APPENDIX

AM-30

ACID GAS REMOVAL SYSTEM

RUN NUMBER A-N-30 INTEGRATED BATE 5/28/1980

- - STREAM COMPOSITION- (MOL-2)-

	SOUR GAS	SWEETGAS	FLASHGAS	STRIP%2	acid gas	* Absorbot	FLASHEDT	STRIPEUT
CO2	24.600	1.460	43.200	0.000	71.500	5.718	5,545	0.000
H25	0.910	0,048	0.634	0.000	2.539	0.220	0.216	0.000
COS	0,042	0.003	0.043	0.000	0.117	0.010	0.010	0.000
507	0.000	0,000	9.000	0.000	0.000	92.764	93,669	97+498
HZ	33.1/0	43,170	13,240	0.009	0.000	0,617	8+4/3	0.502
ដ្ឋ	21,060	28,480	22.729	0.000	1.020	0,204	0.000	0.000
MZ.	18,500	24,870	14.750	100,000	24.560	0.202	0.03/	0.000
G14	1,649	1,739	3,490	0.000	0+420	0.064	0.039	0.000

CALCULATED

¥

MASS BALANCE (LB-HOLES/HR)

QUT

IN

	SOUR GAS	STRIP N2	SWEETGAS	FLASHEAS	ACID GAS	TOTAL IN	TOTAL OUT	Z RECIMERY
CP2 H2S H2C H2C H2C H2C H2C H2C H2C H2C H2C H2C	0.554 0.020 0.001 0.000 0.747 0.474 0.417 0.417 0.037	0.000 0.000 0.000 0.000 0.000 0.000 0.182 0.000	0.023 0.001 0.000 0.000 0.692 0.455 0.399 0.031	0.038 0.001 0.000 0.000 0.013 0.020 0.013 0.020 0.013 0.003	0.550 0.020 0.001 0.000 0.000 0.005 0.187 0.187 0.003	0.554 0.020 0.001 0.000 0.747 0.474 0.599 0.037	0.611 0.021 0.001 0.705 0.484 0.601 0.037	110.3 101.7 104.0 0.0 74.4 102.0 100.3 101.4
TOTAL (LB-X0	2.253 LES/HR)	0.182	1.692	0.057	0.769	2,433	2,461	101.130

* NETHANOL-FREE BASIS

TOTAL KETHANEL LOSS= 0.000 LB-HOLES/AR = 0.000 GALLONS/AR

RIN MINBER A-X-30 Integrated Bate 5/28/1980

58T

RIM HUMBER A-X-30 INTEGRATED DATE 5/28/1980

COLUMN TEMPERATURE PROFILE

٠.

ABSORBER COLUNN PRESSIRE =397.2 PSIG TOTAL PACKING HEIGHT= 7.10 FEET PACKING USED = 1/4° CERANIC INTALOX SADELES

TRANSMITTER	HEIGHT ADOVE GAS INLET	HEIGHT OF PACKING	TEFFERITURE (F)
TT350	4.79	4.79	-29,63
TT351	2.45	2.46	-31.77
TT352	1.21	1.21	-28,27
TT353	0.31	0.31	-14,11
TT354	0.79	0.79	-21.50

AM-35

· · · · · · · · · · · · · · ·

RUN NUMBER A-H-35 Integrated Run Date 6/26/1980

STREAM COMPOSITION (HOL Z)

	SOUR GAS	SWEETGAS	FLASHGAS	STRIPN2	ACID GAS	ABSORBOT [*]	FLASHBOT	STRIPBOT *
CO2 H2S CO5 MEOH H2 CO N2 CH4	28.010 0.807 0.045 0.000 33.190 20.200 15.700 2.010	0.950 0.037 0.003 45.500 27.850 23.230 2.440	42.450 0.526 0.038 1.310 4.210 23.830 13.490 4.110	0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000	71.900 1.970 0.127 2.910 0.000 1.630 20.750 0.690	5.674 0.162 0.009 93.934 0.118 0.049 0.049 0.004	5.361 0.159 94.365 0.085 0.000 0.000 0.000 0.000	0.000 0.008 0.000 99.901 0.090 0.000 0.000

CALCULATED

¥

HASS BALANCE (LB-HOLES/HR)

OUT

IN

	SOUR GAS	STRIP H2	· SWEETGAS	FLASHEAS	ACID GAS	TOTAL IN	total out	X RECOVERY
CO2 H2S CO5 H2O5 H2O5 H2O H2O H2O H2O H2O H2O H2O H2O H2O H2O	0.618 0.018 0.001 0.000 0.732 0.445 0.346 0.346	0.000 0.000 0.000 0.000 0.000 0.000 0.182 0.000	0.015 0.001 0.000 0.719 0.440 0.367 0.357	0.036 0.000 0.001 0.001 0.020 0.020 0.011 0.003	0.582 0.016 0.001 0.024 0.000 0.013 0.168 0.006	0.618 0.018 0.001 0.732 0.445 0.528 0.644	0.633 0.017 0.001 0.000 0.723 0.474 0.547 0.048	102.4 95.3 111.9 0.0 98.8 106.3 103.4 107.5
TOTAL (LB-HOL	2.205 ES/HR)	0.182	1,581	0.085	0.809	2.386	2.441	102,301

* METHANOL-FREE BASIS

TOTAL NETHANOL LOSS= 0.025 LB-HOLES/HR = 0.117 GALLONS/HR

RIIN NUMBER A-H-35 INTEGRATED RUN DATE 6/26/1980

COLUMN TEMPERATURE PROFILE

ABSORBER COLUMN PRESSURE =396.6 PSIG TOTAL PACKING HEIGHT= 7.10 FEET PACKING USED = 1/4° CERAMIC INTALOX SADDLES

TRANSHITTER	HEIGHT ABOVE GAS INLET	HEIGHT OF PACKING	TEMPERATURE (F)
TT350	4.79	4.79	-34.05
TT351	2.46	2.46	-34+65
11352	1.21	1.21	-30,99
TT353	0,31	0.31	-17,77
TT354	0.79	0.79	-25.30

1-26

AM-36

. 587

•

. . . .

RUN MUMBER A-H-36 INTEGRATED RUN DATE 7/18/1980

STREAM COMPOSITION (MOL Z)

	SOUR GAS	SWEETGAS	FLASHGAS	STRIP#2	ACID GAS	ABSERBOT	FLASHBOT*	STRIPEOT
CB2 H2S CB5 H2C H2C H2C H2C H2C H2C H2C H2C H2C H2C	20.900 0.892 0.048 0.000 33.449 17.030 26.190 1.270	0.420 0.068 0.004 0.000 44.310 20.580 33.040 1.680	34.170 0.569 0.039 0.000 13.870 22.020 26.490 2.830	0.009 0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000	69.770 2.225 0.133 0.000 0.000 0.970 26.500 0.360	4.455 0.182 0.010 95.037 0.000 0.214 0.093 0.000	4.302 0.180 0.010 95.411 0.060 0.058 0.000 0.000	0.000 0.023 0.000 97.947 0.000 0.030 0.030 0.000 0.000

CALCULATER

\$

HASS BALANCE (LB-HOLES/HR)

OUT

IN

	SOUR GAS	STRIP N2	SHEET6AS	FLASHEAS	ACID GAS	TOTAL IN	TOTAL OUT	z recivery
CD2 H2S COS H2 COS COS H2 COS COS COS COS COS COS COS COS COS COS	0.476 0.020 0.001 0.000 0.762 0.388 0.597 0.597 0.029	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.182 0.000	0.007 0.001 0.000 0.000 0.787 0.366 0.587 0.039	0.019 0.000 0.000 0.000 0.008 0.012 0.015 0.025	0.518 0.017 0.001 0.000 0.000 0.007 0.007 0.197 0.003	0.476 0.020 0.001 0.000 0.762 0.388 0.779 0.029	0.545 0.018 0.001 0.000 0.755 0.385 0.798 0.034	114,4 88,9 97,3 104,3 97,2 102,5 117,8
TOTAL (LB-HEL	2.278 ES/IR)	0.182	1.776	0.055	0.743	2.455	2.576	104,918

* NETHANOL-FREE BASIS

TOTAL HETHANCL LOSS= 0.000 LB-HOLES/HR = 0.000 GALLONS/HR

.

RLM MUMBER A-M-36 INTEGRATED RLM DATE 7/18/1980

COLUMN TEMPERATURE PROFILE

ABSORBER COLUMN PRESSURE =296.9 PSIG TOTAL PACKING HEIGHT= 7.10 FEET PACKING USED = 1/4° CERAMIC INTALOX SADDLES

TRANSMITTER	HEIGHT AND/E GAS INLET	HEIGHT OF PACKING	TEFFERATURE(F)	
17350	4.79	4.79	-39,29	
TT351	2.46	2.46	-30,20	
TT352	1.21	1.21	-25,22	
11353	0.31	0.31	-14,41	
T7354	0.79	0.79	-18,92	
		• • • •		

AM-37

591 _

* NCSU DEPARTMENT OF CHEMICAL ENGINEERING * * ACID GAS REMOVAL SYSTEM *

RUN MUMBER A-M-37 INTEGRATED RUM DATE 7/25/1980

STREAM COMPOSITION (MOL Z)

	SOUR GAS	SHEETGAS	FLASHSAS	STRIPH2	ACID GAS	* Absorbot	¥ Flashbot	* Stripbot
CO2	25.050	0.640	47,820	0.000	71.050	5.406	4.975	0.000
H2S	0.863	0.041	0.628	0.000	2.260	0.183	0.179	0.000
近明	0.000	0.000	0.870	0.000	4.030	93.853	94.667	99.850
股	38,930	54.960	11.880	0.000	0.000	0+000	0.000	0.000
記	14,820	19,300	12,940	100.000	21.150	0.171	0.044	0,114
CH4	1.150	1.160	3.140	0.000	0.220	0.067	0.037	0.020

CALCULATED

\$

HASS BALANCE (LB-HOLES/HR)

OUT

IN

	. SOUR GAS	STRIP N2	SWEETGAS	FLASHEAS	ACID CAS	TOTAL IN	TOTAL OUT	Z RECOVERY
CO2 H2S CO2 H2S CO2 H12C H12C CO2 H12C H12C CO2 H12C H12C CO2 H12C H12C H12C H12C H12C H12C H12C H12	0.579 0.020 0.001 0.000 0.900 0.433 0.343 0.343 0.343	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.182 0.000	6.011 0.001 0.000 0.000 0.925 0.402 0.325 6.920	0.050 0.001 0.000 0.001 0.012 0.023 0.013 0.013 0.003	0.589 0.019 0.001 0.033 0.000 0.008 0.175 0.002	0.579 0.020 0.001 0.000 0.900 0.435 0.525 0.525 0.027	0.650 0.020 0.001 0.060 0.937 0.434 0.514 0.025	112.2 100.6 106.6 0.0 104.1 99.7 97.9 92.5
TOTAL (LB-XCI	2.313 ES/HR)	0.182	1.683	0.104	0.830	2.497	2.580	103,732

* NETHAMOL-FREE BASIS

TOTAL KETHANIA LOSS= 0.034 LB-KALES/HR = 0.164 GALLONS/HR

RIN HIMBER A-H-37 INTEERATED RIM DATE 7/25/1980

COLUMN TEMPERATURE PROFILE

ABSORBER COLUMN PRESSURE =445.6 PSIG TOTAL PACKING HEIGHT= 7.10 FEET PACKING USED = 1/4" CERANIC INTALOX SADDLES

TRANSHITTER	HEIGHT ADDRE GAS INLET	HEIGHT OF PACXING	TERFERATURE (F)
TT350	4.79	4.79	-26.64
TT351	2.46	2,45	-27.54
TT352	1.21	1.21	-22+20
TT353	0.31	0.31	-10.07
TT354	0,79	0.79	-16.03
		-	

POLLUTION CONTROL GUIDANCE DOCUMENT FOR LOW-BTU GASIFICATION TECHNOLOGY:

BACKGROUND STUDIES

W. C. Thomas, G. C. Page and D. A. Dalrymple Radian Corporation 8500 Shoal Creek Boulevard Austin, Texas 78758

ABSTRACT

The Environmental Protection Agency is currently preparing a Pollution Control Guidance Document (PCGD) for low-Btu gasification (LBG) facilities which use atmospheric pressure, fixed-bed gasifiers. The PCGD is intended to aid industry and government in their efforts to commercialize LBG technology in an environmentally acceptable manner. This paper presents some of the preliminary results of background studies performed to support the development of the LBG PCGD.

A model plant approach was used to assess the environmental control needs for LBG facilities. The plant configuration and coal feed combinations for which pollution controls were identified and evaluated were selected based on existing and proposed plants in the U.S. The major variables examined were coal feed type (anthracite, lignite, and high- and low-sulfur bituminous coals) and degree of product gas purification (production of hot, cooled, and desulfurized low-Btu gas). In all, eleven combinations of these variables, i.e., model plants, were selected for study. Each model plant had a nominal capacity of 45 MJ/s (150 x 10^6 Btu/hr) of low-Btu gas.

Multimedia pollutant sources and pollutants of potential concern were identified and quantified for each model plant. The bases for these determinations were field test data and calculated emissions projections. The EPA's low-Btu gasification environmental assessment program was the major source of the field test data, but results from other government and industry test programs were also used.

Control/disposal options were identified and evaluated for each discharge stream. Factors that were considered included the need for control, current industry practices, control equipment performance, capital investment requirements, annual operating costs, energy impacts, and secondary environmental discharges.

POLLUTION CONTROL GUIDANCE DOCUMENT for LOW-BTU GASIFICATION TECHNOLOGY:

BACKGROUND STUDIES

INTRODUCTION

Over the past several years the United States has moved from a position of energy independence to one of energy dependence. A decade ago this country imported only about ten percent of its crude oil needs and now the figure is around fifty percent. The amount of oil and gas produced in the U.S. has declined slightly over this period despite a doubling of drilling activity. The country's vast coal reserves, however, have not been developed with the same intensity. With the changing energy picture there has been a growing interest on the part of government and industry in the technologies that produce clean fuels and chemical feedstocks from coal. One such technology is low-Btu coal gasification (LBG).

The Environmental Protection Agency is responsible for ensuring that LBG technology and other alternate energy technologies are developed in a manner which protects public health and the environment. As part of that effort, the EPA has initiated programs to assess the environmental impacts of LBG.

The EPA has developed the Pollution Control Guidance Document (PCGD) concept to aid industry and government in their efforts to commercialize low-Btu gasification technology in a manner that will be environmentally acceptable. The primary purposes of a PCGD are to:

- Provide guidance to permit writers on the best control approaches presently available at a reasonable cost for the processes under consideration.
- Provide system developers with an early indication of EPA's assessment of the appropriate multimedia environmental protection needs for each of these processes, considering costs, so that developers can design their facilities to achieve this level of protection (rather than add potentially more costly retrofit controls later).
- Describe to public interest groups EPA's judgment of the best available controls for these processes.
- Provide the regulatory offices in EPA with information useful in developing future regulations.

