	8	1	9	4
		· * .		
es e				

Betreff:	Versuche über die Trocknung von Lust
	mit engporigem Kieselgel.
Patent:	

A	bt	eil	ur	ng.	:

Nr.

Bericht	de g	Herr	n Dr.	. Lok	wever	
		1	Juni		19	

Gesehen von der Direktion:

Zirkuliert in folgenden

Abteilungen:

			
Empfänger	Eingang	Weiter	Unterschrift
Stickstoff-Direktion (2)			
Ammoniaklabor.			
Hr. Dir. Dr. Büller-			
Cunradi Hr.Dr.Gloth			
Hr. Or. Lieseberg			
Hr. Dr. Stoewener			
Fr. Dr. Taeger			
Br. Dr. Hodler)	
Hr. Dr. Lederle, Op	98ъ		
Hr. Dr. v. Negel	,	-	
Ur. Dipl. Ing. Lamp			
Hr. Dipl. Ing.			
Altstoodt			
			odina ind anamananana hana ajiiniiniinii
		7	

Aufzubewahren im Archiv des:

Eingegangen beim Archivar:

Laufende Nr. des Archivs:

Lo/Op.299.

Ludwigshafen am Rhein, den 1. Juni 1938. Hk

Betreff:

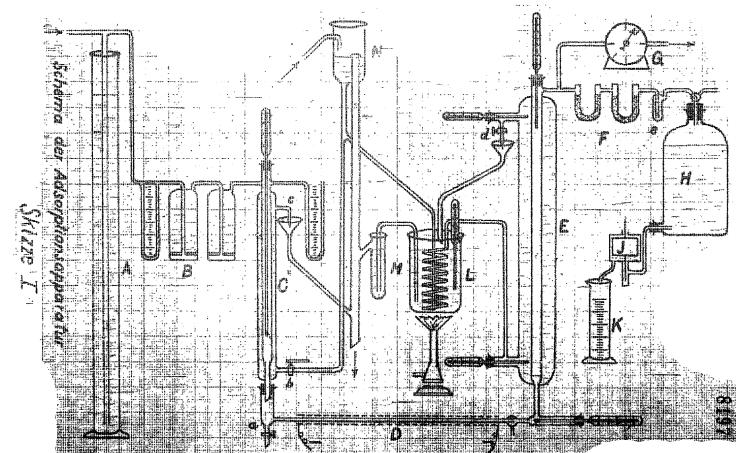
Versuche über die Trocknung von Luft mit engporigen Kieselgel.

Auf Veranlassung von Herrn Dr. Gloth wurden im Laboratorium der Gasfabrik Op 299 Versuche gemacht über die Trocknung von feuchter Luft mit engporigem Kieselgel. Es sollte die Abhängigkeit der Wasserdampf-Adsorption geprüft werden:

- 1. von der Temperatur
 - a) bei adiabatischer Adsorption
 - b) bei isothermer Adsorption
- 2. von der Verweilzeit
- 3. von der Regenerierungstemperatur des Kieselgels.

Für die Versuche wurde engporiges Kieselgel A aus der laufenden Fabrikation der Kieselgelfabrik Op 97 benutzt, und swar stammte es aus der Partie 5 vom 8.11.1937, hatte eine Körnung von 2-4 mm und ein Schüttgewicht von 72.

Die Wasseraufnahme des Kieselgels wurde bei allen Versuchen in Gramm Wasser pro 100 g Kieselgel (g H₂0/100 g Kieselgel) angegeben. Der Trocknungsgrad der Luft gibt des prozentuale Verhältnis der adsorbierten zur ursprünglich vorhandenen Wassermenge An.


Zu den Versuchen wurde eine weiter unten beschriebene Apparatur benutzt, die es gestattete, die relative Feuchtigkeit auf dem gewünschten Wert mit einem Fehler von ± 0,1 g H2O/cbm zu halten; die Temperatur der zu trocknenden Luft konnte auf ± 1°C eingehalten werden. Das Adsorptionsrohr mit der Kieselgelfüllung konnte für Versuche mit Abführung der Adsorptionswärme (isotherme Adsorption) und ohne Abführung der Wärme (adiabatische Adsorption) benutzt werden. Außerdem konnte das Adsorptionsrohr gekühlt und geheizt werden.

Beschreibung der Apparatur.

Die Apparatur ist in der Skizze I schematisch wiedergegeben.

Durch den Druckregler A tritt die zu den Trocknungsversuchen benutzte (Druck-)Luft in die Apparatur ein, wird durch ihn auf konstanten Druck (ca. 1,50 m Wassersaule) gehalten und durch das nachgeschaltete Strömungsmanometer auf die gewünschte Anzahl Stundenliter eingestellt. Danach wird die Luft in den beiden Glasfrittenwaschflaschen B bei Zimmertemperatur (ca. 20° - 22° C) mit Wasser geesttigt. Dann durchströmt die wassergesättigte Luft das Kühlaggreget C, welches aus einem mit Wasser gekühltem Rohr (Liebig-Kühler) mit angesetztem Stutzen a zur Wasserabscheidung besteht. Hier wird die mit Wesser gesättigte Luft durch von N zuströmendes Leitungswasser gekühlt, wodurch die gewünschte relative Feuchtigkeit erhalten werden kann. Bei den meisten Versuchen wurde eine relative Feuchtigkeit von 80 % bei 200 C in der zu trocknenden Luft zu Grunde gelegt. Da bei 20°C gesättigte Luft 17,29 g H₂0/cbm enthält, so muß Luft, die 60 % relative Feuchtigkeit bei 2000 enthält. $\frac{80 \times 17.29}{100} = 13.8 \text{ g H}_20/\text{cbm}$ enthalten. Eine Luft aber, die 13,8 g H20/cbm enthält, ist bei 16°C gesättigt. Die zu den Versuchen benutzte wassergesättigte Luft muß also auf 16°C abgekühlt werden. Die genaue Einhaltung der Temperatur wurde erreicht, einmal durch das Überlaufgefäß N, wodurch ein sehr gleichmäßiger Wasserzulauf unter stets gleichem Druck erreicht wurde und zum anderen durch den Regulierhahn b und dadurch, das das Ausflusrohr c zu einer feinen Spitze ausgezogen war. Durch diese drei Einrichtungen wurde erreicht, daß die zu trocknende Luft für die stundenlange Versuchsdauer auf konstanter Temperatur gehalten werden konnte.

Das durch die Abkühlung abgeschiedene Wasser sammelte sich in dem Stutzen a und wurde durch den angesetzten Hahn --- Zeit zu Zeit abgelassen.

Nach dem Passieren des Rohres D, welches mit einer Reisspirale versehen war, um die Luft auf die Versuchstemperatur zu erwärmen, tritt die Luft in die eigentliche Adsorptionsapparatur E ein.

Diese Adsorptionsapparatur besteht aus einem Quarsrohr von ca. 20 mm lichter Weite, unten eingeschmolzenem
Sieb und angeschmolzenem Kühlmantel; die Verbindungen sind
Schliffverbindungen. Das Adsorptionsaggregat E konnte aus
der Gesamtapparatur zum Zwecke der Regenerierung des Kieselgels herausgenommen werden.

Das Adsorptionsrohr E konnte durch Wasser sowohl gekühlt als auch geheizt werden. Zu letzterem Zwecke wurde
das Wasser in einem kupfernen Durchlaufrohrerhitzer L erwärmt. Durch den Überlauf M wurde stets gleiches Niveau des
Heizbades gehalten. Dadurch und durch die gleichen - bei
dem Kühlaggregat C näher beschriebenen - Einrichtungen
(Überlaufgefäß N, Regulierhahn d mit ausgezogener Spitze)
wurde eine Temperaturkonstanz erhalten, die in den Temperaturintervallen

von 5 - 25°C eine Fehlergrenze von ± 0,5°C hatten,

" 25 - 45°C " " ± 1°C ",

" 45 - 75°C " " ± 1,5°C "

Hinter dem Adsorptionsrohr wurde dann der getrocknete Luftstrom in der Gasuhr G gemessen und ins Freie geleitet. Ein kleiner Teil (2 Liter/Stunde) wurde jedoch zwecks gewichtsmäßiger Bestimmung des von dem Kiesel gel nicht adsorbierten Wassers vor der Gasuhr abgezweigt und das Wasser in den Phosphorpentoxydröhrchen F aufgefangen und gewogen. Zwecks gleichmäßiger und gleichbleibender Strömungsgeschwindigkeit der Luft in den P2O5-Röhrchen, waren diese unter Zwischenschaltung eines Blasenzählers e mit dem Aspirator H verbunden. Der gleichmäßige Abfluß des Wassers aus dem Aspirator war durch einen Abflußregler I gewährleistet. Er hat sich bei den Versuchen sehr bewährt. Das aus dem Aspirator abgelaufene Wasser – und damit die durch die P2O5-Röhrchen geströmte Luft – wurde gemessen.

Die Wasserbestimmung in der getrockneten Luft.

Da die durch Kieselgel getrocknete Luft anfangs nur sehr geringe Wassermengen enthält, die dann allmählich ansteigen, handelte es sich darum, Wassermengen unter O,lg/cbm = 0,1 mg/Ltr. zu bestimmen. Des Wasser wurde gravimetrisch nach Auffangung in einem Phosphorpentoxydrohrchen bestimmt. Dabei ist es erforderlich, daß nicht mehr als ungefähr 2 Ltr.Luft/Std. durch die Röhrchen hindurchströmen, da sonst eine Gewähr für vollständige Absorption des Wassers nicht gegeben ist, wie durch lange Versuche bei anderer Gelegenheit festgestellt worden war. Um wägbare Mengen zu erhalten, war es erforderlich, die einzelnen Versuche über einen verhältnismasig langen Zeitraum auszudehnen. Und es bestand auch nur die Möglichkeit, das Wasser der getrockneten Luft in einem gewissen Intervall als Durchschnitt zu bestimmen. Bs wurde, wie in den Tabellen über die einzelnen Verauchsergebnisse angegeben ist, das Wasser in dem "Ausgangsgas" vom Beginn des Versuches (frisch regeneriertes Kieselgel) an so bestimmt, daß - wie bei der Beschreibung der Apparatur angegeben - vom Hauptstrom ein Teilstrom von 2 Ltr./Std. abgezweigt und durch das Poo-Röhrchen geleitet wurde. Nach Durchgang von je 100, 200 oder 500 Litern wurde das Pos-Röhrchen ausgewechselt und gewogen. Es bedeutet dann z.B. daß (nach Tabelle 1) im Intervall

von 0 - 500 Ltr.) das Ausgangsgas 0 g H₂0/cbm, und 500 - 700 Ltr.) d.h. nicht wägbare Mengen enthält; im Intervall

von 700 - 900 Ltr. das Ausgangsgas 0,27 g H₂0/cbm enthält.

