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Abstract

The present study summarizes the results of the DOE sponsored research program focused
on the brittle failure of solids with disordered microstructure. The failure is related to the
stochastic processes on the microstructural scale; namely, the nucleation and growth of micro-
cracks. The intrinsic failure modes, such as the percolation, localization and creep rupture, are
studied by emphasizing the effect of the micro-structural disorder. A rich spectrum of physical
phenomena and new concepts that emerges from this research demonstrates the reasons behind
the limitations of traditional, deterministic, and local continuum models.

INTRODUCTION

All failure modes during the inelastic deformation of materials are classified into two classes:
intrinsic or material failures and extrinsic or structural failures. A failure will be referred to as being
intrinsic if its threshold can be defined in terms of the effective material properties. The thresholds
of extrinsic failure modes depend also on the specimen size and shape. The threshold and type of
failure depends on many causes. Temperature, strain rate, embrittleing effect of chemical reactions
are some of the most prominently studied agents which affect the brittle to ductile transition. This
study is concerned only with the brittle and quasi-brittle failures which occur in solids with a
relatively modest cohesive strength as a result of damage evolution.

Damage evolution is caused by the nucleation of new microcracks and growth of the already
existing microcracks. The pattern and type of damage evolution is controlled by the stress con-
centrations at microstructural heterogeneities (hot spots) and/or by existence of internal surfaces
of inferior cohesive strength (weak links). In micro-heterogeneous (damage tolerant) solids made
of materials with strongly dissimilar fracture strength (fibrous and particulate composites) the mi-
crocrack growth can be impeded by the strong phase. The microcrack growth is a basic damage
evolution mode in damage sensitive materials, which are characterized by statistically homogeneous
microstructures.

A typical engineering material has a disordered microstructure. The spatial distribution of
hot spots and weak links is not deterministic. Consequently, the distribution of defects is not
deterministic either. As long as the concentration of microcracks is dilute the microstructure is
often statistically homogeneous on a rather small scale and the specimen response does not depend
on the exact locations of defects. At substantial microcrack concentrations the local fluctuations of
stress field depend strongly on the microcrack interaction and, therefore, on the distribution of the
distances separating closely spaced microcracks. Additionally, the failure can often depend on the
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largest defect or on the smallest distance between interacting defects. It seems, therefore, logical
that a purely deterministic (continuum) model of failure may in many cases lead to a poor estimate
of the failure threshold. The disorder is annealed in the case when the external stimuli (such as
temperature, earthquake and wind loads, etc.) fluctuate randomly. In summary, the disorder of the
microstructure of brittle materials is ubiquitous and its effect on the failure mode and the threshold
is as a rule significant.

CHARACTERISTIC LENGTHS

To quantify the difference between particular failure modes it is necessary to introduce several
characteristic lengths. Some of these lengths are easily singled out. For example, the specimen
size L is a characteristic length which plays an important role in brittle fractures. More than one
characteristic specimen length is needed when the failure threshold depends on the specimen shape.

The linear size L,y. of the smallest volume, referred to as the representative volume element
[1], within which the material is statistically homogeneous, is also a characteristic length. Another
characteristic length is the size ¢ of the largest cluster of interacting microcracks. The cluster is
defined [2]: (a) either as a string of concatenated microcracks or (b) an ensemble of microcracks
which are close enough to affect their growth pattern and rate by direct interaction. A macrocrack
and a shear band are two most commonly encountered examples of two respective types of clusters.
The acoustic emission test [3] is a useful diagnostic procedure for the determination of the failure
mode. The distance L, between the two consecutive acoustic signals can be used to determine the
damage evolution mode and the failure type.

For computational efficiency a system is often subdivided into many sub-systems (finite ele-
ments) within which the considered fields are determined using an ad hoc selected interpolation
rule. However, the discretization is not only the matter of efficiency since the defects in a sub-
volume see the defects in the adjacent sub-volumes only through the effective moduli. Hence, the
defects belonging to different sub-volumes are not correlated. Local fluctuations of the stress, strain
and damage fields in a sub-volume will affect the response in the rest of the specimen only if the
material within the considered sub-volume is statistically homogeneous, i.e. if the conditions

§<Lye<L and Lyye 2 Lir )

are satisfied. In (1) Ly is the wave length of the tractions applied to the external surfaces of the
sub-volume. First of two inequalities (1) renders the material statistically homogeneous while the
second condition secures homogeneous response. If the inequalities (1) are satisfied the effective
continuum, obtained by mapping representative volume elements on material points, is local.

The distribution of distances between the consecutive acoustic signals is uniform, p(Lge) =
const., in damage evolution processes controlled by microcrack nucleation, i.e. in materials with a
random distribution of weak spots. A propagation of a single crack is characterized by the fact that
the majority of signals are clustered at the crack tip. The distances between pairs of consecutive
acoustic signals are equal to the resolution length, Lse = I. The deformation process is dominated
by the interaction induced microcrack growth (cooperative effect) if the distribution of lengths Lge:
(a) favors small distances in the direction of the normal to a rather thin elongated region, and (b) is
perfectly random in the exterior of this region. The material within the localized region is non-local
and non-homogeneous while the material in the exterior volume remains local and homogeneous.
The damage evolution and the deformation process are dominated by the kinetics of the largest
cluster of interacting microcracks (shear band), i.e. by the rate at which the correlation length &
increases.
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On the microscopic scale the damage evolution depends on the outcome of the competition
between the microcrack nucleation and microcrack growth. The intrinsic brittle to quasi-brittle
transition, defined as a cross-over from the processes controlled by a single crack to processes
dominated by many microcracks, depends on: (a) sign of the long range stresses and (b) the band-
width of the distribution of fracture strengths of the constituent microstructural phases [4],[2].
The traditional, deterministic definition of the brittle to quasi-brittle transition [5], based on the
macroscopic phenomenology, is strongly dependent on the specimen size and shape and is, therefore,
not a material parameter.

EXTRINSIC FAILURE MODES

Failure of a micro-homogeneous (rock, concrete, glass or ceramic) specimen subjected to a
uniaxial tensile stress is a quintessential example of a perfectly brittle failure. The failure occurs
when the largest and preferentially oriented (perpendicular to the tensile axis) existing crack starts
propagating. The energy barriers in these materials are insufficient to trap the crack rendering the
propagation of the growing crack unstable. If the specimen is subjected to a homogeneous stress
field it will fail in an almost instantaneous cleavage mode. The force-displacement relation remains
linear until the failure is reached indicating that the accumulation of distributed damage is minimal.
The failure threshold is a variate dependent on the specimen size since the probability of finding
a large pre-existing crack is proportional to the volume. The statistics of extremes represents an
appropriate framework for the determination of the failure threshold as a function of stress and
specimen size [6],[7].

The failure of an unconfined specimen subjected to uniaxial compression in a longitudinal
splitting mode also belongs to the class of extrinsic failures. The growth of cracks, which are
roughly parallel to the compression axis, is initially marginally stable [8]. As soon as the largest
of these cracks reaches its critical length the specimen splits into two or more parts. A modest
concentration of accumulated damage does not affect the specimen failure. The failure threshold can
be predicted from Griffith’s. The specimen failure depends on the specimen shape (ratio between
its length measured along the compression axis and its width in the lateral dimension). Specimen
will split only when this aspect ratio is larger than one (slender cylinders). At small aspect ratios
the part near the lateral surface will slab off while the rest of the specimen will resist further load
increments.

INTRINSIC FAILURE MODES

The threshold of an intrinsic failure mode depends only on the average stresses, average strains
and effective material properties. For a material to fail in an intrinsic mode it must be statistically
homogeneous (invariant with respect to translations) on a scale of the sub-system, i.e. the conditions
(1) must be satisfied. Conditions (1) are satisfied in the mean-field regime, characterized by a dilute
concentration of microcracks which renders the effect of the direct interaction of microcracks on
the macroscopic response insignificant.

Tensile Failure of a Damage Tolerant Solid

The damage accumulated in damage tolerant materials subjected to a long range tensile field
can be substantial. In a stress controlled test a specimen will fail when the (1111) component
of the effective tangential stiffness (or elastic) tensor vanishes. In a elongation controlled test the
specimen response may crossover to the softening regime signaling the loss of homogeneity reflected
as the loss of ellipticity.
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Numerical simulations on two-dimensional, damage tolerant, frozen lattices [9] demonstrate the
existence of the size effect. The response in the hardening regime can be very accurately estimated
by the mean field model [10] adjusted by the size effect term derived in [9]. The response in the
softening regime is controlled by large defect clusters and the stress distribution is multifractal
[2]. Large scatter of results for different physical realizations of same statistics is indicative of the
dominance of extreme statistics. Consequently, the mean field theories are useless for the modeling
of the softening regime.

Elastic Percolation

In the absence of a characteristic length the failure threshold also depends on the effective
properties since the material is self-similar (scale invariant). The self-similarity takes place when
the correlation length tends to infinity during a random crack nucleation process [2]. The failure
occurs when the largest cluster, formed by correlated defects, splits the specimen into two parts.
This class of problems is studied using the methods of the percolation theory [11].

A typical elastic percolation test [12] consists of a repetitive sequence of two steps: (1) a de-
fect (perforation or a slit) is randomly placed into an unloaded specimen and (b) the specimen is
subjected to a very small traction to determine the effective stiffness of the plate without causing
plastic deformation. These two steps are repeated until the specimen stiffness is reduced to zero,
i.e. when the cluster of correlated defects splits the specimen into two large fragments. The mea-
sured stiffness is equal to the effective secant stiffness in the corresponding, deformation controlled
deformation process during which the defects nucleate as a result of the monotonically increasing
displacements imparted to the specimen [2].

At the percolation threshold (¢ — L~) the specimen size is the only remaining characteristic
length. Due to the randomness of the defect pattern the material on the scale smaller than the
correlation length is self-similar. As a consequence of self-similarity the geometry of the largest

cluster is fractal and the scaling law for the correlation length is defined in the form § o (f — fc)” .

as f — f., where f and f. are the density and critical density of randomly inserted defects while the
exponent v is the fractal dimension. The rate at which the order parameter or a macro parameter
(the vanishing component of the effective stiffness tensor) approaches zero is controlled only by
the correlation length. Hence, the scaling law for the vanishing component of the effective stiffness
tensor is also fractal C o« (f — fc)9 as f — fo~. The exponents v and g, are universal in being
independent of the details of local fluctuations of damage, stress and strain fields.

The elastic percolation threshold f. and universal exponents, which determine the behavior
of the system near the percolation threshold, have to be determined for all elastic materials be-
longing to the same universal class only once. Some of these parameters are already available.
The percolation thresholds and scaling laws for the effective stiffness in the case of random distri-
bution of circular [13], [14] and elliptic [15] holes were determined for all homogeneous, isotropic
two-dimensional elastic solids. The percolation thresholds for two-dimensional elastic materials
weakened by rectilinear slits were determined by simulations [16] and [17]. The corresponding scal-
ing law for the effective stiffness was derived by Krajcinovic [18]. Analytical expressions for the
percolation thresholds in the case of holes [19] and slits [20] fit the simulation data extremely well.

The elastic percolation theory can be, firstly, used to compare different mean field models. The
percolation model provides the limit to which the mean field estimates of the effective stiffness must
tend as f = f.. Secondly, the random percolation is a correct model for: (a) the response of a rock
or concrete specimen subjected to the hydrostatic compression and (b) the cracks induced during
the curing of resins and solidification of metals [21].
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Localization

From a continuum viewpoint, localization (or faulting) can be, defined as a bifurcation from
a state of homogeneous strain to a state of inhomogeneous strain caused by the emergence of a
specimen spanning shear band. The strains within the band are much larger than the strains in
the exterior of the band which may even relax after the formation of the shear band. From a
micromechanical viewpoint, the deformation regime preceding the localization is controlled by the
microcrack nucleation while the microcrack growth is prevented by the lateral confinement and
the attendant absence of the singular stress fields at the tips of nucleated microcracks. As the
nucleation proceeds the probability that the direct interaction of closely spaced (correlated) cracks
may lead to the appearance of singular stress fields sufficient to cause microcrack growth increases.
The self-organization of microcracks into clusters is a synergistic process since the largest cluster
grow faster than smaller ones.

As the clusters of interacting microcracks grow the degree to which the largest cluster controls
the deformation increases. Hence, the macroscopic response is in the neighborhood of the localiza-
tion a function of the correlation length . The amplification of stress intensity factors also depends
on the angle subtended by the cluster and compression axes [22]. The angle which optimizes the
cooperative effect, varying between 20 and 30 degrees, is very sensitive to the microstructural
imperfections.

The general continuum theory of localization, based on the Hadamard’s concepts of stability,
was formulated by Rudnicki and Rice [23] and Rice [24]. The elegance of these two papers spawned
a host of analytical and computational studies. In the process of the development of several
sophisticated models the sage advice that the localization conditions *depend critically on subtle
features of (constitutive) descriptions” and that the *role of deformation field non-uniformities or
imperfections... (are)... of great importance for the initiation and spreading of localized deformation
zones” [24] was summarily dismissed. The onset of the localization was defined in terms of the
acoustic tensor, i.e. by det(n - C!-n) = 0 where C’ is the effective tangential tensor at the point
of bifurcation and n the normal to the localized band. The bifurcation is not possible in the von
Mises material and the plasticity models must be embellished either by a non-associative flow rule
or by allowing the formation of vertices in the yield surface.

The added problem related to the application of local continuum models is related to the absence
of a characteristic length. As a result the localized zone has a zero thickness and the density of
the energy dissipation is infinite. This fact triggered development of several non—local and gradient
localization models.

None of these models treats the material microstructure as being random and the process as
being dynamic. In consideration of correlation-induced (Mott) and disorder-induced (Anderson)
localizations it was concluded that the delocalization-localization is impossible in the absence of
some disorder. It is, therefore, not surprising that the deterministic models were unable to capture
the essential non-deterministic nature of the phenomenon which looms behind the tests (Lockner,
et al [3]). The localization belongs to the class of the short to long-range transitions. As the
damage concentration increases the correlation range ¢ grows from zero to the specimen size L.
The correlation length £ controls the specimen macroscopic response only in the phase preceding
the onset of localization and the post-localization regime. However, well before that point the
influence of { on the macroscopic response cannot be neglected. The onset of the localization and
exact thickness of the localized band are largely in the eyes of the beholder. In a material such as
granite and limestone the band ”thickness” varies along its length. The material in the exterior
of the band seems to be statistically homogeneous while the characterization of the interior of the
non-local material within band is not as simple.
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The localization process can be modeled using the molecular dynamics [25]. The disorder is
quenched into the lattice. To replicate the Lockner, et al. [3] tests the selected two-dimensional,
irregular, elastic triangular lattice is subjected first to biaxial compression oyt = Ooziar > 0.
Subsequently, the lattice length in the direction of the longer axis is slowly decreased in order to
be able to consider both hardening and softening regimes.