The low-Btu gasification PCGD will describe the performance capabilities and costs of currently available controls for LBG facilities which use fixed-bed, atmospheric pressure gasifiers. (This type of gasifier is believed to be the likely candidate for near-term commercial use). The PCGD will provide guidance both for currently regulated pollutants and for sources and/or pollutants not covered by current standards. The guidance will be based on a coordinated evaluation of available data by EPA's research and development, regulatory, and permitting/enforcement offices. In the PCGD, suggested levels of environmental protection considering costs, multimedia tradeoffs, and control system reliability will be specified for all air, water, solid waste, and product/by-product streams. The PCGD will consist of three volumes whose contents can be summarized as follows:

- Volume I will describe the technology, identify applicable existing regulations, and present the control guidance;
- Volume II will summarize all of the data employed and present the baseline engineering design, waste stream characterizations and control option evaluations; and
- Volume III (Appendices) will contain detailed data listings and calculations which support the guidance.

This paper presents some of the preliminary results of background studies being conducted to support the development of the LBG PCGD. Included in this paper are: 1) a description of the technology and an identification and characterization of its multimedia discharges (including flow rates and factors affecting discharge characteristics); 2) an identification and evaluation of available control techniques; and 3) an estimation of the capital and annualized cost impacts of available controls.

Technology Overview

Low-Btu coal gasification technology has been commercially available for over 60 years. In the U.S., there are currently 20 known LBG plants either in operation, under construction, or being planned for construction in the near future. All of the commercially operating plants use fixed-bed, atmospheric pressure gasifiers and are generally located in the industrialized Midwest and Northeast regions of the Country. Feedstocks used at those plants include anthracite, lignite, and low-sulfur (<1%) bituminous coal. No high-sulfur coals are currently in use. The only gas purification process used at most of these plants is a hot gas cyclone for particulate removal. Tar and oil removal using gas quenching/scrubbing is practiced at one plant and is proposed for several future plants. Sulfur compound removal is currently practiced only at one plant. Current end-uses of low-Btu product gas include fuel for brick and lime kilns, process heaters, and steam boilers.

LBG systems featuring fixed-bed, atmospheric pressure gasifiers are most suitable for relatively small applications, with fuel demands ranging from about 8.8 to 88 MW of thermal energy (30-300 million Btu/hr). This would require using from 1 to 10 gasifiers, depending on the coal feed. Energy demands greater than about 88 MW (300 million Btu/hr) may be better served by gasification systems using gasifiers with larger capacities (for example, pressurized gasifiers).

Applicable Existing Federal Regulations

New low-Btu gasification plants will have to comply with existing Federal regulations for 1) sources within the plant that are already subject to regulation (NSPS); 2) the disposal of solid wastes (RCRA); and 3) ambient-based limitations, such as National Ambient Air Quality Standards (NAAQS), Prevention of Significant Deterioration (PSD) requirements, Water Quality Criteria, and Drinking Water Standards which may indirectly limit the quantities or concentrations of compounds in specific source discharges. However, at the current time there are no Federal regulations which apply to specific air or water discharge sources within an LBG facility. In addition, products and by-products may be subject to restrictions if they contain toxic substances.

New plants will also be required to comply with state and local regulations. The guidance in the PCGD is not intended to supersede the requirements of any of these existing or proposed regulations.

Approach Used For Background Studies

In conducting the background studies, an inventory of waste streams and pollutants generated in model plant facilities was prepared and an assessment of the performance and costs of various control alternatives for those streams and pollutants was made. The approaches used to develop the pollutant inventory and to select and evaluate applicable controls are briefly described below.

<u>Pollutants Considered</u>. A listing of all the currently regulated pollutants which have been found in the gaseous and aqueous wastes from LBG facilities is provided in Table 1. The major pollutants not listed in this table, but which are expected to be present in an LBG system's discharges are polycyclic organic matter (POM), hydrogen cyanide and ammonia in the uncontrolled gaseous emissions, and a number of specific organic compounds which are only covered by gross parameters such as "organic carbon" in the aqueous effluents.

<u>Model Plants</u>. A model plant approach was used to characterize the potential uncontrolled discharges from LBG systems and to evaluate pollution control alternatives for those discharges. The model plants selected represent processing configurations currently in use or proposed for use in the U.S. Each has similar processes in the coal preparation and coal gasification operations. They differ in the areas of coal feedstock used and the degree to which the low-Btu product gas is purified. For the background studies, recommendations were not made as to which model plant should be used, but pollution control information for the discharges from each model plant was developed.

TABLE 1. CONSTITUENTS IN LOW-BTU AIR AND WATER STANDARDS	GASIFICATION PLANT WASTE STREAMS COVERED BY EXISTING	
Standard	Subject Pollutants Found in Discharge Streams from Low-Btu Gasification Facilities	
National Ambient Air Quality Standards New Source Performance Standards	CO, NO ₂ , SO ₂ , Pb, TSP, NMHC CO, NO ₂ , SO ₂ , TSP, Total Reduced Sulfur, NMHC	
National Emission Standards for Hazardous Air Pollutants	Hg, Be, Inorganic As*, Benzene*, Radionuclides*	•
Prevention of Significant Deterioration Standards		- ,
Increments <u>De Minimis</u> Levels	SO2, TSP CO, NO2, TSP, SO2, Pb, Hg, Se, H ₂ S, CS ₂ , COS	
Effluent Limitation Guidelines		
Conventional and nonconventional pollutants	Al, Ammonia, B, Ca, Fluoride, Fe, Mn, Nitrate, Organic Carbon, P, Sulfate, Sulfide, U, BOD5, COD, pH, Total Nitrogen, Total Suspended Solids, Color, Oil and Grease, Settleable Solids	•
Consent decree pollutants (toxic pollutants)	Sb, As, Be, Cd, Cr, Cu, Cyanides, Pb, Hg, Ni, Phenol and phenolic compounds, Polynculear aromatic hydrocarbons, Se, Ag, Zn	
*Listed as hazardous air pollutants; no regu	Lations promulgated.	

E00

The characteristics of the coal being gasified influence the presence, composition and flow rates of the discharges from low-Btu gasification plants. In order to evaluate the impact of coal properties on the discharge streams, four different coals were examined: anthracite, lignite, low-sulfur bituminous coal, and high-sulfur bituminous coal. These feedstocks span the range of coals and coal properties which are or might be used in low-Btu gasification plants.

Using the data sources described below, mass balances were calculated for a basic plant capacity of 45 MW (approximately 150 x 10^6 Btu/hr) of thermal energy in the product gas (based on the higher heating value of the gas). This capacity is representative of the plant sizes expected to be constructed in the near future. The mass balances provided a consistent basis for calculating "uncontrolled" mass discharge rates.

Based upon the expected characteristics of the waste streams, pollution control processes were identified and evaluated. "Secondary" waste streams resulting from pollution control were also defined and controls for these streams evaluated.

Data Sources. The major source of data used in the background studies is an EPA-sponsored environmental assessment program for low-Btu gasification technology. As part of that program, a series of field test programs are being conducted. To date, three data acquisition programs have been completed, another is on-going and a fifth is planned for the fall of 1980.1,2,3 All test sites are either commercially operating or commercial-size demonstration units located in the U.S. Additional data sources are other government and industry sponsored test programs.

Information used to identify and evaluate pollution control alternatives was mainly obtained by technology transfer, i.e., extrapolation from other industries with identical or similar pollution control problems. Additional technical information was obtained from process vendors, process developers, and published literature. Only limited pollution control information was obtained from the field test programs because of the essentially "uncontrolled" nature of the sites tested.

PROCESS DESCRIPTION AND POLLUTANT SOURCES

Low-Btu coal gasification systems can be considered to consist of three basic operations: coal preparation, coal gasification, and gas purification. Each of these operations in turn consists of process modules that are employed to satisfy the functions of the operations.

As mentioned previously, a model plant approach was used to characterize the potential uncontrolled discharges from LBG systems and to evaluate pollution control alternatives for those discharges. Block diagrams of the three model plants examined are shown in Figure 1. These represent all the processing configurations of plants currently operating or proposed in the U.S.

FIGURE 1. LOW-BTU GASIFICATION MODEL PLANTS

៱៱៲

The first model plant produces a hot low-Btu product gas. The only gas purification process used is a hot gas cyclone for partial removal of entrained particulate matter. This process configuration is typical of most of the plants currently in operation and several plants which are proposed or under construction.

The second model plant produces a cooled low-Btu product gas. In this plant, a series of wet scrubbers are used to quench and cool the hot gas. This step also removes additional particulate matter and the majority of tars and oils present. This configuration is similar to an existing LBG plant which uses Chapman gasifiers.

The third model plant produces a desulfurized product gas and as a result has the most extensive gas purification scheme. In addition to a hot gas cyclone and quenching/cooling, this model plant uses an electrostatic precipitator for removal of residual tars/oils and a sulfur removal process. Available sulfur removal processes can be broadly classified as 1) those that remove sulfur compounds and directly convert them into elemental sulfur, and 2) those that remove sulfur compounds and produce an off-gas containing the removed sulfur species. An evaluation of these processes, including discussions with process licensors, indicated that the direct oxidation processes are the preferred sulfur removal technique for low-Btu gas derived from fixed-bed, atmospheric pressure gasifiers. While some of the other types of processes (e.g., the monoethanolamine process) could be used, difficulties would be encountered in treating the sulfur species laden off-gas due to its high CO2 content. This conclusion is supported by the fact that all existing and proposed designs of LBG facilities which remove sulfur species use direct oxidation processes. Thus, for the Model Plant III systems, only direct oxidation processes are examined for sulfur removal. For study purposes, the Stretford process was selected as being representative of commercially available direct oxidation processes.

Descriptions of the three basic operations, the process modules which might be found in them, and the potential discharges from each operation are presented in the following sections.

Description Of The Coal Preparation Operation

Fixed-bed, atmospheric pressure gasifiers require a sized coal feed. Current practice at all commercial LBG facilities in the U.S. is to purchase pre-sized coal, eliminating the need for on-site crushing and sizing equipment. Future LBG facilities are also expected to purchase pre-sized coal. As a result, coal preparation requirements for these facilities will most likely consist only of coal receiving and storage, and means for transporting coal from storage to the gasifier coal feed hoppers. Some facilities though may have to perform final, on-site sizing if fuel size degradation occurs in shipment.

Discharges from the coal preparation operation include airborne coal dust particles from coal handling, rainwater runoff from coal storage piles, and, if final on-site sizing is performed, small amounts of coal fines. No test data are available on the discharges from the coal preparation operation. However, their physical and chemical characteristics can be estimated from data for similar discharges from the coal mining and coal-fired steam electric industries. Coal pile runoff tends to contain high levels of suspended and dissolved solids (including heavy metals) and can have an acidic or alkaline pH. Dissolved organics tend to be at negligible or non-detectable levels. Dust from coal handling and storage consists of small coal particles.

Description Of The Coal Gasification Operation

There are six commercially available gasifiers that operate in a fixed-bed mode and at atmospheric pressure. They are:

- Chapman (Wilputte),
- Foster-Wheeler/Stoic,
- Riley,
- Wellman-Galusha,
- Wellman Incandescent, and
- Woodall-Duckham/Gas Integrale.

These gasifiers produce low-Btu gas by countercurrent gasification of coal with a mixture of air and steam.

Coal is fed to the top of the gasifier from an overhead bin through a lock hopper and/or a rotary feeder. As the coal gravitates downward through the gasifier, it is contacted by rising hot gases and passes through "zones" of progressively higher temperatures before exiting the bottom of the gasifier as ash. As the coal is heated, it undergoes a series of physical and chemical reactions. Sequentially, these are drying, devolatilization, gasification, and finally combustion. Air saturated with water, i.e., steam, enters at the bottom of the gasifier. The steam absorbs some of the heat released in the combustion zone, which helps to maintain the combustion temperature below the coal ash softening temperature.

With most gasifiers, ash is collected at the bottom of the gasifier in a water sealed ash pan and removed from the unit using an ash plow. The Wellman-Galusha gasifier however, collects the ash in an ash hopper located beneath the gasifier. Ash is removed by adding water to the hopper and draining the ash slurry through a slide valve. The water also serves to seal the gasifier internals from the atmosphere during the ash removal step.

Pokeholes are located on the top of the gasifier. Rods are inserted through the pokeholes to measure the depth and location of the "fire" and ash zones. These rods can also be used to break up any agglomerates formed in the bed.

The Wellman-Galusha, Chapman, and Riley gasifiers produce a single low-Btu gas stream that exits the top of the gasifier. The Foster-Wheeler/ Stoic, Wellman Incandescent, and Woodall-Duckham/Gas Integrale gasifiers are two-stage gasifiers that produce two gas streams. A "clear" gas stream, constituting approximately one-half of the total gas production, is withdrawn from the gasification zone (near the middle of the gasifier). As such, it contains essentially no tars or oils. The remaining gas, which contains tars and oils, is withdrawn from the top of the gasifier where devolatilization of the coal occurs.

At present, very limited environmental characterization data are available for two-stage gasification systems. From a process viewpoint, the two-stage gasification arrangement simplifies the gas purification operation, but it does not appear to alter materially the system's potential environmental impacts. The background study deals specifically with single-stage gasification systems. However, the information developed is felt to also be generally applicable to two-stage gasification systems.

Discharges from the coal gasification operation include:

•	Gaseous emissions	- pokehole gases - coal feeder gases - transient gases	
•	Liquid effluents	- ash sluice water (from Wellman-Galusha gasifiers or	ıly)
•	Solid wastes	- gasifier ash	

Coal feeder gases, pokehole gases, and transient gases generated during start-up, shutdown, and upset conditions are essentially raw low-Btu gas. These discharges contain primarily carbon monoxide, carbon dioxide, hydrogen, nitrogen, and water vapor. Minor components include hydrogen sulfide, carbonyl sulfide, ammonia, hydrogen cyanide, entrained particulates, trace elements, low molecular weight hydrocarbons, and, if the coal feed is lignite, bituminous, or subbituminous, higher molecular weight organics (e.g., tars and oils).

Ash sluice water from Wellman-Galusha gasifiers contains suspended and dissolved solids, including trace elements. Negligible or nondetectable levels of organics have been identified, with most of them being attributable to artifacts of the sampling and analytical procedures. The pH of ash sluice water can vary widely, depending on the characteristics of the ash. An alkaline pH is typical if lignite is the coal feed, while acidic or neutral pH's are typical for other coal feeds.

Ash from the gasifier is similar to bottom ash from a coal-fired boiler although higher levels of residual carbon are present. Data for gasification of several coals indicate that trace elements are not leachable in amounts which would result in classification of gasifier ash as a hazardous waste.

Description Of The Gas Purification Operation

The purpose of the gas purification operation is to remove undesirable constituents such as entrained particulate matter, tars, oils, and sulfur from the raw low-Btu gas. Depending on the concentrations of these constituents in the raw gas and on the product gas specifications imposed by the enduse (by either process or environmental considerations), none, some, or all of these constituents may need to be controlled. No attempt was made to evaluate systems producing a predefined product gas quality. Instead, systems were selected based on existing or proposed purification configurations, with the assumption that the resulting product gas quality would be sufficient to meet the user's needs.

Particulate Removal. Entrained particulate matter can be removed from the low-Btu gas with cyclones, wet scrubbers, and/or electrostatic precipitators (ESP). Cyclones are currently used in all domestic commercial LBG facilities.

Tars and Oils Removal. The primary means of removing tars and oils 'from raw low-Btu gas is to use wet scrubbers. These include in-line sprays, wet cyclones, and spray, tray, or packed scrubbers. Most of the commercially available sulfur removal processes have limitations on the concentrations of tars and oils in the gas to be treated. Normally, these levels cannot be achieved using wet scrubbers alone. Detarrers (electrostatic precipitators) have been used with some success for residual tars and oils removal.