Diese 0,27 g H₂0 ist der Durchschnittswassergehalt, nachdem bereits 700 Ltr. Luft vorher durch das Kieselgel getrocknet worden waren. Die getrocknete Luft enthält natürlich bei 700 - 750 Ltr. unter 0,27 g H₂0/cbm und bei 850 - 960 Ltr. mehr als 0,27 g H₂0/cbm.

Aus diesem gravimetrisch bestimmten Wassergehalt der getrockneten Luft wurde die vom Kieselgel adsorbierte Wasser menge berechnet; diese muß bei der Regenerierung des Kieselgels durch Kondensation des ausgetriebenen Wasserdampfes zurückerhalten werden. Wie aus den Tabellen ersichtlich ist, stimmen die berechneten Werte und die gefundenen Werte innerhalb der Fehlergrenze überein. Dies ist ein Beweis nicht nur für die Richtigkeit der gravimetrisch gefundenen Werte der Wassergehalte der getrockneten Luft, sondern auch für die genaue Aufladung der zu trocknenden Luft mit Wasser auf 80 % relative Feuchtigkeit bei 20°C.

Beschreibung der Versuche.

Bei den adiabatischen Adsorptionsversuchen sollte nach Möglichkeit die in der Praxis bei Adsorptionsanlagen vorkommenden Verhältnisse berücksichtigt werden; das heißt also: die Adsorptionswärme soll

- 1. benutzt werden zur Erwärmung des Kieselgels und der Apparatur,
- 2. durch die getrocknete Luft selbst abgeführt werden, und
- 3. soll der durch Ableitung und Strahlung entstehende Warmeverlust dem der Praxis möglichst nahekommen.

Bei den vorliegenden Versuchen wurde die relative Feuchtigkeit der zu trocknenden Luft immer gleich gehalten, und zwar auf 80 %. Das entspricht 13,8 g H₂O/cbm Luft. Um zunächst einmal die Einwirkung der Verweilseit auf die Adsorptionsfähigkeit festzustellen, wurde jene variiert und Versuche bei 2,5 Sekunden, 2,0 Sekunden und 1,6 Sekunden Verweilzeit durchgeführt.

Die stündliche Durchflußmenge der zu Grocknenden Luft ergibt sich bei der zu den Versuchen angewendeten Strömungsgeschwindigkeit von 0,20 m/sec., aus der lichten Weite des Adsorptionsrchres und der Schichthöhe des Kieselgels (bzw. der Verweilzeit). Da zu den Adsorptionsversuchen Quarzrohr benutzt wurde und bei solchen der Rohrdurchmesser nicht an allen Stellen gleich ist, wurde das zu den Versuchen benutzte Quarrohr mit Wasser ausgemessen. Der Fassungsraum betrug vom eingeschmolzenen Sieb ab bis zur Höhe von

1	0	OM	1	31	.5	CCI	0
2	0	cm		63	0	COL	D .
3	O :,	CIR				CO	
4	0	CO	1	28	,0	CCI	Ų.
5	0	CID	1	57	0	CO	

Das Rohr hat dann rechnerisch eine lichte Weite von durchschnittlich 20,0 mm. Um in diesem Adsorptionsrohr bei einer Schichthöhe von 50 cm eine Verweilselt von 2,5 Sekunden zu haben, müssen 226,08 Liter Luft pro Stunde das Rohr durchströmen. Bei gleicher stündlicher Inftmenge können kürsere Verweilseiten (2,0 Sekunden) durch Herabsetzen der Schichthöhe erreicht werden.

Adiabatischia Adsorption.

Die Ergebnisse der Versuche über die adiabatische Adsorption bei 2,5 Sekunden Verweilseit sind in den Tabellen 1 und 2 wiedergegeben und in der Skisse A graphisch dargestellt. Die Versuchsbedingungen sind am Kopfe der Tabellen angegeben.

Die Adsorption des Wassers im Kieselgel geht so vor sich, daß sich das Kieselgel zuerst bis zu einer gewissen Schichthöhe an der Einströmseite mit Wasser belädt bis gum Gleichgewicht, darnach die folgende Schicht, bis die Hauptmenge des Kieselgels verbraucht ist. Diese von Zone zu Zone fortschreitende Beladung des Kieselgels mit Wasser macht sich durch die fortschreitende Temperaturerhöhung bemerkbar. Zuerst erwärmt sich die untere Zone, dann steigt die erwärmte Zone allmählich weiter nach oben und die untere wird nach vollständiger Beladung mit Wasser von der weiter durchströmenden Luft wieder abgekühlt bis auf die Temperatur der su trocknenden "Ringangsluft". Diese sonenweise Beladung mit Wasser läßt sich besonders gut zeigen, wenn man das Kiesel gel mit einer Kobaltchlorurlösung tränkt und trocknet. Das Kieselgel sieht nun blau aus. Wenn sich das Kieselgel dann mit Wasser belädt, schlägt die Farbe des wasserfreien blauen Kobaltchlorurs in die des wasserhaltigen rosaroten Kobalt-

Tabelle 1.

Adiabatische Adsorption.

Kieselgel A	Lichte	Kintrittetempera-	Luftmenge:
Partie 5 vom	Rohrweite:	tur d.Luft: 220	225 Ltr./Stunde
8.11.1937	ca.21 mm	Austrittstemp.	Strömungsgeschwin-
Schütt-	Schicht-	der Luft: ca.320	digkeit: 0,20m/sec.
gewicht: 72 Korn-	höhe: 50cm Kiesel-	(ohne Abführung	Verweil- 2,5 sec.
größe: 2-4mm	gel: 135 g	der Wärme) Relative Feuchtigh	
	~ 168ccm	80 % be1 20°C = 1	

Regenerierung mit trockener Luft bei 200°C.

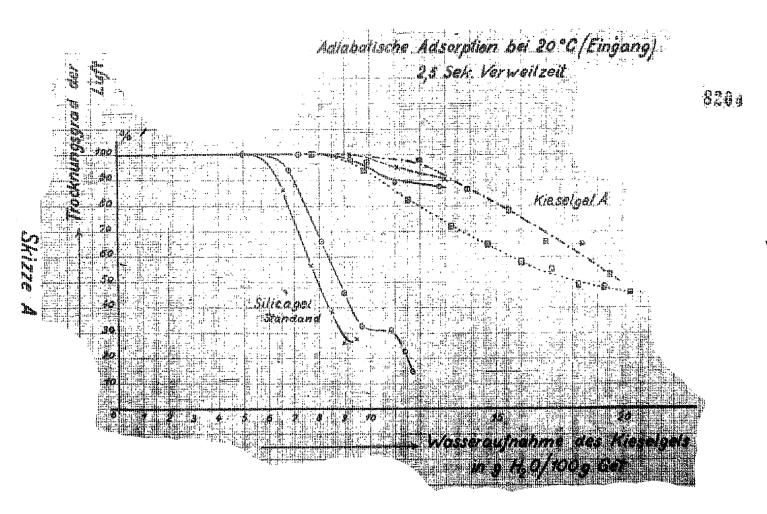

Im Intervall von - bis	Wasser- gehalt der ge- trock-	elt reich- adsorbiert ge- ter Wassermeng k- Trock- in		bierte rmenge p	gehalt der ge trock-	- ter Trock-	Vom Kieselgel adsorbierte Wassermenge in	
Ltr. ltr.	neten Luft in g H ₂ 0 pro cb	grad	pr.Kie pr.Kie selgel rohr- fullg.	-pr.I00 -g Kie- selgel	neten Luft in gH ₂ 0 pro com	grad der Luft	g H ₂ 0 pr.Kie selgel rohr- fullg:	prö - 100g Kiesel
0 - 500	0	100	6,90	5,11	0	100	6,90	5.11
500 - 700	0 .	100	2,76	2,04		100	2,76	
700 - 900	0,27	98,0	2,70	2,00	0	100	2,76	2,04
900 - 1100	1,46	89,5	2,46	1,82	0,75	94,6	2,61	1,93
1100 - 1300	1,61	88,3	2,44	1,81	1,28	90,8	2,50	1,85
1300 - 1500	7,65	45,0	1,33	1,00				
			18,59	13,78		전함 설	17,53	12,97
			g H ₂ 0	g H ₂ 0	:		g H ₂ 0	[3]、1886年 [4]
Bei der Rege-		19 16						
nerierung zu- rückgewonnen:	:	*1 /1.5	18,4			12	17,2	
			g H ₂ 0				g H ₂ O	

Tabelle 2.
Adiabatische Adsorption.

Kieselgel, A	Lichte	Eintrittetempera-	Luftmenge:
Partie 5 vom	Rohrweite:	tur d.Luft: 200	225 Ltr./Std.
8.11.1937	ca.20 mm	Austrittstemp.	Strömungsgeschwin-
Schütt-	Schicht-	der Luft: ca.320	digkeit: 0,20m/sac.
gewicht: 72 Korngröße:	höhe: 50cm Kiesel-	(ohne Wärmenbfüh- rung)	Verweil- 2,5 Sec.
2-4 mm	gel: 125 g	Relative Feuchtigk	
	~ 157ccm	80 % bei 20°C =	

Regenerierung mit bei 20°C mit H2O gesättigter Luft bei 140-120°C.

