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ABSTRACT

A method for the numerical simulation of non-uniform mixtures is described and
applied to the heat conduction problem. It is found that, when the inclusions are not
uniformly distributed in space, the standard single-phase Fourier law of conduction,
with an effective conductivity multiplying the gradient of the average temperature,
is not satisfied.

INTRODUCTION

In several recent papers we have developed an approach to the derivation of averaged equa-
tions for disperse multiphase flows that appears promising in that the closure problem is phrased
in terms of computable quantities (Zhang and Prosperetti 1994a, 1994b, 1996). The theory is
developed in terms of ensemble averages that are notoriously difficult to calculate numerically.
However, the complexity of the task decreases by many orders of magnitude in the case of ho-
mogeneous suspensions for which the average quantities become spatially uniform, as in this
situation the ensemble average can be reduced to a volume average over many (as opposed to a
large number of) realizations of the flow. In Zhang and Prosperetti (1994a) we have given an
explicit example of the procedure for one simple case of this type. We started out with a rep-
resentation of the quantity of interest in terrs of the unconditionally averaged fields multiplied
by unknown coefficients, and determined the coefficients from the simulations. We believe that
this is a promising approach that can ultimately lead to a useful closed set of averaged equations
provided adequate simulations can be carried out. Unfortunately, the method cannot evidently
deal with non-uniform suspensions, a situation that it is imperative to consider in order to develop
a complete theory. Indeed, it is widely recognized that there is little hope of developing realistic
models of multiphase flows without second-order spatial derivatives (see e.g. Batchelor 1988).

These considerations motivate the present study in which we propose a method for the evalu-
ation of gradient terms that only requires the calculation of averages for uniform suspensions. In
order to develop and test the method, we have deemed it desirable to work with a system simpler
than two phase flow, namely heat conduction in a composite with spherical inclusions. In this
case the quantity to be determined is the mean heat flux in the mixture q,,. It can readily be
shown that this quantity can be calculated from the expression (Batchelor 1974):
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Am = —kcVTm — (kp — kc) < VIp >, (1)

where the subscripts C and D refer to the continuous and disperse phase respectively, the angle
brackets denote the phase-ensemble average, k is the thermal conductivity, Tp the disperse-phase
temperature and .
Tm=Bc<Tc>+Pp<Tp> (2

is the mean temperature defined in terms of the individual phase average temperatures and volume
fractions f¢,p. Note that S + Bp = 1.

THE NON-UNIFORM ENSEMBLE

To explain our procedure, consider for example the standard Fourier law of single-phase heat
conduction relating the heat flux q to the temperature gradient VT, @ = —kVT. If this relation
is true, the thermal conductivity k can be calculated, or measured, no matter how small or large
VT is. Indeed, in the classical Chapman-Enskog expansion. of the Kinetic Theory of Gases, this
relation is derived and % calculated on the assumption of a small temperature gradient.

We base our approach on the assumption that the closure relations that we are seeking establish
. a functional relation among the average quantities included in the theory endowed with a similar
“intrinsic” nature. This remark suggests that we proceed perturbatively, setting up a “nearly
uniform” suspension and expanding in the degree of non-uniformity in such a way that all the
actual numerical calculations are conducted on a uniform composite. The idea is similar to the
familiar asymptotic method of domain perturbation, where the problem in the perturbed domain
is approximated as a series of problems on the simpler unperturbed one.

We consider composites occupying the entire space and consisting of an infinite number of
copies of a fundamental cubic cell I much greater than the particle radius a. We can therefore
simply deal with such a fundamental cell replacing the rest of the composite by periodic boundary
conditions. By standard techniques we can generate numerically an ensemble of such fundamental
cells, each one with N particles randomly and uniformly distributed in the mean. Let Po(N) =
P(yl,y?%,...y"Y) in which y*, @ = 1,2,...,N are the positions of the particle centers, be the
probability density for this ensemble. In each realization, subject now each particle to the small
displacement

%) = y* +ef (y9), (3)

where f is a given, deterministic function equal for all particles and € a small parameter. The new
probability density then becomes

) N
P(N) = By(N) [L+e3(N)], &(N) =) Vya-f(y%). 4

a=1
For the purposes of the present paper we take
V-f(y) = sink-y, (5)

where k equals 2w/L times a unit vector in one of the coordinate directions. This may be
considered as a single term of a Fourier expansion. A more general analysis will be presented
elsewhere.
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The volume fraction of the disperse phase fp is defined by

Bol,t) = 37 [ VPN xp(o ), ©)

where xp is the characteristic, or indicator, function of the disperse phase. For a suspension of
equal spherical particles of radius a an explicit representation is (Lundgren 1972)

N
xp(;N) = 1-xc(x,N) =) H(a—[x—y°), (7)

a=1

where H is the Heaviside distribution. Upon substitution of (4) into this definition of Sp we have

Bp = BY +efh sink-x, _ (8)

where ) ) N

v
8% = 27 [ X0t M B@V;9)deY = 74, ©)

where v = 37a® is the particle volume, and
gL = /ch P(N; ) (V) S sink-y / Brcosk-z
b L3 NI ,,Z_l |z|<a
2

~ L3 - /dCNPo(N £) ®2(N) + O ( ) . (10)

The last form is obtained upon a Ta.ylor series expansion of the cosine in the inner integral of the
previous line, and upon recognizing that the remaining sum of sines, if f is given by (5), is just

(4).

TEMPERATURE FIELDS

" For the determination of the microscopic, exact temperature field for each configuration we
use the multipole expansion method closely following the approach of Sangani and Yao (1988).
We thus set

N
To(xN) = G x+ Y Y AR AnSi(x—y%), (11)
a=lm
where we have used an abbreviated notation for the inner summation that, written out in detail,
is o n ) )
> AmdESi(x—y%) = 3 Y [A%n0l ™A + A58 B Si(x-¥%).  (12)
m n=1m=0
Here 81, Am, and A, are differential operators with respect to the components of the field point x
and S; is Hasimoto’s function (for details see Sangani and Yao 1988). The vector G is a constant
that can be interpreted as the “overall” temperature gradient in a large piece of the composite.
The temperature field inside the generic particle is represented as a spherical harmonic ex-
pansion:
o0 n
=Y > (Cr+Drea ) Y0, 4) (13)
n=1l1m=-n
Imposing the continuity of temperature and heat fluxes at the particle surfaces gives relations
between the coefficients 4, C, and D that we do not need to write down in detail. Suffice it to
say that, as expected, all these constants are found to depend linearly on G.
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EXPRESSIONS FOR THE AVERAGES

We are going to seek representations of the average fields in terms of Fourier series truncated
at a low order in correspondence with the ansatz (5) for f. For the continuous-phase average
temperature we write

ﬂc(<Tc>—G-x)=7'oc+erscsink-x+efrfcosk-x. (14)

According to Fourier’s theorem, the coefficients 7C are found by taking projections. For example

’ N
NIL Ve m

a=1
N

= gy [ 4" Bty L ITEG) -Gyl (15)

where the expression in the second line is found upon substituting the representation (11) for T¢
into the one in the first line. Similarly one finds that the other coefficients may be conveniently

‘written as
'rsC = —ﬂ% [('rsc)1+3m-'rsc] , 'rcC = 3,B%m-'rcc, (16)

where m = k/k and

1 2 ¥ .
(11 = 5 [ 4V B2 T D [TE(r") — G-y sink-y® (1)
: a=1
¢ = | L [ac py(v;t)a(v)~2 NA“'k"‘
w¢ = | g [ BN g 35 Af sinke-y?| -m (18)
¢ = L [ eV pyv;Ha) 2 lNA""k"‘
1€ = 57 [ 4V P9 T | g 3 A7 sinke-y (19)

Here A; and A, are a vector and a symmetric second-order tensor having components related to
the 3 and 6 scalar coefficients corresponding to n = 1 and 2 in the expansion (11).

One can readily deduce some information about the necessary structure of these complicated
expressions as follows. Let us start from 'roc . This quantity must be a scalar linearly dependent
on G. This is only possible if the vector nature of G can be neutralized by taking a scalar product
with another vector, but no other vector is available here as 7§ is calculated on the basis of a
uniform mixture. Hence we expect 7§ = 0, a fesult that is confirmed by the numerical calculations.

For ('rsc )1, again we expect a linear dependence on G but, since this quantity “knows” about

the non-uniformity of the mixture, also on m. Then we are led to the form

(oh = m- G, (20)

with ¢ a dimensionless quantity to be calculated numerically. For 7€, 7¢ we need a vector linearly

dependent on G and possibly, linearly or nonlinearly, upon m. We are thus led to

C u’és u%s
Tes = T’G+ T (m-G)m. (21)
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For the disperse-phase temperature field we write
Bp(<Tp>—-G-x) = 7 +erP sink-x+er” cosk-x, (22)

and, from the representation (13), we find
t
'roD = —'rOC, 'rsD = ('rsc)l = Em-G, (23)

2

- 'r,f) — § a

51—k

The last quantity to be evaluated is the mean temperature gradient in the disperse phase.
Upon setting, as before,

,8% (u,l; + ug)k -G. (24)

(1—-k) Bp < VTp >= (% [do +eds sin k- x +ed, cos k- %] , (25)
with k¥ = kp/kc the ratio we find

1 1 Y
do = (1-#) 7 / dcN Po(Nit) 1 3 VTn(y®) = —3ue@, - (26)

a=1

N
d; = (1 &) % /dCNPo(N;t)q)(N)%;VTD(y“) sink-y® = —3 [u§G+u§ (m-G) m] ,
(27)
1
N
~3[u}G +ul(m- G)m] . (28)

a? |2 N
d. = —(1—&)-—5— [ﬁ /dCNPo(N;t) &(N) ZVVTD(y"‘) sink-y"‘] -k

a=1

THE AVERAGE HEAT FLUX

With the results of the previous section, we can now write down an expression for the mean
flux qmp. It turns out that, numerically, we find ¢t = 0, u! = 0, u2 = 0. Hence we drop the
corresponding terms and have

—kiqm = (1+3uo,3°D+3e,B°Dui sink-x—3e,B°Du};mmsink-x) -G. (29)
C

This form of the result is dependent on the specific way in which the problem has been set
up, rather than reflecting an intrinsic relation among the fundamental quantities of the theory,
namely < T¢c,p > and Bp. As explained before, we proceed on the postulate that such an
intrinsic form does exist and therefore we try to express G and m (m-G) sink-x in terms of such
fundamental quantities, or some convenient combination of them. We shall make use of VT;, and
V(<Tp>—<Te >).

