

REPORT ON

RESEARCH ON THE FISCHER TROPSCH

PROCESS AT THE KYOTO

IMPERIAL UNIVERSITY

TABLE OF CONTENTS

I.	Introduction	Page	229
II.	History of Work	Page	229
III.	Normal Pressure Catalyst Studies	Page	230
IV.	Middle Pressure Catalyst Studies	Page	231
٧.	Catalyst Preparation	Page	232
VI.	Miscellaneous	Page	233
Appen	dix I List of Documents on Fischer-Tropsch Research Obtained at Kyoto Imperial University	Page	239
Appen	dix II List of Patents Relating to the Fischer-Tropsch Process Kyoto Imperial University	Page	
		٠	•

LIST OF TABLES AND ILLUSTRATIONS

Table	I(D)	Laboratory Comparison of Catalysts for Hormal Pressure Synthesis	e 23 <i>5</i>
Table	(a) II	Comparison of Catalysts for Middle Pressure Synthesis Laboratory Tests at Kyoto Imperial University	• 236
Table	III(D)	Summary of Large Scale Pilot Plant Catalyst Tests Pag	• 237
Table	[a)¥ <u>r</u>	Effect of Pressure and Alkali Content on Oil Yield from Fe + 25% Cu + 125% Kieselguhr Base Catalyst Pag	• 238

RESTRICTED X-38(N)-7

BNCLOSURE (D)

I. INTRODUCTION

This report summarizes technical information pertaining to research on the Fischer-Tropsch process carried on by Prof. G. KITA and staff at the Kyoto Imperial University. The following Japanese personnel were interviewed by representatives of the Petroleum Section of NavTechJap during the period 15-17 January 1946:

G. KITA - Retired Prof.

Prof. S. KODAMA - In charge of Fischer-Tropsch Asst. Prof. K. TARAMA

The details of the work at KYOTO are described in detail in various publications (mostly in German), copies of which were secured. This report serves only to outline the scope of the work and to present certain significant points covered in the interviews.

II. HISTORY OF WORK

Work on the Fischer-Tropsch synthesis under Prof. KITA at the Institute of Physical and Chemical Research was started in 1927, one year after publication of Franz Fischer's first paper in Brennstoff Chemie on "Die Erdol" Synthesis".

The work was begun from a purely scientific view-point and the first papers were published in 1929 by Mr. S. KODAMA, Prof. KITA's first assistant. The early work was concerned primarily with testing various types of catalysts and investigation of operation variables, in small laboratory-scale glass apparatus at normal pressure. Work on alloy catalysts was started in 1934.

In 1937 work was started an iron catalysts for use at normal pressure. This work continued through the war with a view toward developing a satisfactory substitute for cobalt in existing plants. During the period 1937-1941, studies were made in a semi-commercial normal pressure pilot plant at the Institute, with a charge capacity of about 100m/hr of water gas. At the request of the Japanese Army this plant was transferred in 1942 to the Army Fuel Research Institute at FUCHU for use in the testing of natural iron catalysts.

In 1939 work was started on the middle pressure synthesis (10-15 atm), with special emphasis on the use of iron catalysts. All work at middle pressure special emphasis on the use of iron catalysts. All work at middle pressure at the University was done in small, single tube apparatus, containing about 40cc of catalyst, and with synthesis gas charge capacity of about 4 liters per hour (atm. press. and temp.). Pilot plant tests on the middle pressure synthesis were made in a small, 10 m²/hr. unit constructed at RUMOI, Hokkaido, by the MITSUI interests. A full-scale reactor was installed in the Takikawa Fischer-Tropsch plant in 1943, to test iron catalysts, and it was planned to install an additional 15 sets.

In 1944 studies were made at KTOTO on the natural iron catalyst discovered by Prof. MATSUBARA at the Tokyo Imperial University. Tests were made at both normal and middle pressure, and studies were made on additives to improve the effectiveness of this catalyst.

During the period 1935-1945, studies were also made of the application of the Fischer-Tropsch principle for production of propanes and butanes for use in aviation gasoline synthesis.

Theoretical investigations on the Fischer-Tropsch reaction mechanism, including I-ray studies, were carried on during the pariod 1937-43.

For the future it was planned to continue studies on reaction mechanism; and also to develop an iron catalyst for middle pressure which would permit operation at temperatures lower than required with present iron catalysts.

III. NORMAL PRESSURE CATALYST STUDIES

It was stated that no catalyst superior to the conventional cobalt-thorium catalyst had been developed. Activity equal to that of cobalt was obtained on laboratory test scale with a nickel catalyst of the composition:

This catalyst, however, was very sensitive to traces of alkali (Na2CO3) and in preparation of same, the wash had to very carefully controlled to obtain the optinum alkali content.

In 1937, after rights to use and prepare the German cobalt catalyst had been secured by the MTSUI interests, work at KYOTO was concentrated on the development of a cheap iron catalyst as a substitute for cobalt in normal pressure synthesis. Many catalysts were tested, and are described in detail in the several publications listed in Part A of Appendix 1. It was found that borio acid was an effective additive for iron catalysts, and that the most effective catalyst developed for normal pressure operation had the following composition:

Experiments showed that the H3BO3 promoted the adsorption of active hydrogen, whereas alkali promoted adsorption of carbon monoxide. The product from a high alkali catalyst was also less saturated than from a high acid catalyst. The effects were almost independent, so that when H3BO3 was added to a catalyst, alkali would also be added to increase the adsorption of carbon monoxide. It was found that for middle pressure synthesis, the use of H3BO3 was actually harmful, apparently due to over-adsorption of hydrogen as result of the higher partial pressure.

