Ruhrchemie Aktiengesellschaft Oberhausen-Holten Abt. HL V/By.

Oberhausen-Holten, den 4. April 1936

Untersuchung von alkalischer Quecksilberoyanidlösung auf Absorbierbarkeit von C2H4 u.CO.

Bei den Versuchen zur Umsetzung von CH4 mit CO2 und H20 im leeren Rohr ist beobachtet worden, daß die alkalische Quecksilberoyanidlösung Gas absorbierte, also $\mathtt{C_{2}H_{2}} ext{-Gehalt im}$ Gas anzeigte, ohne daß ${
m C_2H_2}$ vorhanden war (Nachweis mit Ilosvay-Lösg. negativ, Genauigkeit 0,001 %).

Die alkalische Hg-cyanidlösung ist von W.D. Treadwell und F.A. Tauber (C 20 II 516, Helv. chim. Acta 2(1919)601-607) zur Trennung von C2H2 von C2H4, Benzol und C6 empfohlen wor-

Herstellung: 20 g Hg(CN)₂ + 100 ccm 2n NaOH. Davon 5 com anwenden und in Bunte-Bürette 1-2 Min. schütteln. C2H4. Benzol, O2 und CO sollen bei dieser Behandlung von der Lösung wenig oder garnicht angegriffen werden.

Wir hatten in Anwesenheit von Viel CO (20-30 %) dauernde Abnahme gefunden. Genauere Versuche ergaben folgendes:

1) Wassergas von Generator.

a) Normale Analyse

b) Analyse mit Einleiten in Hg(CN)2-Lösg. (In jede Absorption adsung einmal eingeleitet u. abgelesen).

CnHm 4,6

CO 47,2 (Gesamt-Absorption)

Aus diesen Zahlen ergibt sich folgende Analyse, da die Extrapolation auf O bei Hg(CN)₂ und Silbersulfat-H₂SO₄ keine Primär-Absorption ergibt

	^{CO} 2	C2H2	CnHm	c ₂	go	•
	3,6 %	0,0 %	030 %	0,3 %	43,3 %	
gegen	3,3 %	-	0,0 %	0,3 %	43,2 %	be1
der vorm. Anelyse.		· -	•			

Es ist also in der alkal. Hg(CN)2-Lösg. CO absorbiert worden

- 2) Athylen-Fraktion Trenner V.
- a) Normale Analyse (einmal durchleiten, ablesen).

In der konz. H₂SO₄ (C₃H₆) 1st C₂H₄ absorbiert worden. Extrapolation auf O ergibt folgende Analyse (In Silbersulfat-H₂SO₄ keine Nachabsorption.)

b) Analyse mit Einleiten in alk. Hg(CN)2-Lösg.

(einmal durchleiten, ablesen!)

Extrapolation auf O ergibt folgende Analyse (Zusatz Absorption als C_2H_A gerechnet bei C_2H_2 und C_3H_6)

$$C_2H_2$$
:
 1,1 % gegen

 C_3H_6 :
 2,5 %

 $-C_2H_4$:
 35,8 %

 O_2 :
 0,2 %

 O_3 :
 2,6 %

Es ist etwas CO absorbiert worden; O,4 % Abnahme ist aber so wonig, daß quantitative Schlüsse nicht zu ziehen sind. Die Lösung absorbiert C₂H₄ sehr stark. Eine frische Lösung hatte bei dem gleichen Gas einen noch größeren konst. Faktor.

Auffällig ist aber, daß bei der Extrapolation auf 0 1,1 % absorbiert bleiben, obwohl das Gas höchstens 0,2 % $\rm C_2H_2$ enthält. Es müssen also auch noch andere Gasbestandteile absorbiert werden.

3) Koksgas vor dem Kompressor.

Die Analyse mit alkalischer Hg(CN)2-lösung ergabt

In einem Gas mit 2,2 % CnHm + C2H4 und 6 % CC absorbiert die alk. Hg(CN)2-Lösg. nichts mehr. Wie zu erwarten ist die Absortion eine Frage des Partialdruckes der schädlichen Gase.

Im Falle der CH₄-Umwandlung ist also die Dauer-Absorption in alk. Hg(CN)₂-Lösung nur auf CC zurückzuführen, da der CnHm-Gehalt unter 1 % liegt.