Upon substitution of the previous results into the definition (2) of the mean temperature and
differentiation, we find

VT, = G —3ef) (u}; + uz) (m-G)msink-x, (30)
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0
V(<TD>—<TC>)=3el—§Dﬁ—0 (u}:-l-u%) (m-G) msink-x. (31)
D
It is obvious from this expression that, for a uniform mixture in which e =0, V <Tp > =
V < T¢ >, as is well known. For this relation to hold also in the present case, one would need
ul 4+ u2 = 0, which is not supported by the simulations.
These two relations are now solved for G and m (m - G) sin(k-x) and the result inserted into
the expression (29) for qp. The result is

——1-qm = (1 + 3,6’%110 + 3,3%’11,1:6 sink- x) Vin
ke
0 0 u% :
+(1—ﬂD) 3ﬂDU0———u}:+u§ V(<Tp>-<Tc>). (32)

In writing this expression we have retained the sine in the first term for the following reason. Let
kefs = Keff(Bp) be the effective conductivity of a uniform composite normalized by k¢. If we
use the expression (8) for Bp, we have

. . ds
Keff (ﬂ% +¢B) sink - x) & Keff (ﬁ%) + €B} sink - xﬁ?g . (33)
The result (32) thus suggests that
1

dk U
kess = 1+ 3Bpuo, d,(;; L 3ﬂD—£, (34)

which are both results that we have verified numerically. If we also define a second effective
thermal conductivity by

ka = (1—PBp) (3ﬂD'UO - L) ) (35)

C
ul + u2
we have the final result in the form

1
T dm = feff VIn+6aV(<Tp>—-<Tc>). (36)

As noted before, for a uniform composite the second term is absent because the mean gradient is
the same in the two phases.

RESULTS AND DISCUSSION

We generate an infinite composite by placing N spheres at random in a fundamental cell, and
by filling up the whole space with copies of this cell. Experience shows that the results are not
strongly affected by the artificial periodicity introduced in this way. The ensemble averages are
calculated by the Monte Carlo method using 500 configurations, 32 particles per configuration,
and truncating the summation in (12) to n = 3. The numerical results for sy and xa obtained
in this way are shown in Figs. 1 and'2 as functions of fp for several values of £ = kp/kc.
The former quantity, kess, is the same as the result obtained by several authors for a uniform
composite. The slight numerical differences between the present results and those published by
Sangani and Yao are to be imputed to our use of 3, rather than 7, singularities. As noted before,
we have also calculated 8}, and verified numerically the second relation in (34).
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In the steady problem, of course, any temperature gradient is linearly dependent on either G or
VT,,, and to that extent the relation (36) is less determinate than the result (29). However, (29) is
not a general result, but only represents the solution to a specific problem. The connection between
V(< Tp > — <T¢ >) and G in any other situation must be worked out anew. Furthermore,
in a time-dependent problem, the temperature gradients in the two phases are independent in
general, and in this case (36) may be expected to be applicable, while no relation of the type
(29) is likely. In this sense, it may be stated that a composite material of the type considered
here satisfies Fourier’s law of conduction with an effective conductivity only when it is uniform.
Spatial non-uniformities in the distribution of the disperse phase give rise to a qualitatively new
effect. Evidently, the zf:tual prediction of the mean heat flux requires information on the spatial
structure of both < Tg > and < Tp >. Two separate energy equations for the two phases are
therefore required for the full solution of the problem. '

The only other study of this situation that we are aware of is a very recent paper by Buyevich
and Ustinov (1995) who carried out a perturbation expansion on the assumption of a small gradient
of Bp, rather than of a small non-uniform part as in (8). Their result is therefore different from
the present one. In particular, they find an effect of order a?/L?, which is smaller than ours.
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Figure 1: Effective normalized thermal conductivity of a uniform composite with spherical inclu-
sions as a function of the volume fraction of the disperse phase Sp. The lines correspond, from
bottom to top, to conductivity ratios kp/k¢ = 0, 0.2, 0.5, 1, 2, 5, 10, 1000.
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Figure 2: Effective normalized second thermal conductivity composite with spherical inclusions
as a function of the volume fraction of the disperse phase fp. The lines correspond, from bottom
to top, to conductivity ratios kp/kc = 0, 0.1, 0.2, 0.5, 0.8, 1, 2, 5, 10, 1000.
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FILM FLOWS AND
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ABSTRACT

Films flowing down an inclined plane are considered. An unconventional perturbation ap- -
proach is discussed. It yields the most general evolution equation for film thickness and the
least restrictive conditions for its validity. Results of numerical simulations of the dissipative-
dispersive evolution equation indicate that novel, more complex type of spatiotemporal pat-
terns can exist for strange attractors of nonequilibrium systems. It is suggested that real-life
experiments satisfying the validity conditions of this theory are possible.

INTRODUCTION

Thin liquid layers (*films”) flowing along solid surfaces occur in both natural and man-made environ-
ments (and the wavy film flows can captivate the occasional observer—this author, for one). Industrial
applications of film flows started as long ago as the 1800s, and have been growing in their scope and
importance ever since (see e.g. [1]).

Naturally, the studies of such film flows (the “Kapitza problem”) have a considerable history. However,
the nonlinear dynamics of wavy films is still far from being fully understood (see e.g. [2]; [3] and [4] are
some recent reviews of film flow studies). The Navier-Stokes (NS) system of partial differential equations
couples together the velocity components which are functions of four independent variables (time and the
three spatial coordinates). In addition, there are boundary conditions (BCs), including those at the moving
interface, whose position itself is determined by a partial differential equation (PDE) which involves the
unknown velocity values. Such a three-dimensional (3D) problem is prohibitively difficult to simulate even
with the most powerful presently available computers.

Even the simpler 2D computations were undertaken only recently, and only under the additional sim-
plifying restrictions of short computational intervals and/or time-independence (see e.g. [5]). However, the
2D flows are frequently unstable to 3D disturbances, and therefore three-dimensionality can be important
in many film flows (see e.g. recent experiments [2]).

Fortunately, there are certain domains in the parameter space for which the complicated NS-dynamical
evolution of 3D film waves can be captured by much simpler approzimate descriptions. In the most favorable
cases, such a theory hinges on a single PDE which governs the evolution of film thickness, a function of at
most two spatial coordinates. [The theory also leads to explicit expressions for the 3D velocity and pressure
fields in terms of the (2D) film thickness.] Recently, we [3] obtained the most general of such evolution
equations (EEs) for a film flowing down an inclined plane [which, in a certain sense (explained below),
includes any other such equation that can be valid for all time]. Numerical simulations of that equation




revealed the spontaneous formation of ordered patterns consisting of self-organized coherent structures.
These unusual patterns are the subject of the present communication.

The phenomenon of pattern formation in nonequilibrium, driven dissipative systems is currently a topic
of active experimental and theoretical research (see e.g. [6] for a recent progress review). However, the
self-organization of patterns was mainly studied in closed-flow situations, such as the Rayleigh-Bénard
convection. The planforms studied up to now in fluid-dynamical experiments—as well as in solid state
physics, nonlinear optics, chemistry, and biology—can be divided into two classes. In patterns of the first
kind, the elementary unit is “one-dimensional”, in the sense that one of its dimensions is much larger than
the others (like a rope or a thread). The convection rolls are an example, as are the “spiral” and “target”
chemical waves. The second kind of patterns are two-dimensional arrays of 2D. structures—for example,
hexagonal cells in some large-aspect-ratio convection experiments. |

Our studies reported here show that patterns of coherent structures can spontaneously form in film flows
(which, of course, are open-flow systems). Remarkably, these patterns are of a type different from both the
above classes (and typically of a2 more complex character). In the rest of the text, we discuss the derivation
of the most general EE (and of the conditions of its validity); some results of its numerical simulations; and
some theoretical explanations and possible experiments regarding the novel patterns.

PERTURBATION THEORY

Consider a layer of an incompressible Newtonian liquid flowing down an inclined plane under the action
of gravity. We introduce the coordinates as follows: the z axis is normal to the plane and directed into
the film; the y axis is in the spanwise direction; and the z axis is directed streamwise. The corresponding
components of velocity are u, v, and w. We denote the pressure field in the film by p; the pressure of the
ambient passive gas is neglected for simplicity.

The system is determined by the following independent parameters: the average thickness of the film ho
(the overbar here and below indicates a dimensional quantity); the liquid density p, viscosity &, and surface
tension ; gravity acceleration g; and the angle of the plane with the horizontal 6.

There is a well-known, time-independent, constant-thickness solution of the NS problem called Nusselt’s
flow. The only nonzero component of velocity is the streamwise one. It only changes across the film, starting
from the zero value at the solid plane. The free-surface value U of the Nusselt velocity is U = ghj sin 6/(27)
(where 7 = T/ p is the kinematic viscosity). We nondimensionalize all quantities with units based on p,
Tio, and U (e.g. pU2Ro is the unit of measurement for the surface tension). Exactly three independent
basic parameters (BPs) appear in the dimensionless equations and boundary conditions; one can choose
e.g. the inclination angle 6, the Reynolds number R = hoU /7 [= gh{sin8/(27%)], and the Weber number
W = oR/2 [= &/ (pgh? sin6)], as such BPs.

In [3] we discussed different perturbation approaches to obtaining single-EE approximations of the film
dynamics. Here we briefly reiterate some points. The conventional approach uses formal series in powers of a
single (small) long-wave parameter, say €. In particular, the three basic parameters must each be prescribed
certain orders of magnitude in terms of powers of e—such as W ~ €~2. Thus, artificial inter-dependences
are forced on those BPs. The three degrees of freedom in the parameter space (corresponding to the three
BPs) collapse into just one degree of freedom, . Because of this, the validity conditions(VCs) for the
derivation are unnecessarily restrictive [7] in this single-parameter approach (SPA). Also, if the exponents
of powers prescribed to the BPs are changed, one can obtain a different EE. To determine if this is the case,
one has to repeat the EE derivation for each new choice of the set of exponents—and there is an infinite
number of such choices.

These drawbacks of the SPA can be remedied (see [3]). It is essential to notice here that each derivation
of this type essentially amounts to neglecting certain terms in the NS equations for velocities, so that they
become ordinary differential equations (ODES) in z. These ODEs are linear and have constant coefficients.
They can be easily solved in terms of the film thickness h and its derivatives. Substituting these expressions
for velocities into the kinematic BC, one arrives at the single closed PDE for the thickness h(y, z,t). So, it
is possible to determine the minimal simplifications of the original NS equations, the terms which simply
have to be discarded—and therefore require that they be small—if the goal is to arrive at the solvable ODEs
(we call this requirement the principle of derivability of a single EE). It is clear that in this way, the most
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universal single EE approximating the exact NS evolution is arrived at; every other valid EE (including
those obtained by any single-parameter derivation) can be obtained by simply discarding some terms of
the universal EE. This approach also yields the conditions of validity for the universal equation as well as
the (stronger) VCs for each of its simplified versions. The validity conditions have the form of inequalities
requiring that (a finite number of) certain dimensionless parameters must be independently small. Thus,
this is a version of the multi-parameter perturbation approach (MPA) suggested and developed in our earlier
papers over a number of years (see [3] and references therein).