Im Intervall von - bis	Wasser- gehalt der ge- trock- neten Luft in g H20 pro ebm	Trock- nungs- grad der Luft	edsorb Wasseri 11 g E ₂ 0	lerte nenge g H2O pr.100 g Kie- selgel	in	ter Trock- nungs- grad der Luft	adsor Wasse 1 g H ₂ 0 pr.Kie selge	rmenge R _s H ₂ O pro - 100 g Kiesel
0 - 500	0	100	6,90	5,52	0,09	99,4	6,86	5,49
500 - 700	0	100 :	2,76	2,21	O	100	2,76	2,21
700 - 900	0,77	94,5	2,61	2,09	0,50	96,4	2,66	医动物性 医乙酰胺 医红斑斑
900 - 1100	2,44	82,4	2,27	1,81	0,26?	98,2?	2,71	
1100 - 1300	3,80	72,5	2,00	1,60	1,99	85,6	2,36	りゅうシャ・バス だかすりこだい
1300 - 1500	4,75	65,3	1,81	1,45	3,64	78,7	2,03	· · · · · · · · · · · · · · · · · · ·
1500 - 1700	5,80	58,0	1,60	1,28	4,78	65,4	1,80	
1700 - 1900	6,18	55,2	1,53	1,22	4,83	65,2	1,79	
1900 - 5100	7,09	48,6	1,34	1,07	6,56	52,5	1,45	1,16
2100 - 2300	7,19	47,9	1,32	1,06			24,42	19,56
2500 - 2500	7,48	45,8	1,26	1,01			g H ₂ 0	g H ₂ C
			25,40	20,32				
			g H ₂ O	g H ₂ 0		9		
					•			
Bei der Roge-		** **	3					
nerierung gu-				•				
ruckgewonnen:	; *	, i	26,2	1		10 to	24,5	
TO TO SERVE AND THE	ī.		g H ₂ 0				g H ₂ 0	5.74 7.74

chlorirs um. Man sieht dann an dem Parbumschlag ganz deutlich, daß sich das Kieselgel bei der Trocknung von feuchter Luft von Zentimeter zu Zentimeter mit H₂O belädt und daß, wenn der Wassergehalt der austretenden Inft suf über 0,1 g H₂O/cbm gestiegen ist, noch ca. 10 - 15 cm Kieselgel so wenig mit Wasser beladen sind, daß das Kieselgel blau gefärbt bleibt.

Diese 10 - 15 cm hohe Kieselgelschicht ist bei 0,2 m pro Sekunde Strömungsgeschwindigkeit gewissermaßen ale Schutsschicht und damit als Mindestschichtbühe des Kieselgels erforderlich, wonn man Luft auf unter 0,1 g H₂0/cbm trocknen will. Genaueres über diese Kindestschichtböhe wird in einem späteren Abschnitt berichtet.

Die Ergebnisse der Versuche über die adiabatische Adsorption von Kieselgel bei 2,0 Sekunden und 1,6 Sekunden Verweilzeit sind in den Tabellen 5 und 4 wiedergegeben und in den Skissen B und 0 graphisch dargestellt.

Die Werte über die adiabatische Adsorption streuen stark infolge der durch den Wechsel der Außentemperatur bedingten unterschiedlichen Wärmenbstrahlung.

Als Abschluß der Versuche über die adiabatische Adsorption unseres Kieselgels A wurden swei Vergleichsbestimmungen mit dem Konkurrenzprodukt der Chemischen Fabrik Coswig "Silicagel-Standard" gemacht. Die Siebanalyse des Silicagels ergab, daß es aus

62,5 % von der Korngröße 0-2 mm und aus 37,5 % " 2-4 mm bestand.

Die Versuche wurden genau wie die bei unserem Kieselgel A bei 2,5 Sekunden "Verweilseit" gemacht, wie fabelle 5 zeigt, auf der die Ergebnisse angegeben sind. Graphisch dargestellt sind sie mit den entsprechenden Versuchen über Kieselgel A auf der Skisse A zum Vergleich. Es ergibt sich deraus, daß die Adsorption des Silicagels Standard ungefähr 2/3 von der unseres Kieselgels A beträgt.

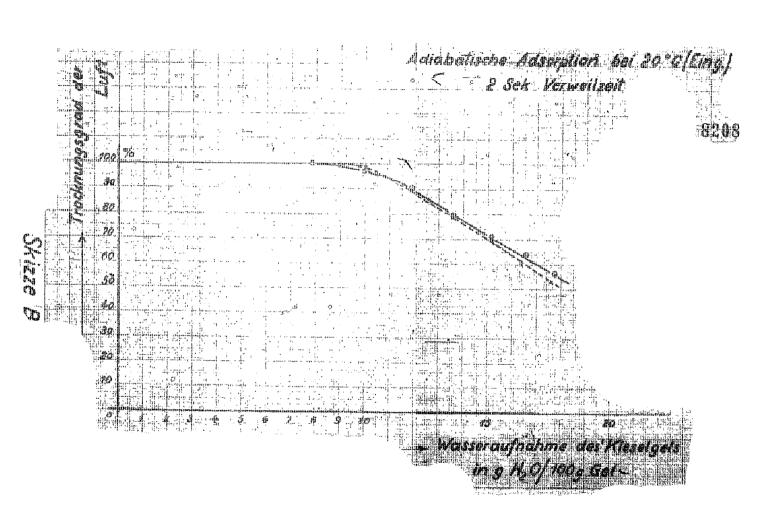
Tabelle 3.

Adiabatische Adsorption.

。 12.2 中国教育 (12.2 李明 17.5 年)			OS CARAGO A CARAGO A MARIENTA A CARAGO.
Kieselgel A	Lichte	Bintrittstemperatur d.Luft: 22°C Austrittstemp.	Luftmenge:
Partie 5 vom	Rohrweite:		225 Ltr./Stunde
8.11.1937	ca. 20 cm		Strömungsgeschwin-
Schütt-	Schicht-	(ohne Abführung	digkeit:0,20m/sec.
gewicht: 72	höhe: 40 cm		Verweil-
Korn-	Kiesel-		zeit: 2,0 sec.
größe: 2-4 mm	gel: 96 g ∼125,6ccm	Relative Feuchtigks 80 % bei 2000 = 13	it der Luft:

Regenerierung mit trockener Luft bei 140°C.

Im geh		asser- shalt ler ge- rock-	reich- adsorbierte g ter Wassermenge d Trock- in t		der ge-	reich-	Wassermenge 1n		
ttr. L		eten Luft in g H ₂ 0 ro com	nungs- grad der Luft	g H20 pr.Kie- selgel rohr- füllung	g H ₂ 0 pr.100 g Kie- selgel	neten Luft in g H ₂ 0 pro ebs	nunge- grad der Inft		pro 100g Klassi
0 - 5	50	0,07	99,7	7,55	7,86	0,08	99,6	7,54	7,85
550 - 7	00 (0,40	97,1	2,01	2,09	0,28	98,0	2,03	2,12
700 - 8	50	1,34	90,3	1,87	1,95	1,44	89,4	1,85	是1960年2月1日
850 - 10		2,72	80,2	1,66	1,73	2,80		1,65	
1000 - 11		4,00	71,0	1,47	1,53	4,12		1,45	
1150 - 13		4,90	64,2	1,33	1,39	5,53		1,24	
1300 - 14	50 (80,6	56,0	1,16	1,21	6,40	53,6	1,11	1,16
				17,05	17,76			16,87	17,57
		4) 14	:	g H ₂ 0	g H ₂ 0			g H ₂ 0	g H ₂ 0
Bei der Re					196 840 2 3 3				
rierung zu gewonnen:	rucs-			17,5				17,2	
	The second secon			g H ₂ 0				g H ₂ 0	


- 11 -Tabelle 4.

Adiabatiache Adsorption.

Kieselgel A	Lichte	Eintrittetempera- Luftmenge:
Partie 5 vom	Robrweite:	tur d. Luft: 22°C 125 Ltr/Stunde
8.11.1937	ca. 21 cm	Austrittstemp. Strömungsgeschwin
Schutt-	Schicht-	der Luft: 29°C diskeit 0.20m/sec.
gewicht: 72	höhe: 20 cm	(ohne Abführung Verweil-
Korn-	Kiesel-	der Warme) zeit: 1,6 sec.
größe: 2-4mm	ge1: 48 g	Relative Fouchtigkeit der Luft:
	~ 62,8 com	80 % bei 20°C = 13,8g H ₂ 0/cbm.

Regenerierung mit trockener Luft bei 1400 - 1200 C.

