ENCLOSURE (B) 31

RESEARCH ON OXYGEN COMPOUNDS AS ANTIDETONANTS

by

CHEM. ENG. LIEUT. COMDR. D. HOSHIMIYA

Research Period: 1937-1938

Prepared for and Reviewed with Author by the U.S. Naval Technical Mission to Japan

Dec. 1945

																								ΤE	
		N)																							
													(B												

LIST OF TABLES ANDILLUSTRATIONS

भावकारकारकार अध्यक्ति अद्योग स्थान नार्वे अन्यान रहिता है।	ligani, kerajang di kempilian pada panah sa	AND ILL	JSTRATION	Sometimen and an experience of the second	องเมื่องการเกา โดยสาราสาราสาราสาราสาราสารา
					Dage 376
Table I(B)31			and the second s		Page 376

ENCLOSURE (B) 33

To obtain a substitute for iscoctane the use of oxygen -compounds-was-investigated.

Ketones and ethers were better than several other oxygen compounds. By the C.F.R. test engine 100 octane rating fuel was obtained from 91 octane number gasoline as follows:

Isopropyl Ether (vol.%) 20

But by the full scale engine test it was discovered that the antiknock properties of the oxygen compounds were - depreciated under full power conditions of operation.

I.

INTRODUCTION Isocotane as the blending fuel for 100 octane rating gasoline was very searce in Japan. Therefore the author selected the oxygen compounds as the substitute of isocotane, and tested them by the use of C.F.R. engine only. The relation of the combination of oxygen to another group and the antiknock properties was tested. Among them ketone and ether groups were preferable, but by full scale engine tests it was discovered that these compounds were deficient in antiknock quality.

II. DETAILED DESCRIPTION

All data are given in Table I (B)31. From that table it was concluded that;

 $R_2CO > R_2O > ROH$

RCHO > ROH

(Among the corresponding compounds)

These compounds were blended in 91 octane gasoline and 100 0.N. gasoline was obtained as shown in Table II (B)31.

III. CONCLUSION

Ketones and ethers were better than the other several oxygen compounds. These substances were necessary for producing 100 octane rating gasoline from 91 octane number fuel as follows:

Pynacoline (Vol.%)	•••••	•••••	• • • • • •			•••••	17.5
Isopropyl Ether (Vol.%)	• • • • • •	• • • • • •	• • • • • •	•••••	• • • • • • • •		20
2-Methyl Pentanone (Vol.%)		• • • • • •	• • • • • •	• • • • • •	• • • • • • • •	•••••	26
of Isocotane (Vol.%)	••••	••••	• • • • •	• • • • • •			45

dut by the full scale engine test it was discovered that the oxygen compounds were depreciated in antiknock properties at full power performance. Full scale engine test detailed data are not available.

ENCLOSURE (B)31 Table I(B)31 BASE FUEL: TALANGIMAR GASOLINE (Pb 0.1% 86.7, 0.15% 89.9)

County of the second of the second	Phys	ical Prope	rties	Antiknock Properties*						
Compounds	Sp. Gr. 150/40	B.P. °C	NBO.	Pt. 0.1% 20% Added (Vol.)	Pb. 0.15% 10% Added (Vol.)	Sum of Difference	Compare			
Acetone	0.7940	55-58	efek i başsarınında ya şıkı	91.2	91.0		and the same of deposits			
Iso-Propyl Alcohol	0.7964	81-90		89.8	89.8	2.6	V			
Methyl Ethyl Ketone	0.8080	76-91	1,3800	93.5	91.9	8.2.				
Sec. Butyl Alcohol	0.8095	96-103	1.3968	88.5	88.7	A parameter of the Community of Advisory				
Pynacolina	0.8104	99.1-115	1.3980	93.9	91.8					
Pynacolyl Alcohol	0.8205	111.5-122	1.4148	89.3	90.0	6.4	V			
2-Methyl Pentanone	0.8032	104-117		97.2	91.5	11.3	\ /			
2-Nethyl Pentanol	-	127-130		88.5	88.9	ing a virtual production of the control of the con-	V			
n-Heptanone	•.	138-143	••	90.7	93.2	7.1				
n-Heptanol	0.8260	145-155	••	87.1	89.7		<u> </u>			
n-Butyl Aldehyde	0.8210	115-116		- •	90.6	1.8				
n-Buthanol	0.8140	115-116.5	**************************************		88.8					
Isopropyl Alcohol	0.7962	81-82.2	1.3778	-	90.9	3.6				
Isopropyl Zther	0.6312	63-73.4.	1.3718	•	94.5					

Table II(B)31 EFFECT OF BLENDING

•		100 0.N.	170m 91 0.11.	100 0.N.	from 87 C.N.	
		Aniline Not Used (Vol. 5)	Aniline 3% Also Audod (Vol. %)	Aniline Not Used (Vol. %)	Aniline 3% Also Added (Vol. %)	
	Pynascline	17.5	13	29	17	
	Isoprotyl	20	0	28	18.5	l
	2-Methyl Pentunone of Isooctane	26 45	8 4	39 over 50	19.5 40	