As was discussed in those publications, one kind of condition is that of the local validity of the theory.
These local-validity conditions (VCs) involve, along with the BPs, the local (in time) parameters, such as
the characteristic lengthscale, timescale, and wave amplitude. The film flow is a dissipative system which
evolves to an attractor and forgets the initial conditions. Accordingly, the characteristic scales gradually
change from their initially prescribed values to the attractor-appropriate ones. Thus, these local parameters
(LPs) can depend on time (before the system approaches the attractor), so that it may happen that the
validity conditions cease to be satisfied after a finite time. If this is the case, the EE is not valid for all time
(in other words, it is non-uniform in time). On the other hand, for the appropriate values of BPs (since,
clearly, the attractor values of the LPs are determined by the BPs only), the local validity conditions can
remain satisfied even when we substitute for the LPs their attractor expressions in terms of BPs; in this case
the evolution equation is clearly valid for all time. In this way, one arrives at the global-validity conditions,
which involve only the “global”parameters, the BPs. The result, then, is that the evolution equation is
uniformly valid in time, provided that certain three groups of the three original BPs (we call those groups
the modified BPs) are (independently) small.

It is clear that globally valid description of evolution by a single equation can only be possible in
certain restricted domains of the space of BPs. We argued earlier (see [3] and references therein) that
such a single-EE description cannot exist globally for those parametric regimes of inclined-film flow which
lead to the amplitude of surface waves being “large”—comparable to the average film thickness. In the
present communication, we are interested in the large-time behavior, when the system is already close to
the attractor, and we want a single-EE description of the wavy film dynamics. Therefore, for the film
thickness deviation, » = h — hg, we assume from the outset that its amplitude A(tf) = max|y| is small
(for all time). Qur derivation (a refinement of the one presented in [3]) will be described only briefly here;
details will be given elsewhere [8]. It is essentially an iteration procedure. We write the fields in the form
of sums containing the known Nusselt parts, e.g. w = wy + Wp, where wy(z) = 2z — z2 is Nusselt’s
streamwise velocity; clearly, the @y is the unknown error in the approximation of w by wy. The z-NS
equation is rewritten in the form Woz; = --- [here and everywhere below, a subscript z, y, 2, or (time)
t, indicates differentiation with respect to that variable.], and all the terms (and only those terms) of the
r.h.s. which contain the unknown error functions are discarded. The solution of the thus simplified equation
with appropriate BCs (the—similarly simplified—tangential-stress balance at the free surface the no-slip at
the solid plane) is found (wg = 2nz). Next, the approximation to the normal velocity is found from the
incompressibility (no-divergence) equation, %o, = - - -; to the pressure from the z-NS equation, Hp; = - - -(and
the normal-stress BC); and to the spanwise velocity from the y-NS equation, Tz = ---. The procedure
can be repeated, leading to increasingly refined approximations; e.g. w ~ wn + wo, w =~ wy + wo + wy,
etc., where w1y € w; (£=0,1,2,---). Similarly, u = up + 43 + uz + u3 (note uy = vy = 0), etc.

As a result (by substituting the velocity expressions in terms of 5 into the kinematic BC), one obtains
the evolution equation in the form
2
3
where V2 = 82/82% + 6%/8y? and § = (4R/5 — cot§). (We will always assume § > 0, because otherwise the
infinitesimal disturbances would not grow and the interesting finite-amplitude waves would never appear.)
Equation (1) holds in a reference frame moving (with respect to the solid plane) with the velocity V = 2
in the streamwise direction. [This choice of the reference frame removes the trivial fast-time oscillations of
film thickness (at a fixed station) arising because of the uniform translation of waves past the station with
their phase velocity (cf. [9]).]

The local-validity conditions yielded by the theory are max [4, 1/L?, R/L, W/L?] < 1. Here L is the
characteristic z-lengthscale (such that 8/8z ~ 1/L; 1.. ~ L2, etc.; and we have assumed for the sake

2 2
7t + 4, + génzz ~ 3 oot Onyy + =WV +2V3n, =0 (1)
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of simplicity that the characteristic y-lengthscale is > L—which has been the case in all experiments we
know). Note that the requirement L? >> 1 appears as a necessary consequence of the derivability principle.
Thus, no single-EE theory can avoid the small-slope requirement.

The analysis of derivation of the above EE shows that its third term originates from the inertia members
of the NS equations; this term is destabilizing, as is readily seen from the linear stability theory. The
(stabilizing) fourth and fifth terms are due to hydrostatic and capillary (i.e. surface-tension) parts of the
pressure, respectively. Finally, the last, odd-derivative term is due to the viscous part of the pressure. This
term is purely dispersive: it does not lead to either growth or decay of the amplitude of surface deviation
n—in contrast to the dissipative, third through fifth terms (we regard the production of energy by the
destabilizing terms as negative dissipation). Such a term also appeared in the EE obtained by Topper and
Kawahara [10] for the case of an almost vertical plane: they used the small angle of the plane with the
vertical as their (single) perturbation parameter. Also, under their assumptions all the terms of the EE
have to be of the same order of magnitude. Our derivation shows that the Topper-Kawahara (TK) equation
of the form (1) holds under much less restrictive conditions than those stipulated in [10]. Different limiting
cases of Eq. (1) are identified as simpler well-known equations (see [3]).

When this (dissipative) system has evolved sufficiently close to the attractor, the average wave amplitude
ceases to change in time. So, the destabilizing and stabilizing terms of the EE must be of the same
order of magnitude. Estimating the derivatives in terms of the lengthscale as was mentioned above yields
L, ~ +/W/é for the value L, of the lengthscale that is characteristic of the attractor. The amplitude A,
on the attractor is determined from the balance of the nonlinear term of EE (1) with the dispersive or
dissipative (linear) terms, whichever is greater: A, ~ max(L;%,W/L3). By substituting these expressions
into the local validity conditions above, the global validity conditions are obtained. Namely, the following
modified basic parameters—which we denote as & and f—are required to be small: a =1 JL2(=6/W) k1
and (noting that § < R and W/L2 ~ §/La,< R/Lo) B = R/L.(= R\/(8/W)) K 1.

In certain domains of the space of basic parameters, the dispersive term is small; then it can be neglected.
[This was the case when we numerically simulated our EE (1) with the parameter values pertaining to the
recent experimental studies [2] of an inclined-film flow. Although their global-VC parameter § is ~ 1 rather
than < 1, we had a qualitative agreement with the transient phenomena observed in those experiments
(see [3] for details of those results.)]

However, if the dissipative terms are small, they still play an important role, on a slower time scale.
Namely, the 2D KdV equation obtained by neglecting the dissipative terms, similarly to the usual case of
1D KdV equation, has a whole family of soliton solutions (these axially-symmetric solutions were found
numerically in Ref. [11]). The wider soliton is shorter and moves slower. If disturbed, it relaxes on a
faster time scale to the solution corresponding to the new value of the family parameter. The additional
small dissipative terms of the TK equation gradually change the parameter—say, the lengthscale—of the
soliton, until the equilibrium value L,, determined by the balance between the stabilizing and destabilizing
dissipative terms, is reached. (For the 1D case, this phenomenon was first described in Ref. [12].) Therefore,
the derivation must correctly determine the small dissipative terms (to their leading order). This is-not
guaranteed by the derivation of Eq. (1) in which the (cross-stream) velocity approximation was truncated
at u;. Therefore, we [8] have analyzed higher-order iterations.

We find that after taking into account, e.g., the corrections up and u3, the EE reads

1t + 417z + (2/3)8n22 — (2/3) cot Oy + [2V?n; + (40/63) R67:22 — (40/63) Rcot 012y, )

+[(2/3)WV*n — (6/5) cotV*n + (157/56)RV 1, + (8/45)Rcot? 6V*n
+(1213952/2027025) R%7; ... — (138904/155925) R? cot 6V>7.2] + (8/5)R(nm:)= = 0. (2)

[The 1D (8/8y = 0) version of this equation, with the same numerical coefficients, was obtained before
[13], but our 2D version is new. The same numerical coefficients, in a linearized 1D context, are found in an
even earlier paper [14].] There are additional dissipative terms, e.g. (157/ 56)RV27,., which in certain ranges
of BPs can be larger than the original stabilizing term, (2/3)W V*n (which is clearly the case for W < R).
Can they provide saturation by balancing the destabilizing term? Our answer is negative: equation (2) can
only be valid locally. It turns out that the last (nonlinear) term in the Eq. (2) is destabilizing and blows up
the solution. Physically, all the important dissipative terms (which, by analyzing the iterations through all

185




orders, we have shown to be of the form—for simplicity, in the 1D case—R2"~18%"y/52%"), are traced back
to inertia, the same factor which is responsible for the destabilizing (linear, second-derivative) term of the
EE (2). It is unlikely that the same physical factor will provide both the destabilization and a balancing
stabilizing term. We conclude that the long-time behavior in such cases cannot be described by a single-EE
theory (although a conclusive mathematical demonstration would require massive calculations to determine
the sign of the higher-order dissipative terms, which we have not undertaken). To exclude such parametric
regime, one requires max(R, R3) <« W.

Thus, EE (1) is the universal (most general) all-time valid evolution equation of the inclined-plane film
flow. The global validity conditions (o < 1, 8 < 1, and max(R, R3) <« W) are all satisfied if we take

~

op=R/IW <1 (3
Br=R/(R/W) <1 )

(recall that § < R).

A possible simplification of the universal EE is obtained by omitting its dispersive term; this results in
a KS-type equation 7; + 49, + (2/3)[67.. — cotfnyy + WV45] = 0. [It can be seen that the additional
(global) VC expressing the smallness of dispersion is (W§)~1/? « 1.] The long-time behavior of the KS
equation is chaotic. In the present paper, we are interested in the opposite case—we show that ordered
patterns arise under the parametric conditions of the large dispersive term, +/(Wé) < 1. (As we noted
earlier, the dissipative terms, albeit small, must be retained in the EE, to their leading order.)

In addition to large dispersiveness (in other words, small dissipativeness), we limit ourselves in the
present paper to the case of a vertical plane, cot @ = 0 (note that § = 4R/5 in this case). We can transform
Eq. (1) to a “canonical” form, which contains only one “tunable” constant—by rescaling 7 = N7, z = L,Z,
y = L,7, and t = T%, where N = 2R/(5W), L, = v/5W/(4R), and T = (5°/2/16)(W/R)3/2. Dropping the
tildes in the notations of variables, the resulting canonical form of the EE is

e +me + VP, +€(nz2 + Vin) =0. )

The single control parameter in this equation is

e = (2/3)/WR/5, (6)

and we will be mostly concerned with the parametric domains [in the (W, R)-space] for which € < 1.

NUMERICAL SIMULATIONS AND SOME RESULTS

We have carried out numerical simulations of Eq. (§) with periodic boundary conditions. To exhibit
interesting spatial behavior, a system should be sufficiently “large”. For the periodicity domain 0 < y < 27p
and 0 < z < 2mg in our simulations of Eq. (5), we chose 5 < p < 16 and 16 < p < 80. We used spatial
grids of up to 256 x 256 nodes, with the Fourier pseudospectral method for-spatial derivatives and with
appropriate dealiasing. The initial values of 7 were chosen—independently at each spatial node—from the
interval [0, 05,0.05] with a uniform probability distribution. Time marching was done (in the Fourier
space) by using Adams- Bashforth and/or Runge-Kutta methods. We checked the results by refining the
space grids and time steps; by verifying the volume conservation, [7dydz = 0; etc. A typical simulation
run took ~ 10° — 10° time-steps.