After the natural catalyst was discovered, Kyoto University undertook, at the request of Tokyo University, tests on this catalyst at both normal and middle pressures. The natural catalyst utilized was a base yellow earth or other obtained form NIWASAKA, in FUKUSHIMA Prefecture; between TOKYO and SENDAL, and from certain other areas in Japan. A typical analysis (5) is as follows:

100.0

X-ray diffraction analysis of this material indicated the crystal form to be alpha Fe₂0₃.H₂0. The ore also probably contained some SiO₂ and GaOO₃.

The best natural earth normal pressure catalyst tested at Eroro had the following composition:

Ochre + 1\$ Ou + 1\$ HyBO3 + 6\$ \$2003

A comparison of several of the more promising normal pressure catalysts is given in Table I(D). In the case of the Eyoto Laboratory, the tests were made in small laboratory glass apparatus. Gasoline was the unterial absorbed

RESTRICTED X-38(N)-7

BNCLOSURE (D)

on silica gel or by a dry-ice condenser, and kerosene was the product from the water condenser.

From this table it is noted that the best natural catalyst gave a yield of 86 gm/m³, which was lower than results of the best synthetic iron catalyst, (98-102 gm/m³,) which in turn was lower than results of the best cobalt catalysts, 151-158 gm/m³. It was stated that, at normal pressure, the synthesis reactions were as follows for iron and cobalt catalysts.

Catalyst Reaction

In the case of iron catalysts, however, when gas with a CO:H2 ratio of 2:1 was used, catalyst life was very short due to carbon poisoning of the surface. When gas with higher hydrogen content was used, the life was longer, but yields were lower as compared with cobalt catalyst.

In Table III(D) are summarized pilot plant tests on miscellaneous catalysts. The normal pressure catalyst, Fe + 25% + 2% Mn + 125% kieselgthr + 20% H₃BO₃ 4% K₂CO₃, was also tested in a full scale reactor at the Miske Synthetic Oil Co., but results were unsatisfactory since only 225°C reaction chamber temperature could be reached whereas the minumum for this catalyst was 235°C.

Data on pilot plant tests in normal pressure units at OMUTA are contained in publications listed in Part E. of Appendix I.

IV. MIDDLE PRESSURE CATALYST STUDIES

Increasing the reaction pressure greatly favors the iron catalyst, and work within recent years has been concentrated on a study of various catalysts and suitable operating conditions for the so-called middle pressure synthesis. In Table IV(D) laboratory data are summarized which show the effect of increasing pressure, (and also the effect of increasing K2CO3 content), on an iron-copper-kieselghur base catalyst. It is noted that optimum yields are obtained in the range of 10-15 atm., and with 6% K2CO3 content.

In Table II(D) laboratory data are summarized comparing various middle pressure catalysts.

A catalyst of the composition Fe +25%Cu +125% kieselguhr + 4-6% K₂CO₃ was manufactured in the 2OO litre/day catalyst-manufacturing plant for tests at TAKIKAWA. Later it was found that the addition of magnesium increased oil yields, and it was stated that the best middle pressure catalyst developed to date has the composition:

Test data on this catalyst are also given in Table II(D). The opinion was advanced that, under operating conditions of 15 atm. pressure, 220-24000, reaction temperature and synthesis gas with Hoto ratio of 1:1, yields equal to those of cobalt would be obtained. Furthermore, a catalyst life of 6 months should be expected, compared with 2 months for a cobalt catalyst. It was predicted that this performance could be realized on commercial solle.

The only natural iron oxide catalyst tested at middle pressure at KYOTO is shown in Table II(D). This same eatelyst was also manufactured by the Japanese Army Fuel Research Institute at FUCHU, for use in full scale tests at TAKIKAWA. It was believed that further improvement could be made by study of new

X-38(N)-7 RESTRICTED.

ENCLOSURE (D)

promoters for the natural catalyst, especially in the direction of increasing copper content.

In part B of Appendix I is a list of the papers obtained from the University relating to research on middle pressure synthesis.

CATALYST PREPARATION

A. Precipitated Iron Catalysts - Middle Pressure

The following procedure was used for preparation of a catalyst of the composition Fe + 25% Cu + 125% kieselguhr + 6% k2CO3. This catalyst was manufactured at the Kyoto Imperial University for full scale testing at TAKIKAWA.

Metallic iron (10 kg) and copper (2.5 kg) in the form of plates about 5-10 inches square, were dissolved in the theoretical quantity of 52% commercial nitric acid. Electrolytic grades of iron and copper were used, although it was stated that ordinary mild steel could be utilized. A stain-less steel vessel 70cm in diameter and 80cm high, equipped with a stirrer, was used. Temperature was maintained at 50-70°C by external water cool-ing. The solution was removed to a stainless steel precipitation vessel, I meter x I meter (capacity 750 lit), equipped with a 60 RPM stirrer. 12.5 kg of kieselguhr were added. The dieselguhr was obtained from the Island of OKI in the Japan Sea, and was a natural kieselguhr graded by water sedimentation. This particular material had been standardized on at KYOTO since 1939 for use in all catalyst work. No further treatment was given to the kieselguhr prior to use.