Im Intervall von - bis Ltq. Ltr.		Wasser gehalt der getrock-neten Luft in g H20	reich- ter	adsor Wasser g H ₂ 0 pr.K1e-	leselgel pierte menge in g H ₂ 0 pr.100 - g Kie- selgel	gehalt der ge- trock-	ter Trock mungs	adsor Wasse g H ₂ 0 pr.Kie- selgel	100g Ki ese l
0 _	125.	0,04	99,7	1,72	3,58	0,07	99,2	1.71	3,56
125 -	250	0,21	98,0	1,69	3,52	0,28	98,0	1,69	3,52
250 -	375	1,18	91,6	1,58	3,29	1,02	92,7	1,60	3,33
375	500	3, 85 °	71,9	1,24	2,58	3,61	73,6	1,27	2,64
	567,5	5,58	59,2	0,51	1,06	5,83	56,9	0,49	0,98
567,5 -	633	6,30	54,6	0,47	0,98	6,21	54,5	0,47	0,92
633	이 경우 지수는 요즘	6,90	51,0	0,43	0,92	7,14	44,3	0,38	0,79
700 -	767	7,2	44,4	0,38	0,79	7,10	44,2	0,38	0,79
767 -	833	7,7	39,5	0,34	0,71	7,50	41,8	0,36	0,75
833 -	900	8,4	34,6	0,30	0,62	8,34	34,7	0,30	0,62
900 -	1400	9,5	31,5	2,15	4,48	10,26	25,8	1,78	3,71
				10,82	22,53			10,38	21,61
Bei der rierung gewonnen	zurück-			в H ₂ 0 10,4 в H ₂ 0	g H ₂ 0	### ## ## ## ##		g H ₂ 0 10,8 g H ₂ 0	B. H ₂ 0

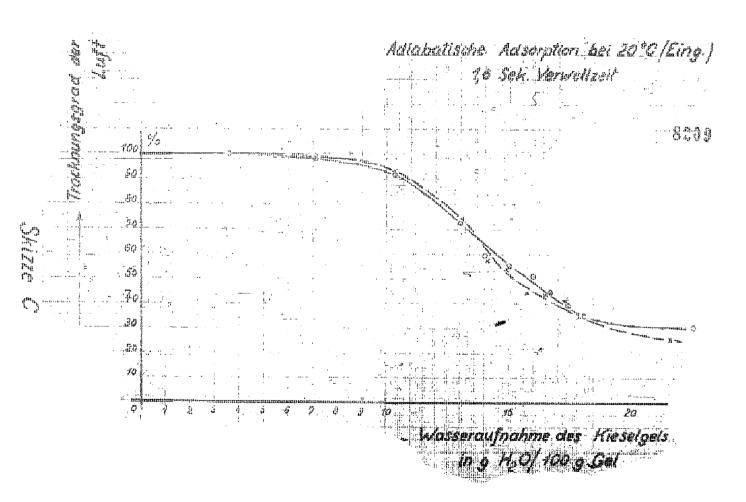


Tabelle 5. Adiabatische Adsorption

Silikagel Standard der Chem.Fabrik Coswig Korngröße: 0-2 mm = 62,5% 2-4 mm = 37,5%	Lichte Rohrweite: ca. 21 mm Schicht- höhe: 50 cm Silikagel: 140 g ~ 157 ccm	Bintrittstempera- tur d.Luft: 22°C Austrittstemp. der Luft: ca.32°C (Ohne Warmeabfüh- rung) Relative Feuchtigke 80 % bei 20°C = 13.	Luftmenge: 225 Ltr./Stunde Strömungsgeschwin- digkeit:0,20m/sec. Verweil- Zeit: 2,5 sec. it der Luft: 8g H ₂ 0/cbm.
Regene	ration mit troc	kener Luft bei 2000	

Im Intervall von - bis Ltr. Ltr.		Wassergehalt der ge- trock- neten Luft in g H ₂ O pro obm	er- reich- ter Trock- nungs- grad der Luft	adsorb Wasser i g H ₂ O pnKie-	pnKie- pro 100 selgel- g Kie- rohr- selgel		Er- reich- ter Trock- nungs- grad der Luft		lerte menge n g H ₂ 0 pro
0 -	- 500	0	100	6,90	4,93	0	100	6,90	4,93
500 -	700	0,89	94,0	2,58	1,84	1,99	85,6	2,36	
700 -	- 900	4,67	66,0	1,83	1,31	6,06	56,1	1,55	国际科学的 医多种
900 -	- 1100	7,40	46,0	1,32	0,94	8,50	38,4	1,06	0,73
1100 -	1300	9,08	34,0	0,94	0,67	10,24	25,8	0,71	Color Color Carlotte Carlotte
1300 -	1500	9,31	33,0°	0,90	0,64	9,9	28,2	0,76	0,54
1500 -	1700	9,56	31,0	0,85	0,61		hini da da da Adada	13,34	9,53
1700 -	1900	10,60	23,0	0,64	0,46			g H ₂ 0	g H ₂ 0
1900 -	2100	11,74	15,0	0,41	0,29				6 420
2100 -	2300	11,36	17,7	0,49	0,35				
2300 -	2500	11,35	17,6	0,49	0,35				
2500 -	2700	10,86	21,3	0,59	0,42				
2700 -	2900	11,79	14,6	0,40	0,29	!			
			c	18,34	13,10				
				g H ₂ 0	g H ₂ 0	:			
	Regene		± 1 1-≱			-			
rierung gewonne	zurück-	À	<u>\$</u>	18,1			2004 1004 1004 1004	12	ŗ 7
9~ uonna		•		g H ₂ 0	(g) 			13,2 g H ₂ 0	

Isotherme Adsorption.

Um die Abhängigkeit der Adsorption von der Temperatur su prüfen, wurden die isothermen Adsorptionskurven bei 15°, 25°, 35°, 45°, 55°, 65° und 75°C bestimmt. Da bei den Versuchen – wie bereits weiter oben angegeben – Luft getrocknet wurde, deren relative Feuchtigkeit bei 20°C 80 % betrug, erübrigte es sich, isotherme Adsorptionskurven für Temperaturen unter 15°C su bestimmen, da der "Taupunkt" der Versuchsluft bei cs. 15°C liegt und ein großer Teil des Wassers dann nicht durch Adsorption mittels Kieselgel, sondern durch Kondensation aus der su trocknenden Luft entfernt werden würde.

Die Bestimmungen wurden, wie bereits weiter oben beschrieben, ausgeführt. Die Ergebnisse eind in den Tabellen 6 - 12 wiedergegeben.

Die Versuchsbedingungen waren folgende:

1. Adsorptionsrohr:

Quarsrohr, wie weiter oben beschrieben; ca. 20 mm lichte. Passungsraum bis 50 cm Schichthöhe: 157 ccm.

2. Rieselgelfüllung:

125 g Kieselgel A, Partie 5 vom 8.11.1937. 2-4 mm Körnung; Schüttgewicht: 72.

(Der Fassungsraum faßte 125 g Kieselgel infolge fester Pressung; lose geschüttet hatte er nur 157 x 72 = 113,5 g gefaßt.

3. Luft:

30 % relative Feuchtigkeit bei 20°C

13,8 g H20/cbm.

Strömungsgeschwindigkeit: 0,20 m/sec.

Luftmenge: 225 Liter/Stunde.

Temperatur der Kingangsluft) untereinander gleich ausgangsluft) und gleich der jeden Kieselgels) weilige Bestimmungsund der Apparatur) temperatur der betreffenden Tabelle.

- 14
<u>Tabelle 6</u>.

Isotherme Adsorption bei 150C

li Bere:		Wasser gehalt der ge- trock- neten	reich- ter Trock-	Wasser i	me ngs	Wasser- gehalt der ge- trock-	reich	Resease -	eselgel blorte reekge
I tr	I de c	Luft in g H ₂ 0 pro ebs	nungs- grad der Luft %	g H ₂ 0 pr.Kleselgel- rohr- fullg.	g Kie- selgel	neten Luft in g H ₂ O pro cbm	grad der Luft	g H20 pr. Kiesel gel rohr- füllg.	100 g R168el
0 -	100	0,09	99,4	1,37	1,10	0	100	1,38	1,10
100 -	- 300	0	100	2,76	2,21	0	100	2,76	2,21
300 -	500	0	100	2,76	2,21	0	100	2,76	2,21
500 -	700	0	100	2,76	2,21	. 0	100	2,76	2,21
700 -	900	0	100	2,76	2,21	0	100	2,76	2,21
900 -	1100	0	100	2,76	2,21	0	100	2,76	2,21
1100 -		0	100	2,76	2,21	0	100	2,76	2,21
1300 -		0	100	2,76	2,21	0	100	2,76	2,21
1500 -		0	100	2,76	2,21	0	100	2,75	2,27
1700 -	1900	0	100	2,76	2,21	0	100	2,76	2,21
1900 -	2100	0	100	2,76	2,21	0	100	2,76	2,21
2100 -	2300	0,23	98,5	2,72	2,16	0	100	2,76	2,21
2300 -	2500	1,16	95,4	2,53	2,02	1,38	90,0	2,46	1,97
2500 +	2700	2,25	83,7	2,31	1,85	3,73	72,9	2,01	1,61
A State of the second of the s	2900	5,94	57,0	1,57	1,26	5,92	57,0	1,57	1,26
2900 -	3100	8,40	39.1	1,08	0,86	2007 E POTE A #1	39,0	1,08	0,86
3100 -	3300	9,88	28,4	0,76	0,61	9,91	28.3	0,77	0,62
3300 -		11,80	14,5	0,40	0,32	11,74	14.3	0,41	0,33
Berechne Wasserge d.125g K gelfüllu	halt iesel-		1	40,34				10,04	
0.1				g H ₂ 0				g H ₂ 0	
Bei der nerierun bei 2000 Wasser g tigter L	g mit mit esst- uft								
bei 140- Wieder s				11,0			I	41,4	
erhalten	:			3 H ₂ O			라 (*)))	g H ₂ 0	

Tabelle 7.

Isotherme Adsorption bei 25°C.

Im Bereiche	Wasser- gehalt der gu- trock-	Br- reich- ter Trock-	Wasser	ierte	Wasser- gehalt ier ge- trock-	Br- reich- ter Trock-	adsor Wasse	eselgel bierte rmenge
von - bis Ltr. Ltr.	neten Luft in g H ₂ 0 pro ebn	nunge- grad der Luft	g H20 pr.Kie- selgel- rohr- füllung	g H ₂ 0 pro 100 g Kie- selgel	neten	dangs- grad der Laft	■ 17 1 2 2 2 3 7 7 12 7 3 5 6 3	g H ₂ 0 -pro 100 g Kiesel
0 - 100	0,09	99,3	1,37	1,10	0	100	1,58	1,10
100 - 300	0	100	2,76	2,21	0	100	2,76	2,21
300 - 500	0	100	2,76	2,21	Ò	100	2,76	2,21
500 - 700	0	100	2,76	2,21	0	100	2,76	2,21
700 - 900	0	100	2,76	2,21	0	100	2,76	2,21
900 - 1100	0	100	2,76	2,21	0	100	2,76	2,21
1100 - 1300	0	100	2,76	2,21	0	100	2,76	2,21
1300 - 1500	0	100	2,76	2,21	0	100	2,76	2,21
1500 - 1700	0,10	99,2	2,75	2,20	1,53	89,2	2,46	1,93
1700 - 1900	1,62	87,7	2,42	1,94	2,85	79,3	2,19	1,75
1900 - 2100	4,88	64,5	1,78	1,42	5,69	58,7	1,62	1,50
2100 - 2300	9,24	33,1	0,91	0,73	7,66	44,5	1,23	0,98
2300 - 2500	12,23	18,4	0,31	0,25	9,76	29,4	0,81	0,65
2500 - 2700	12,42	9,8	0,27	0,22	11,45	17,0	0,47	0,38
Berechneter Wassergehalt d.125g Kiésel gelfüllung:			29,13 g H ₂ 0		रें सींक्री		29,48 g H ₂ 0	
Bei der Rege- nerierung mit bei 20°C mit				:				
Wasser gesät- tigter Luft bei 140-120°C wurden zurück-			29,5				29,3	
erhalten:			g H ₂ 0			14.1 14.1 14.1 14.1	8 H20	

Tabelle 8.