The main focus of the present communication is the presence of highly nontrivial patterns in time-
asymptotic states for the strongly dispersive cases, € < 1. Figure 1 shows snapshots of the film surface at
large times for three different sets of parameter values. We will speak of such numerically identified time-
asymptotic states as attractors, although one needs to be cautious here: It is known that such extended
systems may sometimes exhibit long transients.

There are two subpatterns in Fig. la: The V-shaped formation consisting of 13 large-amplitude bulges
aligned into two straight lines moves as a whole downstream with a certain velocity, and the small-amplitude
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Fig. 1. Snapshots of the time-asymptotic film surface self-organized in simulations of Eq. 5, for three
different cases (bulges move down the page here; for convenience of presentation, different axes may have

different scales; in reality, all structures have small slopes). (2) p = ¢ = 16, €~ = 50, and ¢ = 1.6 x 105;
(b) (p,q) = (16,80), e* = 30, and ¢ = 5.98 x 10% (c)(p,q) = (5,60), €~* = 25, and ¢ = 4.89 x 10°.
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Fig. 2. Time-sequence of instantaneous sur-
face profiles in a fixed cross-section normal to the
streamwise direction (for p = g = 16, e~ = 50;
the time shown as 0 is in fact 1.6 x 10° count-
ing from the start of the run). In particular, it is
evident that the (large-amplitude) bulges move in
one direction and (small-amplitude) bumps in the
opposite direction.
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background moves uniformly as well, but in the opposite (if the reference frame is appropriate) direction
. (Similar segregation of coherent structures into two subpatterns of different amplitudes is also seen for
the non-square, large-aspect-ratio domains, Figs. 1b and 1c.) This movement of the two subpatterns in
opposite directions is evident in the time-delay plots shown in Fig. 2. The background subpattern in Fig.
1a consists of small-amplitude “bumps” which form a lattice-like structure. Even though the bumps change
their shape and interact with each other in an irregular manner, they seem to maintain their identity. In
particular, they do not seem to coalesce or break up (see Fig. 2). As one sees in Fig. 2, the bumps weakly
interact with one another. Also, the height of a bulge chaotically fluctuates (see more in [3], where these
fluctuations are also reflected in the energy plot, Fig. 2 there).

We investigated how the pattern changes as the value of € for the above simulations (with p = g = 16)
is varied from € >> 1 to a small value, € = 1/305. When € > 1, the 1D version of Eq. (5) is essentially the
KS equation, which on extended spatial intervals yields chaotic attractors. Accordingly, we observe chaotic
(although 2D) waveforms in our simulations of Eq. (5) with large e. For smaller € (larger dispersiveness),
however, the ordering effect of dispersiveness becomes increasingly evident: The amplitude separation into
bulges and smaller-amplitude background structures becomes noticeable for € ~ 1/5 and continues to grow
as € is decreased. At smaller value of € (~ 1/25), the bulges start lining up, even though each straight-line
segment (which is inclined by the characteristic angle ¢ to the streamwise direction) consists of just two or
three bulges. It appears that for the longer lines (the V-shaped pattern) to form, the value of ¢ has to be
sufficiently small, € <.1/30.

It is natural to inquire as to how the various quantities of the pattern scale with . We varied e~! between
25 and 305 for p = ¢ = 16. In one set of simulations, e~! was gradually decreased from 50 in relatively
small steps of 5 (to allow the system to “adiabatically” adjust to the new parameter value), up to ¢~! = 25,
at which point the line formations of bulges break down. In another set of simulations, €~! was increased
from 30 in steps of 10 or 15 up to €1 = 305. In all cases, we find that the characteristic width of the bulge
as well as that of the bump is ~ 1, independent of €. The amplitude of bulges is also constant, ~ 1, as is
the velocity of bulges and that of bumps (of course, the signs of these two velocities are different ). Only
the bump amplitude varies: it scales like ~ e.

The V-shaped formation of bulges retains its form when e is changed from 1/30 to 1/305. However, the
(absolute value of the) angle of each bulge-filled line with the streamwise axis decreases with ¢, probably
approaching some asymptotic value in the limit € — 0 (see Fig. 3. Since there is no parameters remaining
in this limit, the asymptotic angle should be just 0.) This decrease of the angle seems to be determined
mainly by the increase of the streamwise separation between the neighboring bulges, while the spanwise one
stays approximately constant

When € « 1, the d1ss1pat1ve terms in Eq. (5) can be treated as perturbations ~ ¢ of the 2D KdV
equation 7; + 77; + V27, = 0. This equation does not seem to have any analytical solutions. However, by
transforming to a reference frame moving with a velocity ¢ > 0 [replace 7 with (—cn,) in the equation],
Petviashvili and Yankov [11] numerically obtained a stationary axially-symmetric solitary-wave solution.
By balancing the first term with the nonlinear term, cn, ~ 77, and the latter term with the dispersive
term, the characteristic amplitude and velocity of these solutions are found to be  ~ ¢ and ¢ ~ 1/L2 where
L is the characteristic lengthscale, which is not uniquely determined by the KdV equation. However, as
was discussed above, there is also the balance between the dissipation terms in Eq. (5), a necessary outcome
of slow-time evolution. It selects uniquely the soliton of Ls ~ 1, which results in ¢ ~ 1 and n ~ 1 as well,
independent of e. These estimates are consistent with the numerical results reported above.

Motivated by the discovery of the second, small-amplitude subpattern, we examined the possibility of a
corresponding second travelling-wave solution. If we transfer to the frame moving with a negative velocity
¢ = —a?, where a is a constant, there are such solutions—with the nonlinear term being as small as the
dissipative ones. Indeed, the leading-order equation then is V27, + a®3, = 0, which is the well-known
Helmholtz equation for 77,. There are solutions « sin Jysin Kz (J? + K2 = a?). The balance between the
(small) dissipative terms again determines K ~ ¢ ~ 1, and the balance of the dissipative terms with the
nonlinear term yields 7 ~ e. We see that these lengthscale, amplitude and velocity (including its sign) agree
with those observed for the bumps in the numerical experiments as described above.

Note that our assumption of the negative velocity was essential: with a positive velocity, one arrives at
the modified Helmholtz equation, which does not have any oscillating solutions. There are only ezponential
solutions, which are physically unsuitable here. [We note that the Helmholtz equation has axially-symmetric
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solutions as well, o Jo(ar) where Jo is the Bessel function (r is the radial coordinate). This solution is only
weakly localized: it decays at spatial infinity like a power rather than exponentially.]

Similar to Eq. (5), we have derived an equation for a film flowing down a vertical cylinder (see Ref. [3]).
In particular, one can see that if the (dimensionless) radius b of the cylinder is not too small (b >> B),
the flow is well approximated by the planar-film equationl (with periodic BC in the azimuthal direction;
we note that this also justifies our use of spanwise-periodic BCs in the numerical simulations discussed
above. As to the streamwise BC, we believe the solution is insensitive to the BC type in the limit of large
aspect ratio g/p.). One finds that with ko ~ 1 mm, the cylinder radius b ~ 1 cm, and under parametric
conditions ag < 1, Br < 1, and € < 1, for the waves (evolving as they propagate from the entrance end
of not-too-long a cylinder-to the exit end) to have enough time to approach the attractor stage, the liquid
should be several hundred times as viscous as water. For example, it could be glycerin with an admixture
of water. [It is interesting to note that one can see a straight row of bulges in the photograph of a film
flowing down a cylinder, Fig. 2 of Ref. [15]; however, the f-condition of validity was not strictly satisfied
for the parameter values of those experiments.]

SUMMARY AND CONCLUDING REMARKS

Numerical 2D simulations of a realistic evolution PDE indicate that nonequilibrium dissipative systems
can spontaneously form spatial patterns which are significantly more complex than those known before.
Namely, whereas the conventional patterns (such as thermal-convection rolls, “target” and “spiral” chemical
reaction-diffusion waves, etc.) are essentially almost periodic and stationary (at least locally), and are
either arrays of 1D structures or 2D arrays of 2D structures—the novel patterns exhibit soliton-like, 2D
spatially-localized excitations which can spontaneously line up into 1D arrays. They make nonperiodic, but
nevertheless highly ordered arrangements. Moreover, these patterns typically consist of subpatterns—each
of a different amplitude and each moving as a whole with its own velocity—“percolating ” through one
another. Thus, the overall complex spatiotemporal pattern is non-stationary in any reference frame, even if
consideration is restricted to small domains containing only a few soliton-like structures. This is in contrast
to any other pattern we could find in the literature. (For an example of the conventional pattern, if one
considers a small piece of a chemical spiral wave, much smaller than the spiral radius, that local part of
the spiral pattern will appear almost stationary—and almost periodic as well—in an appropriate reference
frame.) It is interesting to note that the observed complex order appears “on the edge of chaos” (which
overtakes at smaller dispersiveness), in accordance with some ideas of the recent “science of complexity”.

The particular dissipative-dispersive evolution PDE under consideration here has been consistently de-
rived from the full Navier-Stokes problem. It is the most general single EE to provide a controllably close
approximation to the evolution of a liquid film flowing down an inclined plane. The unconventional pertur-
bation approach used in this derivation has the advantage of yielding clear and comparatively non-restrictive
parametric conditions of the validity of the theory. To satisfy those validity conditions for a possible (terres-
trial) experiment designed to observe patterns of the novel type on a film flowing down a vertical cylinder,
the film liquid should be much more viscous than water (e.g. a glycerin-water solution).

To construct a theory of interactions of coherent structures which could explain the observed patterns
remains a fascinating challenge.
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9-D TRAVELING-WAVE PATTERNS IN BINARY FLUID
CONVECTION

C. M. Surko and A. La Porta
Department of Physics, University of California, San Diego, La Jolla CA 92093

ABSTRACT -

An overview is presented of recent experiments designed to study two-dimensional traveling-
wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns
are observed when convection is initiated. As time proceeds, they evolve to more ordered pat-
terns, consisting of several domains of traveling-waves separated by well-defined domain bound-
aries. The detailed character of the patterns depends sensitively on the Rayleigh number.
Numerical techniques are described which were developed to provide a quantitative characteri-
zation of the traveling-wave patterns. Applications of complex demodulation techniques are also
described, which make a detailed study of the structure and dynamics of the domain boundaries
possible.

INTRODUCTION

When a spatially extended system is driven far from equilibrium a breaking of translational sym-
metry is sometimes observed which results in the formation of a pattern. In contrast to equilibrium
systems, which are governed by a free-energy minimization principle, patterns in nonequilibrium
systems typically exhibit nonrelaxational dynamics. As a result, a much richer variety of phenom-
ena is observed, and it has proven very difficult to understand the general principles of pattern
selection in nonequilibrium systems. Despite this, the effort to find relationships between the pat-
terns and the symmetries of the system in which they occur has been very successful[l}, especially
in systems in which the primary instability is stationary. It is important to extend this work to
the broad class of systems in which the primary instability is oscillatory and the patterns consist
of traveling waves. Work in this area has potential relevance to many important applications, such
as reaction-diffusion systems, large aspect ratio lasers, and oceanographic flows.

