Bendule / punhamor

Re

<u>Versuch</u> über die Abführung der Reaktionswärme

bei der

SO2-Erzeugung mit Tauchbrenner aus flüssigem Schwefel und Sauerstoff.

(D)

		Seite
1.1	Veranlassung zu dem Versuch.	1
	Beschreibung der Kühlvorrichtung.	1 - 2
3.)	Ermittlung der Wärmedurchgangszahl k aus den	alas come cos a Sacr
	Versuchen.	-25
4.)	Rechnerische Ermittlung der Wärmedurchgangs= zahl k.	5 - 8
5.)	Ergebnis und Schlußfolgerungen.	8 - 9

Leuna Werke, am 31. Jamuar 1941.

1.) Veranlassung für den Versuch.

Im Laboratorium der Braunkohlenvergasung wurde die Herstellung von SO₂ durch Verbrennung von S mit O₂ untersucht. Als geeignet erwies sich die Verwendung von Tauchbrennern, die zu diesem Zweck besonders entwickelt wurden. Mit Hilfe dieser Brenner erfolgt die Verbrennung durch Einleiten von O₂ im flüssigen S unterhalb seiner Oberfläche. Einzelheiten sind dem Bericht des Herrn Dr. Kah vom 30.8.39 betr. "Versuche zur SO₂-Herstellung" zu entnehmen.

Bei Übertragung des Verfahrens in den großtechnischen Maßstab ist, abgesehen von der Entwicklung geeigneter Tauchbrenner mit großer Leistung, eine wirksame Kühlseinrichtung auszubilden, durch die der an den flüssigen S übergehende Anteil der Verbrennungswärme abgeführt wird. Hierbei ist zu beachten, daß der flüssige Schwefel unterhalb von etwa 120°C erstarrt und oberhalb von etwa 160°C einen Bereich sehr hoher Viskosität hat. Der Wärmeentzug muß mithin innerhalb des Temperaturbereiches von etwa 120°C bis 155°C erfolgen.

2.) Beschreibung der Kühlvorrichtung.

Zur Untersuchung der Wärmeübergangsverhältnisse wurde eine unter teilweiser Verwendung vorhandener Apparateteile gebaute Apparatur nach beiliegender Skizze

M. 3757 - 16 (Anlage 1) benutzt, die SO₂ für andere Versuchszwecke zu liefern
hatte. Sie stand für die Untersuchung der Wärmeübergangsverhältnisse nur in beschränktem Maße zur Verfügung. Außerdem war nicht beabsichtigt, noch besondere
Kosten hierfür aufzuwenden.

Die Apparatur bestand aus:

Teil

- Brennkammer mit Tauchbrenner (Sicromalduse 22 mm \$\mathcal{D}_{\tau}, 55 mm Höhe, Einzelheiten s. Bericht Dr. Kah v. 30.8.39).
- 2 Kühlervorlage.
- Als Dampfkessel ausgebildeter S-Kühler n. Zeichnung Me 5403-4 mit 7 Kühlrohren 38 x 2,5, 5056 lg., Gesamtfläche der Rohrinnenseite 3,65 m²
- Dampfkondensator als Rückflußkühler mit 86 Rohren 40 x 2,5, 790 lg., Gesamtfläche der Rohrinnenseite 7,5 m². Das Kühlwasser fließt auf der Innenseite der Rohre.

Teil:

Schwefel-Umlaufpumpe, 4-fach wirkende Duplexpumpe mit Dampfantrieb von Weise u. Monski, Halle, Modell "I K 712",

normale Förderleistung

max. Gesamtförderhöhe

Doppelhubzahl

Zylinder-Durchmesser

Hub

Fördermenge je Hin- und Hergang

100 mm

4 1/Min. = 0,24 m³/h.

Durch die Pumpe wird der sich in der Apparatur befindende flüssige S dauernd im Kreislauf gehalten, wobei die vom S in der Brennkammer aufgenommende Wärme im Kühler an das Kesselwasser abgegeben und vom Dampf im Kondensator an das Kühle wasser weitergegeben wird.

3.) Ermittlung der Wärmedurchgangszahl k aus den Versuchen.

In der beiliegenden Tabelle 1 (Anlage 2) sind die Meßwerte, darunter die zu ermittelnde Wärmedurchgangszahl k des Schwefelkühlers, von verschiedenen Versuchsereihen eingetragen. Unmittelbar-gemessen sind die Werte der Spalten 3, 9, 11, 12, 13, 15 und 16.