In the early stages of the simulation the damage evolution is controlled by weak spots (rupture
of links of inferior strength). As the defect concentration increases the self-organization of defects
into the largest cluster becomes evident. The increase of the correlation length £ is initially slow
and crosses over to a power law as £ — L~. The true nature of the phenomenon is reflected in
the transfer of the energy through the disordered lattice. The dynamic and stochastic nature of
the phenomenon can be illustrated using the "ant in the labyrinth” model [11]. An ant (random
walker), located within the localized band, is allowed to move randomly from a site to any of the
other nearest neighbor sites providing that the link between two sites exists. The ant must stay
in its site each time it makes an attempt to move along a ruptured link. In an undamaged lattice
the mean square distance traversed by the ant is linearly proportional to the walking time. In a
localized shear band the time the ant needs to reach the less damaged material increases with the
density of ruptured links. However, as the time of walking approaches infinity all ants, starting
their walk in different sites within the band, will eventually find their way out from the labyrinth
(shear band) assuming that the lattice is connected. Thus, the localized band ”"width” depends on
the walking time allotted to the ant.

As a mechanical analogy of this ant a link within the band can be subjected to a periodic
change of its length. The fraction of the imparted energy recorded at a point in the band exterior
depends on the damage within the band and the frequency of the imparted vibrations. At very
small frequencies (statical loads) large part of the energy percolates through the band. As the
frequency of the imparted vibrations increases the fraction of energy recorded in the exterior of the
band decreases.

In summary, the question of what is the "width” of the localized band is not well posed. In fact,
the width is a function of the correlation length and the frequency. In a purely static approximation
the band width is equal to zero.

Annealed Disorder

The creep rupture of resins is an example of failure modes attributed to the annealed disorder.
The time to creep rupture depends on the magnitude and sign of the applied tractions, temper-
ature and material microstructure. Most phenomenological and micromechanical [26] models are
deterministic in form. Random fluctuations of temperature and stress are neglected. A different
viewpoint was taken by Regel’, et al. [27] and Vujosevic and Krajcinovic [28] who treat the tem-
perature as the stimulus which enhances the mobility of atoms and increases the probability of the
dislocation motion and rupture of atomic bonds.

The microstructure of epoxy resins [21] emphasizes dense nodules interconnected by lower den-
sity material (a relatively vacuous network of cross-linked molecular chains). A triangular central
force lattice with nodules as sites and molecular chains as links is a realistic model of the described
microstructure. The quenched disorder is neglected and the lattice is in the pristine state both
geometrically and topologically regular, and all links have identical stiffness and strength.

The damage evolution, i.e. bond rupture sequence, is treated as a random process which is
activated by spatially and temporally random thermal fluctuations. The probability that a ith
link will rupture during the time interval At , was based on the absolute reaction-rate theory
[29]. The sequence of the link ruptures is determined by the Monte Carlo lottery. The simulations
demonstrate that the temperature driven damage evolution leads to the percolation transition. The
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specimen stiffness decreases linearly. The loss of stiffness becomes nonlinear and very rapid when
the specimen is subjected to tensile loads. In all cases the strain vs time curves exhibit all trends
characteristic of creep. The exponential dependence of the time to failure on the load parameter
derived from simulations is in agreement with the experimentally observed trends [27).

The simulations data in [28] were used to construct approximate analytical model which fits
the simulation data surprisingly well. A mean field model was derived to estimate the effect that
stress concentrations have on the time to creep rupture. Final, and perhaps the most important,
result was that the time to rupture does not depend on the lattice size.

SUMMARY AND CONCLUSIONS

The principal message of this research is that the disorder in macrostructure and the random
fluctuations of externally imparted stimuli cannot be easily dismissed when estimating the type
of failure and its threshold. Purely phenomenological and deterministic continuum models based
on fitting experimental data may rather often lead to wrong conclusions. Direct and careless
extensions of mean field models beyond the limits of the dilute concentration of defects is not
always a prudent strategy. Abandoning familiar and elegant mean field methods may, indeed,
be traumatic. At the same time a search of a more rational model, which acknowledges the loss
of homogeneity, may in many cases be the only avenue to a reliable analytical prediction of the
failure threshold. The development of non-local theories was in the majority of cases channeled
along the familiar deterministic routes. Preservation of mathematical elegance may, indeed, be a
virtuous goal. At the same time it cannot be the only guideline leading to the improvement of
modeling techniques. It seems to the authors of this study that physics should have a precedent
over mathematics.
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ABSTRACT

T * ¢ integral values associated with stable crack growth in thin 2024-T3
aluminum compact (CT) specimens and A606 HSLA steel single edge notched
(SEN) specimens were determined directly from the crack tip displacement field
obtained by moir€ interferometry. Stable crack growth in the SEN specimen was
also simulated by an elastic-plastic finite element (FE) model which was driven by
the experimentally determined boundary conditions. 7*¢ obtained experimentally
and by FE were in reasonable agreements with each other. Unlike the vanishing J
integrals with crack extension, 7% reached steady state values with stable crack

growth. Thus, for a given integration contour, I'g, near the crack tip, 7*¢ can be
used as a stable crack growth as well as a ductile fracture criteria.

INTRODUCTION

In a series of papers, May and Kobayashi [1] showed that the ASTM J resistance curve
does not represent the crack tip state of stress since J 1is not a path independent integral under
stable crack growth. Moreover, the near field J integral vanished after reaching a maximum value
at the initial phase of stable crack growth. Brust et al [2,3], on the otherhand, showed through
finite element (FE) simulation, that the near field T* integral [4] remained a steady state value
under loading, unloading, reloading and under stable crack growth.

Unlike the J integral, the T* integral is based on the incremental theory of plasticity, T*g |
and is defined by Stonesifer and Atluri [4] as
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AT, = Ir,[AW"h =4+ A)- Ay — Ay, 'u"-‘]ds

where W is the work density and #; and u; are the traction and displacement, respectively. Here
AT*¢ denotes the AT* value associated with a contour, I'g, in the very vicinity of the crack. The

proximity of I'¢ is restricted to the region where plane stress condition prevails and is outside of
the region of three dimensional state of stress at the crack tip. The latter is generated by the finite
thickness of the plate specimen. For a flat crack without a shear lip, Narasimhan and Rosakis [5]
have shown that the state of plane stress prevails outside of one half of the plate thickness.

In theory, the total T*¢ is obtained by summing the incremental AT*g through the plastic

deformation process. Fortunately Pyo et al [6] have found that the total 7% computed directly by
using the stresses and strains based on the incremental theory of plasticity was for all practical

purpose equal to the summed AT*¢. Thus T*g can be computed directly without the cumbersome
incremental summation procedure provided the stresses and strains, on which T*¢ is based, are
obtained through the use of the incremental theory of plasticity. Like the J integral, T%¢ is path
dependent in the presence of large scale plasticity and plastic unloading. Thus, if T¥¢ is to be used

as a fracture criterion, it is imperative that T*¢ be evaluated along a contour, I'g, very close to the
crack tip, such that it can be considered a crack tip parameter. :

In this paper, we present the T*¢ integral values which were determined directly from the

displacement field surrounding a stably growing crack in thin 2024-T3 aluminum compact (CT)
specimens and A606 HSLA steel single edge notched (SEN) specimens.

METHOD OF APPROACH

Experimental Procedure

The experimental procedure consisted of measuring the two orthogonal displacement fields
surrounding a stably growing crack in the CT and SEN specimens using Moir€ interferometry.
Figure 1 shows the 2024-T3 aluminum CT specimen and the A606 HSLA steel SEN specimen,
respectively. A coarse cross diffraction gratings of 40 lines/mm was used to determine the large
plastic strains surrounding the extending crack. A special Moiré interferometry procedure [7],
which combines the advantages of geometric Moiré and the traditional Moir€ interferometry and
uses a low frequency Moiré grating for measuring large strains in the vicinity of the crack tip, was
developed for this ductile fracture study. A special four-beam Moiré interferometry bench was also
constructed for use with this low frequency Moiré diffraction grating.

The strains along the line integration contour for the T*g integral computation were
determined directly from the orthogonal displacement field obtained by Moir€ interferometry. The
stresses corresponding to the total strains were then computed using the equivalent stress-strain
and the measured uniaxial stress-strain data of the 2024-T3 aluminum and the A606 HSLA steel
sheets. This use of the deformation theory of plasticity to compute stresses does not account for
the unloading process which occurs in the trailing wake of the extending crack. However, by
restricting the integration contour very close to and along the extending crack, Okada and Atluri
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[8] has shown that the contour integration trailing the crack tip can be neglected by virtue of the

closeness of the integration path, I'g, to the traction free crack surface. This approximation not

only simplified the integration process but also eliminated the undesirable effect of the deformation
theory of plasticity which is used to compute the stresses from the measured strains.

The crack tip opening angle (CTOA) was also computed by the angle subtended by the
measured crack opening displacement (COD) at a distance 1 mm from the crack tip.

Unit =mm
Thickness = 3.1
Unit : mm
1 Thickness : 1.6

‘4‘ 50.8 ,
76.2 l o \ 5‘4 :
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Y - 152.4 -
r 63.5 >
- 79.4 > ‘
(a) 2024-T3 CT specimen. (b) A606 HSLA SEN Specimen.

Figure 1. Specimens.

Numerical Procedure

A plane stress finite element (FE) model of portion of the A606 HSLA steel SEN specimen
was used for numerical analsysis. The FE model of the SEN specimen was truncated at a 20.8
mm distance from the crack in order to conserve compute time. The measured displacements along
the truncated width of the SEN specimen together with the measured instantaneous crack length
and the measured equivalent stress-strain relation of A606 HSLA steel were used to drive the FE
model in its generation mode based on the incremental theory of plasticity.

The T*¢ integrals along an elongated contour surrounding the stably growing crack of the
SEN specimen was then computed. Unlike the stresses used in the experimental procedure for T%¢
evaluation, the FE analysis provided stresses which accounted for the unloading effect in the
trailing wake of the extending crack tip. Therefore, the entire contour was used for T*¢

evaluation. Numerical errors in the FE data in the vicinity of the crack tip were masked by
replacing the contour integral by the equivalent domain integral of Nikishkov and Atluri [7]. To

recapitulate, T*¢ evaluation procedures for the Moiré and FE studies differ in that the former




involved only the frontal segment of a near-field contour, I'g, while the latter involved an
equivalent domain integral over the entire crack length.

RESULTS

A total of four 2024-T3 aluminum CT specimens and four A606 HSLA SEN specimens were
analyzed. Figures 2 and 3 show typical Moiré interferometry patterns of the u- and v-

0
(a) u- field. b) v- field.
Figure 2. Moiré fringe patterns of 2024-T-3 CT specimen.
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Figure 3 Moiré fringe patterns of A606 HSLA SEN specimen.
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displacement fields of an 2024-T3 aluminum CT specimen and an A606 HSLA steel SEN
specimen, respectively. Also shown are the elongated I'g contour of € = 2.0 mm along the

extended crack in the 2024-T3 aluminum CT specimen and € = 2.0 mm for the A606 HSLA steel

SEN specimen. These £'S are over a one half of a plate thickness away from the crack tip where

the state of plane stress is thought to prevail even in the presence of 100 percent shear lips in the
crack.

Figure 4 shows the experimentally and FE determined T* for the 2024-T3 aluminum CT

and the A606 HSLA SEN specimens. The maximum crack extension, Aa , for the 2024-T3
aluminum and A606 HSLA steel specimens were 5.5 and 8.0 mm, respectively. Also shown for

comparison is the experimentally and numerically determined T*¢ for the same I'g in a thinner
2024-T3 aluminum SEN specimen [10].

Figure 5 shows the experimentally determined crack tip opening displacements (CTOA).
The CTOA for the aluminum SEN specimen is in excellent agreements with that of the 2024-T3
aluminum SEN specimen [10] as well as that of Dawicke et al [11].

Unlike the increasing J resistance curve determined by the ASTM Standard testing

procedure, or the vanishing J for the near field solution, the 7¥¢ for a given I'¢ shown in Figure 4

and the CTOA shown in Figure 5 both reached physically more realistic steady state values with
stable crack growth.

CONCLUSIONS

1. T*g computed from the displacement fields, which were obtained experimentally and from

finite element analysis, of the A606 HSLA steel SEN specimens were in good agreement
with each other.

2. Computed T*¢ values are domain-size independent and tend to converge to a stationary
value for a smaller inner contour, I'¢ of € = 2.0 mm for the 2024-T3 aluminum CT
specimen and € = 2.0 mm for th A606 HSLA specimen.

3. T*g did not reach a steady state value for Az = 8.0 mm during stable crack growth in a thin
A606 HSLA SEN specimen.

4. Computed and measured CTOA reached a steady state value of 5 and 159, respectively,

after a stable growth of about Aa = 2.0 mm in the 2024-T3 aluminum CT specimen and .
A606 HSLA steel SEN specimen.
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Abstract

A fundamental process during any multiphase flow in porous media is the breaking
apart of one of the phases-into smaller components. Here we investigate this breaking
process as applied to a thin liquid film. We study the breaking of both a two dimensional
planar film and a cylindrical thread of liquid using both analytical and numerical methods.