Convection in binary mixtures of ethanol and water is an example of a pattern forming system
with an oscillatory instability. Binary fluid convection is a double-diffusive system in which two
quantities (heat and concentration) diffuse in the fluid and are advected by the velocity field. In
the ethanol-water system, there is a coupling between temperature and solute concentration known
as the Soret effect. Therefore, if the convection cell is heated from below a concentration gradient
forms in the fluid layer, the effect of which is parameterized by the separation ratio,

Pp=—c(l—c) Stg, (1)

where ¢ is the ethanol concentration, S; is the Soret coefficient, and a and § are the thermal
and concentration expansion coefficients, respectively[1]. For the 8% ethanol mixture studied here,
1) = —0.24, and the ethanol concentration gradient tends to stabilize the fluid layer against thermal
convection[2]. This stratification of the fluid layer and the strong separation of time scales for
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Figure 1: Schematic bifurcation diagram comparing convection in a pure fluid and in a binary
mixture with negative separation ratio. In the mixture, the heavy solid line indicates traveling-
wave (TW) convection, and the heavy dashed line indicates stationary- overturning convection
(80CQ).

ethanol diffusion and heat diffusion significantly influence the onset of convection in the mixture.
In this case, a subcritical Hopf bifurcation to a state of oscillating convection(3] is observed at onset,
as indicated in Fig. 1. After convection begins in the mixture, the interaction of the Soret effect
with the convective flow can produce complex phenomena such as chaotic growth and collapse of
traveling waves[2], and the formation of pulses in one or two dimensions[4, 5]. The Soret effect is
responsible for the strongly nonlinear traveling-wave state which is observed for large negative 3
and also influences the texture of stationary convection patterns which are observed above 7*[6],
as indicated in Fig. 1.

Convection in fluid mixtures has several advantages as a system in which to study the dynamics
of traveling-wave patterns. The underlying physical equations governing the system, the Navier-
Stokes equation coupled with the equations for the diffusion of mass and heat, are well known,
and the physical parameters of the system can be precisely controlled. Furthermore, the degree of
nonlinearity of the traveling-wave state is dependent on 1, which may be varied over a wide range
by changing the concentration of ethanol in the mixture[2].

APPARATUS

The experiments were performed in a convection cell consisting of a resistively heated bottom plate
and a sapphire top plate which is cooled by a temperature regulated water flow bath. A window in
the flow channel provides optical access for visualization of the convection cell through the bath.
The cylindrical convection container has an unusually large diameter of 21 cm and a height of
0.4 cm, which corresponds to an aspect ratio (r/h) of 26. The cell was specifically designed to
have a large aspect ratio, in order to study traveling-wave patterns which are separated as much
as possible from the influence of the physical boundaries of the cell.

The convection cell has several unique features. The bottom plate is a 1.91 cm thick polycrys-
talline silicon cylinder which is mirror polished to a flatness of one wavelength per inch. Although
the thermal conductivity of silicon is a factor of 2.5 smaller than that of copper, it is still ade-
quate. Silicon is very hard and does not interact with water, so that the quality and durability
of the mirrored surface is far superior to that typically obtained from plated copper mirrors. The
main technical difficulty in this experiment is maintaining a constant and uniform Rayleigh num-
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Figure 2: The long-term evolution of a traveling-wave pattern at r=1.28. Time is expressed in
terms of the vertical thermal diffusion time, 7 = 124 sec.

ber across the large convection cell. To this end, a linear channel flow was employed to cool the
top plate. This flow is much simpler in structure than the circularly symmetric flows which are
typically employed in cylindrical convection cells. By using a flow with a high Reynolds number,
the temperature variation over the top plate is small and predicatable, and can be compensated
by creating a matching temperature distribution on the bottom plate. Our measurements indicate
that the peak-to-peak variation in the Rayleigh number over the cell is 0.2%. The visualization
of such a large convection cell also presents some unique problems. The cell’s diameter of 21 cm
makes refracting optics impractical. Therefore we have employed a parabolic mirror as the main
focusing element of our white-light shadowgraph. Images are acquired using a CCD camera and
digitized with a PC frame grabber. A time-lapse VCR is used to monitor the long term evolution
of the patterns. A flexible computer process control system has been developed which controls the
experiment and acquires data. The apparatus has been described in detail elsewhere[7).

SURVEY OF TRAVELING-WAVE PATTERNS

The first experiments in traveling-wave convection in binary fluid mixtures observed 2-D patterns
in small and medium aspect-ratio convection cells[8, 9]. Early on, investigators found that the
patterns and their associated dynamics were very complex, and experiments quickly turned to
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1-D patterns, either in narrow channels[10] or in an annular geometry[11]. Our experiment has a
significantly larger aspect ratio than previous work on 2-D TW convection[4], and so our first task
has been to make a survey of phenomena in the system.

The evolution of a typical traveling-wave pattern in a cylindrical contamer is shown in Fig. 2.
The basic conclusion is that extremely disordered patterns are normally created when traveling-
wave convection is initiated, but that a coarsening of the pattern occurs over time scales of the
order of thousands of vertical thermal diffusion times. One of the important mechanisms for the
coarsening of the pattern is the launching of organized rolls from sources on the boundaries which
tend to sweep chaotic fuctuations to the boundary of the pattern. This mechanism makes an
interesting contrast to the case of rotating Rayleigh-Bénard convection[12], where the coarsening
occurs via the growth of domains in the bulk of the pattern. The coarsening of the TW pattern
continues until the pattern has organized itself into a few domains of straight or slightly curved
rolls, separated by well-defined domain boundaries. Such a pattern is shown in the final panel of
Fig. 2.

We have found that organized, multi-domain patterns are formed over the entire traveling-
wave branch of convection, but that the character of the patterns is sensitive to the Rayleigh
number([7]. The domain boundaries in Fig. 2 typically separate patches of rolls which are nearly
perpendicular to each other, with the domain boundary parallel to one set of rolls. At slightly
higher Rayleigh number, near » = 1.35, “zipper” boundaries are more commonly observed, in
which counter propagating rolls shear past each other, with the domain boundary parallel to the
direction of propagation. At higher Rayleigh numbers, near r*, there are typically no clear domain
boundaries. Here the convection patterns are organized around point defects and rotate more or
less rigidly. Initially, we have concentrated our effort on organized patterns such as the one that
develops in Fig. 2.

DEVELOPMENT OF 2-D TRAVELING-WAVE ANALYSIS TECHNIQUES

As mentioned above, there is a large body of work on 1-D traveling-wave convection patterns.
In this restricted geometry, the patterns consist of superpositions of counter-propagating waves.
By making use of the fact that the waves have a narrow spectral content, it is possible to de-
modulate them in time and space to obtain the local amplitude and wave number of the wave
components[13]. This technique enables us to make meaningful tests of theoretical predictions and
to make precise statements about the dynamics of the patterns. Examples include studies of the
Eckhaus instability[14], the chaotic evolution of the convective amplitude[15], and the behavior of
pulses of traveling-wave convection[5].

Unfortunately there is no straightforward way to extend this technique to 2-D patterns. Al-
though the modulus of the wave number, [|k||, is narrowly distributed in the 2-D patterns, the
direction of propagation is arbitrary, so that (k), and (k), are broadly distributed and spatial

.demodulation cannot be performed. We have developed an algonthm which is similar to complex
demodulation in that it extracts a complex amplitude from the pattern, but is flexible enough to
represent the complex structure of the 2-D traveling-wave patterns[7].

The basis of the algorithm is the fact that, despite the complex spatial structure of the TW
patterns, the time series at a typical point in the pattern is periodic and has a narrow frequency
spectrum. Within the large domains of the mature patterns, extremely regular oscillations are
observed, and the slowly moving domain boundaries merely cause phase dislocations in the time
series in a small fraction of the area of the pattern. The pattern can therefore be represented as an
array of oscillators and the description of the pattern then consists of the complex amplitude and
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Wavenumber (2.75,3.5) Direction Curvature (-0.05,4+0.05)

Figure 3: Analysis of a traveling-wave convection pattern showing (a) the phase, ¢; (b) the modulus,
llAll; (c) the frequency, w; (d) the wave number V¢; (e) the direction, tan™! (ky/kz); and (f) the
curvature, V - 7. .

the frequency of oscillation of each pixel. In the strongly nonlinear TW patterns, the modulus of the
complex amplitude is approximately constant in time and space. Therefore information about the
spatial structure of the pattern is contained mainly in the phase, and the instantaneous evolution
of the pattern is largely determined by the local frequency of oscillation. The dynamical properties
of the pattern can be derived from the complex amplitude and frequency fields as described below.

QUANTITATIVE CHARACTERIZATION OF PATTERNS

Fig. 3 shows the dyna.mical analysis of a traveling-wave convection pattern. Fig. 3(a) is the phase
of the complex amplitude. The phase gives a clean representation of the pattern and resolves the
ambiguity of the direction of propagation of the rolls. The modulus of the complex amplitude is
shown in Fig. 3(b), and it is nearly constant within the large domains, justifying the assumption
that the pattern is determined mainly by the phase. In Fig. 3(c), the frequency distribution of the
pattern is shown. It is clear that the frequency, and hence the phase velocity, is strongly modified
by the proximity of domain boundaries. The remaining panels of Fig. 3 show quantities derived
from the phase field. The wave'vector is the gradient of the phase field. The modulus of this
vector is shown in Fig. 3(d), and is found to have a rather narrow distribution compared with the
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Twist (-0.022,+0.022) Stretch (-0.022,+0.022)

Figure 4: (a) The twist, %Vw x 1i, and (b) the stretch, %Vw - fi.

frequency. The direction of the wave vector is represented in Fig. 3(e), and the divergence of the
normal vector, shown in Fig. 3(f), is a measure of the curvature.

The data in Fig. 3 characterize the spatial pattern and its instantaneous rate of evolution. It
is also of interest to measure the deformation of the pattern. This may be done by comparing
the phase field with the gradient of the frequency field. Clearly, the pattern can evolve without
deformation only if the frequency field is uniform. If the frequency field is different at two points
in the pattern, then a different number of rolls will pass these points in a given time interval, and
the pattern will be deformed. The nature of the deformation depends on the relationship between
the gradient of the frequency, Vw, and the normal vector, fi. If Vw and #i are parallel, then
local stretching of the pattern occurs, and if Vw and fi are perpendicular, a Iocal twisting of the
pattern occurs. Therefore, the dot product and the cross product of Vw and ii are measures of the
stretching and twisting, respectively, and they are shown in Fig. 4.