Isotherme Adsorption bei 35°C.

Im Bereiche	Wasser- gehalt der ge- trock-	reich-	adeor Wasse	eselgel Merte menge	Wasser- gehalt der ge- trock-	reich-	adsor	eselgel bierte rmenge
von - bis Ltr. Ltr.	neten Luft in g H ₂ O pro com	nungs- grad der Luft		g H ₂ 0 pro 100 g Kiesel-	Barrier and the second of the	nunge- grad der luft	g H ₂ 0 pr.Kieselgel- rohr- fullg.	g H ₂ 0 pro
0 - 100	0,11	99,3	1,37	1,09	0	100	1,38	1,10
100 - 300	(2 0	100	2,76	2,21	0	100	2,76	2,21
300 - 500	0	100	2,76	2,21	0	100	2,76	2,21
500 - 700	0	100	2,76	2,21	. 0	100	2,76	2,21
700 - 900	0	100	2,76	2,21	0	100	2,76	2,21
900 - 1100	1,35	90,1	2,49	1,99	1,10	93,9	2,54	2,03
1100 - 1300	4,50	64,2	1,77	1,42	3,92	71,8	1,98	1,58
1300 - 1500	8,16	41,0	1,13	0,90	7,52	45,8	1,26	1,01
1500 - 1700	10,32	25,2	0,70	0,56	9,54	31,2	0,86	0,69
1700 - 1900	13,06	5,6	0,15	0,12	11,82	14,0	0,40	0,32
Berechneter Wassergehalt		: 11 • 5 14	18,65				19,44	
der 125g Kie- selgelfüllg:			g H ₂ 0			. 4. 7. 1975 257 27 27 27	g H ₂ 0	경영 경 경 경 경
Bei der Rege-				:				
nerierung mit bei 20°C mit						48. 13		
Wasser gesat-	<u> </u>			•		#		
tigter Luft bei 140-1200	i e.		19,0				19,2	
murden zurück	4 •		g H ₂ 0				g H ₂ 0	
erhalten:	.'	ì	-					

Tabelle 9.

Isotherms Adsorption bei 45°C.

Im Bereiche von - bis	Wasser- gehalt der ge- trockne	reich- ter	Wasser	ierte	Wasser- gehalt der ge- trock-	reich-	Vom Kie adsort Wasser	ierte
Ltr. Ltr.	ten Luft in g H ₂ 0 pro cbm	nungs grad der Luft	g H ₂ 0 pr.Kie- selgel- rohr- füllung	g H ₂ 0 pro 100 g Kiesel- gel	neten Luft in g H ₂ O pro com	nungs- grad der Luft	g H ₂ 0 pr.Kie- selgel- rohr- füllung	Kiesel
0 - 100	0,25	98,2	1,35	1,06	0	100	1,38	1,10
100 - 300	0	100	2,76	2,21	0	100	2,76	2 ,21
300 - 500	0	100	2,76	2,21	lo	100	2,76	2,21
500 - 700	2,06	85,9	2,35	1,88	2,30	83,3	2,50	1,82
700 - 900	6,56	52,5	1,45	1,16	7,91	43,4	1,18	0,94
900 - 1100	8,92	35,4	0,78	0,62	11,04	20,0	0,55	0,44
1100 - 1300	13,8	0	0	0	12,5	9,4	0,26	0,21
Jerechneter Vassergehalt 1.125g Kiesel- gelfüllung:				11,45 g H ₂ 0			11,19 g H ₂ 0	
Bei der Rege- derierung mit bei 20°C mit Tasser gesät- bigter Luft								
bei 140-120°C wurden zurück erhalten:				11,3 g H ₂ 0			11,6 g H ₂ 0	

Tabelle 10.

Isotherme Adsorption bei 55°C.

	Wasser-	Br-	Vom Kie	gal cel	Wagger			
Im Bereiche von - bis	gebalt der ge- trock- neten Luft in	reichter Trock- nungs- grad der	edsorb Wasser g H ₂ O pr.Kie- selgel-	ierte menge n g H ₂ 0 pro 100 g	Wasser- gehalt der ge- trock- neten Luft	reich- ter Trock- nungs- grad der	edsor Wasse g H ₂ O pr.Kie selgel-	eselgel bierte rmenge n g H ₂ 0 - pro 100 g
Ltr. Ltr.	g H ₂ 0 pro cm	Luft	rohr- füllung	Kiesel- gel	g H ₂ O pro chm	Luft	rohr- fullg.	Kiesel gel
0 - 100	0	100	1,38	1,10	0,21	98,5	1,36	1,09
100 - 300	0	100	2,76	2,21	0	100	2,76	2,21
300 - 500	2,36	82,9	2,29	1,83	2,25	83,7	2,31	1,85
500 - 700	8,98	34,8	0,98	0,78	9,7	29,4	0,82	0,64
700 - 900	11,72	15,1	0,42	0,34	12,6	8,7	0,24	0,19
900 - 1100	11,84	14,2	0,39	0,31	17,1 ^x)		-0,66	-0,49
Berechneter Wassergehal d.125g Kies gelfüllung:	t		8,22 g H ₂ 0				6,83 g H ₂ 0	
Bei der Rege nerierung mi bei 2000 mit	L						o ·) (1)
Wasser gesät tigter Luft bei 140-120 wurden zurüc	,		8,4 g H ₂ 0				7,2 g.H ₂ 0	
erhalten:							2	

x) Temperatur war versehentlich auf 65°C gestiegen.

- 19 -

Tabelle 11.

Isotherme Adsorption bei 65°C.

Im Bereiche Von - bis	Wasser- gehalt der ge- trock-	reich ter Trock	Wasser	selgel lierte menge	Wasser- gehalt der ge- trock-		adsor Wasse	eselgel bierte menge
litr. Etr.	neten Luft in g H ₂ 0 pro chm	nungs grad der Luft	g H ₂ 0 pr.Kie- selgel- rohr- fullg.		neten Luft in g H ₂ O pro cbm	nungs- grad der Luft %		g H ₂ O
0 - 100	0,3	97,8	1,35	1,08	0	100	1,38	1,10
100 - 200	0	100	1,38	1,10	Ó	100	1,38	1,10
200 - 300	3,43	75,1	1,04	0,83	3,61.	73,7	1,02	0,82
300 - 400	8,54	38,1	0,53	0,42	5,32	61,5	0,85	0,68
400 - 500	11,64	15,7	0,22	0,18	9,90	28,2	0,39	0,31
500 - . 700					12,33	10,6	0,15	0,12
erechneter assergehalt vl25g-Kiesel selfüllung:	•		4,52 g H ₂ 0				5,17 g H ₂ 0	
ei der Rege- erierung mit ei 20°C mit asser gesät- igter Luft ei 140-120° urden surück- rhalten:			4,6 3 H ₂ 0				5,3 5 H ₂ O	

Tabelle 12.

Isotherme Adsorption bei 75°C.

Im Bereiche von - bis Ltr. Ltr.	der ge- trock- neten Luft in	reich- ter Trock- nungs- grad dor Luft	Wars		Wasser- gehalt der ge- trock- neten Luft in g H ₂ 0 pro cbm	reich-	Wasse	S H O
0 - 1.00	0	100	1,38	1,10	0	100	1,38	1,10
100 - 200	1,0	92,7	1,28	1,02	4,1	70,3	0,97	0,78
200 - 300	6,43	53,6	0,74	0,59	10,0	27,5	0,38	0,30
300 - 400	13,6	1,45	0,02	0,02	10.8	21,7	0,30	0,2/
Berechneter Wassergehalt d.125g Kiesel- gelfüllung: Bei der Rege- nerierung mit bei 20°C mit Wasser gesät- tigter Luft bei 140-120° wurden zurück- erhalten:			3,42 g H ₂ 0 3,5 g H ₂ 0		el uda Arta 🖠		3,03 g H ₂ 0 3,1 g H ₂ 0	

In der folgenden Tabelle 13 sind die Kittelwerte der Tabellen 6 - 12 zusammengestellt und in der Skizze D als isotherme Adsorptionskurven für den Temperaturbereich von 15° - 75°C dargestellt.

Die Kurven seigen deutlich die starke Temperaturabhängigkeit der Adsorption; aber auch, daß das Kieselgel noch über 75°C ein gewisses Trocknungsvermögen hat. Die Temperaturabhängigkeit der Adsorption ist besonders stark in dem Temperaturbereich von 15° - 35°C.

Wach den Bestimmungen können 100 g Kieselgel bei 15°C ca. 25 g Wasser adsorbieren, bei 75°C dagegen nur noch 1,2 g Wasser, wenn Trocknung der Luft unter 0,1 g H₂0/cbm erreicht werden soll.