Tars/oils-laden water from the scrubbers is directed to a gravity separator. Here, the heavier-than-water tars/oils are separated from the water and recovered as a by-product. The scrubber water is then cooled in indirect heat exchangers and recycled. Some volatile organic and inorganic species are absorbed from the low-Btu gas when it is scrubbed. These species tend to desorb from the scrubber water and fill the separator vapor space. They can be recombined with the low-Btu gas by ducting the vapor space to the low-Btu gas line.

In order to control the buildup of dissolved solids in the recirculating scrubber water and/or to maintain a water balance in the scrubbing loop, a portion of the scrubber water is removed as blowdown. The size of this blowdown depends on such factors as the moisture and chloride content of the coal, the dew point of the hot low-Btu gas and the temperature to which the gas is cooled.

<u>Sulfur Compounds Removal</u>. Commercially available sulfur removal processes include those using physical solvents, chemical solvents, combinations of physical and chemical solvents, and processes featuring removal and direct oxidation of sulfur compounds to produce elemental sulfur.⁴ Physical solvent, combination chemical and physical solvents and some of the chemical solvent processes are not well suited to the removal of sulfur compounds from an atmospheric pressure, low-Btu gas.⁵ Several of the alkanolamine (chemical solvent) processes can be used, but they require moderate pressurization of the gas in order to obtain low residual sulfur levels. Regeneration of the alkanolamine solvent also produces an off-gas which contains the removed H_2S and CO_2 , and which must be further processed for sulfur recovery. Standard means of treating these off-gases (which will contain 70-95% CO_2) is to route them to a Claus unit. The low H_2S /high CO_2 content of these off-gases can limit the recovery efficiency of the Claus unit and prohibit the use of a Claus tail gas treatment process such as the SCOT unit. Thus, while alkanolamine processes appear to be feasible for treating low-Btu gas, technical (and economic) considerations indicate they are a poor choice. In light of the above factors, none of the chemical or physical solvent processes were evaluated in the background studies for the model plant III configurations.

The direct oxidation processes do not have gas pressure limitations and are very effective in removing H₂S. These processes also convert the removed H₂S directly into elemental sulfur, thus eliminating the need for additional treatment of an H₂S-laden off-gas. However, direct oxidation processes do not remove significant amounts of non-H₂S sulfur species such as carbonyl sulfide (COS).⁵ For purposes of analysis, the Stretford process was selected as a representative example of a commercially available direct oxidation type sulfur removal process.

<u>Summary of Discharges from Gas Purification</u>. The existence, quantity, and characteristics of discharges from the gas purification operation depend on the degree of gas purification desired. In general terms, as the low-Btu gas undergoes additional clean-up, additional waste streams are created. These waste streams include:

- collected particulate matter from cyclones (all Model Plants),
- scrubbing liquor blowdown (Model Plants II and III),
- by-product tars and oils (Model Plants II and III except for anthracite feed), and
- vent gas and sulfur cake from direct oxidation sulfur removal processes (Model Plant III).

Collected particulates or cyclone dust has a very high carbon content and resembles devolatilized coal. Leaching tests indicate that cyclone dust is not a toxic waste.

Scrubbing liquor blowdown contains suspended solids, dissolved inorganics (including trace elements and soluble gaseous components such as H₂S and NH₃), and, unless anthracite is the coal feed, dissolved organics. Byproduct tars/oils derived from gasification of non-anthracite coals are predominantly organic material, but also contain ash and various trace elements. This material has a significant energy content, and represents a fuel resource which should be recovered.

Discharges from the sulfur removal module include vent gases from the Stretford oxidizer and sulfur cake. The oxidizer gases contain primarily nitrogen, oxygen, and water vapor, with minor amounts of ammonia, carbon dioxide, and reduced sulfur compounds. Other components of the low-Btu gas may also be absorbed by the Stretford scrubbing liquor and released in the oxidizer. However, this is not expected to occur to any significant extent.

Sulfur produced in the Stretford process is initially recovered as a cake containing nominally 50% water. Dissolved in the water are Stretford scrubbing chemicals (sodium vanadates, anthraquinone disulfonic acid, ethylene diamine tetracetic acid, iron, carbonates, and bicarbonates) and high levels of nonregenerable sulfur components such as sulfates, thiosulfates, and thiocyanates.

EVALUATION OF POLLUTION CONTROL TECHNOLOGIES

Evaluations of control technologies for application to individual waste streams were based on considerations of control efficiency, ability to comply with emissions regulations, capital and operating costs, energy and resource consumption, reliability, simplicity, multi-pollutant abatement capability, residue generation and disposal requirements, potential for recovery of by-products, and stage of development. The above criteria were used as a basis for comparison of candidate control technologies either used alone or in combination with in-plant control methods or other add-on controls.

Performance data for applicable control technologies were obtained primarily from the open literature supplemented by vendor supplied data in some cases. The capabilities of various control technologies were not usually assessed on a design-specific basis but rather upon a generalized basis derived from test results and/or engineering studies of the subject technologies.

In many cases performance can only be estimated in terms of control of major constituents (e.g., carbon monoxide) or gross parameters (e.g., TOC) since often no information is available for removal efficiencies for specific substances. Further, even in those cases where substance-specific performance information exists for a control technology, accurate or complete characterization of the waste streams requiring control may be lacking. In the final analysis of course, the capabilities of state-of-the-art controls for LBG facilities can be accurately evaluated only by testing operating facilities. Since these opportunities are generally not available, the performance estimates presented here are believed to reflect the best information currently available based on actual experience and/or engineering analysis.

Air Pollution Control

The uncontrolled gaseous emissions from LBG facilities are summarized in Table 2. The pollutants of potential concern, factors affecting the emission characteristics, and estimated emission flow rates are also summarized in this table. Available control techniques for these emissions are discussed below.

-			
Uncontrolled Atmospheric Emissions	Pollutants of Potential Concern	Factora Affecting Emissions Characteristics	Estimated Flowrate of Uncontrolled Emissions
Airborne particulates from coal handling and storage (All Model Plants)	Parti culates	Coal type; gaaffier feed size requirements; type and condition of coal handling, crushing and sizing equipment	Not estimated, but believed to be negligible since presized coal is received at the plant site
Coal feeder gases (All Model Flants)	CO, N25, NCN, trace elements, and other low-Rtu gas components	Coal feeder design and conditions; coal composition, feed rate and adsorption characteristics; system pressure	Anthracite: 56 m ³ /hr (32 acfm) Low-sulfur hituminous: 53 m ³ /hr (30 acfm) Nigh-sulfur bituminous: 62 m ³ /hr (35 acfm) Lignite: 110 m ³ /hr (62 acfm)
Pokehole gases (All Model Plants)	CO, N2S, NCN, trace elements, and other low-Ntu gas components	Pokehole design and conditions; poking procedures and frequency; system pressure	Anthracite: 38 m ³ /hr (22 scfm) Low-auifur bituminous: 16 m ³ /hr (9 scfm) Nigh-auifur bituminous: 16 m ³ /hr (9 scfm) Lignite: 28 m ³ /hr (16 scfm)
Stratford oxidizer vent gages (Hodel Plant III)	Reduced sulfur compounds, ammonia	Coal Composition; Stretford unit design and operation	Anthracite: 220 m^3 /hr (130 $scfm$) Low-sulfur bituminous: 280 m^3 /hr (160 $scfm$) High-sulfur bituminous: 2000 m^3 /hr (1100 $scfm$) Lighte: 600 m^3 /hr (340 $scfm$)
Startup, shutdown and upset gases (All Model Plants)	CO, N2S, NCN, trace elements, and other low-Btu gas components	Startup, shutdown and upset procedures; gasifier reliability	Not determined, highly variable

TABLE 2. UNCONTROLLED ATMOSPHERIC EMISSIONS FROM LOW+BTU. GASIFICATION FACILITIES

Note: m³/hr flow is relative to 25°C and atmospheric pressure, acfm flow is relative to 60 °F and atmospheric pressure.

<u>Airborne Particulates from Coal Handling and Preparation</u>. Most IBG installations will receive coal that has been crushed and sized. For these installations, no significant particulate emissions are expected and therefore, no control is necessary. If the coal feed is crushed and sized on site, then airborne particulates generated by these operations may be a problem. Control techniques involve enclosing the coal unloading facility, storage bins, crushing and sizing equipment and any conveying devices. These enclosures should be vented by low pressure ducting to a central bag filter collection system. An induced draft fan at the outlet of the bag filters would provide the necessary air flow and ensure that any leakage would be into the system.

<u>Coal Feeder Gases</u>. Low-Btu gas can leak from the gasifier vessel through the coal feeder mechanism and up into the coal bin area by passing countercurrent to the coal flow. One method of reducing the hazards from this emission is to collect it before it enters the coal bin area and then disperse it to the atmosphere through a vent pipe. The top of the coal bin must be sealed (hooded) and a pipe run from there to an elevated outside venting point. An induced draft fan in the vent line would draw air into the coal bin through slots in the side of the bin. Coal feeder gases which pass up through the coal in the bin would then be swept into the vent pipe. While this control option incurs no significant operating costs or energy requirements, it does not decrease the amount of coal feeder gases emitted to the atmosphere.

Another, and more effective means of controlling these emissions is to return them to the process. This strategy can be done in one of two basic ways. One approach is to enclose the coal bin (as with the atmospheric venting option) and run a duct to the intake of the gasifier air blower. To provide continuous sweeping air in the coal bin (to prevent a possible explosive mixture in the bin during very low air rates), a small vent and blow-off valve will be needed in the air blower discharge line for venting during periods of low gasifier air requirements. A second approach involves slightly pressurizing the coal bin with an inert gas. This approach prevents the passage of low-Btu gases into the coal bin. Either of these control options can effect almost complete (99%) control of the coal feeder gases during normal gasifier operations.

<u>Pokehole Gases</u>. Low-Btu gas escapes from pokeholes during and between poking operations. Improved pokehole designs are available with closer tolerances and positive seal valves. While effective in reducing emissions between poking operations, this control method still allows significant quantities of gases to continue to escape during the poking operation.

A second control technology is to combine improved pokehole sealing methods with the injection of an inert gas during poking operations. The inert gas effectively eliminates low-Btu gas leakage. Nitrogen is a possible choice for the inert gas but this may incur operating costs (mainly for the purchase of nitrogen) of up to two percent of the base plant annualized costs. If available, steam might be a more economical choice since the steam requirement would be less than 0.1 percent of the product gas energy. <u>Stretford Oxidizer Vent Gases</u>. For systems using the Stretford process to produce a desulfurized product gas, an air blown oxidizer is used to convert the reduced Stretford solution back to its oxidized form. A large excess of air is used in the oxidizer and released in the vent. The vent gases consist primarily of oxygen and nitrogen plus water vapor from the Stretford solution. Minor amounts of ammonia and carbon dioxide and other components absorbed from the Stretford solution may also be present. This emission is not expected to pose a significant environmental problem if adequately dispersed to the atmosphere.

Startup, Shutdown and Upset Gases. During gasifier startup, shutdown, and upsets, gases are produced which do not meet product specifications. If the gas is being burned locally and the customer can safely and economically continue to combust the gas (possibly with auxiliary firing), then this is obviously a good option and really represents a "no control required" situation. If this option is not available, then two possible control strategies may be used. One option is to combust these gases in an incinerator or flare. This option requires installing piping, valves, and instrumentation. A second option is to vent the low-Btu product gas line to the atmosphere through a stack. This option could pose localized odor problems. Therefore, its viability could be limited to those areas where adequate dispersion is attainable.

Water Pollution Control

The uncontrolled effluents from LBG facilities are summarized in Table 3. The pollutants requiring control, factors affecting the effluent characteristics, and estimated effluent flow rates are also summarized in this table. Most of the processes considered for treating these effluents have not been applied to the treatment of low-Btu gasification wastewaters. Therefore, decisions related to the applicability, performance capabilities, and costs of controls were based upon experience gained in related industries including the coking, petroleum refining, and electric utility industries.

<u>Coal Pile Runoff and Ash Sluice Water</u>. These two effluents are very similar to their counterparts in coal-fired power plants. They contain suspended solids and dissolved inorganics but negligible dissolved organics. Treatment techniques used in the utility industry include sedimentation, clarification or filtration for suspended solids removal and acid or base addition for pH adjustment. An additional treatment step available is chemical precipitation for removal of selected trace elements. Use of these techniques for coal pile runoff and ash sluice water from LBG facilities should produce an effluent which would meet the NSPS for coal-fired power plants.

<u>Process Condensate</u>. Process condensate contains suspended solids and dissolved gases, organics, and trace elements. Viable treatment techniques for dissolved organics include activated carbon adsorption and biological oxidation. Sour water strippers can be used to remove dissolved gases. Chemical precipitation treatment can be used to reduce the levels of trace elements, although treatment to remove organics will be the key to disposing of this stream in an environmentally acceptable manner. TABLE 3. UNCONTROLLED RFFLUENTS FROM LOW-BTU GASIFICATION FACILITIES

•

UNCONTROLLED EFFLUENTS FROM	POLLUTANTS OF POTENTIAL CONCERN	FACTORS AFFECTING EFFLIENT CHARACTERLSTICS	ESTIMATED EFFLUENT FLOMRATES
bal Pile Runoff Model Plants I, II, and III) '	Suspended solids (Suspended solids (norganics leached from coal, pH	Coal type and conditions of wastewater contact with coal (e.g., residence time) will determine waste stream com- position. Rainfall rites and coal storage practices will determine flow.	Flow rate is intermittent and variable. Annual average: 7.5 to 15 kg/min (2 to 4 gpm). Average from 10 year/24 hour rain: 380 to 760 kg/min (100 to 200 gpm).
sh Sluice Water Model Flants I, II, and III Mich use Wellman-Galusha (asifier)	Suspended solids, inorganics and trace elements leached from ash	Characteristics of the ash and contact time between the ash and slutce water will deter- mine waste stream composition. Quantity of ash removed from gasifier and operator prac- tices will determine flow.	Flow rate is intermittent, existing only when ash is removed. This is normally 2 or 3 times per day, per gasifier. Average flow: 20 to 60 kg/min (5 to 16 gpm).
roceas Gondenaate Model Plants II and III)	Suspended solids, dissolved organics, inorganics, trace elements, and gases	Gomposition of low-fitu gas has major influence on composi- tion. Important factors in- clude N2S, HCN, NN3, and tar/oil content of gas. Chloride content of coal feed and moisture content of gas determine waste flow.	Based on maintaining water balance in quench loop; bituminous coal - 23 kg/min (6 gpm) - lignite - 76 kg/min (20 gpm) anthracite - periodic anthracite - periodic Flows may be as high as 76 kg/min (20 gpm) for all coals in order to control chloride corrosion problems.

Thus two treatment options appear to be available for treating process condensate: one uses carbon adsorption and steam stripping while the other uses biological oxidation and steam stripping. Chemical precipitation could be used with either option. For both of the options, the organics removal unit is required only if the coal feed produces tars and oils when gasified. Since anthracite does not produce tars and oils, the treatment of condensate from an anthracite gasifier may not require dissolved organics removal. Representative performance criteria for two treatment options for process condensate are summarized in Table 4.