The algorithm described above represents an attempt to obtain detailed quantitative informa-
tion from complex 2-D traveling-wave convection patterns. It allows precise comparisons between
experimental data and analytical models. For example, the data of Fig. 3(d) indicate that the
wave number is sharply peaked and remains within the Eckhaus stable band, probably because
rolls can be created and annihilated freely at the domain boundaries. The data of Fig. 3(c) exhibit
a wide range of frequencies, even though the variation of wave number is narrow, indicating that
linear dispersion is not responsible for the frequency spread. Fig. 3(f) indicates a pervasive positive
curvature of the convection rolls.

The data in Fig. 4 place interesting constraints on a model. The twist is substantial, although
there is no measurable stretching or compression of the convection rolls as they propagate. This is
equivalent to the statement that the gradient of the frequency is everywhere perpendicular to the
direction of propagation. These data and those in Fig. 3(d) indicate great rigidity of wave number
in the TW patterns. A successful model for TW convection should reproduce these properties.

INTERACTION OF TRAVELING WAVES AT DOMAIN BOUNDARIES

Our study of ordered traveling-wave patterns indicates that the properties of the domain boundaries
are important in the pattern selection mechanism. It appears that the multi-domain patterns are
stable because the kinetics of the domain boundaries are consistent with the circular cell geometry
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Figure 5: (a) A shadow%raph image of a zipper boundary recorded at r = 1.37, (b) the modulus
of the wave component measured on the right side of the boundary, (c) the modulus of the wave
component measured on the left side of the boundary, (d) the moduli of the two amplitudes along
a line transverse to the boundary. ’ -

and with the kinetics of the traveling-waves, including the suppression of the phase velocity which
occurs near the domain boundaries. In order to study the interaction of traveling waves at domain
boundaries, we have employed 3-D complex demodulation of small areas of patterns in which
the wave vectors are well defined. Using complex demodulation, it is possible to calculate the
complex amplitude of a certain spatio-temporal wave component, defined by k, ky and w. By
calculating this amplitude for the wave components on either side of a domain boundary, it is
possible to measure both the penetration of waves through domain boundaries and the movement
of the boundaries.

As an example of the use of this technique, Fig. 5 shows the demodulation of a “zipper”
boundary. Rolls on the left of the pattern are moving up and toward the boundary, and rolls
on the right are moving down and away from the boundary. Figs. 5(b) and (c) are maps of the
modulus of the two dominant wave components in the pattern and indicate the general structure
of the domain boundary. Fig. 5(d) shows the amplitudes along a line perpendicular to the domain
boundary. From these curves it is evident that the region over which the two wave components
overlap is approximately one cell height. Another interesting feature of this data is the ripple which
is visible on the modulus for waves on the left side of the boundary. This indicates a standing wave
pattern which is consistent with 10% reflection of the incoming waves from the domain boundary.
No evidence of a standing wave is observed on the other side of the boundary. Here, the waves
move away from the boundary and no reflection would be expected.

CONCLUSION

We have conducted a survey of 2-D traveling-wave convection patterns which occur in ethanol-water
mixtures at a large negative value of the separation ratio. We have used a variety of numerical
techniques to characterize the dynamics of the complex 2-D patterns, and we have indicated the
properties which mathematical models should reproduce. These include the stability of certain
configurations of domain boundaries, the suppression of the phase velocity near domain boundaries,
and the interpenetration and reflection of traveling-waves at the domain boundaries.
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ABSTRACT

The long term objective of this research program is to determine the fluid
flow and drying characteristics of thin liquid/solid films using image processing
techniques such as Image Analyzing Interferometry (IAI) and Image Scanning
Ellipsometry (ISE)'. The primary purpose of this paper is to present
experimental data on the effectiveness of IAI and ISE to measure nonuniform
film thickness profiles.

Steady-state, non-isothermal profiles of evaporating films were measured
using IAIL Transient thickness profiles of a draining film were measured using
ISE. The two techniques are then compared and contrasted. The ISE can be used
to measure transient as well as steady-state profiles of films with thickness

ranging from 1 nm to > 20 pm, whereas IAI can be used to directly measure
steady-state and transient profiles of only films thicker than about 100 nm. An
evaluation of the reflected intensity can be used to extend the use of the IAI
below 100 nm.

INTRODUCTION

The dynamics governing drying and evaporation phenomena in thin films have been
studied extensively. However, our understanding of these phenomena is far from complete. In
systems where drying or evaporation takes place, it is crucial to understand the complex effects
of the interfacial and intermolecular forces on the intermediate and final film properties. These
forces are a function of the film’s thickness profile. While theoretical analyses of these film
profiles have been available for some time, experimental evidence to ratify these theories has
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been lacking only because of the lack of suitable techniques. We believe that ISE, and to a
certain extent, IAI are well suited to study such films experimentally.

IAI is a technique based on optical interference, developed to measure non-uniform film
thickness profiles. IAI enjoys among other advantages, excellent thickness sensitivity, lateral
resolution and the ability to study every point on a surface simultaneously by using image
processing techniques. Steady-state, non-isothermal, thickness profiles of Pentane on Quartz®
were measured using IAI to demonstrate it’s effectiveness. One fundamental limitation of IAT is
that the measurement of film thicknesses below approximately 100 nm. are less accurate
because they depend on the relative intensity of the reflected light. A null ellipsometer and/or an
intensity analysis can be used to enhance the accuracy. Since this is time consuming, IAI is not
well suited to measuring transient film thickness profiles when the thickness is less than 100
nm. However, transient profiles for thicker films can be easily obtained.

ISE is a technique which can measure both liquid and solid film thicknesses ranging

from 1 nm — >20 pm. Moreover, it can “handle steady-state and transient processes, measure
the entire surface profile, and be non-destructive”.®> ISE can also measure refractive index
variations across the surface under observation. From these measurements, if the surface is a
mixture of two chemical species, their chemical compositions can be easily extrapolated. In this
paper, we demonstrate that the ISE can be used successfully to study the transient draining
profiles of a fully wetting and a partially wetting film. The two techniques, ISE and IAI, are
then compared and contrasted. We also document the shortfalls of the initial design, and briefly
mention the improvements that were made on the second generation ISE. A concise summary of
current investigations of the drying of spin-coated sol-gel films, using the improved second
generation ISE, will also be given.

EXPERIMENTAL SET-UP

Image Scanning Ellipsometry

The details of the theory, design, calibration and operation of the ISE are documented
elsewhere®, hence no attempt will be made to reproduce them here. However, a schematic
overview of the ISE will be presented in the succeeding sentences. The image scanning
ellipsometer is based on conventional null ellipsometry, which records the change in phase and
amplitude upon reflection of incident polarized light, from a surface. Through appropriate
models, the recorded phase and amplitude differences upon reflection are converted into film
thickness and refractive index data. :

Figure 1 contains a schematic of the image scanning ellipsometer. The ISE has tw
arms, the polarizing arm, and the analyzing arm. The polarizing arm of the ISE has a light
source which provides nonpolarized light, a polarizer which polarizers the light linearly, and a
compensator which changes the state of polarization of the light from linear to circular. The
analyzing arm has a polarizing analyzer which records the polarization state of the analyzer, and
an imaging package. The imaging package consists of a long working distance microscope and
a CCD camera. The CCD camera is controlled by a desktop PC through a frame grabber. In a
normal null ellipsometer, a photomultiplier or light intensity detector would be used in place of
the imaging package. _ '

For a null ellipsometer, the analyzing polarizer is used to null or extinguish the reflected
light and the photomultiplier is used to detect the null point. At the null point, depending on the
azimuthal angles of the Polarizer, Analyzer and the Compensator, the film thickness and
refractive index can be calculated. For the ISE however, if the film from which reflection takes
place is non-uniform, a series of bright and dark fringes are produced, as shown in Figure 2.
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Figure 1. Schematic diagram of the ISE Figure 2. Reflectance fringes from a draining film

These fringes are reflectivity fringes, and the center of every dark fringe corresponds to a null
point. The centers of the dark fringes are calculated by processing the acquired image by
employing an image analysis software. Thus the film thickness and the refractive index can be
determined at the center of these dark fringes. Changing the polarizer angle changes the state of
polarization of the incident light. This will in turn change the position of the bright and dark
fringes. That is, the fringes are displaced. Hence the film thickness corresponding to the center
of the new dark fringes (the minimum intensity point) can be obtained. Therefore, by moving
the polarizer while keeping the analyzer and the compensator fixed, the thickness profile over
the entire surface can be plotted. One advantage of the ISE is that the technique is reasonably
insensitive to the overall intensity of the image, because it depends only on the relative intensity
of the image. Another advantage is that the initial null point can be associated with a very thin
film (film thickness on the order of 1 nm.)

The film thickness at the null paints can be calculated only up to a repeat thickness. This

thickness, 9,, is given by
4 )
p M

=27r77f cosf,

r

where, A is the wavelength of the light, B, is the polarizer angle, 1, is the refractive index of the

film, and 6, is the angle of refraction of light through the film. In this study, the repeat thickness
was found to be about 302.5 nm.

Image Analyzing Interferometry

The IAI consists of a CCD camera mounted on top of a normal optical microscope. The
CCD camera is in turn controlled by a desktop PC through a framegrabber. Interference images
captured by the framegrabber are stored in the PC and later analyzed using an image analysis
software. The principle of operation of the IAI is based on the interference of light rays upon
reflection from a transparent thin film. Alternating constructive and destructive interference
patterns occur when coherent light undergoes reflection from the two interfaces of a thin liquid
film and recombine. Constructive interference occurs when the two reflected beams are in
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phase, while destructive interference occurs when the two beams are out of phase by 7. The
equation used to calculate the film thickness is:

_(@L+1)A
T 4n

5 @

i

where, n, is the refractive index of the film, L is the order of the destructive (dark) fringes, and

A is the wavelength of monochromatic light used. The first destructive fringe occurs at a
relatively large thickness of approximately 100 nm.

Test Cell -

A fused silica cell was used for the draining film experiments. The cell was trapezoidal
in shape to ensure that light entering and leaving the cell was perpendicular to the cell walls. The
cell was cleaned by a standard RCA cleaning procedure, sealed with the test liquids (a fully
wetting FC-70 film in one set of experiments and a partially wetting dodecane film in another)
and placed on a hinged sample holder on the ISE. The holder was hinged in such a way that
fluid would drain on to the part of the silica surface that was under observation with the
ellipsometer.

The experiment® was initiated by tilting the test cell and returning it to it’s original
position. A series of images were recorded at various time intervals from the start of the
experiment. These images were digitized and stored in the computer’s memory and were later
analyzed by an image analysis program to determine the minimum intensity points (null points.)

In addition to this, experiments sponsored by NASA were also carried out to determine
the thickness profile using IAI for a Pentane film over Quartz. Details of these experiments are
presented elsewhere?.