Die Schnittpunkte mit der Abszisse geben an, wieviel Wasser 100 g Kieselgel bei den verschiedenen Temperaturen zu adsorbieren vermögen, unabhängig von der Strömungegeschwindigkeit des zu trocknenden Gases, also die Gleichgewichtebeladung? Die "Krümmungspunkte" der Kurven, - das sind diejenigen Punkte, wo die Kurven sich von der durch den 100%ige Adsorption anseigenden Punkt gezogenen Wagerechten entfernen -, geben an, wie hoch das Kieselgel bei 0,20 m/sec. Strömungegeschwindigkeit beladen werden kann. um einen Trocknungsgrad von 100% zu erhalten; also die "Durchbruchsbeladung". Aus der Differenz zwischen "Krimmungspunkt" und Schnittpunkt der einzelnen Kurven kann man die Mindestschichthöhen berechnen, welche bei 0,20 m/sec. Strömungsgeschwindigkeit bei der betreffenden Temperatur erfor derlich sind, um quantitative Trocknung zu erreichen. Diese Berechnung ist folgendermaßen:

Bei 15°C liegt der "Krümmungspunkt" bei 24 %,
der "Schnittpunkt"
mit der Abssisse bei 32,7 %.
Die Schichthöhe beträgt 50 cm.

Tabelle 13.

39,1

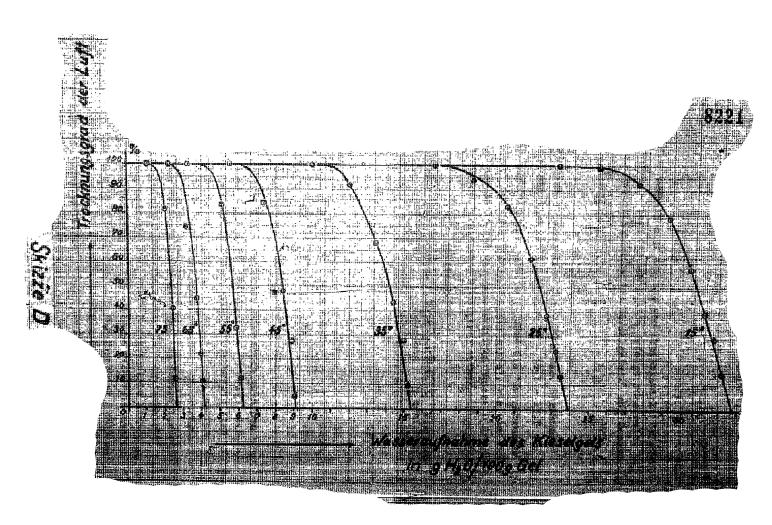
28,4

14,5

31,28

31,89

32,21


2900 - 3100

3100 - 3300

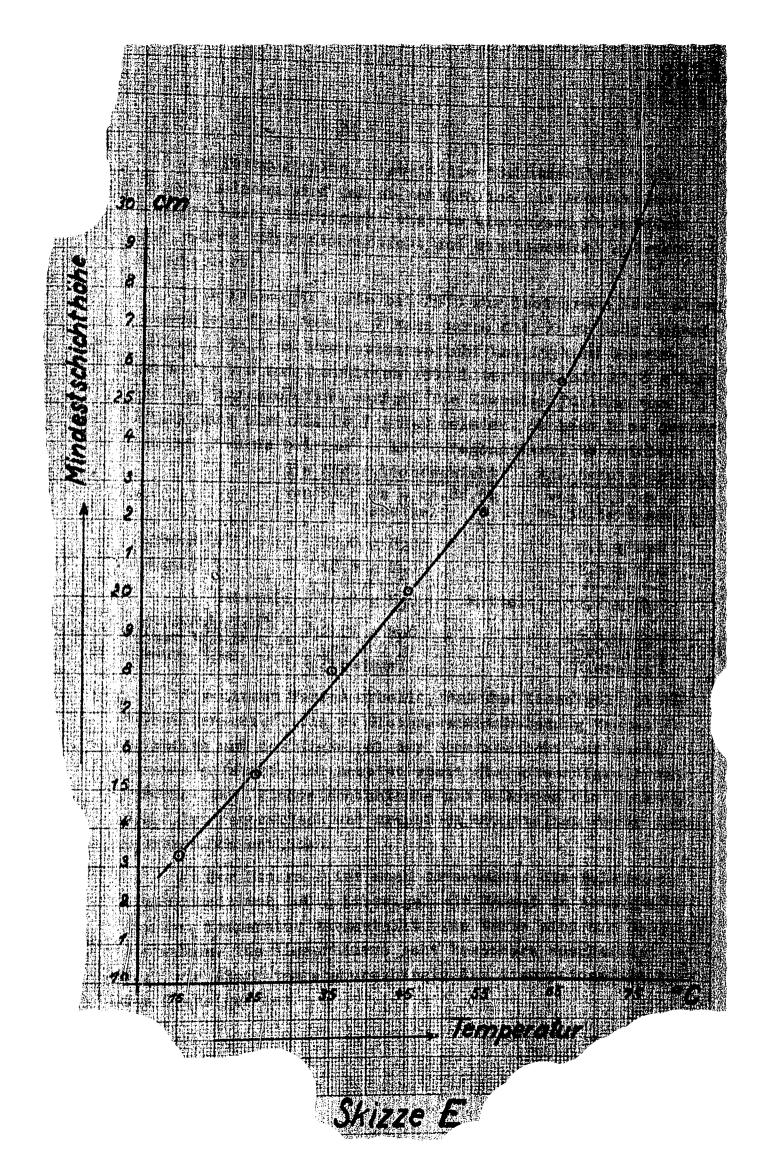
3300 - 3500

Isotherme Adsorption bei 15°-75°0 (Mittelwerte der Tabellen 6 - 12).

	35	90		50C	E-FLUAR		4	500		5°C	65	OG SESSES		500
In Bereiche von - bis Ltr. Ltr.	Erreich- ter Trock- nungs- grad der Luft	Vom Kieselgel adsor- bierte Was sermenge in g H ₂ O pro 100 g Gel	ter	gel adsor-		Vom Kis- selgel adsorbis te Was- sermenge in g H_O pr.100 g	Erreich ter Trock- nungs- grad d Luft	Vom Kie- selgel ad- sorbier- te Wasser	ter Trock- nungs-	Vom Kie- selgel adsorbier te Wasser menge in g H ₂ O pro 100 g = Gel		Vom Kiesel- gel ad- sorbierte Wasser- menge in g H ₂ O pro 100 g Gel	reichter Trock- nungs- grad d.	You Lie- selgel ad sorbiers Taxser- menge in g H20 pr loo g Gel
0 - 100	100	1,10	100	1,10	100	1,10	100	1,10	100	1,10	100	1,10	100	1,10
100 - 200	100	2,21	100	2,21	100	2,21	100	2,21	100	2,21	100	2,21	81,5	5.00
200 - 300	100	3,31	100	3,31	100	3,31	100	3,31	100	3,31	74,4	3,16	40,6	2,45
300 - 400	100	4,42	100	4,42	100	4,42	100	4,42			44,8	3,71	11,6	2,58
400 - 500	100	5,52	100	5,52	100	5,52	100	5,52	83,3	5,16	22,0	3,96		
500 - 600	100	6,63	100	6,63	100	6,63		7,37	32,1	5,87	10,6	4,08		
600 - 700	100	7,73	100	7,73	100	7,73	84,6							
7 00 - 900	100	9,94	100	9,94	100	9,94		8,42	11,9	6,13				
900 - 1100	100	12,14	100-	12,14	92,0	11,9	7 27,7	8,95						
11.00 - 1300	100	14,35	100	14,35	68,0	13,4	4,7	9,05						
1300 - 1500	100	16,56	100	16,56	43,4	14,39			. 1					
1500 - 1700	100	18,77	94,2	18,64	28,2	15,07		(Autorial) Tarih						
1700 - 1900	100	20,98	83,5	20,49	9,8	15,2	3							
1900 - 2100	100	23,18	61,6	21,85			3 ·····							
2100 - 2300	99,2	25,37	38,8	22,71		grafik - A								
2300 - 2500	92,7	27,42	23,9	23,24										
2500 - 2700	78,3	29,16	13,4	23,54	•									
2700 - 2900	57,0	30,42												

Also verhält sich die bis zum Gleichgewicht beladene Schichthöhe - denn die Adsorption erfolgt zonenweise bis zur Gleichgewichtsbeladung des Kieselgels - zur Gesamtschichthöhe von 50 cm:

Die Mindestschichthöhe für 0,20 m/sec. Strömungegeschwindigkeit bei 15°C ist also 50 - 36,7 = 13,3 cm.

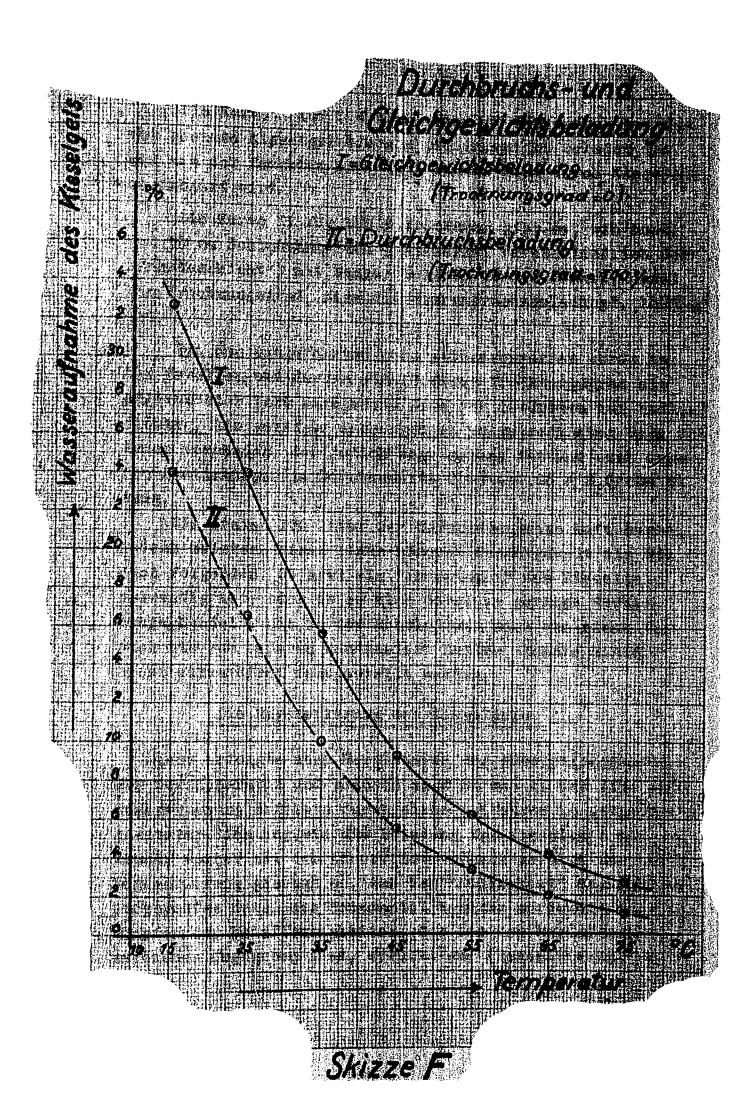

In der folgenden Tabelle 14 sind die "Durchbruchsbeladungen" und "Gleichgewichtsbeladungen", wie sie sich aus der Tabelle 13 und der dazugehörigen Skisse D ergeben, mit den daraus berechneten Eindestschichthöhen angegeben.