While maintaining stirring, 20% Na₂CO₃ was added in 10 minutes until a pH of 7.8 was reached. The Na₂CO₃ solution was made by dissolving commercial grade Na₂CO₃ in city water, containing some chlorine. (It was stated that distilled water might be more desirable, but the supply was limited at the University.) Stirring was continued for 30 minutes at room temperature; then the solution was pumped with a diaphragm pump through 18-8 stainless steel lines, to a cast iron filter press equipped with thirty 24-inch plates and action filter press equipped with a revised a revised at the contact of the solution of the solution was required a revised at the contact of the solution was equipped with thirty 24-inch plates and action filter press equipped with a revised at a contact of the solution was made by dissolving commercial and the solution was made by dissolving commercial and the solution was made by dissolving commercial grade was stated that distilled water might be more desirable, but the supply was limited at the University.) plates and dotton filter cloth. The filtering required a period of about one hour, and the filter cake was washed with city water for a period of 6-7 hours.

The cake was removed by hand and transferred to a 1.3m x 1.3m. enamel lined cylindrical wash vessel. 1.5m³ of water was added and the mixture stirred for one hour, at room temperature, with a high speed movable stirrer to make a slurry. The slurry was again transferred with the diaphragm pump to the filter press, and the filter cake washed 5-6 hours with city water at room temperature until the pH of the weak water dropped to 7.0-7.1. The cake was then transferred to a dough mixer containing two rotating spiral-type knives in a horisontal trough about 1.5m. long. A saturated solution of K2003 (containing 0.6 kg of K2003) was added and kneeding continued for two hours. The mix was then transferred to enamellined trays about 50m x 50cm; and placed in a circulating hot-air type drier maintained at 90°C. After five hours the half-dried catalyst was removed and pressed by hand through copper wire screen containing 20 mesh per linear inch. The pressed material was placed again in the drier and held at 90°C for five hours. The dried catalyst was sifted over 20-mesh copper screen to remove fines, and the final material was packaged.

The procedure for activating the middle pressure catalyst was to

introduce the catalyst into the reactor and reduce with the regular synthesis gas at 250°C and normal pressure for a period of 24 hours. Then the temperature was decreased to 180°C, requiring about 10 hours, and the pressure raised to the operating level. The temperature was then raised to the required reaction temperature, 220°C, in about 30 hours.

A more effective catalyst developed for middle pressure synthesis had the follwoing composition:

This catalyst is prepared by an identical procedure as described above except that MgO, MgCO₂ or MgNO₂ is added to the cupric and ferric nitrate solution in the solution vessel. Although 5% of Mg is added in this step, the actual content in the final catalyst is less than this due to incomplete precipitation.

B. Natural Tron Catalyat - Middle Pressure

The best natural catalyst had the following composition:

For preparation of this catalyst, OCHRE, a natural iron ore, was obtained from NIWASAKA, Fukushima Prefecture, between TOKYO And SENDAI. The ochre was washed at the mining plant prior to delivery. Chemically pure grades of Cu(NO3)2 and Mn(NO3)2 in concentrated solutions were added in the required amounts; then K2CO3 in concentrated solution was added in the required amount and the masskneaded. In the Army method used at FUCHU, the kneaded mass was pressed through 20 mesh screen and dried prior to shipment. At KYOTO, more dilute solutions were used to permit easier and more thorough kneading. The moist mass was then partially dried, pressed through 20-mesh screen, and dried as described above.

C. Iron Catalysts - Normal Pressure

The procedure is similar to that described above for either precipitated or natural catalysts, except that H3BO3 in the required amount is added with the saturated K2CO3 solution.

I. MISCELLANBOUS

In connection with the use of iron catalysts, it was found necessary to remove all forms of sulphur, although their sensitivity was lower than that of cobalt at normal pressure, and even less at middle pressure. Halogens are also definitely poisonous to this catalyst and lead, tin, and phosphorous may also be harmful. Gases such as oxygen, carbon dioxide and nitrogen are not harmful.

In connection with the synthesis of iso-octane, considerable work was done on the preparation of gaseous hydrocarbons from carbon monoxide and hydrogen. It was stated that a process had been developed whereby, by using a catalyst of the composition,

and operating at 15 atm, 275-28000, and with a CO:H2 ratio of 1:1, about 44\$

of the synthesis gas could be converted into light hydrocarbons containing 50% of propanes and 20% of butaines. Refer to Part D of Appendix I for a list of publications obtained relating to work on this project.

In Appendix II is given a list of patents relating to the Fischer-Tropsch synthesis obtained by Professor KITA and staff at the KYOTO Imperial University.

ENCLOSURE (D)

TABORATORY COMPARISOR OF CATALYSTS FOR HORMAL PRESSURE SYNTHESIS

	Composi-	200	Resot lon Temp.	011	011 Yield (00 /m ³)	(c=/		Neme
Charles of Onesyste	(og 188)	74.7s	(00)	Kero sen s	Kerosens Gasoline Total	Totel	Catalysts	Investigator
O-18Challed Elisabeth	118	•	002	78.5	84	344.8	more than	Fischer & Koch
Co-18CF100-18CG Kite selgrätt		4	190	100	Sg	168	about two	
co-stor-1stage-star-100ths			105			158.2		risorratuct
Co-94Cu-86ThU2-1,81Uy0g-125ft20		-	008	. 97	24	191		KITA Laboratory
	118	-	830	29	22	74	Sand day	
Te-125Co-2016-1295 Kieselgukr-201605			073	4.5	98	9.6	17th day	
		- 1 - 1	830	. 88	S	. 96	Sw/00,41	Table .
Promise and the state of the second section of the second			072	6 6	SS.	88	about one	Laboratory
			083	*	64	93	SW Pulls	(40 0.0. Catalyst)
Po-angion-adia-laminia selgmar-20fil 5003-40kg 003			240	99	36	102	about one month	
Peter-150s-ef Esi03	318		240	\$7	68	74	And the Comment	the state of the s
Stare-150a-26 E ₂ 003		í		\$	3	7.5	30th day	
Curro-3/Cu-ef Laws				77	8	- 64		Laboratory
Cebre-Effe-15 Egicy-ef Lett.				52	35	98	Soth day	(40 c.c. Catalyst)
Caber of Care of Wilder Med Table				8	\$2	ă	30th day	