RESULTS AND DISCUSSION

ISE Results

Figures 3 and 4 show experimentally determined profiles of the partially wetting and
fully wetting draining films respectively, at different time intervals from the start of flow. From
the figures, the flow can be divided into four draining regions, interfacial, transition,
hydrodynamic and meniscus. The region farthest from the liquid pool is the interfacial region
and it consists of the adsorbed film. The transition region connects the interfacial region and the
hydrodynamic region. Film thicknesses in the interfacial and transition regions are below 100
nm. The hydrodynamic draining region extends for another 1-2 mm down from the interfacial
region. As can be seen from the figure, the extent of this region shrinks with time. The last
region is the meniscus region, and it lies near the liquid pool. It is characterized by a rapidly
increasing film thickness profile.
IAI Results

Figure 5 shows an experimentally determined profile of a Pentane film on quartz, at
steady-state. As can be seen from the picture, the smallest thickness that could be resolved here
was about 100 nm. Hence, the interfacial region is below the threshold of the IAI Therefore,
the evaluation of this region (below 100 nm) depends on modeling.
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Figure 5. Steady-state film profile of Pentane on a Quartz substrate obtained by IAI

ISE vs. TAI

A comparison of the two techniques reveals some features of interest. For clarity, the

comparison will be split up into two categories as shown below:
Advantages of ISE over IAI

e ISE can be used to measure thicknesses from a monolayer upto about 20 pm, whereas IAI

can only be easily used from about 100 nm and upwards. It is noted that an evaluation of
the reflected intensity can be used to extend the use of the IAI below 100 nm.

ISE enjoys a larger lateral resolution than IAI. Hence larger variations in thickness profiles
can be observed using ISE.

ISE can be used on films whose R.I. is unknown. At the same time, R.I. variations can
also be handled facilely by using ISE. IAI needs R.I values to determine film thickness
unless two different wavelengths are used.

Advantages of IAI over ISE

IAI is more accurate as the accuracy of ISE is, depending on the algorithm used, highly
dependent on the initial guesses for the thickness and R.I (Ellipsometry algorithms use
models to relate changes in phase and amplitude to thickness and R.1.)

TAl is easier to use and is less expensive.

It is conceivable that IAT can be used to measure steeper profiles than ISE because of it’s
larger magnification. At this point, we are still unsure of ISE’s limitation in this regard.

Modifications to the initial design of ISE

Modifications were made to the initial design of the ISE using recent advances made in

Imaging technology to overcome some of the limitations with respect to weakly reflecting films.
However, some of these modifications created new problems while solving some of the older
ones. These modifications are:

The use of a laser (He-Ne green laser at 543.5 nm) as the light source. In the initial

design, we used a UV lamp. The biggest asset of laser light is that it is an intense, coherent,
collimated light source. Thus, most of the intensity problems we faced with the UV lamp were




eliminated. However, the trade-off is with respect to the speckle that is a characteristic of laser
light. While laser speckle has it’s uses, it can be a great nuisance in imaging applications. In our
case, the speckle makes it difficult to determine the exact center of a dark fringe as it produces
variations in the intensity profile. There are two techniques to tackle this problem. The first is to
eliminate the speckle at the source itself, by using diffusers™ or fiber optic probes. The second
technique involves “cleaning up” the image by certain algorithms that can eliminate the speckle
by employing complex statistical formulae. Currently, we are employing both techniques to help
remove this obstacle

The use of a higher resolution, lower light level CCD camera. In the previous version of
the ISE, we used a standard 512x512 pixel camera. However, in this version, we deciding to
replace the old camera with a 1024x1024 pixel camera. This augmented resolution is mildly
offset by the slightly slower rate at which frames can be “grabbed” using this camera. With the
standard 512x512 pixel camera, we can grab upto 30 frames a second. However, with the new
camera, we can only grab upto 10 frames a second. This is mainly due to the extra demands
placed on the computers’ memory interface by the higher resolution camera. We do not expect
this slightly lower transferring power to be a handicap.

The mechanical infrastructure on which the current version of the ISE is mounted offers
several advantages over the previous one. The chief among these are the ability to change the
angle of incidence (multiple angle of incidence ellipsometry’ offers a statistically superior
alternative to conventional null ellipsometry), and the improvement in the number of degrees of

freedom enjoyed by the substrate holder.

CURRENT INVESTIGATIONS USING THE MODIFIED ISE

Currently, we are applying the ISE to study the complex transport effects which occur
during the drying of spin-coated sol-gel films. It has recently been found that organically
modifying sol-gel systems by partially replacing the surface hydroxyls has an anomalous effect
on the final film thickness of dip-coated sol-gel films®. These films exhibit a ‘springback’
during the final stages of drying. This ability to control the degree of shrinkage during drying
could have an enormous impact on many potential applications.

To study this effect in spin-coated systems, we are currently carrying out the following

investigation: An organically modified sol-gel system is spin-coated over a 0.5 pm. high by 500
pm. wide aluminum line (to provide a meniscus for the ISE). The film is then dried on a hot-
plate and the evolution of the drying film thickness and refractive index profiles is observed in
real-time using the ISE. The thickness and refractive index profiles will yield information about
the porosity of the resulting film. Film porosities are responsible for effects such as electrical

and thermal insulation, etc. The ultimate goal is to understand from a fundamental perspective,
how the drying related stresses will effect the final porosity of the film.

CONCLUSIONS

1. The ISE and the IAI are efficient and accurate techniques to study the complex interfacial
effects that occur in very thin films.
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2. Both ISE and IAI can be used to study transient as well as steady-state thickness profiles. IAI
cannot be easily used below 100 nm which is where the intermolecular forces are most
important. . .

3. The initial design of the ISE has been modified to take advantage of the increasing data
processing available in imaging applications today.
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ABSTRACT

A new methodology is presented for the analysis of complex metabolic
networks with the goal of metabolite overproduction. The objective is to locate a
small number of reaction steps in a network that have maximum impact on
network flux amplification and whose rate can also be increased without
functional network derangement. This method extends the concepts of Metabolic
Control Analysis to groups of reactions and offers the means for calculating group
control coefficients as measures of the control exercised by groups of reactions on
the overall network fluxes and intracellular metabolite pools. It is further
demonstrated that the optimal strategy for the effective increase of network fluxes,
while maintaing an uninterrupted supply of intermediate metabolites, is through
the coordinated amplification of multiple (as opposed to a single) reaction steps.
Satisfying this requirement invokes the concept of the concentration control
coefficient, which emerges as a critical parameter in the identification of feasible
enzymatic modifications with maximal impact on the network flux. A case study
of aromatic aminoacid production is provided to illustrate these concepts.

INTRODUCTION

Many industrial applications make use of the unique capabilities of microorganisms to
convert simple carbohydrates into a variety of products. Microbial processes for the production
of chemicals, materials, and pharmaceuticals and specialty chemicals, are presently employed in
many parts of the world. The above products are synthesized by complex networks of
biochemical reactions catalyzed by specific enzymes. The throughput of these networks is
determined by the specific rate of glucose, or other carbohydrate, uptake and the relative
activities of the network enzymes participating in the production of these products. Although
gains in volumetric productivities and yields have increased the competitiveness of biological
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processes, the majority of chemical and materials production presently is carried out by chemical
synthesis because of the superior yields and productivities obtained by such processes.

Biological systems, on the other hand, offer some distinct advantages such as enhanced
selectivities and environmentally benign operations utilizing renewable resources as raw
materials. Furthermore, they allow greater flexibility for process optimization using techniques
from genetic engineering. These techniques can be employed to extend the range of substrates
that a microorganism can utilize to alter the product profile secreted by a producing cell, or
overproduce a product normally secreted by a microorganism.

Although genetic ‘engineering has been instrumental in the construction of strains with
enhanced or unique properties, a greater challenge would be to effect multi-fold throughput
increases through the metabolic pathways of industrial microorganisms such as yeasts,
Streptomyces, bacilli, and Escherichia coli. Such flux (i.e. throughput) amplifications are needed
to significantly increase the specific productivities of biological systems and thus make them
competitive with chemical processes. To accomplish this objective the central carbon metabolic
pathway must be similarly amplified as it is the main line of carbon processing and, as such, it
constitutes the main supply route to all product-forming pathways. Amplification of central
carbon metabolism, however, is a very demanding undertaking since it involves many
interconnected reactions with sophisticated feedback controls and regulations that have, to date,
evaded most attempts at directed manipulation. In this context, it becomes ‘very important to
identify the key branchpoints where such controls are exercised and the specific reactions within
metabolic pathways that must be specifically amplified to effect a direct change in the overall
network flux. Relevant questions are also whether one or more reactions need to be modified
and whether activity amplification should take place in a sequential or simultaneous manner.

The objective of this paper is to analyze the kinetic behavior of complex metabolic networks
and provide a framework within which answers to the above questions can be systematically
sought. By necessity, this is a theoretical paper. The alternative, namely, the experimental
evaluation of networks in the absence of a rational framework, would be an unfocused and time-
consuming undertaking. We have opted, instead, to employ a rather sophisticated network of
biochemical reactions as a surrogate cell to facilitate our investigation into the dynamics of such
networks operating in real microorganisms. The purpose here is not to simulate biological
reality, but rather to take advantage of a system which exhibits all aspects of regulation, tight
control, and feedback mechanisms that are likely to be encountered with real biological systems.

Our presentation utilizes the framework of metabolic control analysis (MCA) [1-4] and its
various extensions. In order to facilitate the investigation of networks with a large number of
reactions, we present a novel method of reaction grouping and extensions of MCA to groups of
reactions, a concept that is very valuable in describing the kinetic behavior of complex networks.
The magnitude -of control coefficients is used as a measure of the kinetic control exercised by
single reactions or groups of reactions. As such, much of the focus of the paper is on techniques
for the determination of such control coefficients as a means for identifying network limiting
steps. This is demonstrated with a model of aromatic aminoacid biosynthesis. We close our
presentation with an evaluation of the extent to which such limiting steps can be amplified and
the effect such amplifications can have on the stability of the overall metabolic network. It turns
out that it is not possible to significantly amplify rate controlling steps without complete
derangement of the network. On balance, it may be more desirable to focus on steps that allow
greater amplification even though they have lesser impact on the overall kinetics of the network.
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In this context, the concentration control coefficient emerges as an important parameter that '

determines the extent to which various steps can be amplified without compromising the stability
of the system.

THEORY

Rudiments of Metabolic Control Analysis

A microbial cell is often viewed as a black box typically processing carbon and nitrogen
sources to derive the erergy and carbon skeletons needed for growth along with the secretion of
various metabolic products. Figure 1 shows such a schematic illustrating the utilization of
glucose and ammonia by Saccharomyces cereviciae with simultaneous excretion of ethanol,
glycerol (Gol), polysaccharides (Pol), CO, and the aromatic amino acids: tryptophan,
phenylalanine, and tyrosine. Lumped parameter models have proven useful in producing
macroscopic kinetic expressions for the rates of substrate uptake, microbjal growth, and product
production for use in the design of fermentation equipment for the propagation of these
microorganisms.
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Figure 1 . Figure 2

If, on the other hand, one is interested in altering the metabolism in order to increase the
overall flux through these organisms, then one needs to be concerned about the exact
biochemical network that catalyzes the transformation of the substrates into energy and the
secreted products. Figure 2 is a schematic of the network of biochemical reactions operating in
S. cereviciae and leading to the production of aromatic amino acids. Energy, in the form of'ATP,
is produced primarily by the ethanol pathway and consumed at various reaction points. In order
to bring about significant increases in the overall rate of product production then a number of
relevant questions arise: (a) which enzymatic’step or series of steps should be targeted for
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modification in order to effect such an outcome; (b) what is the optimal type and magnitude of
modification; and (c) should the modifications take place in a sequential or simultaneous manner.