INTRODUCTION

Multiphase flows in porous media occur in many situations of practical interest. An example
with application to enhanced oil recovery is foam flow in porous media. Here a gas and
surfactant solution is injected into the ground. This then generates a foam which is used to
drive the oil out. The foam is composed of alternating regions of liquid and gas with the liquid
primarily in the form of a thin liquid film coating the solid portions of the pores or in the
form of thin liquid lamellae which separate the gas regions and move with the gas down the
pore channel. As the foam moves within the porous material, these liquid films can break or
rupture forming larger gas bubbles within the material. In addition, the formation of the foam
itself is associated with a film rupture process called snap-off where a large gas bubble is driven
through a constriction in the pore channel, becomes unstable and splits into two parts (Tsai
and Miksis [1].) Our aim here is to study this rupture process. We will consider a model for
the dynamics of a thin viscous film which is valid for long wave (relative to the film thickness)
disturbances. The model accounts for the effects of surface tension, inertia and van der Waals
forces. We begin by studying a two dimensional planar film. Numerical and analytical results
close to rupture will be presented. We will also study a thin three dimensional axisymmetric
liquid thread.

There have been a number of works recently concerned with the breaking of either thin 2-D
liquid films or axisymmetric threads of liquid. For example, Dupont et al. [2] analyzed the in-
terfaces between two liquids under the influence of surface tension (but without van der Waals
forces). Rupture in a finite time is observed numerically and the region near rupture is scru-
tinized for a similarity solution. Considering the finite-time rupture of thin fluid layers in
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h(x,t)

Figure 1: Time series evolution of an unstable thin film for A = 1 and § = A/x% = §./2.
hO)(z,t) is shown for ¢ = 0,0.1,0.2,...,1.4,1.5,1.52129982.

Hele-Shaw flows, Goldstein et al. [3] studied a lubrication model for the dynamics of the
fluid interfaces. Based upon their numerical studies, they concluded that the Bond number
(van der Waals forces were not included in their model) plays a decisive role in the character of
the solutions near rupture. Additionally, they investigated the region near rupture numerically
and conjectured a power-law form for the interface (b « (¢t — ¢,)® where § was numerically
found to be equal to 1.45 + 0.05). Claiming the existence of “universal exponents,” Eggers [4]
considered the rupture regions of thin axisymmetric threads of liquid. In the same context, i.e.,
the thinning of threads of liquid, Eggers and Dupont [5] analyzed the “pinching” singularity
observed experimentally. Their model equations included the effects of surface tension with
the full curvature term, but neglected the role of van der Waals forces.

TWO DIMENSIONAL THIN FILMS

We will use the two-dimensional free film equations of Erneux and Davis [6]. These equa-
tions were derived asymptotically in the long wave limit. For convenience, we summarize those
equations here. Consider an incompressible film of density p and dynamic viscosity p. Intro-
duce 2 two-dimensional (z, z) cartesian coordinate system. Let b be the unit of length in the z
direction and let Ao, the undisturbed film thickness, be the unit of length in the z direction. In
addition let u/bp be the unit of velocity and pb?/u the unit of time. Specify the symmetric film
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interfaces by z = +h(z,1), here ¢ is time, and the transverse component of the fluid velocity
in the z-direction by u(z,t). In the limit ho/b < 1, the leading-order evolution equations for
these two quantities are then,’

oh oh ,0u

5" "5 "o ()
du 40h0u 0%u ou
5 = hosos e “oz (2)
8h 34 0h
3555+ s g

where § = yopho/3p? is 2 nondimensional constant which encompasses the dimensional sur-
face tension 7o, and A = pb?A/6wh3u? is a dimensionless constant which encompasses the
effects of van der Waals forces through the Hamaker constant A. We will assume periodicity
on the interval z € [~1,1] so that about the origin ¢ = 0, h is even (A(-z,t) = h(z,1))
and u is odd (u(—z,t) = —u(z,t)). Fig. 1 demonstrates a typical unstable numerical so-
lution to these equations. The parameter values are A = 1 and § = A/x%. The initial
conditions used are u(z,0) = 0 and A(z,0) = 1/2 — (0.1) cos7z, and solutions are shown
for t = 0,0.1,0.2,...,1.4,1.5,1.52129982. Note that near rupture (h — 0 at z = 0), the
numerical solution appears to have taken on a similarity form. Our aim is to identify this
dynamics. Erneux and Davis [6] have show that a uniform thickness film is linearly stable
when § > 2A4/n?. Hence we will select our parameters to fail this stability criterion in order
to observe rupture.

In order to resolve the form of the solution near the point of breakage, we define the
following similarity variables,

T =1, —t, (32)
£=ar?, (3b)

where ¢, is the time of rupture. We then assume the following forms for ~ and u,

h = TH(E), (42)
u=rTU(E). (4b)

The forms of these solutions are suggested by the rapid variations in both space and time
near the point of rupture. Now substitute the similarity forms into the evolution equations (1)
and (2). Suppose we balance all the terms in (1). We find that T = 8 — 1. Now consider the
other equation. Here there are several possible terms which could be balanced, each giving a
different answer. We claim that the viscous and van der Waals terms must balance (this will be
verified numerically later). Hence this assumption implies that we need to balance the terms
of O(77~?P) with those of O(7~3*~F). This implies that = 1/3. Hence we have determined
that I' = 8 — 1 and a = 1/3 but we have not determined the specific values of 8 and I' from
this dominate balance argument.

Now we will examine the evolution of the interface numerically. To obtain extreme spa-
tial accuracy in the region near rupture while maintaining a reasonable execution time, an
adaptive regridding finite-difference algorithm based upon that employed by Bernoff and
Bertozzi [7], Bertozzi [8] and Dupont et al. [2] has been used to solve equations (1) and
(2) (see Ida [9] for details). The results of a systematic examination of the observed expo-
nents are summarized in table 1. In each case, the same initial conditions ((k(z,0),u(z,0)) =
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ezponents A=1 A=5 A=10

@ 0.3438428 + 0.002986701 0.3381307 £ 0.00352386 0.3365617 + 0.003716294
a—2f | —0.4422666 4 0.006927182 | —0.5384250 £ 0.012368135 | —0.58326818 =+ 0.01416819
T'—p |-1.0124770 £ 0.004877930 | —1.0181044 = 0.004328344 | --1.0192778 - 0.004913314

Table 1: Results of a systematic study of the exponents in the similarity solution for
the free film near breaking. For each value of A, values are averaged over § =
{0, A/4x? A/272%,3A/4n2, A/ x?}.

(1/2 — (0.1) cos 7z, (0.1)sinmz)) are used; and for each value of A = {1,5,10}, values of
S = {0, A/4n? A/2x% 3A /472, A/7?} are employed. For each value of A used, the values of
the exponents are then averaged, with the results and their standard deviations presented in
table 1. From the values of the standard deviations, which never exceed approximately 2%,
we see that the values of all exponents appear to be independent of §. We find, however, that
while o and T’ — § appear to be independent of A (each is within an interval of approximately
two standard deviations in width, and within approximately four standard deviations of their
expected values of 1/3 and -1), & — 20, the exponent for g—:’}(o,t) which would result from (4),
is not (the interval needed to contain it is on the order of 20 standard deviations). Thus, our
assumption concerning the balancing of the terms seems to be confirmed.

We would now seem to have satisfactory proof as to the correct form of the similarity
solution. Thus, we find that o = 1/3, and that ' —~ 8 = —1 but T and 8 are undetermined.
We speculate that the constants § and T are to be determined through a matching procedure
to a more complex solution of the full evolution equations in the outer region away from the
point of rupture.

In conclusion we note that we have identified a similarity form for the film thickness and
transverse velocity of a two-dimensional thin free film near rupture. We have found that
van der Waals and viscous forces dominate the evolution, still leaving a single degree of freedom
(the value of either § or T') in the precise specification of the form of the solution. This
undetermined constant could in principle be determined through a matching procedure to the
outer flow field away from the immediate vicinity of rupture. Similarity solutions of this type
have been discussed by Barenblatt and Zel’dovich [10].

THREE DIMENSIONAL LIQUID THREADS

In this section, we investigate a set of evolution equations for the dynamics of a thin,
axisymmetric thread of liquid [9]. The equations can be derived by a long wave analysis [9].
The effects of a van der Waals like force will be included in our model, in addition to the effects
of surface tension, inertia and viscosity.

We begin by considering an infinite, periodic, axisymmetric thread of liquid of density p
and kinematic viscosity v oriented along the # axis of a cylindrical coordinate system. Denote
the fluid velocity by ¥(7, 2) = @.(7,2)r + i;(,Z) z where r and z are the unit vectors in the 7
and Z directions respectively. Let 7 = h(z ?) represent the fluid interface, n and 7 the surface
tension on it. In order to extract a tractable problem we perform a long wavelength analysis
of the the equations of motion. Let b be a typical wavelength of the system and kg be a typical
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thread radius such that € = ho/b < 1. The leading order in € equations of motion are [9]

O0h oh hou, -
% " 20 (5)

and

du, 60h0u, 8%y,
3 ~hoz oz ooz (6)

—u23z+h23z +h2 ’

Here we have introduced the dimensionless variables i, = (gu/b)un %, = (v/b)u,, Z = bz,
7 = hor and kb = hoh. In addition we have scaled time by b%/v and the pressure difference
by (pvz/bz) Similar to the previous section we introduce the dimensionless constants § =
vb/epr? and A = (48pv?h3/B?)A, where we have assumed that there is an attractive van
der Waals like potential of the form A/h3. Together, equations (5) and (6) constitute a set
of evolution equations for the two quantities ~ and u,. These equations are identical to the
evolution equations obtained by Eggers and Dupont [5] with gravity replaced by van der Waals
attractions.

Note that the pressure scale specified here is slightly different from that used in the analysis
of thin films. In particular, if pgi, is the pressure scale used in the thin film scalings of the
previous section and pipreq is the pressure scale used here, then we have that pgim /Pikread = €.
This larger pressure scale is necessary to balance the radial curvature which is now large
because of the thinness of the thread and the hoop stress it induces in the normal stress
boundary condition.

Suppose that we use the full curvature in the equations, not the asymptotic correction as
done above. Then we find that equation (6) becomes,

du, 60h0u, _0%, Ou, 3A0h

B "ho:0x P02 “ox VW es ™
2
oh 0%h 3 (@)
— — 2
0z 1 022 07
+s an\2 | h? Y on\?
oh k|1 —) ok
1+<6z> l[ +(6z ] [1+(6z)]
o°h
828

The form of equation (7) is now quite similar to the transverse velocity evolution equations
previously derived for thin films (equations (1) and (2)). In particular, the highest-order
derivative multiplying the surface tension parameter, S in (7) is now a third-order spatial
derivative as it is in the thin film evolution equations. This is in marked contrast to the
evolution equation (6) derived using the correct asymptotic expression for the curvature where
the the highest-order derivative multiplying S is only of first-order.
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Figure 2: Evolution of an unstable perturbation to the thin thread equations solved using the
finite-difference scheme. The parameter values used are § = A = 1; and solutions are shown
for ¢ = 0,0.01,...,0.25,0.2572390625.

To consider the linear stability of the evolution equations (5) and (6) we perturb in normal
modes about the steady-state solutions h = h = const. and u, = 0,

h _ il ’\;' wttikz
(0)=(8) (&) ©

Linearizing and applying a solvability condition, we obtain the dispersion relation for the

growth rate, w,
3k2 2 34
=—|-14£,4/1 = (.S' -.—) . 9
¢ 2[ \/+9k2h +h2] ®)

Since the larger value of w > 0 for all values of the parameters involved, we find that the
steady-state solution is unconditionally unstable.

If we now use the full expression for the curvature and we analyze the linear stability of
equations (5) and (7), we find that the dispersion relation is instead given by,

3k? 2 - 3A
=22 ) i — k2j2) 4+ 22
w=— { 1:}:\/1+9k27z[5(1 kh)-l-ﬁz]}. (10)

Since there are now values of the parameters for which both values of w may be negative and
the steady-state stable, we find that the condition for stability is k¥ > k. where,

1 [ 34
k = = 1 —_. 11
Tk +5h2 (11)
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Figure 3: Evolution of an unstable perturbation to the thin thread equations solved using the
finite-difference scheme. The parameter values used are S = 100 and A = 1; and solutions are
shown for ¢t = 0,0.01,...,0.09,0.10,0.10756.

In this instance, the largest eigenvalue is positive only over a finite range of k.

Now consider the numerical solution of the evolution equations discussed above assuming
periodicity on the interval z € [—1,1]. The finite-difference approximation used earlier for the
two-dimensional thin film (see Ida [9] for details) is used here.

Figs. 2 and 3 are representative of the types of solutions of the coupled nonlinear system (5)
and (6). Each figure is started with the same initial conditions, (h(z,0),u.(2,0)) = (1/2 —
(0.1) cosz,0), and with the same value of A = 1. In fig. 2 we set § = 1 and show solutions
for t = 0,0.01,...,0.25,0.2572390625 and in fig. 3 for which S = 100, solutions are shown for
t=0,0.01,...,0.10,0.10756. What we find, by resolving the region near rupture more closely,
is that a pair of “dimples” forms off of the axis of symmetry (z = 0) and leaves an isolated thin
packet of fluid remaining. We see that as S increases, the size of this packet of fluid increases
with the rupture points moving further away from the axis of symmetry. If we were to focus
our attention on the region near rupture, we see the formation of the “dimpled” structure
before the onset of numerical instabilities. (We found these instabilities extremely difficult to
eliminate, because the growth-rate in equation (9) is monotonically increasing Vk > 0, and the
film is unconditionally unstable. Thus, the onset of instabilities exhibited in shorter wavelength
modes is not limited by a cutoff wavelength.)

If we solve the equations utilizing the full curvature term, (5) and (7), we obtain solutions
where the rupture point is more localized and the dimple seems to disappear. Only order
one values of S have been considered and larger values need to be studied to confirm this
conclusion.

In conclusion we note that in this section we have studied a set of leading-order evolution
equations for the interface shape and transverse velocity of an axisymmetric thin liquid thread
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subject to a van der Waals like force. Based upon a linear stability analysis, we have found
these equations to be unconditionally unstable. These equations have been solved numerically.
We find that as the effects of surface tension are increased, rupture occurs over a wider spatial
domain, and a “dimpled” structure is exhibited. This is in marked contrast to the characteristic
rupture behavior of thin films which is confined to a small spatial region.
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ABSTRACT

A line-focus acoustic microscope is used in conjunction with a multiple
wave-mode method to determine elastic constants from a single V() mea-
surement. V(z) curves which include contributions from different wave modes,
measured using the line-focus acoustic microscope at 225 MHz, have been com-
pared with theoretical results predicted by a V(z) measurement model. The
determination of elastic constants has been achieved numerically by seeking a
set of elastic constants that leads to the best fit, in the least square sense, of
the theoretical results to the experimental ones. The method has been applied
to isotropic materials in bulk, and plate and thin-film configurations. Elas-
tic constants for each of these cases have been determined. The consistency,
convergence, sensitivity and accuracy of the procedure have been investigated.