Zur Auswertung dienten folgende Unterlagen:

Spalte 5. Verbrennungswärme, errechnet aus dem gemessenen Sauerstoff=Verbrauch.

Auf 1 m³ 0₂ kommen 1,315 kg S und damit 1,315 · 2210 = 2900 kcal/m³ 0₂

Spalte 6. Wärmeabgabe der Apparatur an die umgebende Luft.

Nicht-isolierte Oberfläche der Apparatur ~ 2,6 m2, auf Zeichnung

5403-4 grün gekennzeichnet.

Temperatur der Wandoberfläche innen im Mittel ~ 140°C

" außen ~ 20°C

Δ t = 120°C

Für die Außenseite der Wand:

 $\alpha = 5 + 3.4 \cdot w = 5 + 3.4 \cdot 1 = \sim 8 \text{ kcal/m}^2 \text{ h} \cdot \text{C}$ s. Hütte, 26. Aufl., Bd. I, S. 499

und damit praktisch auch:

 $k = \sim 8 \text{ kcal/m}^2 \text{ h}^{-0}\text{C}$

 $Q = 2,6-8\cdot120 = 2500 \text{ kcal/h}$

unabhänging von der Belastung der Apparatur.

Spate 7. Warmeabgang mit der erzeugten SO₂.

O,41 · 150 = ~ 60 kcal/m³ SO₂ bezw. O₂;

wobei angenommen ist, daß die SO₂ mit einer Temperatur abzieht, die um

150° über der Temperatur des eintretenden O₂ liegt.

- Spalte 8. Wärmeaufnahme des umlaufenden flüssigen Schwefels.
 Sie ergibt sich durch Abzug der in Spalte 6 u. 7.genannten Wärmemengen von der in Sp. 5 genannten Verbrennungswärme. Vernachlässigt sind dabei die geringen Mengen gasförmig aus der Brennkammer mit der SO, austretenden Schwefels.
- Spalte 9. Schwefel-Umlauf,

 aus Pumpen-Hubzahl errechnet.

 Da die Pumpe mit Hubzahlen betrieben wurde, die um ein Mehrfaches höher lagen, als die normale Hubzahl der Pumpe, ist die Errechnung der Umlaufmenge aus der Hubzahl nicht einwandfrei. Eine Pumpe mit größerer Leistung stand nicht zur Verfügung.
- Spalte 11,
 12 u. 13
 Schwefel-Temperatur
 gemessen an den Stellen a, b und c der beiliegenden Skizze
 M 5757-16. Maßgebend, für die Ermittlung des Temperaturgefälles im
 S-Kühler (3) sind die bei b und ç gemessenen Werte. Die bei a gemessen
 Temperatur war fast immer höher als die bei b gemessene, offenbar
 infolge Rückwirkung der sich in der Nähe befindenden Flamme.
- Spalte 14. Die aus der Wärmeabgabe an den umlaufenden S (Spalte 8) und dem S-Umlauf (Spalte 10) errechnete Abkühlung des Schwefels im Kessel müßte mit der gemäß Spalte 12 und 13 gemessen Abkühlung übereinstimmen. Dies ist jedoch nur annähernd der Fall, einmal, weil die Bestimmung des S-Umlaufes nicht einwandfrei ist, und ferner, weil schon geringe Ungenauigkeiten bei der Temperaturmessung wegen des an sich sehr kleinen Temperaturintervalles erhebliche Abweichungen ergeben

Spez. Gewicht des flüssigen Schwefels 1,81 kg/l

Wärme " " O,22 kcal/kg C

(Landolt-Börnstern, II. Ergänzungsbd. S.1168)

- Spalte 15. Wassertemperatur im S-Kühler.
 Mittelwert der bei d, e u. f gemessknen Werte.
- Spalte 17 Temperaturgefülle im S-Kühler At
 errechnet aus den in den Spalten 11, 12 u. 13 aufgeführten Schwefeltemperaturen und der in Spalte 15 gerannten Wassertemperatur.

Die in Spalte 18 stehenden Wärmedurchgangszahlen k ergeben sich aus den in Spalte 8 aufgeführten Zahlen für die Wärmeabgabe an den umlaufenden Schwefel dividiert durch die wirksame Kühlfläche (3,65 m²) und durch die in Spalte 17 genannten Zahlen für das Temperaturgefälle Δ t.