The above questions are complex and difficult to answer due to the high non-linearity and
interaction among the various reaction steps and intracellular metabolites. They are a part of the
general quest to elucidate the control of flux in metabolic networks, a central tenet of metabolic
engineering. For the past 22 years a convenient framework and school of thought have evolved,
currently referred to as metabolic control analysis, that can be used to address these questions.

A key parameter in MCA is the flux control coefficient (FCC). FCC’s provide a measure of
the impact that a change in a single reaction step of a metabolic network can have on an overall
flux through the network. They are defined as the ratio of the fractional change of a metabolic
flux J to the fractional change in the velocity of enzymatic reaction i:

G/ = (@In)/(dviivy) (Eq. 1)

Another parameter introduced by MCA is the reaction elasticity, defined as the fractional
change in the velocity of an enzymatic reaction v; divided by the fractional change in the
concentration of a metabolite M;:

g = @vivi)/(OMyM) (Eq. 2)

Clearly, the elasticity with respect to metabolites that have no effect on the reaction velocity
is zero. The elasticity with respect to another metabolite can be obtained from the partial
derivative of the reaction velocity with respect to the concentration of the metabolite in question.
In this regard, elasticity can be considered as a pseudo order of the reaction rate.

Elasticities are local parameters, while FCC’s systemic properties of the network at steady
state. MCA theorems provide equations relating FCC’s with elasticities so that FCC’s can be
determined if the elasticities are known. This means that if kinetic models are available for the
individual reaction steps of the network, they can be used for the exact determination of the flux
control coefficients and, through them, the control architecture of the network.

Reaction Grouping, Group Control Coefficients
Accurate in vivo reaction kinetics are, in general, not available. Furthermore, typical

metabolic pathways involve many reactions that make it infeasible to evaluate the impact of each
one of them on the overall network kinetics. A useful concept is that of reaction grouping
introduced by the top down metabolic control analysis (TDCA) [5,6]. The main tenet of this
approach is to focus on groups of reactions instead of individual reaction steps and evaluate the
effect of different groups on the kinetics of the overall network. This is an intuitive approach
whose success depends on the correct definition of reaction groups, which frequently differ from
groupings suggested by the topology of biochemical maps.

We have developed a method for the systematic definition of reaction groups. This method
makes use of the steady-state internal metabolite stoichiometry (SIMS) matrix defined as an mxr
matrix in which m is the number of explicit steady state metabolites in the network and r is the
number of explicit reactions. Each element Nj of the SIMS matrix is the stoichiometric
coefficient v; of metabolite X participating in reaction i written as:




Z(—V, Xf)_> Z(V,- Xj) " (Eq.3)

reactants products

It is crucial that the direction of each reaction of Eq. 3 be the same as the net flux in the
actual network. Follbwing the construction of the SIMS matrix, the reaction groups are
identified from the membership of the vectors of the kernel matrix, K, of N defined as: N.K =
0.

It should be noted that the reactions comprising the columns of the kernel of the SIMS
matrix also define the independent pathways of the network. Independent pathways reflect the
smallest set of reactions connecting a single network output with the necessary network inputs in
such a way that permits a steady state to be reached by all internal metabolites. For a network
consisting of r reactions and m internal metabolites at steady state, the number of independent
pathways P is shown to be equal to P =r-m. Besides independent pathways, reaction grouping
also identifies the link metabolites, (also referred to as branch points), as the intervening
metabolite at the point of separation between two or more independent pathways.

When the above method is applied to the metabolic network of Figure 2, the pathways and
link metabolites indicated in Fig. 3 are identified: ATP; glucose-6-phosphate (G6P); fructose-1,
6-diphosphate (FDP) and glyceraldehyde-3-phosphate (GAP); xylulose-5-phosphate (X5P) and

"chorismate (CHR); and prephenate (PPH). It should be noted that the FDP/GAP branch point
actually consists of an equilibrium between the two species. In the case of the X5P/CHR branch
point, both species are produced by the common pathway and consumed by alternate routes;
consequently, this branch point consists of dual link metabolites. It is also critical to realize that
the first link metabolite to be identified in this network is ATP, although this fact may not be
immediately apparent from the reaction schematic. The glycolytic production of ATP is common

to all pathways. Because the independent pathways utilize ATP differently, a pathway separation -

occurs at the ATP junction, so ATP is indeed found to be a link metabolite [7].
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Concurrent with reaction grouping is the concept of the group flux control coefficient
(gFCC). The latter is defined as the flux control coefficient which would exist, were the entire
group of reactions actually a single step. Since it is practically impossible to implement changes
of the same magnitude in all reactions in a group, the experimental determination of gFCC’s
relies on the measurement of carbon fluxes and flux changes following perturbations in one or
more reactions in the group. The details of the calculation can be found in [8].

It should be noted that each independent pathway is usually associated with a secreted
product. In fact, the accumulation of secreted metabolites can provide a measure of the flux
through each independent pathway [9,10]. Furthermore, changes in product accumulation,
during different phases of a fermentation process or in response to introduced perturbations, can
be used for the quantitative evaluation of the kinetic control exercised by each reaction group,
through the determination of the corresponding group control coefficients. Through the recursive
analysis of overlapping reaction groups around different link metabolites, the search for the
controlling steps of the network can, in fact, be focused within a small group of reactions.

RESULTS

An in-depth case study was carried out for the aminoacid biosynthetic network of Fig. 2. In-
vitro kinetic expressions (from [11] with minor modifications) were used for each of the
indicated reactions. The network reaction kinetic model allows the determination of the steady-
state concentrations of the intracellular metabolites and, through them, the calculation of the
reaction elasticities and FCC’s. MCA theorems are invoked in the latter calculation following
usual practice. The magnitude of the FCC for the phosphofructokinase (PFK) reaction,
(G6P—FDP in Fig. 2), was found to be significantly greater than any other reaction in the
network, indicating that the PFK enzyme exercises a significant fraction of the total control on
the network flux.

Although the above approach based on FCC calculation is practically infeasible (due to lack
of reliable in-vivo kinetic models), it can serve as a guide in the development of experimentally
feasible methods, .such as one that involves grouping of reactions. It is reminded that the
calculation of the group control coefficients requires the measurement of the fluxes through the
simplified network of Fig. 3b, a task that can be normally accomplished from the measurement of
the indicated extracellular metabolites. Through successive reaction groupings around the
different link metabolites, the network flux control can be localized to a single intermetabolite
linkage, that becomes the focus of further investigation and genetic modification.

The introduction of kinetic perturbations to the reactions of the network of Fig. 2, 8],
allowed the calculation of the gFCC of the various reaction groups. It was found that the
controlling reaction group (as assessed by the magnitude of the gFCC’s), should lie upstream of
the FDP/GAP branch point and downstream of G6P. Thus, the step exerting the most control is
the reaction of PFK, in agreement with the conclusion reached from the magnitude of the
individual FCC'’s.

The large magnitude of the phosphofructokinase FCC would indicate that this particular step
should be the primary amplification target in order to bring about the maximum effect on amino-
acid overproduction. However, simulations of proportional increases in the kinetic parameters of
the PFK reaction revealed that the structure of the network prevents PFK amplification beyond
an 11% increase in activity. At greater amplifications the overall system is unstable, i.e., unable




to converge to a steady state condition. The reason for this particular instability turned out to be '

a bifurcation, at the above PFK amplification value, into a space where a steady state for the
chorismate metabolite does not exist. In other words, there are no acceptable intracellular
metabolite concentrations that can balance the rates of chorismate production and depletion.
Although it cannot be claimed that this would happen in a similarly-modified strain of S.
cerevisiae, this result is analogous to typical cellular responses to the introduction of a
catastrophic metabolic disturbance. In such cases, secretion of metabolites, induction of
degradation pathways, and drastic changes in product profiles are commonly observed.

One way to limit network instabilities following the introduction of a genetic perturbation is
to design perturbations that minimize the departure of the altered cell from a normal steady state.
This can be implemented by a coordinated modification of more than one steps that effect an
increase of flux through the network while maintaining intracellular metabolite levels near their
original steady state. By allowing modest changes in metabolite levels, it can be shown that
significant increases in the overall network flux can be obtained from the modification of only a
small number of carefully selected enzymatic steps.

Group or individual concentration control coefficients (CCC) emerge as key parameters in
the optimization process, since they provide a measure of metabolite sensitivity to reaction rate
modifications. The problem then is to determine the best single reaction step, or perhaps the best
two or three steps, that should be amplified in order to effect the largest possible increase in the
flux of the network, subject to the constraint that all intracellular metabolite levels remain within
a reasonable range of their original steady-state values. As it happens, the results are rather
insensitive to the allowed metabolite range, owing to the fact that, once the bifurcation borders
are approached, progression towards network instability occurs rather precipitously.

Omitting details, the optimal reaction step(s), as well as the recommended rate amplification
are obtained as the solution of a constrained optimization problem [8]. For the network of Fig. 2,
although PFK is clearly a limiting reaction, if a single step is to be amplified, it is most profitable
to do so for the reaction producing the desired amino acid. The large FCC for PFK i, in essence,
nullified by a much larger CCC that restricts the allowable kinetic amplification of PFK.
Reactions 14, (CHR—Trp), and 12, (PPH—Phe), emerge as the optimal single steps for
tryptophan and phenylalanine production, respectively, because they offer the best balance
between the magnitude of the allowed amplification (measured by the CCC) and the impact on
the network flux per unit of reaction rate amplification (measured by the FCC). When two
reaction steps are allowed to be changed, the optimization procedure predicts that the flux for
tryptophan and phenylalanine overproduction can be doubled through the increase of the reaction
pairs (PFK, 14) and (PFK, 12), respectively. In essence, the effect of these pairings is to moderate
the level of chorismate, by pulling away from chorismate (through reaction 14 or 16) part of the
overwhelming carbon flux which is pushed into chorismate by the amplification of PFK. Thus,
adjustment of one reaction in each pair serves to alleviate the metabolic instabilities otherwise
caused by amplification of the second. Thus, simultaneous adjustment of multiple steps is
favorable to sequential amplification.

Our results suggest that greater flux increases can be achieved through the simultaneous
amplification of two reactions rather than one, and with three rather than two. Amplification of
four or more steps, however, was found to be marginally better and occasionally problematic, due
to unpredictable instabilities resulting from significant changes in such a large number of steps,
as well as the unfeasibility of experimental implementation of this many simultaneous
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alterations. It is instead suggested that an optimal pair or triplet of reactions be amplified,
followed by analysis and further modification of the resulting system. In most any case,
significant flux amplification should be achievable through adjustment of a small number of
reactions.
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