INTRODUCTION

4

Line-focus acoustic microscopy (LFAM) provides a method to determine the elastic
constants of homogeneous specimens and thin-film/substrate configurations. The elastic
constants are determined from the velocities of leaky acoustic waves that can be obtained
from V/(z) measurements. The V(2) curve, which is a record of the transducer output volt-
age V as a function of the distance z between the lens focus and the specimen surface, is
unique to a material and referred to as the material signature. Generally speaking, more
than one elastic constant has to be determined, and hence more than one data point is re-
quired. Hence, for isotropic materials sufficient data cannot be procured with a single mode.
For anisotropic solids the velocity can be measured as a function of the angle defining the
propagation direction on the surface to yield a sufficiently large set of data. The technique
has been discussed in great detail in a recent review article, which also lists numerous ref-
erences [1]. For thin-film/substrate configurations measurements at various frequencies or
for different film thicknesses may be carried out to obtain sufficient data using standard
measurement procedures [1]. There are, however, obvious advantages to work with a sin-
gle specimen and at a single frequency. As discussed in this paper, this can be done by
considering the contributions of more than one leaky wave mode to the V(z) curve.

This paper presents a multiple mode method to determine, with a single-frequency
V(z) measurement on a single specimen, the elastic constants of bulk isotropic solids, thin
isotropic plates and thin-films on substrates. The V(2) curve which includes contributions
from multiple leaky acoustic waves has been measured experimentally using a line-focus
acoustic microscope at 225 MHz. V(z) curves have also been simulated numerically using a
measurement model with selected elastic constants. Both the experimental and the numer-
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ical V(2) curves go through the same V/(2) analysis to yield their respective predictions for
the leaky acoustic wave velocities. The determination of elastic constants is then achieved
through minimization of the differences between the theoretical predictions and the experi-
mental results by a numerical iterative searching procedure known as the simplex method.
The accuracy, consistency, convergence and sensitivity of the numerical inversion have also
been studied in this paper.

THIN FILMS

Thin film materials are already widely used, and they promise to have significant addi-
tional applications in future technology. There are many present and potential applications
of configurations consisting of thin films deposited on a substrate.

A first important application is concerned with thin coatings to protect surfaces of com-
ponents from wear, impact, corrosion, and thermal disturbances. Hard and wear-resistant
coatings are an important segment in the US and world economy. The need to extend the
wear-life using coatings is not only to save cost, but also reduction of downtime.

Diamond film has a number of remarkable properties. It is the hardest substance
known, and it has a higher modulus of elasticity than any other material. When free of
impurities, it has one of the highest resistivities. It also combines a very high thermal
conductivity with a low thermal expansion coefficient to yield high resistance to thermal
shock. Lastly, diamond is very resistant to chemical attack. However, diamond coatings are
not good with ferrous alloys because diamond reacts with steel at high temperatures.

Transition-metal nitride films are commonly used as hard, protective coatings for softer
surfaces. Superlattice films, including TiN/NbN, TiN/VN, and TiN/VNbN, have, however,
been shown to exhibit much higher hardness than homogeneous nitride films. The elastic
constants of these films on a substrate are difficult to measure.

LINE-FOCUS ACOUSTIC MICROSCOPY

An acoustic microscope consists of four main components: the acoustic probe, the pulse-
mode measurement system for transmitting and receiving electrical signals, the mechanical
systems for alignments and movements of the sample and a computer for controlling the
system and processing the recorded wave forms. :

The propagation of surface acoustic waves along the interface of a solid material and
air or water provides a useful means to determine material constants of the solid by mea-
suring propagation velocities. For small specimens, or when local values of the material
constants must be determined, the measurements require small wavelengths correspond-
ing to high frequencies. For such cases a single water coupled focused transducer can be
used advantageously, and the ultrasonic technique is referred to as quantitative acoustic
mMicroscopy.

Particularly useful is a water-coupled line-focus acoustic lens since such a lens allows
the measurement of the SAW velocity in specified directions. Hence line-focus acoustic mi-
croscopy (LFAM) has been used to determine the elastic constants of anisotropic materials.

The best known technique measures the V(z) curve, which is a record of the magnitude
of the transducer’s voltage output V as a function of the distance z between the focal line
of the lens and the specimen surface. It can be shown that the spacing of peaks or valleys
in the oscillatory V(z) curve is directly related to the propagation velocity of the surface
wave, see [1]-[2].
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V(z) Curve Measurement

The experimental results have been obtained with a Honda AMS-5000 ultrasonic mea-
surement system and a line-focus acoustic lens operating at 225 Hz. The detailed de-
scription of this system can be found in Reference [1]. Figure 1 shows schematically the
configuration of the acoustic probe and the specimen. A ZnO-film transducer generates and
detects longitudinal waves at the flat surface of a Z-cut sapphire rod. The acoustic beam is
focused by an acoustic lens with a cylindrical concave surface at the other end of the rod.
The cylindrical concave surface has a radius of 1.0mm and an aperture half-angle of 60°.
The operating frequency is around 225M Hz and the focal length of the lens is 1.15mm. For
efficient transmission of acoustic waves through the lens couplant interface, a chalcogenide
glass film with a quarter wavelength thickness is deposited on the cylindrical concave sur-
face. A specimen is placed on a mechanical stage, translated in the vertical direction and
rotated around the axis of the rod.

/ transducer

7777777

acoustic
lens

|, anti-reflection coating

coupling water

Figure 1: Cross-sectional configuration of the line-focus acoustic probe.

V(z) Measurement Model

Basic to the interpretation of V(z) curves is a reliable measurement model. A V(z)
measurement model simulates the measurement procedure, including any systemic errors
that may occur in the determination of the velocity from experimental V(z) curves. For
example, effects due to multiple modes, will be replicated in the numerical model. The
material constants obtained from comparisons of results from the measurement model and
experiments will, therefore, be free of these systemic errors.

A measurement model for the V(z) curve has been described in detail in Ref. [1]-
According to the model, the output voltage of the transducer can be expressed as

Vi) = ";°° exp(2ik,2) Ly (o) La(ks) R(k2)dke (1)
77




where k, = (k2 —k2)'/? and k,, is the wave number in the coupling fluid. Ly (k) is the angular
spectrum of the wave fleld at the focal plane generated by a plane wave in the buffer rod,
and Ly(k;) is the voltage response of the transducer when a plane wave of unit amplitude
and wave vector (k;, k) is insonifying the lens. A detailed description and discussion of the
angular spectrum function Ly (k) and the response function Ly(k;) can be found in Ref. [1],
where integral expressions as well as numerical calculations have been presented. R(k,),
which is the reflectance function of the fluid-loaded specimen, can generally be expressed

as: A BB
AT jB 2)

where 8 = ipyw?/k,, and p,, is the coupling fluid density. A and B have different definitions
for different sample geometries. For a fluid-loaded bare-substrate-specimen or a fluid-loaded
layered-specimen, A and B can be found in Ref. [1]. For a fluid-loaded plate-specimen,
a numerical approach proposed by Chimenti and Nayfeh [3] has been adopted here. A
sumn[rlary of the calculation of R(k;) for an isotropic plate is given in the Appendix of
Ref. [4]. .

T<]) determine the leaky surface wave velocities a procedure completely analogous to the
one for the experimental V' (2) curve is applied to the theoretical result given by Eq. (1).

R(k;) =

Determination of Elastic Constants

The elastic constants are obtained by seeking a set of elastic constants that yields the
best fit in the least square sense of the theoretical predictions to the experimental results.
A numerical iterative searching procedure known as the simplex method has been used
to find the set of elastic constants that minimizes the deviation between theoretical and
experimental results.

A dimensionless deviation function, D, is defined in terms of the measured and the
calculated quantities as:

} ®)

N
D=%" {W,S”)
n=1
where v™ and AT are the velocity and the peak-amplitude in the Fourier domain of the
n-th leaky surface mode obtained from the measured V(z) curve; v and A are the same

quantities obtained from the calculated V(z) curve. It is noted that different weights, W)

and W4, have been imposed on the differences in velocities and spectrum amplitudes in
order to get the best results. Both experimental and numerical errors have been taken
into consideration in choosing these weights. For example, more weight has been put on the
velocity part than on the amplitude part, because the accuracy of the velocity measurements
is usually about an-order-of-magnitude better.

The selection of the starting values for the application of the simplex method is in
general a matter of trial and error. Different selections of the starting values should yield
the same answer, but due to the existence of local minimums, a good initial guess of the
starting values is very important for quick convergence to the true values.
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SOME RESULTS

Specimens with three different sample configurations have been tested. Bulk specimens
include a modified borosilicate glass AF45, a glass slide and an aluminum sample; the plate
specimen is a modified borosilicate thin glass plate D263 of 50 pm thickness; and thin-film
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specimens include a 2.2 pm titanium-film deposited on an aluminum substrate and a 0.1 pm
gold-film deposited on a glass-slide substrate.

For the bulk specimens, the leaky Rayleigh wave and the LSSCW have been used for
the determination of the elastic constants. For the D263 glass plate the zeroth-order Lamb-
mode and a higher-order Lamb-mode have been used. For the thin-film /substrate specimens,
multiple LSAW modes have been used to determine the thin-film elastic constants. The
dispersive leaky Rayleigh wave and the LSSCW have been used for the titanium-film on
an aluminum substrate configuration, and two generalized leaky Lamb modes, namely the
dispersive leaky Rayleigh wave and the leaky Sezawa wave mode, have been used for the
gold-film on a glass-slide substrate configuration.

The determined elastic constants are listed in Table 1. Known values of the densities
and thicknesses have been used. For the thin-film/substrate cases, the elastic constants of
the substrates were known. It should be noted that accurate information of the substrate
properties is very important for the determination of thin-film constants. Elastic constants
determined in this paper for the bulk aluminum and the glass-slide have been used for the

substrates.

Table 1: Elastic constants determined for materials in various configurations.

‘ A Determined
Specimen Thickness | Density | Waves or Modes | Elastic Constants
(um) (kg/m®) used (GPa)
E G
AF45 Glass N/A 2720 leaky Rayleigh 63.2 25.6
(bulk) & LSSCW
Glass Slide N/A 2459 leaky Rayleigh 71.0 28.5
(bulk) & LSSCW
Aluminum N/A 2700 leaky Rayleigh 70.4 26.3
(bulk) & LSSCW
D263 Glass 50 2510 0-th Lamb 73.1 30.6
(plate) & higher Lamb
dispersive
Titanium film 2.2 4508 leaky Rayleigh 87.7 33.2
(on Aluminum) & LSSCW
dispersive
Gold film 0.1 19281 leaky Rayleigh 79.5 28.0
(on Glass slide) & leaky Sezawa
DISCUSSION

Comparisons between Theoretical Predictions & Ezperimental Results

The sets of elastic constants that have been determined can be verified by comparing
the corresponding theoretical velocities with the experimental results. Figure 2(2)(b) shows
V(z) curve and V(k) curve comparisons, where the dashed lines are the experimental results
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and the solid lines are the theoretical predictions using the determined elastic constants.
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Figure 2: (a) V(z) curve comparisons for AF45 bulk glass. (b) V(k) curve comparisons for
AF45 bulk glass. '

Consistency of Determined Elastic Constants

The elastic constants that have been determined from one set of experimental data can
be checked by using them to calculate V(z) curves for another independent experimental
setup. For example, the elastic constants of D263 glass plate that have been determined from
the water/plate/air configuration can be verified using the water/plate/water configuration.

Convergence due to Use of Multiple Leaky Acoustic Waves

As discussed in section 2.4, the numerical procedure includes information from different
leaky acoustic waves. The use of multiple leaky wave information reduces the region in the
plane of the material constants E and G for which the deviation D, defined by Eqn. (3), has
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a prescribed small value. This improves the convergence of the procedure. For the AF45
bulk glass sample, Figure 3 shows the reduction of the region for D < 0.024 due to the use
of multiple leaky acoustic waves. Figure 3 displays the changes of the deviation field D as
the Young’s modulus and the shear modulus vary around the determined values for the five
cases: (a,? if only leaky Rayleigh wave velocity information is used for the minimization of D;
(b) if only LSSCW velocity information is used; (c) if only leaky Rayleigh wave amplitude
information is used; (d) if only LSSCW amplitude information is used; (e) if all the above
(a)-(d) have been used and combined in Eqn. (3).

It is interesting to note, from Figures 3(a)-(d), that despite the obvious convergence
problems implied by the extent of the dark areas, the areas have different slopes. It is
the different directions of the slopes in Figure 3(a) and Figure 3(b)(c)(d) that lead to the
convergence of our numerical inversion when Eqn. (3) is used, as indicated by the finite
extent of the dark domain in Figure 3(e).

CONCLUSIONS

V(z) measurements of multiple leaky acoustic waves by line focus acoustic microscopy
have been used to determine elastic constants. The method presented in this paper has the
advantage that it requires only a single V(z)-curve measurement by the LFAM. It serves
as a very effective approach to determine elastic constants of a single isotropic specimen
since only one single-frequency V(z) measurement is required. Elastic constants for isotropic
materials in bulk, and for plate and thin-film/substrate configurations have been determined
to satisfactory accuracy. It has been shown that the use of multiple leaky wave information
reduces the region in the plane of the material constants E and G for which the deviation
D has a prescribed small value. This improves the convergence of the method. Consistency
of the results has been shown by verifying the elastic constants determined from one set of
experimental data with results from another experimental configuration. The sensitivity of
the deviation D to variations of the elastic constants has also been investigated. Generally
D is more sensitive to changes of Young’s modulus.
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Deviation D

Figure 3: Reduction of region for D < 0.024 when multiple leaky acoustic waves/wave
parameters are used for AF45 bulk glass. (a) Deviation field when only leaky Rayleigh wave
velocity is used; (b) Deviation field when-only LSSCW velocity is used; (c) Deviation field
when only leaky Rayleigh wave amplitude is used; (d) Deviation field when only LSSCW
amplitude is used; (e) all of the above have been used.
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ABSTRACT

An experimental study was carried out on the tribological behavior of mate-
rials of interest in éryogenic applications, focusing on diamond and graphite.
Both natural diamond (referred in the text as diamond) and chemical-vapor-
deposition (CVD) diamond (CVD-diamond) were used. The experiment
was carried out using a pin-on-disk tribometer capable of operating at cryo-
genic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were
used: 1) frictional coefficient (i) vs velocity (v) characteristics at constant
temperatures; 2) g vs temperature (T) behavior at fixed sliding speeds.
For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-
diamond pairs, p’s are virtually velocity independent. For each of dia-
mond/graphite, alumina/graphite, and graphite/graphite pairs, the ou/ov
characteristic is favorable, i.e., positive. For diamond/CVD-diamond and
graphite/CVD-diamond pairs, p’s are nearly temperature independent be-
tween in the range 77 — 293 K. Each p vs T plot for pin materials sliding on
graphite disks has a peak at a temperature in the range 100 — 200 K.