Component	Untreated Effluent	Treated Effluenta	Treated EffluentD
			TIEALEU ETITUEUL
TSS	140	<10	<30
Oil and Grease	e 400	<10	<30
BOD	9000	?	<1000
Pheno1s	2000	<5	<20
TOC	5600	<700	<700
NH3	4000	<50	<50
∃H2S	220	<10	<10
CN ⁻	1100	<10	<10
Trace Elements	s Yes	some removal ^C	some removalc

TABLE 4. ESTIMATED PERFORMANCE CAPABILITIES OF PROCESS CONDENSATE TREATMENT TECHNOLOGIES

Unit: mg/l

a Treatment using activated carbon adsorption and steam stripping.

b Treatment using biological oxidation and steam stripping.

c Increased removals of cationic trace elements can be achieved using chemical precipitation.

Solid Waste Management Alternatives

The solid wastes generated by low-Btu gasification facilities are summarized in Table 5. Included in this table are estimated flow rates, important characteristics (such as physical condition, energy content, potential environmental problems), and expected classification (as hazardous or nonhazardous) for each waste. Management techniques for these wastes should be based on the criteria and guidelines developed by the EPA in response to the Resource Conservation and Recovery Act.

<u>Coal Fines</u>. Generally, coal fines are not expected to be a waste produced by low-Btu gasification facilities. This is because presized coal is normally purchased, eliminating the need for on-site crushing and sizing. However, it is possible that final, on-site sizing may be required if fuel size degradation occurs in shipment and handling. If so, a coal fines stream will be produced. The quantity of fines produced is difficult to estimate but

-	

UNCONTROLLED WASTES FROM LOW-BTU GASIFICATION FACILITIES TABLE 5.

Waste	Flow Rate	Characteristics	Expected Classification
Coal Fines (All Model Plants)	This is not a waste stream unless on-site sizing is employed. Flow rates have not been estimated.	Dry solid; heating value same as coal feed.	Non-hazardous
Gasifier Ash (All Model Plants)	800 to 1800 kg/hr	Damp solid with 20 to 30% H ₂ 0; heating value: 1.4 to 8.2 MJ/kg; leachable trace elements.	Non-haza rdous
Cyclone Dust (All Model Plants)	6 to 38 kg/hr	Dry solid; heating value: 25 to 28 MJ/kg; leachable trace elements.	Non-hazardous
Stretford Sulfur Cake (Model Plant III)	.70 to 620 kg/hr	Wet solid with approxi- mately 50% H ₂ O; contains thiocyanates, thiosul- fates, iron, vanadates, ADA, EDTA.	Hazardous
Tars ands Oils (Model Plants II and III gasifying non- anthracite coals)	750 to 1220 kg/hr	Viscous liquid; specific gravity greater than one; heating value: 30 to 37 MJ/kg; contains organics and trace elements,	Ha za rd ou s

613

۰.
should be very small. Since coal fines have the same energy content as coal, a desirable means of handling them is to recover their energy value. Because of the small quantities involved, this may be practical only if an existing combustor is available on-site or nearby. If resource recovery is not practical, then the coal fines should be disposed of as a nonhazardous waste in a sanitary landfill.

<u>Gasifier Ash.</u> Gasifier ash is the unreacted portion of the coal fed to the gasifier - predominantly mineral matter but also some carbonaceous material. After dewatering, it is a damp solid containing 20 to 30 weight percent water. All available data on gasifier ash indicate that it is a nonhazardous waste. As such, the most reasonable option for disposing of gasifier ash is disposal in a sanitary landfill.

<u>Cyclone Dust.</u> Cyclone dust resembles devolatilized coal. It has a carbon content as high as 90 percent and a heating value of 25 MJ/kg (11,000 Btu/lb) or higher. It is removed from the cyclones as a dry, powdery solid. All available data indicate that cyclone dust is a nonhazardous waste and could be disposed of in a sanitary landfill. Because of its high energy content though, consideration should be given to recovering its fuel value.

Stretford Sulfur Cake. Elemental sulfur is produced by a Stretford unit and recovered as a filter cake containing approximately 50 percent water. No test data are available for this waste. However, it will contain Stretford solution chemicals (vanadates, anthraquinone disulfonic acid salts, EDTA, and iron) and nonregenerable sulfur components such as thiocyanates and thiosulfates. Because of the presence of these contaminants, Stretford sulfur cake is suspected to be a hazardous waste. If so, the management technique for this waste would have to comply with the Subtitle C criteria and guidelines for hazardous waste disposal. Alternatively, the contaminated sulfur can be processed to recover a saleable by-product. This option produces an effluent containing the contaminants originally present in the sulfur cake. Reductive incineration and high temperature hydrolysis are two techniques recently developed for treating Stretford solution effluent, but these approaches are not proven commercially.

Tars and Oils. By-product tars and oils contain a number of toxic organics. However, due to the high specific gravity and viscosity of this material, it is expected to have a low vapor pressure which will minimize the release of volatile organics during storage. Operators and handlers should take precautionary steps to minimize contact with this material. Special note should be taken of the NIOSH proposed criteria for coal gasification plants. Because of its significant fuel value, the logical management technique for by-product tars and oils is resource recovery. This would involve using the material to fire a boiler or furnace.

SUMMARY OF POLLUTION CONTROL COSTS AND ENERGY REQUIREMENTS

In order to compare controls for cost effectiveness and to estimate the impact of pollution control costs on overall plant costs, approximate capital and operating costs for individual control processes/equipment were developed. These costs are based primarily on factored estimates of costs contained in non-proprietary published literature, normalized to a first quarter 1980 basis. In some cases actual vendor quotes have been used but generally, it was beyond the scope and purpose of the background studies to develop the detailed engineering designs necessary for cost estimation at the "firm" (approaching <u>+</u> 10 percent) level. Although the accuracy of the cost estimates varies, most are believed to be within 50 percent.

For purposes of presentation in this paper, costs for various pollution control options are given as a percent of the "uncontrolled" plant capital and total annualized costs. This format was selected since it more clearly indicates the magnitude of pollution control costs on overall plant costs than would actual dollar estimates. This approach has the additional benefit of being less sensitive to assumed economic factors such as inflation, interest rates (cost of capital), etc.

Total annualized costs were calculated as the sum of annual operating cost and annualized capital costs. For purposes of annualizing the capital investment, a fixed rate charge factor of 0.175 was calculated. This represents the fraction of the total capital investment that must be assessed as annualized capital charge.

Table 6 summarizes the capital and annualized cost impacts of pollution control for the three model plants examined. The ranges shown reflect differences in control costs as a result of gasifying the four coals studied. They are not intended to reflect the accuracy of the cost impacts. All cost numbers are expressed in terms of a percent of the uncontrolled base plant costs.

As shown in this table, the cost impacts for emission controls are minimal. Capital costs or annualized costs do not exceed 2 percent of the base plant cost for any emission and, most of the control costs are below 1 percent. On a total plant basis, the emission controls are estimated to add approximately 1 to 3 percent to the base plant capital requirements and increase annualized costs by 2 to 5 percent. Energy requirements for air pollution control are negligible.

The cost impacts for controlling a specific liquid effluent are greatest for the hot gas systems and least for the desulfurized gas systems. This reflects an increase in the base plant costs and not a decrease in the control costs. Total plant water treatment costs tend to increase or remain approximately constant as the degree of gas purification increases. This reflects the fact that increases in the base plant costs (the denominator used to calculate the percentage cost impacts shown) are offset by increased treatment costs (the

IMPACTSa
COST
CONTROL
POLLUTION
ESTSIMATED
Ð
SUMMARY
6.
TABLE

	0	ontrol Costs	as a Percent	of Base Plant	Costs	
	Hot	Gas	Coole	ed Gas	Desulfu	rized Gas
	Capital	<u>Annualized</u>	Capital	<u>Annualized</u>	Capital	Annualized
GASEOUS EMISSIONS Coal Feeder Gases	0.8-1.0	0.9- 1.7	0.6- 0.9	0.8- 1.6	0.3-0.6	0.6- 1.3
Pokehole Gases	1.0-1.2	1.1- 2.0	0.7-1.0	0.9- 1.9	0.4-0.8	0.7-1.6
Stretford Oxidizer	1	·	1	I	none	none
Transient Gases TOTAL	0.8-1.0 2.8-3.0	$\frac{1.1-1.4}{3.1-5.1}$	0.7 2.0- 2.6	<u>1.0- 1.3</u> 2.7- 4.8	0.4-0.5 1.1-1.9	0.7 - 1.1 2.0 - 4.0
LIQUID EFFLUENTS					×	
Coal Pile Runoff Ash Sluice Water	2.8-10.3	1.2- 2.6	2.4-7.3	1.1-2.3	I.7-4.1	0.9- 1.7
Process Condensate TOTAL		- 1.2- 2.6	<u>1.5-7.9</u> 3.9-15.2	1.4-6.8 2.5-9.1	<u>1.1-4.4</u> 2.8-8.5	$\frac{1.2-5.1}{2.1-6.8}$
SOLID WASTES						
Gastfler Ash	,q	4.6-7.3	q	4.1-6.7	ą	2.8- 5.4
Cyclone Dust	,a	<0.1- 0.2	Ą	<0.1- 0.2	р	<0.1- 0.1
Sulfur Cake	l	ł	I	ł	,a	0.6- 6.2
Tars and Oils TOTAL	D I	<u>-</u> 4.8-7.5	ol'o	с 4.3- 6.8	םוט	$\frac{c}{4.5-9.1}$
TOTAL POLLUTION CONTROL	5.8-13.1b	9.5-13.9	6.5-17.2 ^b	11.9-18.1	4•6-9•6 ^b	9.5-17.2
a - Ranges shown reflec ranges calculated f	tt difference rom totals fo	s in control c or each coal i	costs for var feed, which m	ious coal feeds ay be different	 Totals s than algebra 	shown are staic sum of

component ranges shown.
b - Data not available for capital costs for solid waste disposal.
c - No costs are included for controlling tars and oils; recovery of fuel value is expected.
(-) - Discharge does not exist for this model plant.

numerator used to calculate the cost impacts) resulting from the need to treat additional effluents. On a total plant basis, water pollution control costs are estimated to increase the base plant capital costs by 3 to 15 percent and annualized costs by 1 to 9 percent. Energy requirements for water pollution control amount to 0.6 to 2.1 percent of the energy content of the low-Btu product gas. This is almost entirely attributable to the sour water stripper steam requirements for treating process condensate.

Capital cost estimates were not available for the solid waste disposal practices. The waste disposal annualized costs are dominated by the costs of handling gasifier ash, with the only other significant costs being those associated with sulfur cake disposal. (For the high sulfur bituminous coal case, sulfur disposal costs are dominant). Cost factors used for disposal of wastes were \$21 and \$71 per metric ton for nonhazardous and hazardous wastes, respectively. Although \$71 per tonne is a relatively high estimate for hazardous waste dispoal, it may not truly reflect the costs associated with disposing of very small quantities of hazardous wastes. For small quantities, the relative impacts of capital costs and administrative costs (in terms of dollars per tonne disposed) can be very large.

Energy requirements for disposing of solid wastes are minimal and are estimated at 0.2% or less of the low-Btu gas energy content. The energy requirements are mainly fuel for haul trucks and earthmoving equipment.

The total plant pollution control cost impacts are estimated to range from approximately 6 to 17 percent of the base plant capital investment and from 9.5 to slightly over 18 percent of the base plant's annualized costs.

REFERENCES

- Page, Gordon C. Environmental Assessment: Source Test and Evaluation Report--Chapman Low-Btu Gasification. EPA-600/7-78-202, PB-289 940. Radian Corp., Austin, TX, October 1978.
- Thomas, W. C., K. N. Trede, and G. C. Page. Environmental Assessment: Source Test and Evaluation Report--Wellman-Galusha (Glen Gery) Low-Btu Gasification. EPA-600/7-79-185, PB80-102551. Radian Corp., Austin, TX, August 1979.
- Kilpatrick, M. P., R. A. Magee, and T. E. Emmel. Environmental Assessment: Source Test and Evaluation Report-Wellman-Galusha (Fort Snelling) Low-Btu Gasification. EPA-600/7-80-097, PB80-219330. Radian Corp., Austin, TX, May 1980.
- 4. Cavanaugh, E. C., W. E. Corbett, and G. C. Page. Environmental Assessment Data Base for Low/Medium-Btu Gasification Technology. Volume I. Technical Discussion; Volume II. Appendices A-F. EPA-600/7-77-125a, b, FB 274 844/AS, V. I., FB 274 843/AS, V. II. Radian Corp., Austin, TX, November 1977.
- Thomas, W. C. Technology Assessment Report for Industrial Boiler Applications: Synthetic Fuels. EPA-600/7-79-178d. Radian Corp., Austin, TX, November 1979.

DEVELOPMENT OF A POLLUTION CONTROL GUIDANCE DOCUMENT FOR INDIRECT COAL LIQUEFACTION

bу

Kimm Crawford TRW Environmental Engineering Division One Space Park Drive Redondo Beach, California 90278

and

William J. Rhodes Industrial Environmental Research Laboratory U.S. Environmental Protection Agency Research Triangle Park, N.C. 27711

and

William E. Corbett Engineering Division Radian Corporation Austin, Texas 78758

ABSTRACT

Synfuels present both an opportunity and a problem for EPA in terms of developing a new environmentally acceptable industry. The opportunity is for EPA to encourage environmental controls to be incorporated/developed as an integral part of the first plantdesigns rather than as "add on" technology in an existing industry. The problem is that an adequate data base for promulgation of defensible regulations for synfuels plants does not now exist and will likely not exist until after the first plants have been constructed and operated for some period of time. EPA has responded to this situation with the "Pollution Control Guidance Document (PCGD)" concept, in which the best thinking of the various EPA R&D program and regional offices is to be provided to permitters and to industry in the form of "guidance" for an interim period rather than as regulations.

The Indirect Liquefaction (IL) PCGD is one of the first such documents which EPA is preparing with the technical support of various contractors. TRW, Radian, Versar and RTI are involved in the preparation of the data base for the first technical draft of the ILPCGD.

This paper summarizes the technology basis for control levels identified.

DEVELOPMENT OF A POLLUTION CONTROL GUIDANCE DOCUMENT FOR INDIRECT COAL LIQUEFACTION

The production of transportation fuels from domestic coal to displace fuels derived from imported petroleum has high priority in the overall U.S. energy policy. Since indirect liquefaction (IL) is the only commercially demonstrated means of producing transportation fuels from coal, this technology is likely to be among the first to be employed for synthetic fuels production in the United States.

The Environmental Protection Agency (EPA) is responsible for ensuring that the designs of first generation synthetic fuel technologies provide for adequate protection of the environment. To serve this need and to avoid costly delays in the commercialization of a process due to uncertainties concerning environmental control requirements, EPA developed the Pollution Control Guidance Document (PCGD) approach. This paper summarizes the data base that has been developed for the preparation of the PCGD for Lurgi-based IL technology. EPA's technical support contractors in this effort are TRW, Radian, Versar, and RTI.