Bei den Versuchen zeigten sich Schwierigkeiten, sobald mit zunehmender Belastung, die bei a in der Brennkammer gemessene Schwefeltemperatur einige Grade über 145°C hinaus anstieg. Die Temperatur stieg dann schnell immer weiter an, obschon durch die dabei auftretende Erhöhung des Temperaturgefälles im S-Kühler eine hinreichende Wärmeabführung zu erwarten war. Es ist anzunehmen, daß der Schwefel in diesem Falle local in der Nähe des Brenners erheblich heißer wird als 160°C, so daß sich in dem verhältnismäßig dünnflüssigen kälteren Schwefel zähflüssige, heiße Schwefelquallen bilden, die den gleichförmigen Schwefelumlauf durch den Kühler und an den Tauchbrennern vorbei stören, wodurch dann die gleichmäßige Wärmeabfuhr beeinträchtigt wird. Das Auftreten solcher zähflüssigen Schwefelz quallen ist nach Angabe von Herrn Dr. Kah früher bei Labor-Versuchen bereitsbeobachtet worden.

Wie aus den Spalten 15 und 16 ersichtlich ist, wurde durch Veränderung des Druckes im Dampfraum des Schwefelkühlers die Temperatur des Kühlwassers verändert Hierfür war folgende Überlegung maßgabend:

Bei einer Temperatur des Kühlwassers von 120°C-liegt die vom flüssigen Schwefel berührte Fläche der Kühlrohre mit Sicherheit über dem Erstarrungspunkt des Schwefels, so deß sich am Rohr keine, den Wärmeübergang verschlechternde Schwefel kruste ansetzen kann. Es ist auf Grund der Versuchsergebnisse anzunehmen, daß sich bei einer Temperatur von 98°C eine dünne Schicht festen Schwefels auf dem Rohr ensetzt und den Wärmeübergang verschlechtert (Vgl. Abschnitt 4). Wenn man die Temperatur über 120°C hält, fällt zwar die Wärmedurchgangszahl k. wie erwaretet, besser aus (vgl. Spalte 18, Zeile 1, 2, 12 u. 13 mit den übrigen Zeilen). Trotzdem aber ist die auf 1 m² Kühlfläche abführbare Wärmemenge (s. Spalte 19) geringer, weil das nutzbare Wärmegefälle (Spalte 17) erheblich kleiner wird. Bei Temperaturen des Kühlwassers über 120°C war es daher nicht möglich, mit der zur Verfügung stehenden Kühlfläche mehr als 6 m³ SO2/h über längere Zeit zu erzeugen.

Die Leistung der Kühleinrichtung bei einer Kühlwassertemperatur von 120°C läßt sich sehr wahrscheinlich noch steigern, wenn die Bildung von zähflüssigen

Schwefelquallen erschwert wird durch Verbesserung des Brenners und der Brennkammer mit dem Ziele einer gleichförmigen Wärmeverteilung auf den umlaufenden Schwefel. Eine Andeutung in dieser Richtung gibt ein Vergleich der Zeilen 7, 8 und 9 der Tabelle 1. Durch Anordnung von 2 Düsen war es nämlich möglich, die SO₂-Erzeugung und damit die auf den m² Kühlfläche abzuführende Wärmemenge weiter zu steigern.

Im praktischen Großbetrieb wird es ratsam sein, den Schwefelkühler für eine Temperatur von mindestens 120°C einzurichten. Bei tieferen Temperaturen kann der Fall eintreten, daß der Schwefel in einzelnen Rohren des Kühlers, in denen aus irgend welchen anderen Gründen die Strömungsgeschwindigkeit des Schwefels geringer ist, erstarrt. Auch muß bei Stillstand der Apparatur der Kühler ohnehin auf einer Temperatur von mindestens 120°C gehalten werden, um eine Erstarrung des Schwefels zu verhindern.

4.) Rechnerische Ermittlung der Wärmedurchgangszahl k für die Kühlung von flüssigem Schwefel durch Wasser mit einem Eisenrohr als Trennwand.