Temperatur Durchbruchs-Gleichgewichts-Mindest-OC beladung beladung schichthöhe CM. 15 24.0 32,7 13,5 25 16,6 24,0 15,4 35 10,0 15,7 18,1 45 5,52 9.25 20,2 55 3,4 6,2 22,6 65 2,03 4,2 25,8 75 1,10 2,75 30

Tabelle 14.

Die Werte der berechneten Mindestschichthöhen sind in der Skizze E graphisch dargestellt. Es zeigt sich, daß die Mindestschichthöhen auch temperaturabhängig sind. Und zwar beträgt sie bei 15°C ca, 13,3 cm, während sie bei 75°C schon ca. 30 cm beträgen muß.

Bei der Verwendung von Kieselgel zu Adsorptionszwecken muß diese Kindestschichthöhe stets als "Schutzschicht" vorhanden sein; erst die über diese Schutzschicht hinaus angewandte Kieselgelmenge ist die wirksame "Adsorptionsschicht". Die Höhe der "Schutzschicht" ist bei gegebener Strömungsgeschwindigkeit (0,20 m/sec.) abhängig von der Temperatur und ist von unveränderlicher Größe; die Höhe der "Adsorptionsschicht" hängt aber davon ab, wie lange man sie benutzen will


Um festzustellen, wieweit die "Schutzschicht" mit Wasser beladen wird und ob tatsächlich die Adsorptionsschicht beim "Durchbruch" bis zum Gleichgewicht beladen ist, wurde Adsorptionsschicht und Schutzschicht getrennt regeneriert.

Das Kieselgel wurde bei 25°C zur isothermen Adsorption verwendet. Nach Tabelle 7 kann durch die 50 cm hohe Gesamtschicht (34,6 cm Adsorptionsschicht und 15,4 cm Schutzschicht) bis zum Durchbruch 1500 Liter Luft mit 13,8 g H₂O pro cbm durchgeleitet werden. Die Kieselgelfüllung von 125 g wird also mit 20,7 g H₂O beladen. Nachdem dies geschehen war, wurde bei 140° = 120°C regeneriert. Es enthielt:

<u>d1</u>	e Adsorptionsschicht:	die Schutzschicht			
ν (n 34,6 cm = ca.86,5g Kieselgel	von 15,4 cm = ca.38,5g Kieselge			
Versuch a)	19,0 g H ₂ 0	2,1 g H ₂ 0			
Versuch b)	18,6 g H ₂ 0	2,3 g H ₂ 0			
Mittel:	18,8 g H ₂ O Mittel	: 2,2 g H ₂ 0			
Das entspricht einer H20-Be- ladung von:	21,7 g H ₂ 0 pro 100 g Kieselgel	5,6 g H ₂ 0 pro 100 g Kieselgel.			

Aus diesen Werten erhellt, daß das Kieselgel der Adsorptionsschicht bis zu Gleichgewichtsbeladung Wasser adsorbiert und das Kieselgel der Schutzschicht nur wenig Wasser aufnimmt, und beweist somit die Notwendigkeit der Schutz- bzw. Mindestschichthöhe und außerdem die Richtigkeit der rechnerisch und graphisch ermittelten Werte dieser Mindest-Schichthöhen.

In der Skizze F ist noch kurvenmäßig die Beladungsmöglichkeit von 100 g Kieselgel mit Wasser in Abhängigkeit
von der Temperatur dargestellt. Die Werte sind aus Skizze D
entnommen. Aus dieser Kurve geht besonders anschaulich hervor, wie stark temperaturabhängig die Adsorptionsfähigkeit
von Kieselgel ist.

Die Kurve I für 0 % Trocknung ist diejenige, bei der das gesamte Kieselgel bis sum Gleichgewicht beladen ist und sus der feuchten Luft kein Wasser mehr durch Kieselgel adsorbiert wird.

Die Kurve II für 100 % Trocknung gibt an, wie hoch bei 50 cm Schichthöhe 100 g Kieselgel (einschließlich der "Schutzschicht") mit Wasser beladen werden können, damit der Trocknungsgrad, also die "Durchbruchsbeladung", 100%ig ist.

Bei den ausgeführten Adsorptionsversuchen wurde in den Tabellen und Kurven ein 100%iger Trocknungsgrad als abgerundeter Wert angegeben. Dies ist natürlich nur bedingt richtig. Ein geringer Wassergehalt im getrockneten Gase ist immer vorhanden, der jedoch sehr gering ist und nach unseren Bestimmungen im Durchschnitt 0,05 - 0,06 g H₂O/cbm betrug.

Die ersten 100 Liter der durchgegangenen Luft hatten jedoch meistens einen etwas höheren Wassergehalt als die dann folgenden. Ob erst ein "Anspringen" des Kieselgels notwendig ist, oder ob es sich dabei um geringe Wassermenge handelt, die in der Rohrleitung sich von einem Versuch bis zum anderen kondensiert hatten, konnte bisher nicht einwandfrei festgestellt werden.

Die Regenerierung des Kieselgels.

Diese erfolgte nach Herausnahme des Adsorptionsrohres E aus der Apparatur und geschah nach Skizze II und III. Die Regenerierung erfolgte durch einen Luftstrom in entgegengesetzter Richtung, wie die Beladung des Kieselgels mit Wasser vorher bei dem Adsorptionsversuch erfolgt war. Die Regenerierung geschah so, daß der "Kühlmantel" des Adsorptionsrohres dabei als Heizmantel benutzt wurde und mit den Dämpfen der Heizflüssigkeiten, die bei den Regenerierungsversuchen angegeben sind, Grfüllt war (Regenerierung im

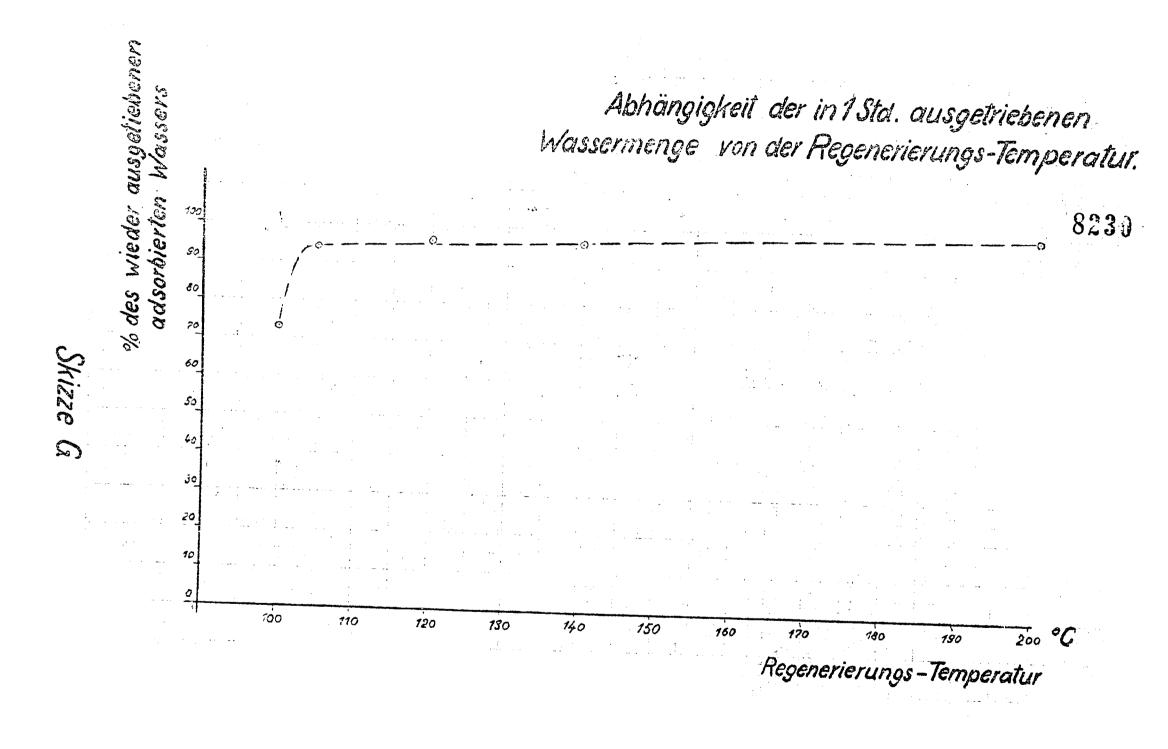
Brenner Luft

SM22e III

Thermostaten, Skizze II); oder aber das Adsorptionsrohr wurde durch Verbrennungsgase von Bunsenbrennern äußerlich soweit erwärmt, daß bei der Regenerierung durch die vorher auf die Regenerierungstemperatur erhitzte Luft die abstrahlende Wärme durch die zugeführte Wärme der Verbrennungsgase ersetzt wurde (Skizze III).