INTRODUCTION

The principal objectives of this research were to advance the theoretical understanding of
low-temperature sliding behavior and to expand the cryogenic tribology data base, par-
ticularly for very hard materials. Hard materials are of interest because of their generally
high load bearing capacities, low friction coefficients, and wear resistance. The emphasis
here is on the frictional behavior of materials of interest to cryogenic applications sliding
against CVD-diamond film and graphite.

Early in the next century, high-temperature superconducting (HTS) technology and cryo-
genics are expected to play key roles in competitive global markets encompassing energy,
information, medicine, transportation, space, and basic science [1]. We have been studying
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the cryotribology of materials relevant to applications in these fields. A notable recent de-
velopment in “new materials” is the remarkable progress achieved in materials fabrication
techniques, e.g., chemical-vapor-deposition (CVD), for synthesizing diamond films. The
CVD-diamond films possess properties very similar to those of bulk diamond, making them
promising for new applications such as in HTS magnet technology. The CVD-diamond
may be usable in HTS magnets as an interface material as a good electrical insulator as
well as a good thermal conductor.

TRIBOLOGY OF DIAMOND AND GRAPHITE

The friction of diamond and graphite has long been known to be low [2]. Gardos and
Soriano (3], Samuels and Wilks [4], Kohzaki, et al. [5], Jia, et al. [6], Bowden and
Hanwell [7] have reported on the frictional behavior of diamond, either natural or CVD-
processed film, and found both to have low values of friction coefficient, typically 0.05-0.1,
with materials exposed in the atmosphere. Mody, et al. [8], Petlyuk, et al. [9], Khopin
[10], Nishiyama, et al. [11], Cameron [12] have reported frictional data for graphite and
graphite-filled composites. Their results indicate values in the range of 0.05 — 0.15."

EXPERIMENTAL PROCEDURE AND MATERIALS

Apparatus The tests were performed with a rotational pin-on-disk tribometer built
to keep specimens at cryogenic temperatures in the range 4.2 — 293K [13]. A rotating
specimen disk slides against three hemispherical specimen pins, symmetrically spaced
on a 5l-mm bolt circle diameter. The specimens are immersed in a cryogen to achieve
and maintain the test temperature: nitrogen (77K) and helium (4.2K). The tribometer
operates at a constant nominal sliding velocity, ranging from 10~7 to 0.1m/s. Velocity
is regulated through a computer-controlled DC servo motor and a set of precision gear
reducers. Normal loads (7.5 — 22.4N) are applied by placing weights on the load ring
which transfers the force through a pulley system. A constantan-chromel thermocouple
imbedded in the stationary disk sample monitors the specimen temperature.

The friction force is measured by strain arms which prevent the rotation of the specimen
pins. The friction force is monitored continuously during test with a computer-based data
acquisition system. Although the use of spherical pins results in highly localized contact
at the sliding surfaces, the friction coefficients obtained under these conditions are valid
because the frictional force is generally independent of the apparent contact area [14].

Materials Table 1 presents a listing of the Table 1: Pin and Disk Materials
materials tested, both in disk and pin form.

The mechanical properties of the materials Pin Materials Disk Materials

are well known at room temperature and to Natural diamond CVD-diamond film
a lesser extent at cryogenic temperatures [15 Graphite Graphite

—17]. It is not the intention of this project to Copper Copper

examine all possible combinations of materi- Stainless steel®  Stainless steelt
als, but rather to test certain combinations Alumina

that were of interest. * AISI440C (pins) and AISI316 (disks).
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Both diamond and graphite are crystalline forms of carbon [18]. Diamond is a covalently
bonded solid; its bonding arrangement comprises four equivalent covalent bonds directed
towards the four corners of a tetrahedron. By comparison, graphite is a layer-lattice ma-
terial consisting of three equivalent 120° bonds in the basal plane with a fourth, hybrid
resonant orbital directed perpendicular to the plane [19]. Graphite’s solid lubricant be-
havior is chiefly due to the easy shear of these interplanar hybrid orbitals. The microwave
plasma CVD method was used to synthesize the diamond-coated films for our cryotri-
bological study. In the microwave method, a substrate is placed in a quartz tube and a
stream of hydrocarbon gas, e.g., methane diluted by hydrogen, is converted into a film
of crystalline diamond by microwave heating. Although silicon is the standard material
for substrates, several other substrate materials are possible, including ceramics (silicon
carbide, tungsten carbide, silicon nitride, alumina) and metals (tantalum, molybdenum,
and tungsten). The diamond is deposited on the substrate at a rate of 0.3 — 0.5 um/h.
The substrate material used in the experiments was silicon.

Pin and Disk Preparation Graphite pins were obtained as 6.35-mm (1/4-in) diameter
rods and turned to their final shape with a radius form tool. Alumina and AISI440C
stainless steel pins were obtained in the form of 6.35-mm diameter balls. Three natural
diamond pieces, each approximately 1/3 carat and of irregular shape were mounted to
allow contact with the specimen disks. The graphite disks were machined from plate
stock and faced with a single point cutting tool to remove surface'irregularities. The disks
were then randomly abraded against 320-grit silicon carbide paper under running water.
This cleaned the disks and provided a consistent surface finish between tests. Since water
does not wet a surface contaminated with organic contaminants, a disk was deemed clean
when a water layer wetted the surface.

Surface Cleaning Before a test, three of the desired pins were mounted in a brass
specimen holder, wiped clean with a swab soaked in methanol, allowed to air dry, and
placed into the apparatus. Each disk was first rinsed with methanol to displace the water
layer and air dried on clean tissue paper. Later, it was placed in an oven at approximately
100°C overnight, to bake away any residual contaminants on the surface.

Testing Two types of measurement were performed: 1) friction (i) vs velocity (v) at
constant temperatures (4.2, 77, and 293 K); 2) p vs temperature (T") at a constant sliding
velocity of 1075 m/s. For each speed setting, a distance of at least 3mm was covered to
allow the measured friction to achieve a steady value [20]. A velocity of 105 m/s used
in p vs T measurements allowed a sufficient number of data points at a given, though
not absolutely constant, temperature and yet limited the total sliding distance of the run
to ~2m. A slowly changing temperature environment could be created in the cooldown
process during cryogen transfer into the test cryostat or in the subsequent warm-up process
" after the cryogen transfer. The friction data could be monitored during either the cooldown
or the warm-up process. Both processes showed essentially the same py vs T behaviors.
However, because of the lower magnitudes of 8 T'/0 ¢, typically of less than 20K /h in the
warm-up processes compared with 60 — 80K /h in the cool-down processes, the warm-up
processes were used. Because a quiescent helium boil-off rate from the test cryostat was
in the range 0.10 — 0.201/h, an initial pool of liquid helium provided ~30 hours for each
1 vs T' measurement sequence.
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RESULTS AND DISCUSSIONS

Tribological data are often unreproducible and sometimes inexplicable. Friction by its na-
ture is very complex. The factors that contribute to a tribological process may be divided
into three classifications: - those we know, those we don’t, and those we can control. The
first is finite, the second may not be, and the third is very finite indeed. The conditions
of tribological experiments are particularly crucial. Although utmost care for consistency
was taken for each experimental sequence, often ambient conditions, e.g., room temper-
ature, air humidity, cleanliness of the air, have influenced the outcome. When natural
(expected) variation of the structures and composition of the materials tested are added
to the equation, large variability in results was sometimes encountered. The data gathered
will be presented according to two classifications: p vs v; and p vs T'. Because of space
limitations, only selected sets of data are presented here.

Friction vs Velocity Figures 1 — 6 show p vs v graphs, each with three plots corre-
sponding to temperatures of 4.2, 77, and 293 K. Each p vs v plot is the arithmetic mean
of two sets of measurement. Data for the two sets are within 10% at all points for all
material pairs. For a given velocity, each point represents the average value of at least 100
data points. The sliding speeds tested ranged from 10~ m/s to 0.1 m/s. For each speed
setting, a distance of at least 3 mm was covered to allow the measured friction to achieve
a steady value. The applied load was 14.3N.

Figure 1 — 3 shows, respectively, data diamond/CVD-diamond, stainless steel/CVD-
diamond, and graphite/CVD-diamond pairs at three temperatures. Data clearly show that
1 at each temperature is virtually velocity independent, confirming a general friction law
on the independence of friction on velocity. Data for diamond/graphite, alumina/graphite,
and graphite/graphite pairs are shown, respectively, in Figs. 4 — 6. Here for each pair,
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Fig. 3 p vs v for graphite/CVD-diamond pairs. Fig. 4 p vs v for diamond/graphite pairs.

[ increases with v at all three temperatures. The increase can be attributed to the
continuous creation of wear particles that are later entrapped between the sliding surfaces.
Since graphite is a softer material in comparison with materials like diamond and alumina,
the hard pins plow the surface of graphite, wearing graphite and generating wear particles
during sliding. When the sliding speed is increased, the rate at which these wear particles
are generated is also increased. This results in more wear particles to be entrapped
between the sliding surfaces, increasing p. When graphite pins slide on graphite, again
wear particles are generated, this time from both surfaces. Here, because pins and disk
are of the same material, adhesion also plays a major role.
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Fig. 5 p vs v for alumina/graphite pairs. Fig. 6 pu vs v for graphite/graphite pairs.
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Friction vs Temperature Figures 7 — 10 show p vs T traces, each taken at a constant
velocity of 1075 m/s. For each temperature span, the total sliding distance was ~2m.

Data in Flgs 7 and 8 are, respectively, dlamond/ CVD-diamond and graphite/CVD-
diamond pairs. For the dlamond/ CVD-diamond pair, p is 0.09 at 4.2K and decreases
with temperature to 0.05 at 293 K, remaining constant at 0.06 in the middle range 75 -
225 K. According to the adhesion theory, this pair, because both materials are identical,
should have high values of p [21]. Our results appear to be quite the opposite: it has a
low value of 0.05 for most of the temperature range tested.

Data for the CVD-diamond/graphite pair (Fig. 8) show a fairly constant x (0.07 - 0.08)
with temperature. Although small, ;1 varies somewhat in the temperature range 50 —
250 K. This variation may be attributable to the wear particles of graphite, the softer of
the material pair. As sliding proceeds wear particles are generated and entrapped between
the sliding surfaces, increasing the friction. As the sliding continues, these particles are
either plastically deformed or removed from the sliding path, hence reducing the friction.
This process of wear particles being generated and later eliminated from the sliding surface
could account for the variation in the coefficient of friction. As might be surmised from
the three data points at v = 1075 ms/s-of Fig. 2, the p vs T plot of stainless steel/CVD-
diamond pairs (not shown here) indicates that u increases gradually above 77 K, reflecting
the fact that u is inversely proportional to stainless steel’s hardness.

Data in Figs. 9 and 10 are, respectively, for pins of natural diamond and graphite vs
graphite disks. For the diamond/graphite pa.ir, ¢ is roughly temperature independent
and equal to ~0.04, from 4.2K to ~70K. p increases with temperature in the range ~70
— ~160 K. This increase is attributed to macroscopic stick-slip, typically observed in this
temperature range [22 — 24]. Above ~160K, p decreases, reaching at room temperature a
value roughly the same as that at 4.2K. The graphite/ graphite data (Fig. 10) are similar
to the diamond/graphite data, except here the peak value is ~0.08.
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Fig. 7 pvsT at v = 10" m/s for Fig. 8 puvT atv = 19_5 m/s for
diamond/CVD-diamond pairs. graphite/CVD-diamond pairs.
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Fig. 10 g vs T at v = 10~5m/s for
graphite/graphite pairs.

Fig. 9 pusT at v =10"°m/s for di-
amond/graphite pairs.

CONCLUSIONS

We have presented a selection of cryotribology data for diamond (natural and CVD films)
and graphite, all in terms of p vs v plots and p vs T plots. Based on our data, both
presented here and not presented owing to lack of space, we may make the following
conclusions. 1) For natural diamond, graphite, and stainless steel pins vs CVD-diamond
coated disks, p's are essentially velocity-independent. For diamond pins sliding on stainless
steel disks, p is roughly velocity-independent at 4.2 and 77 K, but increases with v at 203 K;
apparently at temperatures above 77K and certainly at 293 K, stainless steel is a “soft”
material in comparison with diamond. 2.) Although for natural diamond, graphite, and
stainless steel pins vs CVD-diamond coated disks, p’s are fairly temperature-independent,
there are subtle variations. In the diamond/CVD-diamond pairs, p is at a maximum
at 4.2K and decreases with temperature. In the graphite/CVD-diamond pairs there is
a variation in g with T in the mid temperature range, due perhaps to wear particles
generated by the graphite pins. 3.) The materials sliding against graphite disks show a
peak frictional coefficient value within the temperature span 100 — 200K. As is the case
with diamond/stainless steel pairs, there is a definite correlation between friction and
material hardness: p is inversely proportional to material hardness. Thus g is higher at
higher temperatures, because hardness generally decreases with temperature.
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THE TEMPORAL NATURE OF FORCES ACTING ON
METAL DROPS IN GAS METAL ARC WELDING

Lawrence A. Jones

Thomas W. Eagar
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ABSTRACT

At moderate and high welding currents,
the most important forces in gas metal arc
welding acting on the molten electrode are
magnetic forces arising from the interaction
between the welding current and its own
magnetic field. These forces drive the dy-
namic evolution of the drop and also de-
pend on the instantaneous shape of the
drop. In this paper, experimentally ob-
served manifestations of magnetic forces
are shown, and a technique for approx-
imating the temporal evolution of these
forces from experimentally measured drops
shapes is reported. The technique provides
quantitative data illustrating the large in-
crease in the magnetic forces as a drop de-
taches from the electrode.