Als Grundlage dienter die Angaben in:

"Berechnung von Wärmeaustauschern",

towns don Formaln n Formal crossor

Bd. I, Blatt 1a, herausgegeben von I.G. - Lu, Technischer Prüfstand, sowie Angaben über die physikalischen Eigenschaften des Schwefels in den Nachschlagebüchern: Landolt u. Börnstein, Chemiker-Taschenbuch.

	Eriauterung der Formein u	erung der formein u. formeigroben.						
L	Rohrlänge		· March · · · · · · · · · · · · · · · · · · ·					
d	Rohr-Innendurchmesser	ring in the second seco						
ω	Geschwindigkeit des Schw	vefels im Rohr	m/sec.					
η	absolute Zähigkeit des S	kg sec./m ²						
<u> 7</u>	spez: Gewicht des flüssi	gen Schwefels	kg/m ²					
C	" Warme " "	o Aldrino - Magail Aldrino - Magail	kcal/kg °c					
λ	Wärmeleitzahl-des ""		kcal/m h oc					
2'			kcal/m sec. °C					
Às	" C" festen	n " bei 100°C	kcal/m h °C					
∕S 5	Wandstärke der Schwefelk	cruste	m .					
-∕sr	Wandstärke des Eisenrohr	es	~ II *					
Ar	Wärmeleitzahl des Eisens	kcal/m h C						

```
Dimension

m/sec.<sup>2</sup>

Re Reynolds'sche Zahl

Prandfl'sche Zahl

Nu Nusselt'sche Zahl

a<sub>1</sub> Wärmeübergangszahl Schwefel an Rohrwand

a<sub>2</sub> Rohrwand an Wasser

k Wärmedurchganszahl

1 1 1 + 1 + 4r + 4s

k a<sub>1</sub> a<sub>2</sub> A<sub>3</sub>

a<sub>4</sub> - Nu A
```

Variabel ist nur die Reynolds sche Zahl und zwar mit der Geschwindigkeit des durch die Kühlrohre strömenden Schwefels. Die übrigen Werte bleiben bei den verschiedenen zu den einzelnen Versuchen gehörigen Belastungsfällen konstant, da die Apparatur und der Wärme abgebende Stoff gleich bleiben.

Konstant bleiben:

Nu 5 0,024 Re 0,8 Pr 0,37

Es Mindern sich:

$$Re = \frac{w \cdot \alpha \cdot \gamma}{\eta \cdot g} = 7500 \cdot W$$

$$Nu = 0.024 \cdot 7500^{0.8} \cdot w^{0.8} \cdot 55.3^{0.37}$$

$$0.024 \cdot 1260 \cdot 4.45 \cdot w^{0.8} = 134 \cdot w^{0.8}$$

$$\alpha_1 = \frac{Nu \cdot \lambda}{\alpha} = \frac{0.119}{0.033}$$
, 134 e.w^{0,8} = 483 . w^{0,8}

Dicke der am Rohr haftenden Schwefelkruste, abhängig von der Temperatur des Kühlwassers.

k tindert sich mit an und As

Es ergeben sich für die in Tabelle 1 (Anlage 2) aufgeführten einzelnen Versiche Colge

Tabelle 2.

	20.00				
	w m/wec,	a ₁	- ∕3g 1) C _{O 100} -	. k erreghnet kcal/m H C	k gemessen koal/m² h C
1	0,67	350		290	237 2)
2	1,0-	483	Star est.	380	295
3	0,67	350	0,125	230	225
4	1,0	483	0,25	220	215°
5	1,0	483	0,25	220	23C
6		483	0,25	_220	195
	-1, 0-	-193-	-6 . 55	-55 0-	_200
8	1,0	783	0,25	550	215
<u></u> 6	1,0	483	C,25	580	230
					-
10	0,79	404	C,25	205	250
11	0,67	- 350	0,25	190	- 200
12	0,56	ું 306		260	290
13	0,9	446	0,06	310	525
<u> </u>	0,9	446	0,125	270	280

¹⁾ geschätzt auf Grund der Versuchsergebnisse.

⁾ die starke Abweichung domik genessen von E errechnet bei den Versuchen 1 v. ?

dürfte durch Meßfehler bedingt sein. Wehrscheinlich ist die Hubzehl des

S-Umlauf-Pampe nicht richtig ermittelt worden, was zu falscher Umlaufmenge und damit au falschem au führt.