The approach for the ILPCGDs was to develop a series of model plants based on Lurgi, Texaco, and Koppers-Totzek (K-T) gasification using methanol, Fischer-Tropsch (F-T), and Mobil M-gasoline synthesis. These technologies are considered commercial or near-commercial. Major and minor constituent material balances were established for integrated model plants using three U.S. coals (Montana Rosebud subbituminous, Illinois No. 6 bituminous, and North Dakota lignite) in order to provide estimates of the volumes and loadings of various waste streams which would be generated. Waste stream constituents covered by the PCGD include both conventional/criteria/consent decree pollutants and currently unregulated substances (e.g., POM).

The PCGD data base includes an identification and evaluation of various pollution control options, based on the expected capabilities of available technologies, for all major gaseous, aqueous, and solid waste streams generated in an integrated facility. This paper presents several of the control

options developed in the data base. The control options are based on considerations of the volume and toxicity of the specific waste stream, costs, safety, reliability, degree to which controls have been demonstrated, intraand intermedia tradeoffs, and site specific factors.

The major sources of data used in the Lurgi data base for defining the types and characteristics of uncontrolled indirect liquéfaction plant waste streams are (1) data obtained as part of an EPA sponsored environmental test program of a Lurgi gasification facility at Kosovo, Yugoslavia; (2) data obtained as part of an Energy Research and Development Administration (ERDA, now DOE) sponsored program involving the gasification of American coals in a Lurgi gasifier at Westfield, Scotland; (3) data obtained as part of an American Natural Gas, Inc. sponsored program involving gasification of North Dakota lignite at the SASOL plant in South Africa; (4) data provided to EPA by South African Coal and Gas Corp. Ltd. (SASOL); and (5) data contained in various permit filings and environmental impact statements for proposed Lurgi-based SNG and indirect liquefaction facilities in the U.S.

Data sources employed for development of model plant/process configurations were primarily engineering studies of the technology sponsored by DOE, EPA, and EPRT. Data sources which served as the basis for the analysis of pollution control applicability and costs include the above engineering studies, studies conducted by TVA, various permit filings, technical information obtained from pollution control equipment vendors and process developers, and published literature. Much of the information on controls is derived from applications in related industries such as petroleum refining, natural gas processing, by-product coke production, electric utilities, and coal preparation.

The configurations of the model plants were based on designs of Lurgi plants which are either proposed or currently in operation. Auxiliary processes considered were those which would render a facility essentially selfsufficient in energy (one which would need only run-of-mine coal, raw water, and various chemicals and catalysts as inputs). A plant size corresponding to 1 x 10¹¹ Btu/day (2.5 x 10¹⁰ kcal/day) of total product was selected as representative of the first plant(s) which may be built. This corresponds to about 7000 bbls/day (1200 Nm³/day) gasoline plus 50 x 10⁶ SCF (1.3 x 10⁶ Nm³) of substitute natural gas per day (co-produced in the case of Lurgi gasification). This is approximately the size of the first phase facility planned by American Natural Resources for their North Dakota SNG project.

Figures 1 and 2 are simplified flow diagrams of the main process train and auxiliary operations associated with integrated Lurgi IL facilities. System operations include coal preparation, coal gasification, gas purification and upgrading, crude product synthesis and separation, and product upgrading. Nonpollution control auxiliary processes include process cooling, product storage, raw water treatment, steam and power generation, and oxygen production. The major waste streams identified for facilities depicted in the figures are listed in Table 1 along with the primary constituents/parameters of concern for each waste. The remainder of this paper will focus on control options for these major streams in Lurgi-based facilities. Note that no fundamentally new problems are believed to apply to K-T or Texaco gasification which do not also apply to Lurgi gasification, although differences do exist in the relative quantities of wastes/waste constituents which are generated. Indeed, K-T and Texaco gasification may be somewhat less complicated than Lurgi since the former gasifiers generate fewer organics (other than methane and formic acid) which would eventually become components of waste streams. The organics in Lurgi wastes present some of the more difficult pollution control problems.

Gaseous Waste Streams

Figure 3 summarizes the primary control options for Lurgi acid gases. Indicated in the figure are both selective and nonselective Rectisol* acid gas removal (AGR); that is, separate removal of CO_2 and H_2S from product gas generating an H_2S -rich stream and a CO_2 -rich stream or combined removal generating only one dilute H_2S stream. The primary goal of selective AGR is to produce a more concentrated sulfur-bearing stream for sulfur recovery allowing either the use of Claus technology or the reduction in a Stretford plant size (and thus reduced cost). Since selective AGR is significantly more expensive than nonselective AGR, it is economically justified only if cost savings are realized in sulfur recovery/pollution control. If, for environmental reasons, the CO_2 -rich stream from selective AGR cannot be directly discharged to the atmosphere (with perhaps incineration), then treatment

*Rectisol is a Lurgi-licensed acid gas removal (AGR) process and would be used with all Lurgi gasifiers in the U.S.

TO SNG, LPG OR FUEL TO SNG OR FUEL LPG Gasoline Diesel fuel Heavy oil Alcohols ACID GAS REMOVAL METHANOL GASOLINE **BNG** 4 Figure 1. Simplified Flow Diagram of Indirect Coal Liquefaction Facilities METHANATION SHIFT CONVERSION MOBIL M – GASOLINE SYNTHESIS METHANOL QUENCH AND DUST REMOVAL LIQUIDS RECOVERY .• 4 4 GASIFICATION FISCHER TROPSCH SYNTHESIS **METHANOL** SYNTHESIS : _ : COAL PREPARATION ; RAW COAL .

:

Figure 2. Auxiliary Operations Associated with an Indirect Coal Liquefaction Facility

TABLE 1. MAJOR WASTE STREAMS IN AN INTEGRATED INDIRECT LIQUEFACTION FACILITY

WASTE STREAMS

GASEOUS STREAMS

- ACID GASES (INCLUDING STRIPPING AND DEPRESSURIZATION GASES)
- BOILER FLUE GASES
- TRANSIENT WASTE GASES
- FEED LOCKHOPPER VENT GASES
- .
- CATALYST REGENERATION/DECOMMISSIONING OFFGASES

AQUEOUS STREAMS

- RAW GAS QUENCH AND ACID GAS REMOVAL CONDENSATES
- АЗН ДИЕИСН ВГОИДОМИ
 - SYNTHESIS WASTEWATERS
- WASTEWATER TREATMENT BRINES

SOLID WASTES/SLUDGES

- GASIFIER ASH
- BOILER ASH
- FGD SLUDGES AND BRINES
- WASTEWATER TREATMENT BRINES
- BIOSLUDGES
 - SPENT CATALYSTS

PRIMARY CONSTITUENTS/PARAMETERS OF CONCERN

GASEOUS STREAMS

- REDUCED SULFUR AND NITROGEN COMPOUNDS, HYDROCARBONS
- SULFUR DIOXIDE, PARTICULATES, NITROGEN OXIDES
- REDUCED SULFUR AND NITROGEN COMPOUNDS, HYDROCARBONS, CARBON MONOXIDE, PARTICULATES, POLYCYCLIC ORGANIC MATERIAL
- SULFUR DIOXIDE, PARTICULATES, CARBON MONOXIDE, TRACE BLEMENTS

AQUEOUS STREAMS

- ORGANIC COMPOUNDS, SUSPENDED SOLIDS, CYANIDES AND THIOCYANATES, AMMONIA, TRACE ELEMENTS
- DISSOLVED AND SUSPENDED SOLIDS, TRACE ELEMENTS
- ORGANIC COMPOUNDS
- DISSOLVED AND. SUSPENDED SOLIDS, TRACE ELEMENTS

SOLID WASTES/SLUDGES

- SOLUBLE SALTS, TRACE ELEMENTS
- SOLUBLE SALTS, TRACE ELEMENTS
- SOLUBLE SALTS, TRACE ELEMENTS
- SOLUBLE SALTS AND ORGANICS, TRACE ELEMENTS
- SOLUBLE ORGANICS, TRACE ELEMENTS
- TRACE ELEMENTS

costs for this stream would likely make the selective AGR option unattractive and designers may revert to nonselective modes.

Option I in Figure 3 consists of Stretford or Claus sulfur recovery followed by tail gas treatment (TGT) for residual sulfur removal and hydrocarbon control. In the Claus cases, enrichment of the H_2S feed stream may be required or desired and an amine (ADIP) system is indicated in the figure. The ADIP offgas and the Claus offgas both receive TGT prior to atmospheric discharge; the CO₂ rich gas from selective AGR is directly discharged to the atmosphere. TGT technologies include incineration/FGD (e.g., Wellman-Lord) and catalytic reduction H_2S recycle (e.g., Beavon).

The Option II alternatives consist of either Stretford sulfur recovery followed by incineration for hydrocarbon control or Claus sulfur recovery followed by SCOT TGT. Neither Claus without sulfur TGT nor direct incineration followed by flue gas desulfurization is considered adequate under Option II since neither of these controls achieves the same levels of total sulfur emissions compared to Stretford or Claus/SCOT. Note that the alternatives in Figure 3 represent the range of controls envisioned by all conceptual and proposed Lurgi gasification projects in the U.S. which have been identified to date.

Table 2 summarizes the estimated costs and energy requirements for control of acid gas in integrated facilities. The cost data represent the least expensive system in each option but assume no credit for energy recovery from incineration of Lurgi gases. Total annualized costs range from 3.8 to 5.7% of base plant costs for sulfur recovery with TGT compared to 2.3 to 4.0 for sulfur removal only (Stretford). Energy requirements of control of acid gases vary from essentially zero to 1.9% of plant input energy, depending primarily on the extent of heat recovery practiced during incineration. Recovered energy could exceed that required to operate the sulfur control systems.

Options for the control of boiler flue gas emissions correspond to the levels defined by electric utility NSPS (Option I) and large industrial boiler NSPS (Option II). Table 3 summarizes the SO₂, particulates, and NO_x options. For gaseous and liquid fuels derived from coal (e.g., tars, oils, phenols, naphtha, low Btu gas), the same limits apply as to the petroleum or natural gas fuels.

TABLE 2.

RELATIVE COSTS AND ENERGY REQUIREMENTS FOR CONTROL OF ACID GASES (AS PERCENT OF BASE PLANT COST OR ENERGY INPUT)

	Low s Capital	Sulfur Coa Total Annual	Energy	High Capital	Sulfur Co Total Annual	Energy
Option I (Sulfur removal plus tail gas treatment)	3.2	3.8	0 -0.84	5.3	5.7	0 - 1.9
Option II (Sulfur removal, minimum or no tail gas treatment)	1.6	2.3	0 - 0.8	3.0	4.0	0 - 1.8

CONTROL OPTIONS FOR COAL BOILER SO2, PARTICULATE, AND NOX EMISSIONS TABLE 3.

·	Option I g/10 ⁶ cal (1b/10 ⁶ Btu)	Option II g/10 ⁶ cal (1b/10 ⁶ Btu)
so ₂	2.16 (1.2) and 90% control unless emissions less than 1.09 (0.6) in which case 70% required	2.16 (1.2)
Particulates	0.054 (0.03)	0.18 (0.10)
NO _x Lignite & bituminous coals	1.1 (0.6)	
Subbituminous coals	0.88 (0.5)	1.26 (0.7)
Lurgi byproducts	1.1 (0.6)	

Costs associated with a representative FGD system (Wellman-Lord) applied to a coal- and Lurgi-byproduct-fired boiler are estimated in Table 4. Annualized costs of the FGD systems amount to 2.4 - 3.9% of base plant costs, depending on the boiler size, coal sulfur content, and degree of SO₂ removal attained. Energy requirements for the example FGD units range from 2.9 to 5.8% of the boiler heat input, or 0.4 to 0.6% of total plant input energy. Note that incremental costs for FGD sulfur removal are about 11-15/1b (24-33/kg) while incremental costs for sulfur recovery FGT sulfur removal are about 20-30/1b (44-66/kg). Thus, it may be less expensive to design for lower emissions at the boiler rather than lower emissions from sulfur recovery operations if minimum overall sulfur emissions control at least cost is a defined goal and is environmentally acceptable.

Table 5 summarizes the control options for smaller volume waste streams in Lurgi indirect liquefaction facilities. Generally, the controls for these streams consist of incineration with or without additional SO₂ and/or particulate control.

Aqueous Waste Streams

Figure 4 presents the major options evaluated for control of gasification and synthesis wastewaters. Lurgi wastewaters (gas liquors) are treated for tar/oil separation, phenol removal (Phenosolvan), and ammonia removal as basic steps in all cases. Further treatment would consist of biological or chemical oxidation for bulk organics removal and chemical precipitation and carbon absorption for trace elements and refractory organics removal when discharge to surface waters is the wastewater disposal method (Option I). When "zero discharge" to surface waters is to be practiced, treatment would consist of volume reduction via use of cooling towers, evaporators, and/or incinerators. Biological oxidation may precede the cooling tower concentration step. Ultimate disposal of residual brines may be via underground injection (Option II), surface impoundment (Option III), and ash quenching (Option IV).

The "zero discharge" options involve various tradeoffs with air emissions (cooling tower evaporation/drift) or solid waste disposal (leaching of organics or trace elements in surface impoundments or landfills). In the case of codisposal of brines with ash, the combined waste may be rendered hazardous due to the residual organics or trace elements contained in the brine.

. 629

TABLE	4.	SO2 EMISSIONS, COSTS, AND ENERGY REQUIREMENTS ASSOCIATED	WITH
		BOILER/WELLMAN-LORD FGD SYSTEMS	•

			Costs			
	Sulfur SO2	SO2	Capital	An	nual	Energy***
	Removal Emissions (%) (kg/10 ⁶ kcal		(ફ) **	(ક) **	(\$/kg S Removed)	Requirements
Low Sulfur	70	0.88	2.6	2.7	9.7	2.9
(Rosebud)	80	Q.58	4.0	3.9	12.0	3.2
High Sulfur	80	0.98	2.5	2.4	9.2	5.2
(IIIInois No. 6)	90	0.51	3.2	3.6	12.0	5.8

*Coal to boiler

•

Percentage of uncontrolled base plant costs • *As percentage of coal fed to boiler

TABLE 5. CONTROL OPTIONS FOR SMALL VOLUME LURGI WASTE GASES

	Feed Lock Vent Gases	Transient Waste Gases	Catalyst Decommissioning Offgases
Option I	Recompression/ recycle or use as fuel for high pressure gases, incin- eration of low pressure residuals	Incineration with SO ₂ and particulate control	Incineration with SO ₂ and particulate control
Option II	Discharge of residuals via low energy scrubber	Incineration, short term dis- charge of high oxygen content waste gases	Incineration

. .

Table 6 summarizes the estimated costs and energy requirements for the water pollution control technologies depicted in Figure 4. Although treatment costs are highly coal-, gasifier-, and synthesis-case specific, these estimates indicate the relative contribution of various unit processes to overall costs. The basic treatment steps, phenol removal, ammonia removal, and biological oxidation, constitute 40 to 80% of total treatment costs (or about 3.1% of the base plant annualized costs). Carbon absorption/chemical precipitation is seen as a less expensive route than forced evaporation or surface impoundment for further treatment. The data also indicate that the basic treatment processes also contribute a large fraction of the total energy requirement for water pollution control, with further treatment contributing heavily only with incineration. The use of the cooling tower as a "preconcentration" step has been assumed in the estimates in Table 6; hence treatment of wastewaters by forced evaporation, incineration, or surface impoundment without prior volume reduction could dramatically increase the costs of water pollution control.