The temporal evolution of the metal drop
geometry during drop detachment in gas
metal arc welding (GMAW) has an impor-
tant effect on the process because the forces
acting on the drop depend on its shape and
they change dramatically over the course of
drop detachment. If the geometric evolu-
tion of the drop is ignored, it is impossible
to quantitatively explain such phenomena
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as the substantial initial velocity a drop has
at the moment it detaches from the elec-
trode. It is also difficult to quantitatively
explain the effectiveness of current pulsing.
As another example, if the geometric evo-
lution of the drop is ignored, it is difficult
to quantitatively explain why some welding
conditions result in the stable, axisymmet-
ric detachment of drops and other condi-
tions do not.

Over a wide range of conditions, the ef-
fects of magnetic forces may be seen act-
ing on drops detaching from a GMAW elec-
trode. A drop detaching at 260 A and 29 V
is shown in Figure 1.* For a 1/16-inch
diameter ER70S-3 electrode in Ar-2%0,,
this current is in the upper end of the glob-
ular transfer region. The distinctly flat-
tened (oblate) shape of the drop is a result
of the magnetic forces acting on the drop.
It will be seen below that when a drop of
approximately the same size detaches un-
der very low-current conditions, the drop is
largely spherical and is not flattened (Fig-
ure 5). Also, although it is not apparent

*The images in Figure 1 and subsequent fig-
ures were obtained using the optical technique de-
scribed in [1]. An arc is present in all of the images,
but it is rendered virtually invisible by the optical
technique.




Figure 1: Drop detachment with constant
current 260 A and 29 V electrode posi-
tive. The electrode is 1/16-inch diameter
ER70S-3 in Ar-2%0;. Note the vertically
flattened (oblate) shape of the drop during
and after detachment.

from the images in Figure 1, the drops ac-
celerate off the end of the electrode at a rate
substantially greater than the acceleration
of gravity. This excess acceleration is due
to the sharp increase of magnetic forces act-
ing while the drop is detaching and due to
the force of plasma flow while the detached
drop is in flight.

The magnetic forces arise from the inter-
action of the welding current with its own
magnetic field as illustrated in Figure 2. If
the current diverges in the drop (as shown
in Figure 2), then downward forces act on
the fluid in the drop, and if the current con-
verges in the drop, then upward forces act
on the fluid in the drop. Unlike gravity,
which acts uniformly in the vertical direc-
tion on the fluid (assuming the density of
the fluid is spatially uniform) and is an ir-
rotational force, the magnetic forces do not
act uniformly and there is a rotational com-
ponent of force acting on the fluid.

At higher currents (~400-470 A), the
heat of the arc causes molten metal to
stream off of the electrode forming a col-
umn of liquid which then breaks up into
drops. The magnetic forces due to the

Figure 2: Magnetic forces in a welding .
drop arise from the interaction between the
welding current and its own magnetic field.

current flowing through this liquid aid
the breakup of this column into drops.
Even without magnetic forces acting, the
breakup of a liquid column will occur due
to mechanical disturbances in the fluid flow
which cause disturbances in the curvature
of the surface of the column. If cur-
rent is flowing in the column, the mag-
netic forces aid the breakup of the column.
At very high currents, the magnetic forces
are apparent in the appearance of rotating
streams of metal as shown in Figure 3 for
480 A and 35 V. At such high currents the
magnetic forces are significant compared to
the inertial forces in the column and slight
asymmetries in the column cause asymmet-
ric radial magnetic forces which move the
column away from its straight line of flow.
It can be shown that such a bend in the
current path also results in azimuthal com-
ponents of the magnetic forces. The combi-
nation of asymmetric radial forces and az-
imuthal forces results in the spiraling mo-




tion of the column as seen in Figure 3. This
motion is known as a kink instability [2].

Figure 3: Drop detachment with constant
current 480 A, 35 V. electrode positive. The
electrode is 1/16-inch diameter ER70S-3 in
Ar-2%0,. Note the spiraling detachment
of drops from a column of liquid metal.

By pulsing the welding current, magnetic
forces may be used to detach drops from
the electrode. The shape of the pulse, its
magnitude, duration, repetition rate (fre-
quency), and the current level between
pulses are all parameters in this process.
An incorrect choice of parameters may re-
sult in an unstable arc, a reduced metal de-
position rate, incorrect base-plate heating,
and/or spatter. Figure 4 shows the results
of applying a pulse having too great an am-
plitude. The magnetic forces overwhelm
the surface tension forces and the detach-
ment process proceeds asymmetrically. A
thin, filamentous neck is violently snapped
to the side resulting in fine spatter. Due to
the violence of the detachment, the main
drop sometimes breaks apart resulting in
.coarse spatter. If the current is not re-
duced immediately after the detachment of
a drop, the heat of the arc will generate a
subsequent small drop (a droplet) and the
magnetic forces will detach it asymmetri-
cally which also generates coarse spatter.
Such a droplet is seen forming in the last
image in Figure 4. In this particular case,
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Figure 4: Drop detachment with pulsed
current 550/40 A, 6 Hz, 2% duty cycle, and
18 V electrode positive. The electrode is
1/16-inch diameter ER70S-3 in Ar-2%0,.
Note the whipping of the drop neck, the
severe distortion of the drop, and the pres-
ence of a small droplet on the electrode at
the end of the sequence which often de-
taches and flies to the side as spatter.

the current is reduced before the droplet
detaches from the electrode and the droplet
is pulled back onto the electrode by surface
tension.

Under certain pulsing conditions, drops
will detach from the electrode with minimal
distortion and no droplets. Such a case is
shown in Figure 5. In this case, the current
pulse imparts enough momentum to the
drop to cause detachment, but ends well
before the drop detaches, thereby avoiding
the formation of droplets. At the time of
detachment, the welding current is 40 A
and the drop is almost spherical. The lack
of distortion of the drop is in marked con-
trast to the distortion of the drop seen in
Figure 1 at 260 A constant current. When
the current is very low at drop detachment,
the magnetic forces do not act violently on
the neck of the drop as seen in Figure 4,
and since the drop is largely undistorted as
it detaches, the probability is low that it
will break apart.

If a current pulse lower than 290 A




Figure 5: Drop detachment with pulsed
current 290/40 A, 5 Hz, 2% duty cycle, and
18 V electrode positive. The electrode is
1/16-inch diameter ER70S-3 in Ar-2%0,.
Note the symmetric detachment of a drop
and the lack of drop distortion.

Figure 6: Drop response with pulsed cur-
rent 280/40 A, 5 Hz, 2% duty cycle, and
18 V electrode positive. The electrode is
1/16-inch diameter ER70S-3 in Ar-2%0,.
The current pulse is insufficient to detach
the drop. Subsequent current pulses will
also fail to detach the growing drop.
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is used, the momentum impulse supplied
by the magnetic forces will not be great
enough to overcome surface tension and the
drop will not detach, as shown in Figure 6.
Without the assistance of magnetic forces,
the surface tension forces, which act to re-
store equilibrium, dominate and overcome
the inertial force of the drop. During the
next several current pulses, the mass of the
drop will be greater and the magnetic forces
will be unable to impart enough momen-
tum to the drop to make it detach. The
drop will continue to grow until gravity,
aided by the disturbances caused by cur-
rent pulses, overcomes the surface tension
holding the drop on the electrode.

The magnetic diffusion time and the
magnetic Reynolds number in a drop of
molten steel on the end of a GMAW elec-
trode are both very small. The very short
magnetic diffusion time indicates that on
the time-scale of drop motion, the diffu-
sion of the magnetic field throughout the
drop is essentially instantaneous. The very
small magnetic Reynolds number indicates
that the magnetic diffusion process is much
faster than fluid convection in the drop.
Therefore, in a gas metal arc welding elec-
trode the magnetic field is unaffected by
the fluid velocity in the drop. Rather, the
distribution of the magnetic field is deter-
mined by the instantaneous geometry of
the current path in the drop and, assum-
ing uniform fluid conductivity, the current
path is determined by factors other than
the fluid velocity.

In (3], the magnetic stress tensor is used
to calculate the total vertically-directed
magnetic force acting on a generalized, ax-
isymmetric drop shape. The motion of the
fluid interacts with the magnetic field only
in that it affects the resulting shape of the
drop and hence the shape of the current
path. Therefore, if the shape of the current




path is known at each instant, the magnetic
stress tensor may be used to calculate the
total vertically-directed magnetic force on
the drop (the sum of the irrotational and
rotational parts).

As a drop attempts to detach from the
solid electrode, a neck forms. The current
density in the drop neck increases and the
divergence of the current increases. Both
phenomena cause the magnetic forces act-
ing on the drop to increase and result in a
measurable acceleration of the drop upon
detachment. The time during which a neck
initiates and collapses is short compared to
the total drop growth time but it is during
this brief time that the magnetic forces are
most important.

During drop necking, the lower part of
the drop is well modeled by a truncated el-
lipsoid and the upper part is well modeled
by a volume formed by rotating a third-
order polynomial about the vertical axis, as
illustrated in Figure 7. Third-order poly-

<— Cubic
Polynomial

Truncated—>
Ellipse

Figure 7: Experimentally-observed necking
drop shape modeled with a truncated ellip-
soid and a polynomial volume.

nomial volumes were chosen to model the
neck because these shapes are completely
defined by the geometrical boundary con-
ditions at the top of the truncated ellipsoid
and the bottom of the electrode.

A truncated ellipsoid is shown in Figure 8

along with the portion of a polynomial vol-
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Figure 8: Stress tensor surfaces.

ume below its waist (its narrowest point).
In [3], the total vertically-directed magnetic
force on a generalized shape is calculated to
be

__BL?
f= 167

por [ [ it rhas] 5255,

where I is the portion of the welding cur-
rent emerging from the drop and j(s) is the
density of this current along the surface s
of the drop. If there is no drop neck, if the
truncated ellipsoid is a truncated sphere,
and if the current density j(s) is taken to
be constant,* then both integrals in Eq. 1

(1)

*No experimental measurements are available in
the literature about the distribution of the current

" density on a GMAW electrode due to the difficulty
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of making such measurements in the harsh environ-
ment of the arc next to the free surface of a drop.
However, observations of drops detaching from the
electrode empirically suggest that a constant j(s)
may be a reasonable approximation {4].




may be solved in closed form. The result-
ing expression is commonly used to com-
pute the total vertically-directed magnetic
force acting on a welding drop:

pol? [1 (asin@)
- 2.1
i 14 . Te +
2

* (1 —<:2osi>)2 o (1+cos<I>)] » @)

where a is the radius of the sphere, 7, is
the radius of the electrode, and @ is the an-
gle describing the portion of the drop over
which current is emerging (& = 0 = no cur-
rent emerges from the drop, and ® = 7/2
= current emerges from the lower hemi-
sphere of the drop).

While a drop is necking—a time when
the magnetic forces increase dramatically—
truncated-ellipsoid and polynomial-volume
combinations are required to model the
shape of the drop, as shown in Figure 7.
The integrals in Eq. 1 cannot be solved
analytically even for these simple approx-
imations of the fluid surface of a necking
drop. Over the surface of the truncated el-
lipsoid, the inner, squared integral may be
solved analytically, but not the outer inte-
gral. Over the surface of the polynomial
volume, the inner, squared integral cannot
be solved analytically (and therefore the
outer integral also cannot be solved ana-
lytically).

Truncated ellipsoids and polynomial vol-
umes were fit to drop profiles observed dur-
ing current pulsing similar to those shown
in Figure 5. The instantaneous vertically-
directed magnetic forces acting on these fit-
ted shapes were then computed numerically
using Eq. 1. Constant current density j(s)
was assumed to cover the entire surface of
the shapes up to the waist of the poly-
nomial volume. Experimentally-measured
current pulses and the corresponding com-
puted vertically-directed magnetic forces

1
1—cos®

2
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are shown in Figure 9.
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Figure 9: Total vertically-directed mag-
netic force during current pulsing with the
Ar-2%0, current emission model.

The forces in Figure 9b show that ini-
tially as a drop elongates in response to the
downward (negative) magnetic force, the
magnitude of the force decreases slightly.
This decrease is because in an elongated
(prolate) drop the current diverges less.
Once a neck begins to form, however, the
magnitude of the magnetic force increases
rapidly. This increase is because the nar-
rowing of the neck results in greater sub-
sequent current divergence. This observa-
tion is not surprising or new since it has
long been known that magnetic forces act
to “pinch” drops off the end of an electrode.
The results shown in Figure 9, however,
represent the first time the temporal evo-
lution of the magnetic force has been com-
puted using close approximations of exper-
imentally measured drop shapes.




By using shape approximations as in Fig-
ure 7, a simple, dynamic model of drop
detachment may be developed, as illus-
trated in Figure 10. Such a model is de-

-

Polynomial Volume

Waist o
S fi2a
S Jr2
\+——— Polynomial Volume/
Truncated Ellipsoid
Boundary
Sou
Truncated Ellipsoid ———»
Equator

Ja

Figure 10: Illustration of the dynamic
model developed in [4] using truncated-
ellipsoid /polynomial-volume shapes.

veloped in [4] and is compared with exten-
sive measurements of drop detachment ob-
tained from high-speed images of gas metal
arc welding.
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PARTIAL CONTROL OF COMPLEX SYSTEMS
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ABSTRACT

The research deals with the control of complex nonlinear system with a limited number
of manipulated variables. In many chemical processes the number of variables that
make up the specifications and constraints exceeds the number of manipulated variables
available. Furthermore, model information is limited. The goal of our work is to study
the design of the control system and the conditions required to achieve adequate control
for such cases. A Fluid Catalytic Cracker was chosen to illustrate and test our
approach. This paper presents a short overview and summary of our approach and
results.