ENCLOSURE (D)

COMPATISON OF CATALYSTS FOR MIDILE PRESSURE STWTHESIS LABORATORY TESTS AT KYOTO IMPERIAL UNIVERSITY

	38	35	į	ż	Held Inc.	. 1			H	Life of Catalysts (mean yield for each weak)	Cate)		. 3	E E	19	ğ	100 100 100 100 100 100 100 100 100 100	A A			
Campa Lies at Ortalysis	8 ¥ 53.53		Eg /m²	8	, s	-	-		-	8		7	0	2	7	ឌ	18 13	7	2	97	1,7
Constitution Tree (1)	1	-	2	ğ	163	ŝ	22	8	8	139 148 139 139 139 139 139 139 148 139 138 138 118 111	36	11 62	14	3 13	125	133	118	11	粉羔	37	
				92	Τ,				- 1			_	25-1 V						8	95 110 121 124	교
	Ī		•	2	3											- 141 141			4).		marij Higipa
	<u> </u>			8	5	7		1.0				1,91			10.				38		
				ន្ទ	8	3	8	2	2	2	2						3	721 222	10.5	7.5	
	,			8	ă	12		3		漆		80	60 60	88	79 76	78 79	į.	2	8	20	
				82	103					74			103 215						\$Q	7.00	
		Ť		3	115		1	1	13			-2	45 65					450 350			ez. Alo
				8	106							-	325		-				30	*	
	-		2		9				1/2	3	-		- A			左.	1.3°			55.	
	_		2	913	Ħ			1		100						:0;-	鄸				
	-		_	280	2	1	10 G	4	(13.2							
			٤	9	*					7.			i de Avis							*50g	12:1
		J.,	1	8	8				3		100	7.33 7.33	10.7	2				系统 视的			
		i - A.		8	ä	L			6% 567	14	-		-1200 -8-660		374		3. 192		1592 2591	75. July 35. C	

1) Qualit from Gett

Table III(D) SUALRY TESTS SOALS POLOF PLANT CATALYST TESTS

1:0					-Zn	יזע	OJ)	3.	<u> </u>	inti	Distillation	dist T	 -3		Content	2 #	Iodine No.	
	į	Omeracities of	3	3	121	A .	11	5	480Mps			Ker	Kerosene) (4)				10.0
	í		8	710°	ans S quer	OUI V	20 A	PER P	801	8	Ent. tiel 5 5. pt. 105	, 61	202	20% 90%	gasoline	kero-	gasoline e	o e e
E	į	Quilettion and Ilea.		805	160-200	ig ig		8	8	70 137	168	Ä	887	165 227 515	. 09	18.		
12,8	4	ALC OFFI	- ===	, 188	180-800	100									1,0	•		
3	Ġ	SCH-EGERGE-ROSE-ROS	1:18	8	200-210 10200	2020	1	2	3	79 155		96	138 180	838		stole Luis 1	20	ų.
(3)	1	E144 - 20/23/20 - 45/2	a:	8	958	8	1	9	8	93 74	58 95 172 108 154 205 288	2	02	888		toggrad magazia magazia	167	8
N(3)	n i	Pareston refer times Ele- errations of Epos	111	2	953	800	•	8	83	77 150	8		<u> </u>	88 159 271	*	8		
										Y.			- 4.				3	

237

385

Table TV(D) EFFECT OF PRESSURE AND ALKALI CONTENT ON OIL YIELD* FROM Fe + 25% Cu + 125% KIESELGUHR BASE CATALYST

K2C05		Gas Contrac-	Gas Con-	Com	ositi	on of	Reac	tion	Gas	1		eld of on Pro		g/m3
edded of Te	-6/08-	tion \$	sump- tion CO:He	co ₂	Heavy HO	CO	H2	GH4	N2	H ₂ 0	Gaso- line	Kero-	Paraf- fin	Total Liquid H.C.
<u></u>	5	21.9	0.90	5.0	0.4	37.5	40.9	3.4	12.8	29.4	7.8	5.9	6.1	19.2
	6	29.0	0.87	6.2	0.6	36.2	38.7	4.5	13.6	46.6	10.7	9.8	10.0	29.9
25	10	54.0	0.87	7.0	0.7	34.9	37.2	5.5	14.7	41.9	15.4	15.4	52.8	59.0
	15	35.0	0.75	5.8	0.7	37.3	56.6	5.5	14.5	55.8	12.9	14.1	51.8	78.8
	20	52.9	0.72	4.7	0.5	39.1	36.8	4.9	14.5	54.6	10.7	15.0	30.5	56.1
	3	19.1	1.64	9.6	0.5	33.0	42.9	2.5	11.5	12.2	9.7	4.1	15.1	26.9
	6	26.2	1.48	12.9	0.6	29.2	41.2	5.4	12.6	23.8	18.4	6.7	27.0	52.1
45	10	56.1	1.55	21. 5	6.0	17.9	38.0	6.0	15.8	40.2	20.4	15.8	58.4	94.
S 1	15	37.5	1.59	20.9	1.0	21.2	57.0	4.7	15.2	52.0	23.9	17.9	66.0	105.
	20	55.4	1.12	12.9	0.8	30.8	57.5	5.8	14.4	65.7	17.1	15.4	59.8	90.
•	5	28.6	1.26	9.1	0.5	33.7	42.5	2.5	12.9	7.5	4.4	5.6	9.3	19.
	.6 .	55.2	1.42	15.2	0.4	27.7	41.6	2.9	14.2	10.0	7.1	5.1	42.6	54.
⇔	10	47.5	1.47	20.2	0.7	16.5	40.5	4.4	18.1	18.6	12.5	8,7	76.9	97.
	15	54.6	1.49	27.5	1.1	6.8	39.0	5.5	20.5	32.5	15.1	50.0	74.0	119.
	20	54.9	1.51	26.9	1.2	11.6	33.8	5.9	20.6	45.1	15.1	30.2	61.5	115.
	5	25.2	1.10	6.0	0.8	37.7	۵.6	2.2	12.5	7.0	5.1	0.5	3.5	7.
	•	29.1	1.20	8.5	0.3	34.0	41.1	2.5	15.4	18.7	5.8	2.5	18.9	20.
8	10	32.5	1.15	8.1	0.8	36.7	40.0	2.7	13:0	10.4	5.4	3.5	56.4	45.
	15	47.8	1.4	23.5	0.8	25.0	27.4	4.4	17.6	33.1	18.5	15.4	77.2	106.
	20	51.6	1.20	24.9	0.0	25.7	34.3	6.0	19.4	56.1	16.0	29.9	68.4	224.
	4.44	as enalys	•	0.1	0.0	43.8	1	1.						