Mit zunehmender Umlaufgeschwindigkeit des Schwefels wird die Wärmeübergangszahl Schwefel an Rohrwand wesentlich besser.

Für w = 2 m/sec. errechnet sich

- \alpha_1 = 840 kcal/m^2 h C

Bei Kühlwasser von 120°C wird damit

\[\text{k} = 570 kcal/m^2 h C, \]

so daß z.B. bei \(\Delta \text{t} = 20°C \text{inagesamt} \)

- 570 \(\text{ 20 = 11.400 kcal/m}^2 h \text{ abgeführt werden könnten.} \)

Versuche zur Bestätigung dieses Verhaltens konnten nicht durchgeführt werden, da eine Schwefelpumpe mit hinreichend großer Förderleistung nicht zur Verfügung stand.

5.) Ergebnis und Schlußfolgerung.

Die Wärme, die bei der Erzeugung von SO₂ durch Verbrennung von flüssigem Schwefel mittels-Sauerstoff im Tauchbrenner entsteht, ist vom umlaufenden Schwefel so aufzunehmen, daß dieser sich dabei auch in der Nähe des Brenners nicht über 160°C erwärmt. Zu diesem Zweck sind möglichst weitgehend unterteilte Tauchbrenner zu entwickeln, deren einzelne Brennstellen kleine Leistung haben (höchstens 5 m³ O₂-Verbrauch je Stunde) und intensiv von Kühlschwefel umspült verden, so def sich Quallen zus-zähflüssigem Schwefel nicht bilden können.

Die vom umlaufenden Kühlschwefel aufgenommene Wärme ist in einem Röhrenkühler an Wasser abzuführen. Das Kühlwasser muß auf einer Temperatur von mindestens 1.0°C gehalten werden können, d.h. es ist ein Dampfkessel für mindestens 1.5 atü als Kühler anzuwenden, der die vom Schwefel übernommene Wärme seinerseits über einen Rückflußkühler an Kühlrasser nach außen abzibt. Wenn das zur Schwefelkühlung dienende Kühlwasser auf 120°C gehalten wird und die Geschwindigkeit des flüssigen Schwefels in den Kesselrohren mindestens 1 m/sec. beträgt, so kann man ein Temperaturgefälle Δ t = 20° und eine Wärmedurchgangszahl $K = 300 \text{ kcal/m}^2 \text{ h}^{-0}\text{ C}$

als mit Sicherheit erreichbar annehmen, d.h. man kann mit einem Wärmedurchgang von 6000 kcal je m² h rechnen. Damit der Kessel nicht zu lang wird, kann man den Schwefel in mehreren Zügen durch den Kessel hindurchführen. Die Leistung des Kessels läßt sich steigern, wenn man das Kühlwasser auf 100°C hält. Dabei steigt

das Temperaturgefälle auf 4 t = 40°C, während die Wärmedurchgangszahl k bei einer Schwefelgeschwindigkeit von 1 m/sec. auf etwa 200 kcal m² h ^oC sinkt. so daß mit einem Wärmedurchgang von 8000 kcal/m² h gerechnet werden kann. Jedoch sollte man den Kühler nicht auf dieser Grundlage konstruieren, weil die Möglichkeit besteht, daß der Schwefel bei ungünstigen Strömungsverhältnissen in einzelnen Rohren erstarrt.

Eine wesentliche Verbesserung des Wermedurchgangs läßt sich durch Steigerung des Schwefelumlaufs erzielen. Bei Steigerung der Schwefelgeschwindigkeit in den Kühlrohren auf 2 m/sec. errechnet sich z.B. unter Zugrundelegung einer Kühlwassertemperatur von 120°C eine Wärmedurchgangszahl k von ~ 550 kcal/m² h °C und damit bei A t = 20°C eine Wärmedurchgang von 11.000 kcal/m² h.

Der Schwefelkreislauf muß von Zeit zu Zeit gereinigt werden, da sämtliche mit dem Schwefel in die Apparatur hineinkommenden Verunreinigungen sich derin ansammeln. Beim Reinigungen der Versuchsapparatur wurde Schwefeleisen und Eisensulfat gefunden, was auf Eisenangriff schließen läßt. Im Zusammenhang hierwit sei auf den bereits erwähnten Bericht des Herrn Dr. Kah hingewiesen, wonach bei bestimmten Belastungsfällen der einzelnen Tauchbrenner geringe Mengen von SO2 entstehen können. Ein nach Abschluß der Versuche ausgebautes Kühlerrohr ließ. jedoch auf der vom Schwefel berührten Innenseite keinen nennenswerten Angriff erkennen.