Anfangs wurde das Kieselgel unter Durchleiten von mit ${
m H_2SO_4}$, Natronkalk und ${
m P_2O_5}$ getrockneter Luft bei 200° regeneriert. Die Regenerierung geschah – wie schon oben bemerkt in der umgekehrten Richtung, wie die Beladung erfolgt war.

Es wurde dann die Regenerierungstemperatur bis auf 100°C herabgesetzt. Die Versuchsergebnisse sind in Tabelle 15 zusammengestellt und in Skizze G graphisch dargestellt. Wie sich aus den Versuchen ergibt, kann das Kieselgel bei 100°C regeneriert werden, und hatte auch die gleiche Adsorptionsfähigkeit, wie bei 200°C regeneriertes Kieselgel. Da in der Praxis selten getrocknete Luft zur Regenerierung zur Verfügung steht, wurde statt dessen die Regenerierung noch mit bei 20°C mit Wasser gesättigter Luft durchgeführt. Es wurden dabei die gleichen Ergebnisse erhalten wie mit trockener Luft." Nur mußte das Kieselgel in von der Luft abgeschlossenem Zustande erkalten. Durch "Kaltblasen" mit der feuchten Luft tritt natürlich eine "Vorbeladung" des Kieselgels mit Wasser ein, dessen Höhe beträchtlich ist. da nicht nur das Kieselgel gekühlt wird, sondern zusätzlich die Adsorptionswärme abgeführt werden muß, die schon auftritt, wenn das Kieselgel wenig unter 100°C warm ist, denn es nimmt ja - wie aus Skizze F ersichtlich - schon wenige Grade unter 1000 wieder Wasser auf.


x) Siehe Tabelle 16.

- 27 -

Regenerierung von 125 g Kieselgel der Adsorptionsversuche durch getrocknete Luft, vorgewärmt auf

Regenerierungstemperatur.

Temperatur			Menge	Regenerierung			Machregenerierung		
im Thermo staten (Behei-	der Kin- gangs-	n- Aus-	Regene- rierung		Ausgetriebenes Kondenswasser		aner	bei 200°C Ausgetriebenes Kondenswasser	
zungsart) luft lu	gangs- luft oc	Ťt .	Std.	in ccm	in % v. Gesamt- Wasser	Std.	in cem	in % v. Gesamt- wasser	
200°	200°	190 ⁰	2	1	18,1	98,37	1,5	0,3	1,63
(Cas-	200°	190°	2	1	17,0	, 1		0,2	1,16
heizung)	200 ⁰	190°	2	1	16,8	99,11		0,15	0,89
140 ⁰	140 ⁰	130°	2	1	16,7	95,43		0,8	4,57
(Iylol-	140°	130°	2	1	16,6	96,51		0,6	3,49
dampf)	1400	130°	2	1	10,0	96,15		0,4	3,85
-	140°	130°	2	1	10,4	96,30		0,4	3,70
120°	120°	1100	2	1	16,3	96,45		0,6	3,55
(Gas- heisung)	120°	1100	2	1	17,1	96,07		0.7	3,93
105°	105°	1000	2	1	15,0	93,75		1,0	6,25
(Toluol- dempf)	105°	100°	2	1	15,3	94,44		0,9	5,56
1000	1000	1000	2	1	13,2	71,75		5,2	28,25
(Wasser-dampf)	100°	1000	2	1	14,1	74,20		4,9	25,80

- 28 -

Regenerierung von 125 g Kieselgel der Adsorptionsversuche mit feuchter Luft (13,8g/cbm).vorgewärmt auf Regenerierungstemperatur.

Temperatur		Menge	Regenerierung Nac				chreger	hregenerierung	
(Behei- gange	Bin-	gengs- luft	der Regene- rierungs luft Ltr/Std.	74 60	Ausgetriebenes Kondenswasser			Ausgetriebenes Kondenswasser	
	luft				in cem	in % v. Gesamt- Wasser	Std.	in	in % v. Gesamt- Wasser
200°	2220	0							
	200°	190°	2	1	18,0	98,90	1,5	0,2	1,10
(Gas- heisung)	5000	190 ⁰	2	1	17,3	98,86	1,5	0,2	1,14
140°	140°	130°	2	1	37,4	94,68	1,5	2,6	
(Kylol- dampf)	140 ⁰	130°	2	1	37,5	93,0	1,5	2,9	6,32 7,0
140 ⁰	140 ⁰	120 ⁰	2		20.				
Gas-	140°	120°	4. I	1	28,2	95,6	1,5	1,3	4,4
eizung)	7400	720	2	1	28,2	96,25	1,5	1,1	3,75
	1400	1200	5 2 2	1	18,4	96,85	1,5	0,6	3,15
	1400	120°	5	1	18,5	96,35	1,5	9,7	3,65
140°	1400	120°	2	2	11,3	100	1,5	0	0
Gas-	140°	1200	2	2	11,6	100	1,5	0	
eizung)	1400	1200	2	2	8,4	100	1,5	0	. 0
	1400	1200	2	2	7,1	98,61			0
	1400	1200	2	2	4,6	100	1,5	0,1	1,39
	140°	120°	2	2	5,2	1	1,5	0	· 0
<u> </u>	140°	120°	2	2	3,5		1,5	0,1	1,88
	140°	120°	2	2		1	1,5	0	0
1 -		+20		-	3,1	100	1,5	. 0	0

Daß Kieselgel mit Luft regeneriert werden kann, die bei gewöhnlicher Temperatur ganz oder zum Teil mit Wasser gesättigt ist, geht auch aus der Kurve der Gleichgewichtsbeladung der Skizze F hervor. Die Kurve würde, bei Verlängerung bis zur Abszisse, diese ungefähr bei 95°C schneiden. Eine Regenerierung bei dieser Temperatur mit bei 16°C mit Wasser gesättigter Luft (= 13,8 g H₂O/cbm) ist die untere Grenze, bei welcher das Kieselgel nach der Regenerierung noch die gleiche Adsorptionsfähigkeit hat, als wenn die Regenerierung bei höheren Temperaturen erfolgt wäre.

Eine Regenerierung des Kieselgels bei z.B. 75°C wäre wie gleichfalls aus der Kurve der Gleichgewichtsbeladung hervorgeht – mit Luft mit einem Wassergehalt von 13,8 g H₂O/cbm nur bis zur Gleichgewichtsbeladung – das sind bei 75°C 2,75 g H₂O/100 g Kieselgel – möglich. Das Gel würde also mit 2,75 g H₂O "vorbeladen" bleiben. Um festzustellen, ob dieses tatsächlich der Fall ist, wurde mit der 125 g Kieselgelfüllung des Adsorptionsrohres Luft mit 13,8 g H₂O pro cbm bei 20°C bis zur Gleichgewichtsbeladung des Kieselgels getrocknet, und das Kieselgel danach bei 75°C im Thermostaten mit der gleichen Luft und einer Durchflußmenge von 225 Liter/Stunde 4½2 Stunden regeneriert. Das Kieselgel enthält dann nach Tabelle 14 24 g H₂O/100 g Kieselgel; die 125 g Kieselgel des Versuchsrohres enthalten demnach 30 g Wasser.

Nach 41/2-stundiger Regenerierung sind bei einer Durchflußmenge von 225 Litern/Stunde ca. 1 cbm Trocknungsluft verwandt worden.

An Kondenswasser wurden erhalten:

26,0 g H₂0.

Bei nunmehriger Steigerung der Temperatur auf ca. 140°C unter Verwendung von getrockneter Luft wurden noch erhalten:

3,4 g H₂0.

3,4 g $\rm H_2O/125$ g Kieselgel entsprechen 2,72 g $\rm H_2O$, während nach Tabelle 14 das Kieselgel noch mit 2,75 g $\rm H_2O$ vorbeladen sein mißte.

Zusammenfassung.

- 1.) Es wurden die adiabatischen Adsorptionskurven für Luft mit 13,8 g H₂O/cbm (= 80 % rel Feuchtigkeit bei 20°C) bestimmt. Es ergab sich, daß das Kieselgel bei 20° Eingangstemperatur nur bis 9,5 g H₂O/100 g Kieselgel beladen werden kann. Die Änderung der Verweilzeiten hat auf die Höhe der Wasserbeladung fast keinen Einfluß.
- 2.) Es wurden die isothermen Adsorptionskurven für den Temperaturbereich von 15° 75° C bestimmt. Es stellte sich dabei heraus, daß auch bei 75°C das Kieselgel noch Wasserdampf adsorbiert.
- 3.) Es wurde festgestellt, daß die Adsorption stark temperaturabhängig ist.
- 4.) Kieselgel trocknet die Luft bis auf einen Wassergehalt von 0,05 0,06 g/cbm.
- 5.) Die Adsorption erfolgt zonenweise, bis zur Gleichgewichtsbeladung des Kieselgels der einzelnen Zonen. Es ist eine Mindestschichthöhe von Kieselgel erforderlich, welche außer von der Strömungsgeschwindigkeit noch von der Temperatur abhängig ist.
- 6.) Es wurden die Mindestschichthöhen bei 0,20 m/sec. Strömungsgeschwindigkeit für 15° - 75° C berechnet und kurvenmäßig dargestellt.
- 7.) Es wurde festgestellt, daß die Regenerierung des Kieselgels bei Temperaturen bis zu 100°C und dammter erfolgen kann, ohne daß die Adsorptionsfähigkeit des Gels sich ändert. Die Regenerierung kann auch mit bei 16° mit Wasser gesättigter Luft, das entspricht 13,8 g H₂O/cbm, erfolgen, wenn das Gel nicht mit dieser feuchten Luft "kaltgeblasen" wird. Beim Regenerieren mit dieser feuchten Luft ist die untere Temperaturgrenze ca. 95°C.

folh

Nohmery