Data are average far one weeks speration at each recetion pressure.

<u> Resetion Conditions</u>

APPENDIX I

LIST OF DOCUMENTS (JAPANESE AND GERMAN) ON FISCHER-TROPSCH RESEARCH OBTAINED AT KYOTO IMPERIAL UNIVERSITY

(Forwarded Through ATIS to Washington Document Center)

A. On the Studies of Gasoline Synthesis from CO and H₂ Under Normal Pressure. (ATIS No. 4597)

She was a second				Maria e
NavTechJap No.	"Paper No.	Subject	Author	Date*
	Note:	ND26-0026.1 is one volume comprising the following 31 papers.		•
ND26-0026.1	1.	Research for catalysis by Heating Curve Method. Part A.	S. KODAMA	1937
ND26-0026.1	2.	Research for catalysis by Heating Curve Method. Part B.	S. KODAMA	1937
ND26-0026.1	3.	Formation of Liquid Hydro- qarbons by Co, Cu and Thoria Catalysts.	S. KODAWA	1937
ND26-0026.1		Effect of Berylium oxide, Magnesium Oxide Zinc Oxide and Cadmium on Co and Cu Catalysts.	S. KODAWA	1937
ND26-0026.1	5.	Effect of Titanium Oxide, Zirconium Oxide and Selenium Oxide on Co & Cu Catalysts.	S. KODAWA	1937
ND26-0026.1	6.	On the Formation of Hydrocarbons by Fe Catalyst.	S. KODANA	1937
ND26-0026.1	7.	Effect of Alkali on Fe-Cu Catalyst.	S. KODANA K. FUJINURA	1937
ND26-0026.1	8.	On the Fe-Cu Catalyst.	K. FUJIMURA	1937
ND26-0026.1	9.	On the Co-Cu-MgO Catalyst.	K. FUJIMURA	1937
ND26-0026.1	10.	Effect of Promotors on Co-Cu-MgO Catalyst.	E. FUJIMURA	1937
ND26-0026.1	11.	On the Synthesis of Petroleum by Catalytic Reduction of CO at Ordinary Pressure. K.	YUJIMURA	1937
MD26-0026.1	12.	On the Synthesis of Petro- leum by Catalytic Reduction T. of Co at Ordinary Pressure. K.	TSUMEOKA VUJIMURA	1937
MD26-0026.1	Ŋ.	Study on Ni Catalyst. Part A. T.	TSUMMOKA	1937

^{*}Institute of Physical and Chemical Research Journal

X-38(N)-7 RESTRICTED

NavTechJap No.	Paper No.	Subject	Author	Date*
ND26-0026.1	14.	Study on Ni Catalyst. Part B.	T. TSUNEOKA	1937
ND26-0026.1	15.	Study on Ni Catalyst. Part C.	K. FUJIMURA	1937
ND26-0026.1	16.	Study on Ni Catalyst. Part D	T. TSUNEOKA	1937
ND26-0026.1	17.	General Propeties and Composition of Products.	K. FUJIMURA T. TSUNEOKA	1937
ND26-0026.1	18.	Effect of Sulphur Compounds on Ni Catalysts.	K. FUJIMURA T. TEUNBOKA K. KAWAMITSI	1937
ND26-0026.1	19.	Ratio of H2 and Co in Raw Gas.	K. YUJIMURA T. TSUNEOKA	1937
ND26-0026.1	20.	Effect of N2, methane, CO2 in Raw Gas.	T. TSUNEOKA	1937
ND26-0026.1	21.	Relation Between Raw Gas Composition and Reaction Temperature and Degree of Saturation of Gasoline.	T. TSUNBOKA	1937
ND26-0026.1	22.	Possibility of use of allog		1937
ND26-0026.1	23.	Study on Extraction and Washing of Alloy Catalyst.	T. TSUNEOKA	1937
ND26-002641	24.	Effect of Grain Size, Treating by H2 and Oxidatio Conditions of Alloy Cataly	on . st. T. TSUNECKA	1937
ND26-0026.1	25.	General Properties and Composition of Synthetized Petroleum by Alloy Catalys	T. TSUNEOKA	1937
ND26-0026.1	26.	Synthesis Reaction and Cas Contraction.	T. TSUNEOKA Y. MURATA	1937
ND26-0026.1	27.	Study on Series of Ni-Co and Co Alloy Catalysts.	T. TSUNEOKA M. MURATA	1937
MD26-0026.1	28.	Study on Series of Mi Alloy Catalysts.	T. TSUMBOKA M. MURATA	1937
ND26=0026.1		Study on the Effect of Reaction Tube Diameter and Catalyst Layer Length.	T. TSUMBOKA Y. MURATA	1937

