hydrogenation residue. The determining factor is this, that 8% of a mixture of equal parts of tar pitch and hydrogenation product can be better distributed in the ecal than 4% tar pitch alone. With this interpretation the binding power of the tar pitch will be more efficiently utilized by the addition of topped residue and the topped product will serve only as a diluting agent. Whether internal transformations to compounds of greater binding power also take place in the molten mixtures of tar pitch and hydrogenation product remains to be seen, since it can not be directly proved.

In summary it may be said that hydrogenation residues can be satisfactorily used as briquette binder only where mixed with tar pitch. Tar pitch can be saved in this way. Nothing can be said about the economy of the process at the moment, because no data is available on the cost development of the topped residues.

Conclusion

To utilize the conclusions of the report at hand, I should like to suggest that in the large scale experiment proposed at the briquetting plant of the Alstaden-Oberhausen mine we use a binder of & of a homogeneous mixture of equal parts of tar pitch and topped residue produced by melting. It must be ground to a grain size below 1 mm, in accordance with the general rule.

/fkp

B. M. A.O