INTRODUCTION

The fluidized catalytic cracker (FCC) is one of the most important processing systems in oil
refineries. It is a complex system to operate and control, one which is not fully understood, and one on
which the petroleum industry has spent considerable time and research effort over the past sixty years.
The heart of the problem is that there are many more process variables that one needs to control than
there are manipulatable variables with which to do so. This is characteristic of most complex systems
such as oil refineries and chemical plants as well as social systems, even the economy. The other salient
feature of such systems is that their behavior is not well understood. This is true of the FCC; it is
certainly true of the economy.

The goal of the present work is to develop a practical theory of partial control that can be
applied to complex systems. However, to insure that it is a relevant theory, its development has been
closely tied to a significant real-world example, namely, the FCC. Further, this work has been done in
close collaboration with Mobil, one of the major petroleum companies. Our research in this area has
reached the state where its results can be implemented and utilized by industries in many areas. It
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already has led to improvements in the control of FCC's and these have been adopted by industry. It is
the goal of this paper to give an overall picture of the theory and its application to control of FCC’s. For
details the reader is referred to the papers that have already been published under this grant [1-4].

CONCEPTS OF PARTIAL CONTROL

It is not obvious that one can control a complex nonlinear system by only a limited number of
manipulated variables, particularly when the behavior of that system is not completely understood.
Based on our theoretical results and the study of actual complex processes, we have developed an
approach and a theoretical framework as how to choose the manipulated and measured variables for a
control system in order to get the best results. The control ideas underlying this research were
developed and published by Professor Shinnar in two papers [5,6] and were based on his work in
process control in both.academia and industry.

In general, in the design of a control system, one first identifies the set of variables that need to
be controlled, namely, those that are related to product specifications and process operating constraints.

Denote these by Y,; and their number by N.. Next, one identifies a set of suitable manipulated
variables with which to effect this control. Denote these by Uy, and their number by Ny, If N, =N,
then all of the controlled variables can be controlled, at least in principle, to exact set points. We call
this exact control. It is the type of control to which the vast majority of the control literature and
textbooks are devoted. A different situation arises quite often in the control of large, complex systems,
one where N, < N.. Now, not all the Y; can be controlled at exact set points. Instead, we must settle
for something less strict, namely, that these variables are kept within an acceptable operating space, i.e.,
Ypimin < Ypi < Ypimax. We call this partial control. Y. v

The basic idea of partial control is that we O Fast
choose a subset of the controlled variables, Y4, and the Slow v Yo T
manipulated variables, U, which results in a square L
control matrix. This primary control matrix will be
used for exact control of the chosen subset of controlled v v
variables. Which and how many variables are chosen Model Process |Ued | Control
depends upon a number of factors that are discussed < A
below. For many systems an appropriate choice of the
primary matrix will allow us to maintain all the Yy; A4
within the acceptable operating space by adjusting the | Optimizer |
set points of the variables in the control matrix (Fig. 1). Set Points

Choice of this primary control matrix is critical to the Fjgure 1: Block diagram for partial control
success of the overall control. If one has a very good
model, one would feed the measurements of Y; directly
into a2 model based on direct computer control to adjust all U;. This does not allow integral control and
requires a much better model than we normally have.

_ There are several considerations in the choice of the primary control structure. We would like
the primary matrix to be as small as possible. To achieve this, our choice Y4 and U,q must satisfy the
following criteria:

Ucs

A.Dominance
In partial control one chooses a set of measured variables Y4 that are kept by exact control at
chosen set points. If one or more of the output variables of concern Y,; moves out of the desired range,
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one adjusts the set points of Y4 to keep the operation of the process acceptable, both economically and
in terms of product specifications.

It is very important how one chooses this set of measured variables Y4, some of which may be
of no direct interest by themselves. The most important concern is dominance which means that
changing the set point of a measured variable has a strong impact on many or all the process variables of
interest. To do so requires that we have available manipulated variables which have a strong impact on
Yy and Y. A good example is chemical reactor temperature which affects all the kinetic processes just
as climatic temperature affects all biological processes. The difference is that in a reactor we can
control it. Change the temperature and we change almost everything else: the production rate, the yield
or product distribution, even the stability of the operating point. Similarly, interest rates are a dominant
variable in the economy. Raise interest rates and many, many other things change. There are many
other examples.

B. Sufficiency :

It is overly optimistic to believe that a single dominant control loop will lead to acceptable
control of the many important variables that arise in complex systems. This leads to the concept of
sufficiency. How many and what dominant variables must be controlled so that the system is stable and
that all the other variables are maintained within specified limits? What constitutes a sufficient set of
such variables?

It is important to ensure that a process has enough manipulated variables with a wide enough
range of variability to insure that the process can deliver product that meets its quality specs. The
control must simultaneously ensure that process conditions do not violate operating constraints, such as
metallurgical limits, flooding or entrainment flow velocities, etc., which we include in Y,. The control
should also achieve this goal in economically acceptable ways. Since the availability of the
manipulated variables is determined during the design phase, one needs to understand how the design
impacts control. Another important consideration is that of the product specifications. These are
determined externally by market requirements but set many of the constraints on Yy;. This will have a
major impact on the design of both the unit itself as well as the control system. One has to understand
how the design interacts with the specifications in order to come up with an economically acceptable
compromise. Better partial controllability is achieved at the expense of adding more manipulated
variables but these must be chosen to provide the widest possible range of operating conditions at
acceptable cost. '

Our research deals with this important problem and we have developed these criteria for the
FCC. These results are important in developing strategies for better design procedures, and are a good
example demonstrating how basic research in control can lead to better design of chemical processes.

C. Modellability

The choice of dominant variables is itself constrained by the number of manipulated variables
available for control. These must satisfy several criteria, the primary ones being that they have a
significant gain with respect to the dominant variables to be controlled and that they affect these
variables on a suitable time scale.

This leads to the very important question of modellability. To indirectly control a complex
system where anywhere from a dozen to a hundred or more variables are of interest and to do this by
direct control of a small set, say two to six, dominant variables requires a model. This model must
satisfy two criteria:

® How well can the process variables Yy; be related to the dominant variables, particularly in
steady-state? This is the major determinant of how well we can do with respect to constraint
management.

® How well can the dominant variables be related to the manipulated variables? This is a major
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determinant of how well we can stabilize and control the primary control structure.
This has to be addressed from system to system; examples will be discussed later. In general full scale
reactors have more complex and less uniform flows and hopefully the variables sensitive to these
variations are not dominant for Y. This is essential not only for control but also for safe scale up.

D. Time Scale of Response

The primary control structure must be chosen so that it responds on a time scale commensurate
with the time scale on which the process variables Yy; respond to disturbances to the system. This time
scales are determined by the design. The designer faces some compromises for complex processes. In
adiabatic processes such as the FCC one introduces intentionally sufficient thermal inertia to allow the
operator to intervene in order to prevent catastrophic instabilities and correct mistakes. In the FCC the
holdup in the regenerator provides this thermal inertia. The reactor has a much faster response which is
beneficial. Fast response in the process industries is often less important than in aerospace.

E. Nonlinearities and Stability
In complex, nonlinear systems assuring stability of the control system is a major concern. Such
systems often exhibit multiple steady-states, some of which are open-loop stable, others which are not.
Input multiplicities and regions of zero open-loop gain further complicate the task of choosing a control
structure. The pertinent nonlinear features of the FCC were analyzed in [2] as part of this program and
- have critical impact on the control strategies.

APPLICATION TO THE FCC

The fluidized catalytic cracker (FCC) was chosen as an example of the kinds of complex
systems encountered in the petroleum and chemical industries which are operated subject to partial
control. As shown in Fig. 2, the FCC consists of two principal units. In the first, the reactor, hot catalyst
is contacted with oil in a fluidized bed. It supplies heat whereby the oil is first vaporized, then cracked
to more desirable products such as gasoline and heating oil. The catalyst is cooled down and
simultaneously deactivated by the formation of coke which is a byproduct of the cracking reactions.
The catalyst is reactivated and reheated by circulating it to the second unit, the regenerator, where it is
contacted with air to combust the coke.

The energy released in the regenerator Stack Gas - Froducts
is recycled back to the reactor by the {to €O boiler) compressor)
circulating catalyst. One important Separator
condition for the operation of the FCC | Regenerator|
is that the heat generated by combusting
all the coke generated equals the heat
. . . .. |Catalyst

absorbed in heating and cracking the oil | Cooler Riser -
feed. Reactor

There are many variables in the

Regenerated

FCC that need to be controlled to a
Catalyst

greater or lesser extent. These include
the fractional conversion of the oil feed
to products, the gasoline yield and its
composition, the Ny and CO levels of Air
the flue gas leaving the regenerator, and

Figure 2;: Schematic Diagram of FCC
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olefin content of the product gas which is used as a feed for alkylation,-to name just a few. There are
but a few variables available with which to exert this control on the appropriate time scale, primarily the
feed rate of air to the regenerator, F, the catalyst circulation rate between the two units, F.y, and the
temperature of the feed, Tg.eq

Some units have a catalyst cooler to allow processing of heavy feedstocks, for coke make in the
FCC is tied to conversion. For highly coking feeds, excess heat has to be removed. Such a cooler
decouples the reactor from the regenerator and changes the control.

In addition to U, modern FCCs have a range of slowly manipulated variables available, such as
catalyst activity and other properties which are controlled by adding and withdrawing catalysts as well as
additives that impact on Y;. [7] reviews how design changes in FCC developed and how they impact on
FCC operation.

There is another aspect of o

design that changes the control of the 1400 | <—ram;%ﬁr>| '
FCC. Historically, most units operated . 05 ﬁNumbers areO2s 34
at regenerator temperatures of 1180 to 1350 ¢ s
1250°F with a CO,/CO ratio between . 5
1.2 to 1.5. This reduces the amount of 1300
heat evolved, allowing higher |Trgn :
conversion. The CO is combusted ina - | [F] 1250 3
CO boiler, but old units often simply s

. . 1200 i
emitted it to the atmosphere. [
Environmental laws forced operations 1150:_ coartial_
of such units to change the operation to ] 1ls
complete CO  combustion and T | S N S T S S S
combustion promoters allowed to 0.48 0.52 0.56 0.6 0.64
practically eliminate CO emission. Air/Oil [Ib air/lb feed]

Today many units operate in full CO Figure3: Ty, vs. Air Rate at Constant T;=1000°F
combustion. This changes the control as
can be seen from Fig. 3 where we plot T, (regenerator bed temperature) versus air rate at constant Ty,
(riser top temperature). For a given air rate and T;; there are two steady states, one in partial and the other
in complete CO combustion.

Fig. 4 gives some options for control

matrices and loops that have been used in the Manipulated Controlled

partial CO combustion regime. For complete Catalyst AB.CD 70 Riser Top .

combustion the only option is to use [Fy , Cirulation Temperature (Tris)

Oa4] which is essential to keep the unit in g:ate) EX g Temp. Rise Across

complete CO combustion. Excess oxygen cat the Cyclones (AT)

varies between 0.5 and 2.0% but aside from

keeping the unit stable has no impact on o Regenerator Dense Bed

either Ty, or Yy;. ' AE Temperature (Trgn)
If we look at Fig. 4, the measured Air ]

variables entering the matrices in partial CO Flow Bro ;T:;ng 'gc',s;:((:?;s

combustion are Ty, Tigm, Tsg (stack gas Rate c y

temperature in the regenerator) and AT (= T, (Fair) p ™o Stack Gas

- Tyz) which is proportional to the excess Temperature (Tsg)

oxygen entering the cyclone. While AT and

T, have been used in the past and have been 0 Excess Oxygen (Ozsq)

preferentially promoted in the control Figure 4: Possible Control Structures for the FCC

literature [8], they have two disadvantages over T,y and Ty They are not dominant and very model
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sensitive, and therefore not predictable
from laboratory experiments. In the FCC
the nature of the reactions are such that
residence time has a small impact.

However, reactor temperature impacts
strongly on all reactions. Therefore,

reactor outlet temperature Ty as well as
inlet temperature Ty strongly impact on

Y- Trix is a strong function of Ty In
the regenerator in partial combustion T,
determines the ratio of CO,/CO as well
as the rate of coke combustion and
therefore C, (coke on regenerated
catalyst). Ty is therefore dominant. In
full CO combustion C, is practically
zero and CO,/CO close to infinity.

1050
1030
1010 F
Tris .
F] 990 4 ;
970 ' / Trgi=1180F
950 :
unstable /:....l.. ’ ' ! t
for A=1 o
below z=0.9 Lo, Relative Activity:
80F R — A=l
comension_ [ —
onversion .o E [ N,
% .
e e, Trgn=1250F
E |state below Lo,
E| this point \ NS
50 A —. IR P
0 1 2 3 4 5 6

z - Relative Coking Rate

Therefore T,y is not dominant as long as
it is high enough.

Figure 5: Sufficiency of Single Loop Control. [Fy,Trg] for
partial combustion; [Fgr,02] for complete combustion.

The dominant variables are therefore Tys and Ty, in the reactor and Ty, in the regenerator. They

are also the only ones of the set that are mode

llable.

While a discussion of the variables requires far more space than we have, we can use this to
illustrate some of the ideas. For example, in partial combustion it is perfectly possible to maintain a stable
operation over a wide range of catalyst properties by one single control loop [Fa, Trgn). This can be seen
from Fig. 5 where we plot Ty vs. relative coking rate (z), as Ty has narrow limits. It has to be maintained
between 900 and 1010°F. Below 850°F part of the feed will not vaporize or crack and at about 1030°F
thermal cracking becomes the predominant reaction. We note that the impact of Far on Ty, is small, so
varying T, allows one to keep Ty within the permissible range. At low relative coking rate, z, the unit
becomes unstable, but a single PI controller can stabilize it. At very low z it loses the steady state and the

only option is a more active catalyst or one that produces more coke.
In full combustion a single control loop [Fay, O] does not a

llow stable operation. We note that

small changes in z will change T such that it falls outside the permissible range. The only option is to

change catalyst activity. Controlling Ty is
here essential. The two loops are equivalent
to a single loop in partial combustion.

