STUDIES ON THE MANUFACTURE OF AVIATION GASOLINE FROM SOYA-BEAN OIL

by

CHEM. ENG. LIEUT.
N. BAKOTA

Research Period: 1944-1945

Prepared for and Reviewed with Author by the U.S. Naval Technical Mission to Japan

Dec. 1945

LIST OF TABLES AND ILLUSTRATIONS

Table I(B)17	Data on Thermal Cracking in Autoclave	Page	285
The state of the s	Properties of Composite Product Sample	Page	287
Figure 1(B)17	Typical Autoclave Time - Temperature - Pressure Relationship (Run No. 68)	Page	287
Figure 2(B)17	Typical Material Balance	Page	288

SUMMARY SUMMARY

Aviation gasoline was obtained from soya-bean oil by thermal cracking in an autoclave. Casoline was produced in about 20% yield with an octane value of 88.9 with 0.15%-lead.

INTRODUCTION A. History of Project History of Project

In Japan, research on the preparation of gasoline from soya-bean oil by heating with Japanese acid clay had been previously carried on but aviation gasoline was not successfully prepared. The present research was undertaken to investigate preparation of aviation gasoline by thermal cracking of soya-bean oil under high pressure. It was hoped that isomerization would occur during thermal cracking under these condition.

These studies began in October 1944 and were continued until the present time.

B. Key Research Personnel Working on Project

Chem. Eng. Commander H. FUJIMOTO. Chem. Eng. Lieutenant N. SAKOTA.

II. DETAILED DESCRIPTION

Test Apparatus The apparatus used in the experiment was a horizontal, 10 liter rotating autoclave.

Test Procedure В.

400 grams of the oil, with properties shown below, were heated in the autoclave at 470°C for 30 minutes. The pressure was indicated on a manometer attached to the apparatus. The chemical changes taking place during the reaction are indicated by Figure 1(B)17. The gasoline fraction boiling below 170°C was washed with 10% H₂SO₁, then 5% NaOH, rectified, dried with anhydrous Na₂SO₄, and the physical and chemical properties determined.

Properties of Charged Oil

D15	0.925
N _D ²⁰	1.4751
Acid Value	1.45
Todine Velue	138 0

Experimental Results

Data on thermal, cracking runs in the autoclave are given in Table I(B)17. A material balance is given by Figure 2(B)17. The total gasoline from all runs has the chemical and physical properties shown in Table II(B)17.

X-38(N)-2

, pagggagggaggaggagagagagag

ENCLOSURE (B) 17

The first of the f III. CONCLUSION

Soya-bean oil, heated to 450°C, was cracked to liquid and gaseous substances. A gasoline fraction was isolated in 20% yield. The octane number of this gasoline was 88.9 (leaded 0.15%) and about 40% of the fraction was composed of aromatic hydrocarbons. The cracking of soya-bean oil is a possible source of supply for aviation gasoline blending stock.

The high octane of the gasoline was due to the presence of 40% aromatics formed by the aromatization of paraffins during the reaction.

This process was not used on a commercial scale. Engine performance data on the gasoline were not obtained.