Solid/Hazardous Wastes

Options for the disposal of solid wastes generated by the subject facilities are determined both by the characteristics of the waste and by the local environment providing candidate disposal sites. The general operation performance standards for various hazardous waste disposal methods are currently being drafted by EPA's Office of Solid Waste. These standards, based on "best engineering judgment," are expected to largely define the practices for and site-specific factors to be considered in the treatment/disposal of hazardous (and In many cases nonhazardous) wastes. Thus, for purposes of PCGD development, the focus has been on providing a data base for the classification of indirect liquefaction wastes based on their characteristics.

Perhaps the most important waste from the standpoint of volume in the subject facilities is gasifier ash. Several papers presented at this symposium have provided data on the leaching characteristics of ash from a variety of gasifiers and coal types. Generally, these data suggest that gasifier ash is not expected to be hazardous based upon the RCRA Extraction Procedure* test. Thus, this material will likely be handled in a manner

*Refers to the Extraction Procedure defined in 40 CFR 261.

	Cos	st*	Energy**
	Capital	Annual	Requirements
Phenosolvan	1.2	1.4	1.3
NH ₃ Stripping	0.9	0.6	2.9
Biological oxidation	1.4	1.1	0.1
	· ·		
Chemical precipitation	0.5	0.4	0.04
Carbon adsorption	0.3	0.2	0.01
forced evaporation	1.3	1.1	0.2
Incineration	0.3	0.3	0.9
Deep well injection	0.2	-	с
Evaporation ponds	7.1	4.3	_

- TABLE 6. TYPICAL COSTS AND ENERGY REQUIREMENTS OF WATER POLLUTION CONTROL TECHNOLOGIES

*As percentage of uncontrolled base plant costs **As percentage of total base plant coal energy input similar to boiler bottom ash and FGD sludges in the electric utility industry. Limited data indicate that when such wastes are to be disposed of in surface mines that placement should be in "V-notch" areas of the spoil pile rather than in the pit bottom to minimize leaching.

Two important wastes are potentially generated by wastewater treatment (WWT) brines from evaporators or incinerator scrubbers and sludges from biological treatment. In the case of the former, codisposal with gasifier or boiler ash is commonly proposed (codisposal with some type of solid material would be required in any case since RCRA guidelines prohibit the disposal of free flowing liquids in landfills). Codisposal of WWT brines with ash is believed to render the ash hazardous if the organics are not previously destroyed by incineration or wet oxidation. However, if the organics in the brine are destroyed prior to codisposal, available data indicate that the ash/brine mixture would be classified as nonhazardous according to the RCRA Extraction Procedure test. Thus, a tradeoff may exist between WWT costs for organics destruction and solid (hazardous) waste disposal costs for hazardous vs. non-hazardous disposal. WWT brines may also be disposed of in surface impoundments or by underground injection consistent with RCRA requirements. In the later case, organics in the waste may have to be destroyed prior to injection to prevent plugging of the accepting formation.

Biosludges from WWT would likely be considered a hazardous waste under RCRA. Options for disposal include landfarming, incineration with air pollution control, landfill or mine disposal, and surface impoundment. Dewatered sludges may be beneficially utilized by landfarming in conjunction with revegetation of surface mine spoil overburden.

Several types of spent catalyst wastes are generated in indirect liquefaction facilities, including those from shift synthesis (methanol, F-T, Mobil), methanation, and air pollution control (Claus, Beavon). Wastes such as spent shift catalyst are expected to be hazardous due to their inherent metal content as well as other toxic elements derived from coal. Wastes such as Mobil-M (a zeolite material) and Claus (Bauxite) spent catalysts are not believed to be hazardous, but data are lacking on RCRA leach characteristics or other toxicity information. Many of the catalyst materials can be economically recycled for their metal values, particularly when the costs of disposal as hazardous waste are set as the point of reference.

Table 7 summarizes the total estimated costs and energy impact of pollution control for the options presented. The data indicate that air pollution control can add up to 14% of base plant annualized costs, water pollution control up to about 9%, and solid/hazardous waste disposal up to 3.3%, or up to 26% for controls in all media.

Energy requirements for pollution control range from 4.4 to almost 11% of plant input energy, with water pollution control contributing over 60% of the requirement. The differences in energy requirements between the control options are not especially large.

			<u>.</u>	
Pollution Control	% of Total Ann	ualized Costs	* of Plant Er	nergy Regmts.
Technology	Option I	Option II	Option I	Option II
Air	9.1 - 14.1	5.8 - 11.7	1.6 - 2.8	1.4 - 2.5
Water	3.7 - 8.5	3.1 - 7.5	3.0 - 8.0	3.0 - 7.9
Soliđ Waste	2.6 - 3.3	1.8 - 2.3	0.06 - 0.08	0.04 - 0.06
Total Percent of Base Plant	15.4 - 25.9	10.7 - 21.5	4.7 - 10.9	4.4 - 10.5

TABLE 7. SUMMARY OF TOTAL COSTS AND ENERGY IMPACTS FOR POLLUTION CONTROL IN AN INTEGRATED FACILITY

INITIAL EFFORT ON A POLLUTION CONTROL GUIDANCE DOCUMENT; DIRECT LIQUEFACTION

J. E. COTTER, C. C. SHIH, B. ST. JOHN TRW, INC. REDONDO BEACH, CA 90278

(ABSTRACT)

Development of the pollution control guidance document (PCGD) for direct coal liquefaction is preceding in parallel with the permitting and construction of the first demonstration-size liquefaction plant, the SRC-II unit in Ft. Martin W.V. In addition to the SRC-II process, the PCGD will provide guidance for the other major liquefaction technologies: SRC-I, H-Coal, and Exxon Donor Solvent.

The control technology guidance will be related to baseline designs prepared for each of the four liquefaction processes, sized at 100,000 bbls/day production. The baseline designs are composed of material balance flowsheets and uncontrolled waste stream calcuations, using plant configurations which are most likely to occur in future commercial size plants. Variations of the baseline designs will be considered if they affect control decisions. A range of feed coals have been selected for the baseline cases, with at least one common coal type that could be used by all four processes. The present effort is focused on identification of the pollutants of concern using pilotplant test data from coal liquefaction developers, DOE, and EPA sponsored testing programs. These data will be evaluated with a variety of engineering analysis methodologies, so that the subsequent examination of control options can be carried out.

The range of control options--air, water, solid waste--will be selected from those methods that have a known track record in related industrial applications, such as petroleum refining, coke ovens, and mining.

The control technologies will be charaterized parametrically according to the inlet stream compositions and quantities, and their percentage release of specific pollutants. Finally, the cost of control will be developed according to the same parameters, with a range of costs obtained depending on the complexity and efficiency of control.

INITIAL EFFORT ON A POLLUTION CONTROL GUIDANCE DOCUMENT; DIRECT LIQUEFACTION

DIRECT COAL LIQUEFACTION PROCESSES

The Direct Liquefaction PCGD will be based on those liquefaction processes that are the closest to commercialization. The SRC-I, SRC-II, H-Coal and Exxon Donor Solvent (EDS) processes are all at an advanced stage of pilotplant development, and the SRC-I and SRC-II processes will be expanded to demonstration size units in the next few years. Although other "second generation" direct liquefaction processes are in bench-scale development, they will not be ready for commercialization until the early 1900's. The current status of the advanced development processes are:

- The SRC-I process is being tested in a 50 tons/day pilot plant at Fort Lewis, Washington, and in a 6 tons/day process development unit at Wilsonville, Alabama. Preliminary designs for a demonstration plant, to be located near Newman, Kentucky, were completed on July 1979. The demonstration plant is designed to produce the equivalent of 20,000 barrels of oil per day, and is scheduled to be completed by 1984. Current plans call for enlargement of the facility to produce the equivalent of 100,000 barrels of oil per day in 1990.
- The SRC-II process is also being tested in the pilot plant at Fort Lewis, Washington. Preliminary designs for a SRC-II demonstration plant, to be located at Fort Martin, West Virginia, were completed in July 1979. The demonstration plant is designed to process 6,000 tons of coal per day to produce the equivalent of 20,000 barrels of oil per day. Completion of the plant is scheduled for 1984.
- The EDS pilot plant at Baytown, Texas, started up on June 24, 1980. This plant has a capacity of 250 tons per day of coal feed to produce approximately 600 barrels per day of synthetic liquid fuel. A 70 tons per day Flexicoking unit at the same site is planned to be completed in the second quarter of 1982. The design of a demonstration plant could begin as early as the fourth quarter of 1982, leading to a start-up date of about 1988.
- The H-Coal pilot plant at Catlettsburg, Kentucky, has been operational since June 1980. This plant has a capacity of 600 tons per day of coal feed. Support work in a 3 tons per day process development unit is also continuing. Groundbreaking for a commerical plant in Breckinridge, Kentucky, is planned for 1983. The commercial plant is expected to start production as early as 1987.

SRC-I PROCESS⁽¹⁾

The SRC-I is a process for converting high-sulfur, high-ash coals to a low-sulfur and substantially ash-free solid fuel. In the SRC-I process (Figure 1), feed coal is pulverized and slurried in a process-derived solvent. This slurry is then pumped to reaction pressure (2000 psig), mixed with hydrogen-rich recycle gas, and then heated to reaction temperature in a fired-heater. Within the fired-heater, coal dissolution is accomplished and hydrogenation reactions begin. At the exit of the fired-heater, hot hydrogen makeup gas from a hydrogen makeup area is added to the slurry, and the mixture is sent to the dissolver.

The dissolver effluent is flashed. The raw gas is sent to gas purification, and the slurry containing unconverted coal and ash from the low-pressure flash is sent to a vacuum column, where process solvent and lighter components are removed from the SRC slurry. The SRC ash slurry is then sent to solvent deashing unit, where it is separated into SRC and ash concentrates. The ash concentrate, consisting of ash and unreacted coal, and some residual SRC, is gasified with steam and oxygen. The syngas produced, after shift conversion and acid gas removal, is converted to hydrogen and sent to the dissolver unit as makeup. The major portion of the SRC concentrate is solidified into the primary final product, solvent refined coal. SRC-II PROCESS⁽²⁾

The SRC-II process is designed to produce low-sulfur liquid fuel from high-sulfur bituminous coals. As shown in Figure 2, raw coal is pulverized, mixed with a recycle slurry stream from the process, and then pumped together with recycle and makeup hydrogen through a preheater to a dissolver operated at high temperature and pressure. The coal is first dissolved in the liquid portion of the recycle slurry and then largely hydrocracked to liquids and gases. Much of the sulfur, oxygen, and nitrogen in the original coal is hydrogenated to hydrogen sulfide, water, and ammonia, respectively. The rates of these reactions are increased by the catalytic activity of the undissolved mineral residues. The recycle of a portion of the product slurry contributes substantially to the process by increasing the concentration of catalytic mineral residue in the reactor.

The dissolver effluent is separated into gas, light hydrocarbon liquid and slurry streams using conventional flashing and fractionation techniques. A portion of the mineral residue slurry and hydrocarbon liquid from the separation area is recycled to blend with the feed coal in the slurry preparation plant. The balance of the mineral residue slurry is vacuum flashed to recover the fuel oil product.

The dissolver area gas stream (consisting primarily of hydrogen, light hydrocarbons, and hydrogen sulfide) is treated for liquid hydrocarbons and acid gas removal, and the major portion of this gas is then recycled to the process. Makeup hydrogen for the process is produced by the gasification of mineral residue slurry to produce synthesis gas, followed by shift conversion.

Liquid products from the main process area are refined in the fractionation section into naphtha, light fuel oil, and heavy fuel oil. Various byproduct liquid and gas streams are treated further in the gas plant to produce propane, butane, and pipeline gas. Secondary recovery plants are provided to recover ammonia, tar acids and sulfur.

EDS PROCESS (3)

The Exxon Donor Solvent (EDS) is a noncatalytic process that liquefies coal by the use of a hydrogen donor solvent obtained from coal-derived distillate. The donor solvent transfers hydrogen to the coal, thus promoting the liquefaction of coal.

In the EDS process (Figure 3), ground coal is slurried with the recycle donor solvent. The slurry is heated by a fired-heater, and preheated hydrogen is added. The liquefaction reaction is carried out in a tubular reactor at 800-900°F and 2000 psig. Products from the liquefaction reactor are sent to several stages of separation units for recovery of gas, naphtha, middle distillate, and bottoms comprised primarily of unreacted coal and mineral matter. Solid and liquid products are separated by distillation.

Figure 3.

643

TO SULFUR RECOVERY

GAS CLEANING

FUEL GAS (FON PREHEATERS)

AMMONIA

The heavy vacuum bottoms from distillation are fed to a FLEXICOKING unit with air and steam to produce additional distillate liquid products and a low Btu fuel gas for process furnaces. In the FLEXICOKING unit, essentially all organic material in the vacuum bottoms is recovered as liquid product or combustible gases.

Hydrogen for in-plant use is produced by steam reforming of light hydrocarbon gases. An alternative method for hydrogen production is partial oxidation of the heavy vacuum bottoms or of coal. H-COAL $PROCESS^{(4)}$

The H-Coal process is a catalytic hydroliquefaction process that converts high-sulfur coal to either a low-sulfur boiler fuel or to a refinery syncrude. In this process (Figure 4), coal is dried and crushed, then slurried with recycled oil and pumped to a pressure of 2000 atm. Compressed hydrogen is added to the slurry, and the mixture is preheated and charged continuously to the bottom of the ebullated-bed catalytic reactor. Upward passage of the internally recycled reaction mixture maintains the catalyst in a fluidized state (catalyst activity is maintained by the semicontinuous addition of fresh catalyst and the withdrawal of spent catalyst). Typical mixing temperature entering the reactor is 600° to 700° F.

The vapor product leaving the top of the reactor is cooled to condense the heavier components as a liquid. Light hydrocarbons, ammonia and hydrogen sulfide, are absorbed and separated from the remaining gas, leaving a hydrogenrich gas which is recompressed and recycled to be combined with the input slurry. The liquid-solid product, containing unconverted coal, ash, and oil, is fed into a flash separator. The bottoms product containing solids and heavy oil is further separated with a hydroclone, a steam stripper, and a vacuum still.

The gas and liquid products (hydrocarbon gas, hydrogen sulfide, ammonia, light and heavy distillates, and residual fuel) may be further refined while heavy distillate is recycled as the slurry medium.

645

...

APPROACH TO PROCESS CHARACTERIZATION

A methodology has been established that uses a baseline design for each process, sized at 100,000 bbls/day net equivalent of product liquids, fuel gases, and coal-replacement solid products. The design and pilot-plant experience of the several liquefaction processes has been limited to certain types of feed coals, so that the guidance document will have to recognize that expected variations in proposed liquefaction plant feed coals will be limited to an experience range. This will be particularly critical for the noncatalytic SRC-I and SRC-II processes, which depend on the catalytic properties of constituents found in bituminous coals for adequate yields. At least two feed coals will be used in the PCGD analysis for each given liquefaction process, with Illinois No. 6 grade being common to all processes. Initial baseline design concepts are being prepared and submitted for comment to the developers of the four liquefaction processes. In most cases, commercial design concepts of these process developers are somewhat of a moving target, and it is generally recognized that the baseline design cases will not necessarily represent a particular final design configuration. The process developers will be asked to confirm that proposed baseline designs represent a feasible plant configuration, and to estimate the impact that various design options may have on the waste stream characteristics of a baseline case. The goal of this preparatory step is to provide a process description that EPA permit reviewers can reasonably compare with submitted applications.