^{*}Institute of Physical and Chemical Research Journal

avTechJap No.	Paper No.	<u>Subject</u> ;	Author	Date*
ND26-0026.1	30.	Catalyst on Reaction.	T. TSUNEOKA M. MURATA	1937
ND26-0026.1		Effect of Flow Rate of Ges on Reaction.	Y. MURATA S. ISIKAWA T. TSUNBOKA	1937
ND26-002 6.2	32.	Study on Construction Material of Reaction Chamber.	T. TSUNEOKA	1937
ND26-0026.3	33.	Study on Construction Material of Reaction Chamber.	T. TSUNEOKA	1937
ND26-0026.3	33. (2)		of T. TSUNEOKA	1937
ND26-0026.4	34.	Analystani Mast of Allow	T. TSUNEOKA	1937
ND26-0026.5	35•	Fine Structure of Alloy Catalyst.	T. TSUNEOKA	1937
ND26-0026.6	36.	Relation between Activity Catalyst its Hysteresis of High Temperature Treatment	T. TSUNEOKA	1937
ND26-0026.7	37•	Study on Space Velocity of Gas.	T. TSUNEOKA J. NISHIO	1938
ND26-0026.8	38.	Condition of Synthesis and Unsaturation of Product.	T. TSUNEOKA Y. MURATA	1938
ND26-0026.9	39•	Superiority of Ni-Co Catalyst Prepared by Precipita tion Method.	- T. TSUNEOKA Y. MURATA	1931
ND26-0026.10	40.	Effect of Mixture Ratio	T. TSUNEOKA Y. MURATA	1938
ND26-0026.11		On the Activation of Catalyst by Air Blow Oxidation.	I. KATAYAKA Y. MURATA	193
ND26-0026.12	42.	Study of Purification of Raw Oas for Casoline Synthesis. Part A. Elimination of organio Sulphur Compounds at Low Temperature.	T. TSUNZOKA	193

X-38(N)-7 RESTRICTED

NavTechJap No.	Paper No.	Subject	Author	Date*
ND26-0026.13	43.	Study of Purification of Raw Gas for Gasoline Synthesis. Part B. Elimination of Organic Sulp Compounds at High Temperatu	T. TSUNEOKA W. FUNASAKA hur re.	1938
ND26=0026-14	Wh.	Elimination of Organic Sulphur by Lux Mass.	W. Funasaka I. Katayama	1939
ND26-0026.15	45.	Elimination of Organic Sulphur Compounds by Synthetic Fixing Reagent.	W. Funasaka I. Katayama	1939
ND26-0026.16	46.	Preparation of New Fe- Catalyst and its Super- iority.	T. TSUNBOKA Y. MURATA	`1939
ND26-0026.17	47.	Influence of Composition of Raw Gas in Use of Fe Catalyst.	T. TSUNEOKA Y. MURATA	1939
ND26-0026.18	48.	Effect of Adding Amount of Cu and Alkali on Fe Catalysts.	T. TSUNEOKA Y. MURATA	1939
ND26-0026.19	49.	Effect of Metal and Metal Oxide Promotors and Precipi tion Reagents on Fe-Cu-Alke Catalysts)		1939
ND26-0026.20	50.	Elimination of Organic Sulphur Compounds from Water Cas.	w.' funasaka	1940
ND26-0026.21	51.	On a Intensive Fixing Reagent of Sulphur which can Purify Water Gas at 200-250°C.	V. JUNASAKA	1940
ND26-0026.22	52.	Influence of Raw Material, Carrier and Alkali on Fe- Catalyst; and Effect of Packing Materials.	Y. MURATA S. WAKINO	1940
ND26-0026.23	53.	Effect of Aluminium, Ag and Other Promotors on Ye Catalyst.	S. MAKINO K. KOLUE	1940
ND26-0026.24	54.	Influence of CO2 on Catalyst.	Y. MURATA T. YAMADA	1939
ND26-0026.25	55•	Influence of M2, CH4, O2 and Ammonia Gas in Raw Gas on Fe Catalyst.	Y. MURATA T. TAKADA	1939
MD26-0026.26	56.	Distillation Analysis of Synthetic Gasoline. (1)	S. KODAKA	1939

^{*} Institute of Physical and Chemical Research Fournal

		Subject	Author	Date*
NavTechJap No.	Paper No.	<u>annleo</u>		
ND26-0026.27	57•	Promotors on Fe-Cu. Catalysts.	Y. MURATA Y. TAZUKI	1940
ND26-0026.28	58.	Effect of Cu on Fe Catalyst	Y. MURATA M. YASUDA	1940
ND26-0026.28	59.	Promotion Effect of Borio Acid on Fe-Cu Catalyst.	Y. MURATA M. YASUDA	1940
ND26-0026.29	60.	Effect of Cu on Fe Catalyst.	Y. MURATA R. YASHIRO	1940
ND26-0026.30	61.	Reaction Temperature and Durability.	Y. MURATA Y. YOSHIOKA	1940
ND26-0026.30	62.	Durability of Fe Catalyst and Composition of Raw Gas.	Y. MURATA Y. YOSHIOKA	1940
ND26-0026.30	63.	Fe Catalyst and Raw Composition.	Y. MURATA S. SAITO	1940
ND26-0026.31	64.	On the Preparation of Fe Catalyst by Precipitation.	Y. MURATA M. NAKAGAWA	1941
ND26-0026.31	65.	On the Reduction of Fe Catalyst by H ₂ and Thermal Treatment.	M. MURATA E. TASHIRO	1941
ND26-0026.31	66.	On the Reduction of Fe Catalyst.	Y. MURATA M. UMEMURA	1941
ND26-0026.32	68.	Distillation Analysis of Synthetic Gasoline.	K. TARAMA Y. TAZUKI	1941