Table I(B)17

DATA ON THERMAL CRACKING IN AUTOCLAVE

		1			
**	62	63	64	65	66
(kg/cm ²)	45	48	45	45	45
(kg/cm ²)	15	15	16	15	15
Oil	43.0	37.5	45.0	38.3	38.3
Water_	2.7	5.0	4.5		
Carbon	7.5	5.4	6.3	4.5	4.0
CO ₂	12.0	12.5	11.6	12,2	14.5
02	0.2	0.1	0.3	0.6	0.5
c _n H _{2n}	4.1	4.0	4.5.··	3.4	4.2
co ,	`8 . 8	9.7	10.0	13.8	6.1
H ₂	23.4	22.5	19.5	17.5	21.4
C _n H _{2n-2}	36.1	28.7	39.5	36.3	40.2
	(kg/cm ²) Oil Water Carbon CO ₂ O ₂ C _n H _{2n} CO	(kg/cm²) 45 (kg/cm²) 15 011 43.0 Water 2.7 Carbon 7.5 CO2 12.0 O2 0.2 CnH2n 4.1 CO 8.8 H2 23.4	62 63 (kg/cm²) 45 48 (kg/cm²) 15 15 0il 43.0 37.5 Water 2.7 5.0 Carbon 7.5 5.4 CO2 12.0 12.5 O2 0.2 0.1 CnH2n 4.1 4.0 CO 8.8 9.7 H2 23.4 22.5	62 63 64 (kg/cm²) 45 48 45 (kg/om²) 15 15 16 0il 43.0 37.5 45.0 Water 2.7 5.0 4.5 Carbon 7.5 5.4 6.3 CO2 12.0 12.5 11.6 O2 0.2 0.1 0.3 CnH2n 4.1 4.0 4.5 CO 8.8 9.7 10.0 H2 23.4 22.5 19.5	62 63 64 65 (kg/cm²) 45 48 45 45 (kg/cm²) 15 15 16 15 0il 43.0 37.5 45.0 38.3 Water 2.7 5.0 4.5 Carbon 7.5 5.4 6.3 4.5 C02 12.0 12.5 11.6 12.2 02 0.2 0.1 0.3 0.6 CnH2n 4.1 4.0 4.5 3.4 C0 8.8 9.7 10.0 13.8 H2 23.4 22.5 19.5 17.5

------Table-II(B)17--

PROPERTIES OF COMPOSITE PRODUCT SAMPLE

		ara disemperate di Salamata. Salamata di Salamata di S	ا الأدارة والمراجعة المراجعة المراجعة المراجعة	Product 0il	Gasoline
Spec. Gravity 15/4			0.8770	0.7831	
Acid Value			16	0	
Saponifi	Saponification Value		21	0	
Iodine V	alu	9			54
	in	it. pt. °C		68	53
	109	6 Juli Arga, Grassetti a sasset	on on Albertana.	85.5	75
	20			106	84
	30			126	92.5
	40		10.	146.5	101.5
Distil-	50			173	110
lation	60			210	120
	70			251	130
	80			317	141
	90			382.5	156.5
	95				172
e tot dele topolici	Dry	pt. °C		387	187
	•	Unsat.	H.C.%		6.8
Composition		Aromatic	H.C.%		42.0
		Naphthenic	H.C.%		35.3
		Paraffinio	н.с.%		15.1
Octane Ve	lue	with 0.15%	lead	`	88.9
Yield of	Avi	ation Gasoli	ne wt% c	of product oil	46.5

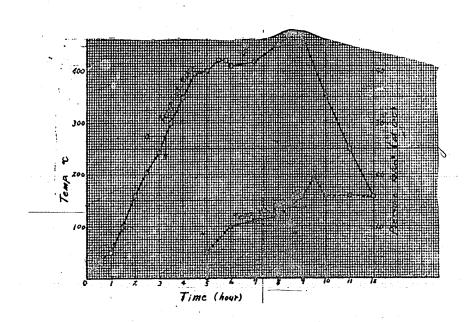
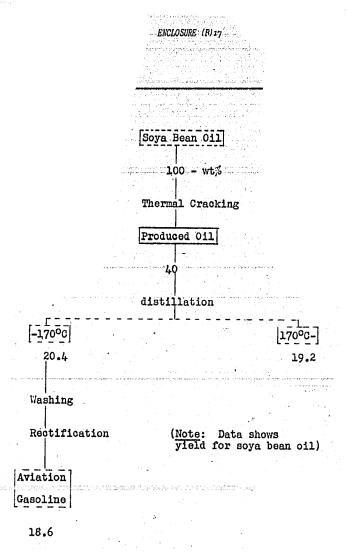



Figure 1(4)17
TYPICAL AUTOCLAVE TIME-TEMPERATURE-PRESSURE FEIATIONSHIP (HUN NO. 68)

FLOURE 2(F) 17
TYPICAL MATERIAL BALANCE