The initial baseline designs, including material balances and flowcharts which identify the major and minor stream constituents at key points, are being prepared by incorporating pilot plant test results and engineering estimates with commerical-plant design cases that have been released by each process developer. A critical feature of these analyses will be the validation and interpretation of pilot-plant test data. Determinations will be made as to whether these data were obtained under steady-state conditions, using standardized sampling and analysis techniques. The uncontrolled constituents in each waste stream (gaseous, liquid, or solid) have to be estimated in these baseline design cases in order to realistically evaluate control technology

requirements. A substantially inaccurate estimate could lead to either inadequate control technology specifications or unnecessary pollution control investment requirements.

The major gaseous emission streams requiring control include the following:

- Fugitive dust emissions from coal storage
- Fugitive dust emissions from coal and slag handling
- Fugitive hydrocarbon emissions from valves, flanges, and seals
- Fugitive hydrocarbon emissions from product and byproduct storage
- Off gas from coal dryer
- Acid gases containing H2S, CO2,COS, CS2, and mercaptans and NH3 from sour water stripping units
- Flue gas from process heaters
- Flue gas from steam plant
- Flue gas from power plant
- Evaporation and drifts from cooling towers

An essential element of these uncontrolled stream charaterizations is the fugitive vapor emission category. A very limited amount of ambient organic vapor sampling has been conducted at the SRC-II pilot plant at Ft. Lewis. Although this sampling and analysis effort cannot be directly extrapolated to full-scale plants because of operations which are unique to the pilot plant, the measurements offer some insight into the ability of heavy organics (e.g., POM) to disperse into the surrounding atmosphere as a result of small vapor emissions.

The major wastewater streams requiring control include the following:

- Sour process wastewater from vapor washes, condensers, fractionator overhead drums, sulfur recovery plant, and coal slurry mixing operation
- Cooling tower blowdown
- Boiler blowdown
- Coal pile runoff
- Oily water runoff from processing areas
- Miscellaneous small wastewater streams

Untreated wastewater characterizations will be derived from measurements conducted by process developers, EPA, and DOE sampling and analysis efforts. Some judgements will have to be made concerning the effects of coal feed

characteristics and process operating configurations on these measurement values. Most of these measurements have focused on process wastewater (or "sour water", following refinery terminology). Other anticipated sources of wastewater include coal pile and area runoff, cooling tower blowdown, and discharge from dust collection and conveying use. These other catagories are analagous to related discharges from coal handling and other industrial operations.

Solid waste discharges will include gasifier slag (from hydrogen synthesis), spent catalysts, wastewater and raw water treatment sludges, and possibly non-salable byproduct residues. Some limited amount of leaching tests have been done to characterize gasifier slags and some residue material, but more work will have to be done before a determination can be made as to the possible characterization of these wastes as non-hazardous or hazardous.

CONTROL TECHNOLOGY EVALUATION

EPA permit reviewers will be faced with a range of possible control technologies connected with direct liquefaction process designs. To help the permit reviewers in their examination of submitted plans, a number of best-available-control-technology (BACT) options will be evaluated for each potential waste stream for each of the four major liquefaction processes. In addition, two levels of control effectiveness will be included. The evaluation of each control technology will include the efficiency of pollutant removal from a stream, multipollutant removal capability, installed and operating cost, reliability, turndown ratio, sensitivity to process stream conditions, energy consumption, and any other operating history information such as maintenance requirements.

A primary air pollution control concern in liquefaction processes is the treatment of acid gases generated in the liquefaction reactor, from sour water stripping, and in gasification of residiuum streams to make hydrogen. A typical process design method for removing CO_2 and H_2S constituents from these streams is some form of absorption, such as DEA, Selexol, or Benfield processes. The H₂S-rich gas stream stripped from the absorbing liquid constitutes the acid gas stream requiring further control. Representative acid gas stream compositions are shown in Table 1. These streams can be subjected to two stages of sulfur removal. Concentrated (20-70%) H₂S streams will be handled by a process technology that does bulk sulfur removal. The Claus sulfur recovery process is the most likely candidate for this job, based on a long history of refinery and gas processing experience, but investigations are underway to evaluate Stretford process applicability with high H₂S concentrations. Residual sulfur removal options are numerous; some technologies accept Claus tail-gas directly and hydrolize SO₂ to H₂S, others require oxidation of H₂S in the stream to SO₂. The PCGD evaluation will evaluate many combinations of control technology types to establish BACT performance and cost ranges.

An example of a number of combinations is shown in Table 2, using two bulk-sulfur removal options, three residual sulfur removal options, and a final incineration step option (for potential trace organic removal and oxidation of trace sulfur to SO₂).
TABLE 1. REPRESENTATIVE ACID GAS STREAMS FROM DIRECT LIQUEFACTION

· 650

TABLE 2

An additional combination will be examined for streams containing very low H_2S (or COS, CS₂ etc.) concentrations, since these may be directly incinerated.

Both capital and operating costs will be determined according to the standardized guidelines prepared by $IERL/RTP^{(5)}$. The impacts on other media for any of the pollution control technologies will also be quantified; the acid gas gas treatment systems above will produce spent catalysts as well as minor liquid purge streams. A substantial non-hazardous solid waste quantity will require disposal planning if the recovered sulfur is not salable. Wastewater treatment guidance is expected to emphasize the stripping of ammonia and H2S from sour water streams, and the absorption of phenols. The sequence of these byproduct recovery steps may be significant to recovery efficiency.

Subsequent treatment steps will be selected to minimize the release of trace organics and heavy metals to the environment. Investigations of "zero discharge" evaporative methods are currently being compared with more conventional biological treatment technologies. A high degree of water reuse will be emphasized no matter what treatment method is used.

The impact on solid waste handling and management requirements may be substantial, depending on the control options recommended for wastewater treatment and air pollution control technology. The cost and stringency of solid waste management practices will be greatest for wastes designated as hazardous under RCRA definitions.

REFERENCES

- Tao, J. C. and A. F. Yen; Environmental Control Systems of the SRC-I Demonstration Plant, Second DOE Environmental Control Symposium, Reston, Va., March 1980.
- (2) Schmalzer, D. K. and C. R. Moxley. Environmental Control System for the SRC-II Demonstration Plant. Second DOE Environmental Control Symposium, Reston, Va., March 1980.
- (3) Green, R. C., Environmental Controls for the Exxon Donor Solvent Coal Liquefaction Process, Second DOE Environmental Control Sumposium, Reston, Va., March 1980.
- (4) Gray, J. A., H-Coal Pilot Plant Environmental Controls, Second DOE Environmental Control Symposium, Reston, Va., March 1980.
- (5) A Standard Procedure for Cost Analysis of Pollution Control Operations, Vol. 1. EPA-600/8-79-013a, June 1979.

652

APPENDIX: ATTENDEES

653

<u>ATTENDRES</u> FUEL CONVERSION TECHNOLOGY, V SYMPOSIUM September 16-19, 1980 Chase-Park Plaza Notel

St. Louis, MO

American Air Filter Co., Inc. Environmental Research & Technology Inc. Research Triangle Institute WV Air Pollution Control Commission Pennwalt Corp., Wallace & Tiernan Div. Dept. for Nat. Res. & Env. Prot. Mittelhauser Corporation International Research & Tech. Corp. Invironmental Science & Engineering Burns & Roe Industrial Service Corp. Landesansalt fur Immissionsschutz fexas Instruments, Incorporated Ind. Refiners of Calif. 3086, Environmental Consultants Oak Ridge National Laboratory Rocky Nountain Energy Company Systems, Science & Software **Joster Wheeler Energy Corp.** Stauffer Chemical Company Tennessee Valley Authority Exxon Research & Eng. Co. fennessee Valley Authority The Aerospace Corporation J.S. Department of Energy U.S. Department of Energy Energy Impact Associates Inion Carbide Nuclear Co. RW Energy Systems Group Arthur D. Little, Inc. **BP North America Inc.** Camp, Dresser & McKee Varthrop Services Inc. **D.S. EPA, Region IV** fexas Eastern Corp. Radian Corporation Radian Corporation Radian Corporation Radian Corporation lydro0ual Inc. WAPORA, Inc. Illinois EPA N.S. EPA Conoco Inc. TRW. Inc. TRW, Inc. NW. Inc. J.S. EPA U.S. EPA uop/snc 0803 37830 20545 20460 80212 22102 40277 80522 22102 27709 01100 60515 37828 07932 75265 94596 07039 02140 06680 25311 0020 20767 37830 20015 8758 92038 7099 90278 07430 8758 40601 5221 37401 27711 22102 37652 26505 8758 0278 2102 7830 00278 02154 53222 30342 27709 52706 27711 63141 NJ MA GERMANY NYOGOSYOSY 5975 XISD Z Sé 건건 35 천천 × <Z Ξ¥ s 1 Research Triangle Park Research Triangle Park **Research Triangle Park** descarch Triangle Park Jowners Grove Redondo Beach **Redondo** Beach tedondo Beach Porham Park Valnut Creek fort Collins Chevy Chase Chattanooga Springfield Germantown Charleston **Belleville** Pittsburgh Ponca City Vashington dashington Couisville Livingston 300 Essen forgantown **Dak Ridge** rankfort Cambridge St. Louis Oak Ridge lí lwankce bak Ridge Vew York Vestport a Jolla Saramus louston Va Lt:ham Atlanta Vorris **Nustin** lcLean Jenver **icLean** Austin Dallas **IcLean** lahwalı Austin icLean Bldg. 01, Room 2020, 1 Space Fark 1 Lethbridge Plaza 8500 Shoal Creek Boulevard 4th Floor, Capital Plaza Tower Dae Space Park Drive, R4/1136 763 New Ballas Road, South 650 Winter Avenue 248 401 Building B500 Shoal Creek Boulevard **B500 Shoal Creek Boulevard** 1558 Washington Street, R. 1655 Old Springhouse Road P. O. Box 225621, MS-349 232 Valleton Lane **7927 Jones Branch Drive** 20030 Century Boulevard 110 South Orange Avenue P. Ö. Nox 101 2400 Ardmore Boulevard P. O. Box X 6900 Wisconsin Avenue **3301 Greensboro Drive** P. O. Nox E P. O. Box 1267 MS E-201, Germantown 345 Courtland Street **'929 Westpark Drive** 401 M Street, S. W. 2200 Churchill Road Wallneyerstrasse 6 51 Bear Will Road **3500 Capital Drive** 1716 Heath Parkway 5120 Belmont Road 620 Fifth Avenue **1930 Bishop Lane** 4704 Narlan St. P. O. Box 12194 **Vyala Farm Road** 25 Main Street P. O. Box 880 P. O. Box 2521 P. O. Box 1620 Ridgeway St. l Space Park . O. Nox X CERL, MD-62 IERL, MD-60 **Acorn Park** 3ox 12313 Franklin A. Nichard D. William J. Raymond B. ferbert F. John F. Charles R. Stephen R. Robert W. Isiu-Luan William E. Robert J. Chomas W. C. Thomas Eugene A. fanuel J. Daniel H. Joseph G. Rohert V. Roy C. Bipin C. Robert M. Linda R. James K. James V. Russell Jerome J. Grant D. James T. K. E. Kinm W. John G. Dario J. Rene R. Karl J. John K. John O. atrick lorris Dale A. Gunter Alfred Ed F. loyd Leon larry Jack Dan λų Christopher Antizzo Applewhite Boegly, Jr. Altschuler Mexander Dellinger **3rasowski** Dal Santo Bertrand logardus Bocchino Bombaugh **3urchard** Boswell Bowerman Crawford Andrews Aronson Jarnett Canales Almaula Azevedo Carstea Clausen Collins Corbett **3reller** Cowles **Broker** Carter Cleary Cotter Dennis Mllred Baker **Joliac** Cowser Barrs Batty Bell Jurns Cheng Curry Denny Ayer Chen Cura Jee **Lun** 654

Inergy & Environmental Research Corp. Metcalf & Eddy Black & Veatch Consulting Engineers IT Energy and NHD'Res. & Dev. Inst. Pittsburgh Energy Technology Center Vorhtern Indiana Public Service Co. **Citizens for a Better Environment** Citizens for a Better Environment os Alamos Scientific Laboratory Science Applications, Inc. Los Alamos Scientific Laboratory Black & Veatch, Cons. Engineers Kentucky Department of Energy Dak Ridge National Laboratory **Socky Mountain Energy Company** Institute of Gas Technology Allis-Chalmers Corporation S. Dept. of Energy/PETC **fennessee Valley Authority** U.S. Department of Energy Stauffer Chemical Company **J.S. Department of Energy** Inside EPA Weekly Report Bechtel National, Inc. **Citics Service Company** Bioassey Systems Corp. 'ransco Companies, Inc. V. C. State University The MITRE Corporation Chemico Air Pollution Argonne National Lab. Gilbert/Commonwealth **Department** of Energy Radian Corporation Netherlands Embassy Radian Corporation Battelle-Northwest Ixxon Engineering Ashland Oil, Inc. **(T Enviroscience** fcIlvaine Co. urgi Corp. Consultant ConLignid U.S. EPA LS. EPA I.S. EPA I.S. EPA SynFuels J.S. EPA 40578 22102 60616 37401 20008 27650 19603 20545 8758 64114 27711 01801 02114 64114 97919 58202 0110 94119 27711 60605 06680 26505 92705 7545 48105 9100 7056 04002 87545 27711 80212 40207 99352 60615 4102 60062 37830 60605 20044 59701 46325 5236 27711 07932 3214 60439 8758 22102 10115 San Francisco Research Triangle Park **Research Triangle Park** Research Triangle Park Research Triangle Park Denver **Parkam Park Cansas** City Kansas City Grand Forks Tulsa Northbrook Chattanooga Washington lorgantown Pittsburgh Vashington Louisville Pittsburgh Vashington os Alamos Lexington ios Alamos Knoxville Oak Ridge Santa. Ana Ann Arbor **Hilwaukee** Vew York Vew York Vestport Richland Chicago Chicago Chicago Raleigh Chicago louston Reading lamnond **Jelmont** Vrganne Vshland **loston** Austin lcLean Voburn hustin fcI,ean Butte 4800 S. Chicago Beach Dr., Rm.1616N AcGraw Will, 1221 Ave. of Americas P. O. Box 8405 P. O. Box 11888, Iron Works Pike 1820 Dolley Madison Boulevard 3424 S. State Street 1000 Chestnut Street Tower II 4200 Linnean Avenue N. W. Box 8213, University Station 50 Deale St., P. O. Box 3965 IERL, MD-60 P. O. 7167 Ben Franklin Sta 329 Building, 300 Area Dept. Chemical Engineering **B500 Shoal Creek Boulevard** 9041 Executive Park Drive **B500 Shoal Creek Boulevard** 1500 Meadow Lake Parkway 1126 South 70th Street P. O. Box 1633, MS-486 8001 Irvine Boulevard 2700 South Post Oak EV-34, MS E-201, GTN Nyala Farm Road 5265 Hohman Avenue P.O. Box 10940 225 Wildwood Avenue 3400 Westpark Drive 737 Executive Park P. O. Box 1663 2565 Plymouth Road P. O. Box 300 2970 Maria Avenue 59 East Van Buren 4704 Narlan Street One Davis Drive . 59 East Van Buren 50 Staniford St. 0. Box 10940 P. O. Box 101 P. O. Box 1498 P. O. Box 3809 P. O. Box 880 0. Box 391 S. Causs 1 Penn Plazà P. O. Box X IERL, ND-61 ERL, ND-61 ERL, ND-61 9700 Hann S. P. E. (Ted) Larry W. Charles J. Michael B. Robert D. Philip G. William P. Douglas M. Michael P. Alexandra -William N. **Bernard S.** Ednund T. lerman A. Robert P. F. Sidney George E. Ronald L. Sydney J. James E. Linda E. Robert. W. Janes K. 4. Scott D. Bruce Frank M. James 0. **r**. Kelly V. Dale fred II. loseann Jeffrey Richard Karl II. Mark N. John R. Jack II. George Robert Robert Larry Kevin Larry larry Cheo Mike Paul lax Joe fangebrauck Dunnington lolubowich lone fenger Nellman. Fritschen Geyer Giddings Giéck lerman Ĝrano, Jr Drunmond Friedman riedman Guenther Gulledge **Jenschel** Enoch Erskine Felix Ferrell Fischer Ginsburg fennings Duhanel Freeman Griffin lendley lluang. Gryka . reland leaton loward Jackson Greene lanson Indson Greene luang fughes LLis. Evers Evers faist : XOJ Ivans Janes lleap Dunn Gray