B. Investigation of Synthesis of Petroleum Under Middle Pressure. (ATIS No. 4598)

NavTechiap No.	Paper No.	Subject	<u>A</u> 1	uthor	Journal
ND26-0027.1	1.	On the Catalytic Reaction of CO and H2 Under High Pressure.	Ŷ.	TAHARA SAWADA KONIYAWA	J. Soc. Chem. 1941
ND26-0027-2	2.	On the Peculiarity of Synthesis of Petroleum Under Pressure-especially Durability of Catalyst.	I. 3. 3.	KODAMA TAHARA FUKUSHIMA ISODA KOMASAWA KIMURA	151d. 1942

^{*}Institute of Physical and Chemical Research Journal

ERCLOSORE (D)

NavTechJap No.	Paper No.	Subject	Author	Journal
ND26-0027.2	3	Effect of Reaction-temp- erature and Alkali Content for Fe-Cu-Mn-Boric Acid Catalyst.	S. KODAMA S. TAHARA I. FUKUSHIMA S. ISODA S. KOMAZAWA K. KIMURA	151d. 1942
ND26-0027.2		Effect of Alkeli, Boric Acid, Cu, Kieselguhr Content for Iron Catalyst	S. KODAMA S. TAWARA I. FUKUSHIMA S. ISODA S. KOMASAWA K. KIMURA	151d. 1942
ND26-0027.3	5.	Investigation on Tech- nical Use of Iron Catalyst for Synthesis of Petroleum.	S. KODAMA S. TAHARA Y. HONG	Confer- ence of Synthetic Petroleum 1943.
		estigation of Gasoline Synth	, mente dels tres dels grants	
NavTechJap No.	Paper No.		Author	<u>Journal</u>
ND26-0028.1	ori S il. La La Saligna de La Saligna de	Activated Adsorption of H2, CO, CO2 and H20 by Cobalt.	S. KODAMA K. TARAMA S. MATSUMURA	J. Soc. Chem. Ind Japan 1940.
ND26-0028.1	2.	Activated Adsorption of H2, CO, CO2 and H2O by Iron.	S. MATSUMURA	1940
ND26-0028.1	3.	Activated Adsorption and Mechanism of Gasoline Synthesis Reaction,	S. MATSUMURA	1940
MD26-0028.2	4.	Adsorption Velocity of H ₂ by Cobalt.	S. MATSUMURA	1941
ND26-0028.3	5.	Adsorption Velocity of H ₂ by Co-Kieselguhr Catalys	S. KODAMA ANDMURAMA. C. T. ANDO	1941
ND26-0028.3	6.	Adsorption Velocity of H ₂ by Co-Th-Kieselguhr Catelyst,	T. ANDO	1941
ND26-0028.4	7.	Adsorption Velocity of R ₂ by Iros,	S. KODAMA S. MATSUMURA	1012
MD26-0028.4	er miklen den der 2 Augustion	Adsorption Velocity of H2 by Fe-Kleselguhr Catalyst	E. TARAKA S. KODAMA S. MATSUMURA T. AMDO	1942 1942
ND26-0028.4	9.	Adsorption Yelocity of H2 by Fe-Catalyst for Casoline Synthesis.	8. KODANA 8. NATSUNURA	.1942

	Alberta anagrafia da		CASTOTION STORM	ali alikhiri (Make rajin
NavTechJap <u>No</u> .	Paper No.	Subject .	Author	<u>Journal</u>
ND26-0028.5	12.	X-ray Studies on Gasoline Synthesizing Iron Cotaly- ser.	S., KODAMA H. TAHARA	1942
ND26-0028.6	13.	I-ray Investigation of Iron Catalyst for Benzene Synthesis.	H. TAHARA	KYOTO Imperial U. Lecture
D. The Synthes	is of Gase	ous Hydrocarbons from CO and	H2. (ATIS No.	4600)
NavTechJap No.	Paper No.	Subject	Author	Journal
ND26-00 29.1		Effect of Reaction Tem- perature on Fe-Catalyst.	S. KODAMA K. TARAMA T, OSHIMA K. FUJITA	J. Soc. Chem. Ind Japan 1941
ND26-0029.1	2.	Effect of Synthetic Gas - Velocity on Fe-Catalyst.	K. FUJITA	1941
ND26-0029.2	3:	Promoter Action of Cu, Mm, K ₂ CO ₃ and H ₃ BO ₃ on Fe-Catalyst.	S. KODAMA K. TARAMA A. MISHIMA K. FUJITA M. YASUDA	1943
ND26-0029.2	4.	Effect of Reaction Temperature on Fe-Catalyst with Various Promoters.	M. YASUDA	1943
ND26-0029.3	5.	Effect of K2003 Content on Fe-Catalyst.	M. YASUDA	1943
ND26-0029.3	6.	Effect of H_BO ₃ Content on Fe-Catalyst.	M. YASUDA	1943
ND26-0029.4	7.	Effect of Reaction Temperature on Co-Catalyst.	S. KODAMA K. TARAMA T. TAKASAWA K. FUJITA T. TESHIMA	1945
MD26-0029.4	8.	Effect of Synthetic Gas Composition on Ye-Catalyst.	T. TESHIMA	1945
ND26-0029.4	9. nac ma animon	Effect of Kieselguhr Comtent on Ye-Catalyst.	S. KODAMA K. TARAMA T. TAKASAWA H. ITO T. TESHINA	
MD26-0029:4	10.	Effect of Verious Carriers on Fe-Catalyst.		1945