Vor Anwendung des Verfahrens in großtechnischem Maßstab dürfte es ratsam sein, neben der Entwicklung geeigneter Tauchbrenner für große Leistung auch noch Untersuchungen zur Klärung der Materialfrage vorzunehmen.

Ø Herren

Dr. Augusten

OI. Keinke/Ing. Bauder

OI. Sabel

Dr. Braus

Dr. Kah

Dr. Seeger

Dr. Jeltsch

Dr. Menschick

DI. Ihlenburg

DI. Sommer.

hn.

Versuche über Abführung der Reaktionswärme bei der SO₂-Erzeugung mit Tauchbrenner
aus flüssigen S und O₂.

1	2	3'	4	5	6	7	8 .	9	10	11	12	.13	14	- 15	['] 16	17	18	19
Datum	Zeit	0,-Ver- brauch	Art der Og-Zuführung	Erzeugte Wärme	Wärmeab- gabe an-	Wärme= -abgang≃	Wärneab= -gabe-an-	Doppel=	S-Umlaui		S-Tempe		Errechnete -Abkühlung-	Küh -Wasser-		Δŧ	k_	-je m ² S
-					umgebende Luft	mit SO ₂	umlaufen- den S	Pumpe		der Düse	Klihlung	Kühlung	des S im Kessel	temp.				abgeführt Wärmemeng
1940		chm/h		kcal/h	kcal/h	kcal/h	kcal/h	je Kin.	cbm/h	°C .	°c	°c	non american de la companione de la populación de la forda quante de la companione de la forda quante de la companione de la forda de la companione della companione de la compa	• _C	atü	°c	kcal/ m ² %°C	kcal/m ²
21.4.	12 Uhi	5		14 500	2500	300	11 700	60	14,4	142,5	137	136	2	123	1,6	13,5	237	3200
	16 "	6	1 Sicromal-Dise	17 400	2500	360	14 540	90	21,6	143	137 -	136	1,7	123	1,6	13,5	295	4000
15.5.	12 ³⁰	10	- 55 mm Q	29 000	2500	600	25 900	60	14,4	140,5	138,5	137	4,5	106	0,45	31,5	225	7000
16.5.	13 ³⁰	12	55 mm Höhe	34 800	2500	720	31 580	90	21,6	142	139,5	136,5	3,7	97,5	0	40,5	215	8300
17.5.	5 h Ø	13		37 600	2500	780	34 320	90	21,6	144	137.7	137	4	97	0	41	230	9400
20.5.	16	10	is. Min	29 000	2500	600	25 900	- 90	21,6	138	136	133,5	3	98	0	36,5	195	7000
	11	10		29 000	2500	600	25 900	90	21,6	137	135	132,5	3	98,5	0	35	200	-7000
22.5.	13	12	2 Sicromal-Düsen	34-800,	2500	- 720	31 580	90	21,6	142	140	136	3,7	98	0	40	215	8300
	16	_ 14	22 p , 55 hooh	40 600	2500	840_	37 260	90	21,6	146,5	144,5	138,5	4,3	97,5	0	_ 44	230	10 200
ينو خسنس	تعبينيسينية عمي	Nach-Übe	rholung-und-Reinigu	g-der-App	ıratur:													
21.9.	1130	12	1 Fe-Düse	34 800	2500	720	31 580	_ 70	- 16,8		137	131,5	4,7	99 -	0	35	250	8300
10 1 * 7 × 1	16	10	1 Quarz-Düse	29 000	2500	600	25 900	60	14,4	, , , , , , , , , , , , , , , , , , ,	137.5	132	4,5	99	0	35,7	200	7000
22.9.	10	5	the same of the sa	14 500	2500	300	11 700	50	12	-	138	136	2,4	126	-1,5-	-11	-290-	3200
	14	8		23 200	2500	480	20 220 🚈	- 80	19,2		137	134	2,6	118,5	1 3	17	325	5500
3	15	10		29 000	2500	600	25_900	80	19,2	77	137	132	3,4	109	0,45	25,5	280	· 7000

Louns Werke, am 51. Januar 1941.