TRW Energy Systems Planning Division linistry of Health & Env. Protection U.S. Department of Energy Research Triangle Institute Environmental Science & Technology Montana Dept. of Natural Resources Sverdrup Corporation Electric Power Research Institute E. I. DuPont de Nemours & Company Stone & Webster Engineering Corp. American Natural Service Company Vorth Carolina State University)ravo Engineers & Constructors Oak Ridge National Laboratory **Aonsanto Research Corporation** Jacobs Enginering Group Inc. Combustion Engineering, Inc. Research Triangle Institute **Research Triangle Institute** Research Triangle Institute Research Triangle Institute **Bureau of National Affairs** Phillips Petroleum Company Carnegie-Mellon University Morrison-Knudsen Co., Inc. U.S. Department of Energy littman Associates, Inc. **University of California** Ralph M. Parsons Company Marblehead Lime Company Combustion Engineering Sobotka & Co., Inc. Radian Corporation Monsanto Company InterNorth, Inc. Envirosphere Co. n These Times Dames & Moore Dow Chemical Versar Inc. ERT, Inc. FRW, Inc. S. FPA U.S. EPA U.S. EPA U.S. EPA **U.S. EPA** I.S. EPA FRW, Inc Rexnord 27711 27711 68102 48226 20036 63166 22102 27650 21045 27709 40502 27709 78758 35243 20006 20037 20545 27709 70764 74004 63130 27711 27711 37830 94303 10110 20545 91124 15213 19898 83729 27709 27709 90278 22151 63101 10048 27709 20460 15102 59601 77071 11771 02107 62221 94720 45342 06095 NETHERLANDS Ş S Ē 영영 2 S 2 \leq S Ħ SNNS ş N N N N S N Research Triangle Park Research Triangle Park Park **Research Triangle Park** Research Triangle Park **Research Triangle Park** Research Triangle Park Research Triangle 2596 TL Den Naag Redondo Beach Bartlesville Springfield Plaquemine Washington Vashington Washington Washington Pittsburgh Wilmington Birmingham Washington Belleville fi.amisburg Vashington Pittsburgh St. Louis St. Louis **Oak Ridge** Lexington Palo Alto St. Louis Columbia Pasadena Pasadena New York Berkeley Chicago Detroit Raleigh louston McLean Vindsor Helena Austin Boston Dmaha Boise 1007 Market St., Central Res. & Dev. P. O. Box 7808, II Plaza 8500 Shoal Creek Boulevard Dper. & Env. Safety Div., EV-133 657) Washington University, Box 1226 300 W. Washington Street One Woodward Avenue, 6th Floor P. O. Box 150, Building 2506 6621 Electronic Drive lox 305, S. Illinois Avenue 8301 Greensboro Drive (Rm. 10 B1 Phillips Building MS-E333 P. O. Rox 1219. 1151-16th Street, N. W. 231-25th Street, N. W. .000 Prospect Will Road Box 5035, Riddick Hall 00 West Walnut Street Two World Trade Center 3399 Tates Creek Road P. O. Box 10412 251 South Lake Avenue 01/2060, 1 Space Park 9190 Red Branch Road **31 Inverness Parkway** 1725 K Street, N. W. **801 North Eleventh** Kiggelaerstraat 15 6630 Narwin Drive 245 Summer Street 800 N. Lindbergh One Oliver Plaza 2. 0. Box 12194 P. O. Box 12194 P. O. Box 13000 P. O. Box 12194 32 South Ewing . O. Box 12194 Schenley Park IERL, MD-61 2223 Dodge . 0. Box 32 CERL, ND-61 IERL, MD-61 P. O. Box X ERL, HD-62 IERL, ND-63 Gilman Nall RD-682 lershal T. Deborah N. Preston D. Kenneth W. Richard S. Richard G. N. Stuart **Sobert** A. William J A. Alan Nancy C. **Sobert M.** Garrie L. Dennis C. Robert A. Joseph W. James D. Robert C. Emily L. Joseph A. forest 0. arry D. Ralph Y. Karen L. M. Dean Dilip M. Donald II. Dennis L. Willem C. ferry A. James W. Ross M. Ariadni Jung I. Yardena Charles Fred L. Jack L. Iruno . Julian Robert Don R. lames Daniel James David [roy Ga 11 Kal JacKenzie, Jr. Kapsalopoulou Kirchgessner ii rchandani **McAllister** Jasephson Kingsbury Madenburg McNichael Johnston Krishnan Lagemann lohr, Jr. fulvihi11 **ScSorley** doghissi Kilgroe Kaufman Kniffin Johnson Kende11 Lillian Mansoor dichael Maddox lorgan Junkin Jessup Kalish Knauss lessig Miller [n].der Kelly Jones Jones Klein lurray Jones Kuntz Luthy Komai locan lixon lagee Malki Mohn Jost Mack Kim

-

ation Co. Lshurgh of Sciences opment Center emicals, Inc. search Institute n Inc.	University Authority oject, Inc. c. pany . Foundation	search Institute al Resources l Laboratory ngineering Corp. Engineering Corp. Ower Serv. Corp. Co. ngineering Corp. ngineering Corp. ngineering Corp. ngineering Corp. I actor & Power gulatory Commission l Refining Company deutschen	ing & Minerals Research Board Lh Carolina Control Commission s Co. esearch Center esearch Center
Resources Conserv University of Pit National Academy Conoco Conl Devel Air Products & Ch Mittman Associate Acurex Corp. Electric Power Re Radian Corporatio Exxon Research Western Aquatics,	Tenneco Inc. U.S. EPA Southern Illinois U.S. EPA Tennessee Valley Illinois South Pr. Allis-Chalmers Sobotka & Co., In TRW, Inc. Phillips Coal Com ARCO Coal Co. Shell Development Hanford Env. Hith	Electric Power Re. U.S. EPA MO Dept. of Natur. Oak Ridge Nationa U.S. EPA Battelle Stone & Webster E Texas Eastern Trai Exxon Research & J American Elect. P General Electric Stone & Webster E Los Angeles Dept. Federal Energy Re; International Coa Gesamtverband des U.S. Department o	Institute for Min Texas Air Control University of Nor WV Air Pollution Olympic Associate Pullman Kellogg R U.S. EPA Rxxon Company
WA 98124 PA 15261 DC 20418 PA 15261 PA 15129 PA 15129 PA 15129 PA 20418 ND 21045 VA 22209 CA 94303 TX 7878 NU 82070 OH 45246	TX 77001 NC 27711 IL 62901 IL 62901 IL 62948 MI 53201 DC 53201 DC 53201 CA 90274 TX 75251 CO 80123 WA 77079	CA 95070 NC 27711 MO 65102 TN 37830 DC 20460 DC 20460 DC 20460 101 43201 NJ 77001 NJ 77001 NJ 77001 NY 12301 NY 12301 NY 12301 NY 12301 NY 770051 DC 20426 PD 20426 PD 20426 PD 20426 PD 20585 DC 205855 DC 20585 DC 20585 DC 20585 DC 205855 DC 205855 DC 205855 DC 205855 DC 205855 DC 205855 DC 2058555 DC 2058555 DC 2058555 DC 205855555 DC 20585555555555555555555555555555555	KY 40511 TX 78723 NC 27514 WA 25311 WA 25311 TX 77084 NC 27711 TX 77001
Seattle Pittsburgh Washington Library Allentown Columbia Rosslyn Palo Alto Austin Linden Laramie	Mouston Research Triangle Park Carbondale Chicago Muscle Shoals Miscle Shoals Milwaukee Washington Redondo Beach Dallas Denver Houston Richland	Palo Alto Research Triangle Park Jefferson City Oak Ridge Washington Columbus Boston Houston Houston Tlorham Park Canton Schenectady New York Los Angeles Washington Allentown Allentown Washington	lexington Austin Chapel Hill Charleston Seattle Houston Nouston
c/o Boeing Co., Box 3766 Dept. of Civil Engineering 2101 Constitution Avenue Research Division P. O. Box 538 9190 Red Branch Road 1901 Fort Nyer Drive, Suite 1012 P. O. Box 10412, 3412 Hillview Ave. 8500 Shaal Creek Boulevard P. O. Box 546 P. O. Box 546 P. O. Box 546	P. O. Box 2511 ESRL, ND-57 ESRL, ND-57 Dept. of Thermal & Env. Engineering 230 South Dearborn St. River Oaks Building 701 North Park Street P.O. Box 512 1725 K Street, N. W. 1725 K Street, N. W. 1725 K Street, N. W. 1733 Highway 6 South 805 Goethals Drive	3412 Hillview Avenue IERL, MD-61 P. O. Box X P. O. Box X 401 M Street, S. W. (RD-6 <u>8</u> 1) 505 King Avenue 245 Summer Street P. O. Box 2521 P. O. Box 2521 P. O. Box 211 P. O. Box 487 Box 43 1 Penn Plaza P. O. Box 111 P. O. Box 2752 P. O. Box 2752 P. O. Box 2752 P. O. Dox 2752 P. Dox 2	Dox 13015, Iron Works Fike 6330 Highway 290 East Dept. of Environ. Sci. Eng. 1558 Washington St., F. 1319 Dexter N., (P.O. Box 9445) 16200 Park Row, Industrial Park Ten IERL, MD-61 P. O. Box 2180
Lee A. Ronald D. Gordon W. Duane G. O. T. Mark George R. Gordon C. Jerome Ben	L. W. Ronald K. Thomas W. James H. Joseph W. Steve Barry G. Victoria Dennis P. G. Bruce D.	William S. William J. Beth L. Loutillie Kurt W. Ralph M. Michael J. Sam Robert Daniel Ilenry Lawrence J. John Jochen	Sandra Henry E. Fhilip C. Rolf T. Rolf T. Glenn N. Dean Tracey L.
Musil Nuufeld Newell Newell Noichl Noichl Noich Offen O'Shea Parzer Parkhurst Darkhurst	Fatterson Patterson Petrie Phillips Phillips Pittman Place Potter Price Ramachandran Ramachandran Reinert	25 Reveal Rickert Rickert Rickert Riegel Riegel Rosenfield Ruskrine Ruskrine Salemme Samematsu Sauter, Jr, Schlosherg Setlosherg Setlosherg	Sherman Stevers Singer Skrinde Sitinde Smith Smith

.

Battelle Columbus Laboratories Zimpro Inc. Joy Mfg. Co. Research-Cottrell Industrial Siting Administration Phillips Coal Co.	Swanson Environmental, Inc. U.S. EPA, Region VIII NUS Corporation Radian Corporation The Standard Oil Go. GCA Corporation Department of Energy EG&G University of Illinois Research Triangle Institute Texaco Inc. American Natural Scrvice Co. Ecological Analysts, Inc. U.S. EPA	Envirotech/Chemico Tennessee Valley Authority Grand Forks Energy Technology Center Merrick & Smith Department of Energy International Coal Refining Company TRW, Inc. Dynalectron Bechtel	• -
43201 54474 90051 08876 82002	48034 80295 80295 78758 60091 44115 27514 27514 27514 27709 12508 60680 27709 12508 27713	10001 35660 58202 02110 20545 18001 90278 22101 22101 94119 94119	
umbus Oli hschild VI Angeles CA crville NJ yenne YX 1as TX	thfield MI ver kville MD tin TX mette MD veland 011 pel Hill NC hington NC bington WV cago II cago II cago II cago II con Triangle Park NC con Triangle Park NC	York NY cle Shoals NY nd Forks ND ton hington DC entown PA ean VA Francisco CA	
505 King Avenue Military Road P. O. Box 2744 Terminal Annex P. O. Box 1500 500 Boyd Building, Wyoming Office Chon Swite 1400. Park Central III	29623 W. Western Highway Suite 900, 1860 Lincoln St., Boun Suite 900, 1860 Lincoln St., Boen Aust 8500 Shoal Creek Boulevard Aust 816-16th Street Wilh Midland Building 500 Eastowne Drive 7. 0. Box 880 P. 0. Box 8980 P. 0. Box 6998, School/Puhlic Health Chic P. 0. Box 12194 P. 0. Box 12194 P. 0. Box 709 P. 0. Box 200 P. 0.	One Fenn Plaza Ammonia from Coal Projects Ammonia from Coal Projects P. O. Box 8213, University Station Gran 100 Federal S. Mailstop E-201, Env. Safety & Eng. Wash P. O. Box 2752 One Space Park Drive, R4/1136 One Space Park Drive, R4/1136 7929 Westpark Drive 1313 Dolley Madison Doulevard S0 Beale Street S0 Beale Street	
G. Ray Charles L. Jay L. Nicholas J. Adam T.	Rarbara Lorin Terry I. Susan J. Susan J. William C. Angela L. Paul C. Frank John Kaushik Anna W. Anna W. Anna W. Anna L.	Richard Phebus C. Warrack G. Nober C. Fred E. Alan F. Kar Y. Wen C. Gerri Nahid	
Smithson, Jr. Soukup Stern Stevens Szluha Porlos	Taylor Tell Thoem Thomas Tranguill Tyndall Vyas Walakis Wallace Wanmel Weinreich	west Williamson Willson Wipperman Witmer Yu Yu Zaklan Zoueshtiagh	• .

•

UJU

•

SATISFACTION GUARANTEED

Please contact us for a replacement within 30 days if the item you receive NTIS strives to provide quality products, reliable service, and fast delivery an error in filling your order. if we have made s defective or

E-mail: info@ntis.gov
Phone: 1-888-584-8332 or (703)605-6050

Reproduced by NTIS

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are custom reproduced for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available.

Occasionally, older master materials may reproduce portions of documents that are not fully legible. If you have questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and related business information – then organizes, maintains, and disseminates that information in a variety of formats – including electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia training products; computer software and electronic databases developed by federal agencies; and technical reports prepared by research organizations worldwide.

For more information about NTIS, visit our Web site at <u>http://www.ntis.gov</u>.

Ensuring Permanent, Easy Access to U.S. Government Information Assets

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000