X-38(N)-7 RESTRICTED

E. Pilot Plant	Test of Gasoline Synthesis	STEELS CONTROL OF A STAND STAND STAND STAND STANDS	<u>s entra esta 1961.</u>
NavTechJap No.	Paper No. Subject	Author	Journal .
ND26-0030.1	9. The 9th Report of Synthesis. (The	lst Test by	Reports of the Inst.
	loom3/hr. Scale	Convertor.) S. KODAMA	for Ohem. Research 1941.
ND26-0030.2	ll. Pilot Plant Test line Synthesis.		Journal of Chem. Eng. 1941.

APPENDIX II

LIST OF PATENTS RELATING TO THE FISCHER-TROPSCH PROCESS KYOTO IMPERIAL UNIVERSITY

Pat.No.	Date of Application	Date of Issue	Title	Content	Inventor
98205	1931 , May , 22	1932, Nov., 11	Manufacture of gasoline by reduction of 00.	Normal pressure, Co, Cu, ThOg & MgO or UgO3 catalyst.	G. KITA S. KODAMA K. FUJIMURA
106560	1933,Apr.,5	1934, Jun, 15	Manufacture of gasoline by reduction of CO.	Normal Pressure Ni-catalyst: utilization of inpure Ni (Cu < 0.5%).	K. FUJIMURA- S. TSUNEORA
126845	1957, Dec.,	1938, Oct.,	Steam generator utilizing heat of chemical reaction.	Arrangement of cooling pipes in reaction chember.	S. SUGAHARA S. KODAMA S. TSUNEOKA T. FUJITA
129242	1938, Apr.,		Two stage method of producing oil from water gas.	lst stage: Fe catalyser: 2nd stage: Co- or Ni- catalyst.	G. KITA S. KODAMA Y. MURATA
134661	1937,Sep.,	1940, Feb.,	Earnifacture of hydrocarbon.	idiabatic synthesis by 5% reaction and recirculation.	G. KITA S. KODANA
154662	1938,Apr.,	1940, Feb.,		Activation of catalysts by alow oxidation.	G. KITA, Y. MURA S. TSUNEOKA, I. KATAYAYA, K. KOLDE
139554	1959, Hov.,	1940, Nov.	Removal of sulphur from gases.	Cu(OH), Kiesel- guhr, 10-100% RaOH by 200-400°C	G. KITA W. FUNASAKA
142908	1938, Sep., 23	1941 Apr.	Resotion chember for oil synthesis.	Arrangement of cooling pipe.	S. SUDAHARA S. KODAYA T. FUJITA
142959	1958,Aug., 24	1941 Apr. 18	Manufacture of synthetic liquid fuel.	o Low sctivity catalyst near inlet of reaction chember.	G. KITA, S.KODAN T. FUJITA, Y. MURATA.
143573	1937,00t.,	1941 May,		Mormal pressure, Fe-, Cu, Kiesel- guhr, and alkali catalyst. Redu- ction by reaction gas.	G. EITA. S. TSURECKA, Y. MURATA, S. MAKINO
144803	1930,Aug.,	1941 Ang.	oil synthesis from 00 and Eg.	Reduction by high speed gas flow, save of reduction time.	G. ETTA, Y. MURATA
2440 0 1	1930,0et.,	294) Ang.	Liquid fuel synthesiz- ing reaction chamber.	Device of inser- tion of scoling tubes in the reaction chamber.	S. KODALLA G. HASHIMOTO

Pat.No.	Date of Application	Date of Issue	Title	Content	Inventor
147086	1939, Feb.,	1941, Dec.,	Gasoline synthetic iron catalyser.	Fe-catalyser with boron compound.	G. KITA, K. KOIDE, Y. SAWADA, Y. MURATA
147087	1940,Mar., 25	1941, Dec., 10	Two stage method of producing oil from water gas.	lst stage: low reaction temp- erature. 2nd stage: high reaction temperature.	G. KITA, Y. MURATA, Y. YOSHIOKA.
147126	1938, Aug., 27	1941, Dec.,	Oil synthesis by iron catalyser from CO and Hg.	Fe, Cu, Mn or Al-catalyst.	G. KITA, S. MAKINO, Y. MURATA, K. KOLDE.
150548	1940,Mar., 25	1948, May, 13	Manufacture of oil.	Recirculation using alightly hydrogen excess initialgas.	
150958	1940, Nov., 25	1948, Jun.,	Manufacture of liquid hydrocarbon.	Recirculation of hydrogen separated from reaction gas.	G. KITA S. KODAMA S. TSUNEOKA T. MURATA
154268	1941.Apr.,	1942, Dec., 16	Oil synthesis.	Activation of Te-catalyser by He rich reduc- tion gas.	
155495	1941,Mar., 16	1945, Mar., 16	Activation of cil synthetic catalyst.	Activation of catalyst by preliminary heat treatment.	G. KITA S. KODAMA Y. NURATA
156987	1941,0ct.,	1945, Jun., 10	Hydrocarbon synthesis from 00 and Hg.	Middle pressure Fe-catalyst, more alkali the normal pressure Fe-catalyst.	H. TAHARA P. Y. MURATA