While a single loop is sufficient to
maintain the unit stable in partial combustion
(or a 2x2 matrix in complete CO
combustion), it is very limiting for
controlling Yy;. This is illustrated in Fig. 6
where we show some elements of Yy; for the
scheme [(Far, Trgns)s (Feat, Tiis)] for a specific
operating point in partial combustion. We
. note that instead of a line an area of Yy;
becomes accessible. Adding slow
manipulated variables (Ucy) will change the
accessible space to a multi-dimensional
volume. Similar plots can be made for
complete combustion, but here we need three

Tfeed=400F
4 sove? PPTTTTTTTTINTNNS
o T
Gasoline . oy oo atot
Yield
%]
Wet Gas 14 E ?‘Qf...: o
Yield 12 4 ..'-‘"":.-:"':\'ﬁﬁ
[%] E s ,--"::o' *
10 ...o"'.":..-- oo
8 b —emor
.-..l.-..Ix--.l.--.|-.--I....I....I.....I..nn
56 58 60 62 64 66 68 T0 T2 T4
Conversion [%]

Figure 6: Accessible Area of Yp. Partial Combustion .

Control: [(FairsTren)s(Feats Tris)]
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manipulated variables to increase the accessible space of Y; from a line to an area.

In complete combustion there is an additional problem. Even three loops do not allow adequate
control of Ty, for higher coking rates. The only variable that allows control of Ty, over a wide range of z
is catalyst activity. It has a large impact on control in complete combustion whereas its effect is limited in
partial combustion. These problems can be completely overcome by the addition of a catalyst cooler
which allows T, to be adjusted independently both in partial and complete combustion.

Our results show that in partial combustion, in addition to lack of modellability and dominance,
AT (and therefore T;;) has another problem. If AT and Ty are kept constant we can show that increasing z
could cause the unit to crash as at constant Ty and AT increasing z will decrease T, (Fig. 7). If Tyg, will
drop below 1100°F the unit could lose its uppermost steady state. The same is true for the scheme [(Fa,
Tign), (Fear, AT)] proposed by [9]. In that case an increase in z will cause Ty to decrease (Fig. 7). If Ty
goes below 850°F, the unit also loses its steady state. The exact limits strongly depend on the unit and the
catalyst. Thus our results explain the phenomena of crashing due to coking feeds which plagued the
industry until the control scheme [(Fair, Trgn), (Fears Tiis)] Was introduced. Crashing occurred when a heavy
coking feed was suddenly introduced and did not occur in units with well controlled constant feed
composition.

This illustrates an important aspect 1220 R
of our results. Choice of the proper control FREN
matriX is in most cases far more important | 1180 Manl

. . . . rgn E OIS

than the multi-variable algorithm itself. [F] RO [(Feat, Tris)
Further, while in the FCC linear algorithms 1140 [(Feat, Tri )" “Seue.._ (Fair,AT)]
are enough for taking care of wide changes 3 (Fai?‘,,Ts g')s] """" JRRRETIN “ean
in operating conditions and feed 1100 2= e —
perturbations, one must chose the matrix 1060
based on nonlinear considerations. The 1020 3 [(Fair, Trgn), (Feat, AT)]
understanding of the nonlinear feature of | Tris - (Kurihara)
the system is essential. [F] 980 F No steady states

One can not even design the linear 0940 E beyond this point
algorithm itself based solely on the linear T
model for the mafrix. One needs to 075 1 125 15 175 2 225 25 275 3
understand  the impact of the z- Relative Coking Rate

specifications. Thus, the matrix [(Fa,
Tegn), (Fears Tiis)] has a negative relative gain  Figure 7: Impact of Coking Rate on Dominant Variables for
array (RGA). In FCC’s however one Different Control Schemes.

normally designs along the negative diagonal contrary to textbook recommendations. This gives a fast
response to Ty; and allows tight control of it. As Ty;; dominates Y this advantage outweighs the penalty of
operating along the negative diagonal which causes the system to become unstable when one loop opens.
Another important aspect of our results that have significance to other systems is that the controllability of
a system can totally change if changes occur in the system or operating conditions. This can often occur in
reactors due to changes in catalyst properties or changes in Y; due to market requirements.

Thus our results on the FCC give some important insights as to the design of partial control
systems for complex nonlinear systems and raise important challenges for future research. They should
also impact on the way we teach process control. The current work focuses on the impact of the design on
the control and on the minimum information required to design and operate a successful partial control
system. Future work will try to generalize the approach by dealing with other complex systems.

The results are published in a way that indicates that they are useful for a wide range of
processes and should have a much wider impact than just FCC control. A paper on how the results
impact on economic control was recently submitted for publication. For more details, consult
references 1-4.
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ABSTRACT

The paper introduces a method of identification of non-linear systems encountered
in marine engineering applications. The non-linearity is accounted for by a combination of
linear subsystems and known zero-merhory non-linear transformations; an equivalent
linear multi-input-single-output (MISO) system is developed for the identification
problem. The unknown transfer functions of the MISO system are identified by
assembling a system of linear equations in the frequency domain. This system is solved by
performing the Cholesky decomposition of a related matrix. It is shown that the proposed
identification method can be interpreted as a “Gram-Schmidt” type of orthogonal
decomposition of the input-output quantities of the equivalent MISO system. A numerical
example involving the identification of unknown parameters of flow (ocean wave) induced
forces on offshore structures elucidates the applicability of the proposed method

INTRODUCTION

Mathematical modeling of wave-induced forces on offshore structures is a complex technical
problem. Conventionally, the wave forces on structural elements of size that is small compared to
the characteristic wavelength are calculated by Morison’s equation [1]. Selecting parameters for
the Morison’s model which are appropriate for the conditions of a specific site is a delicate
procedure. In this context, it is noted that it is rather difficult to account for the effects of waterline,
body motion, velocity head, and second-order potential. Thus, the validity of the Morison’s force
model and its applicability for describing wave forces on flexible offshore structures have been
questioned in the literature. In this regard, this paper addresses the issue of determining reliable
models of non-linear forces acting on offshore structures by using system identification techniques
in conjunction with possibly available experimental data.

Although the identification of linear systems is a well developed subject and is extensively
used in engineering practice [2], identification of non-linear structural systems and forces is a less
understood scientific area. Several alternative approaches have been proposed in the literature in
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conjunction with structural dynamics applications. Non-linear systems can be identified by using
the Volterra/Wiener representation theory im which the kernels of the associated integrals are deter-
mined from the governing differential equations [3]. In Refs. [4] and [5] the non-linear restoring
force was expanded by using a polynomial basis and the coefficients of this expansion were found
by minimizing the discrepancy between the observed and simulated responses. By representing the
non-linear restoring forces as a set of parallel linear subsystems, the identification of a non-linear
system can be developed by adopting a multi-input-single-output (MISO) linear system analysis
procedure [6,7]. Using this approach, Vugts and Bouquet [8] verified the accuracy of Morison’s
equation based on realistic measurement data. Utilizing the representation of a non-linear struc-
tural system as a collection of linear subsystems, Spanos and Lu [9] addressed the non-linearity
induced by the structure-environment interaction in marine applications; pertinent examples
demonstrated the validity of the identification method. Recently, Zeldin and Spanos [10] proposed
to use a parametric ARMAX procedure to identify the introduced MISO linear systems. The latter
procedure can be especially useful for identification of transfer functions exhibiting sharp peaks;
this feature is quite common for structural systems in marine applications.

In this paper, a new procedure is developed for the identification of non-linear models of
structural systems for offshore engineering applications. Specifically, the non-linear restoring
force is represented as a set of known zero-memory non-linear transformations that are combined
with linear subsystems; it reduces a nonlinear system to a linear MISO system [6,7,9]. This method
is particularly efficient if preliminary studies of the non-linear system may be used to speculate
with regards to the mathematical form of the non-linear force. The identification of the equivalent

-MISO system is performed by assembling a system of linear equations in the frequency domain
with respect to the unknown linear transfer functions of the MISO system. This system is solved by
performing the Cholesky decomposition of the associated matrix. The developed identification
method can be viewed as a “Gram-Schmidt” type of orthogonal decomposition of the input-output
quantities of the equivalent MISO system examined in Refs. [6,7,9]. Pertinent numerical calcula-
tions elucidate the implementation of the proposed identification method for marine engineering
applications.

MODELING OF NON-LINEAR FORCES

Consider the differential equation

’ mig+cqg+kqg = f(u,....q,...), @)
where g(¢) is the scalar variable representing the structural motion, u(t) is the variable describing
the wave kinematics, and f is the random force function which represents the wave induced non-
linear force. Further, m, ¢, and k are the structural mass, damping, and stiffness of the structure,
respectively; the dot signifies differentiation with respect to time. To find the unknown structural
parameters of Eq. (1), the non-linear force is expanded in terms of base functions of the wave and
structural kinematic parameters. In this regard, it is assumed that the system and the excitation
nonlinearities can be expressed as a superposition of zero-memory non-linear transformations and
linear subsystems. Specifically,

FQy gy ) = T lHk(%)fk(u, s Gy er)s )

where H(s) are polynomials, f(«, ..., g, ...) are non-linear zero-memory transformations, and
M is the total number of base tjlcmctions used in the representation of the non-linear excitation
force.

Some preliminary studies may be used to speculate with regards to the mathematical form of
the non-linear transformations of Eq. (2). For example, for a Duffing oscillator under random
excitation u(¢), the non-linear excitation force can be expressed as

flu,...,q,...) = —8q3+u 3

107




and the unknown non-linear parameter € can be determined from measurements by using the pro-
posed identification procedure. For an offshore structure with small structural elements, the non-
linear excitation force induced by waves may be represented by Morison’s equation. Specifically,

f(u’ cens g, "°) = ozl|u-—q'|(u—q) + a2ma(l’z—q) +maq.’ (4)
where 0, and o, are unknown drag and inertia coefficients, respectively. Alternatively, a polyno-

mial expansion of the drag force can be used instead of Morison’s equation. That is, the non-linear
excitation force can be expressed as

) I-j i.j . .
flty.ng,...) = Z,- oo Q'+ Oy (- )+ myg . (5)
In this case, the non-linear force is described by M = (I+ 1)(I+2)/2 + 2 parameters.

EQUIVALENT MISO SYSTEM

By substituting Eq. (2) into Eq. (1), the non-linear equation of motion of the structural system
can be expressed as

HO(%)q = Z; lHk(%)fk(u, cees Gy een)s (6)

where Hy(s) = ms™ + cs + k. The proposed identification method rearranges the terms of Eq. (6)
by treating them as the input/output quantities of an €quivalent MISO linear system. Specifically,
the terms ¢ and fi(u, ..., g, ...) of Eq. (6) that are associated with the unknown structural param-
efers are interpreted as the inputs x, of the MISO system. The remaining terms of Eq. (6) are com-
bined into the system output y(¢) . Note that this study uses the terms “input” and “output” (x and
¥) in the context of system analysis terminology, whereas “excitation” and “response” (x and g)
denote physically motivated structural analysis terms. The composed MISO system is described by
the equation

n

o E S = 5, %

where n denotes the total number of the input variables used in the equivalent MISO representa-
tion of the non-linear structural system.

The time domain description of the MISO system of Eq. (7) leads a frequency domain repre-
sentation, as well. Specifically, using Fourier transform in Eq. (7) yields

ZL (Hi (o)X (0) + N(o) = Y(@), )]
where the capital letters denote the Fourier transforms
X() = F{x(8)}, Y(w) = F{y(}, ®)

and the symbol N(w) is introduced to represent the extraneous noise. The MISO system with the
governing equation (8) is schematically shown in Figure 1.

IDENTIFICATION OF THE TRANSFER FUNCTIONS OF THE MISO SYSTEM

It is assumed that the excitation and the response of the non-linear system are stationary
stochastic processes. Correspondingly, the input-output variates of the equivalent MISO linear
system are also stationary processes; their correlation is described by the cross-correlation
function .

inxj('c) = Elx;(0)x(t+7)] (10)

or by the cross-spectral density function
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1 feo i
St (@) = 5= Rep (e dr. (11)

In Eq. (10) E[°] denotes the operator of mathematical expectation. Alternatively, the cross-spec-
tral density function for stationary processes x;() and x J-(t) can be defined as

S, (@) = TELX (@)X, (@)], (12)

where T denotes the length of observation of the processes x;(¢),and ( )* is used to denote com-
plex conjugation. It can be shown that the definitions of Eqgs. (11) and (12) are identical in the limit
as T tends to infinity. In this context, they can be considered as equivalent for an adequately large,
but finite, value of 7.

In conjunction with the preceding comments, Eq. (8) governing the input-output relationship
of the MISO system can be rewritten in the equivalent form

(X'(0), Y() }{E(im)} = -N(w), (13)

where X = {X|, ...Xn}t, H = {H, ..Hn}t, and t( )t denotes, the transposition of the corre-

sponding vectors. Premultiplying Eq. ’(i3) by 2n({X (w), Y(w)} Y/ T and taking mathematical

expectation yield
Sex Sxy {H} = { 0 } (14
Sye Syy| U1 TN

where it is assumed that the noise process N(®) is uncorrelated from the inputs of the MISO sys-
tem. Further, it follows from Eq. (14) that if the observation noise is zero and all non-linear effects
are properly captured by the MISO system, then the vector {H  ~1} is the eigenvector of the
spectral matrix of the vector-process { X ‘(w), Y(w)} corresponding to the zero eigenvalue.

The system of equations (14) can be readily used to determine the unknown transfer
functions of the MISO system. Indeed, the first # equations of the system can be used to find the
vector of the transfer functions H(i®) . The last equation can be utilized to determine the value of
S,y Which represents the influence of the measurement noise and the non-linear terms which were
not included into the MISO system. In this regard it is pointed out that the value Sy  is equal to the
spectral density of the noise. Indeed, by squaring Eq. (13) one can derive

27 fo% X* t H tox Sex S H
S = —{(H),-1}E X,Y = {(H), -1} ¥ ¥ =
P e C RN

. 0
{H" ,—1}{_ }= Syw- (15)
“yN
Upon evaluating the spectral density function S, the cumulative coherence function [6,9] can be
evaluated from the equation
Syn(®) Syy(®@) =S,y

L) =1~ =
e N Y R W
_ The coherence function v, (®) expresses the cumulative linear contribution of the random vector
x(t) to the MISO system output y(z) . This coherence function reflects, in essence, the “goodness”
of the selected model in describing the physical system.

In context with the preceding development, the Gaussian elimination procedure applied to
the system of equations (14) provides a useful interpretation of the proposed method for numerical
evaluation of H(i®). Note that the Gaussian elimination procedure transforms the matrix of Eq.
(14) to an upper triangular matrix. At the step j of this procedure the components of the matrix
located on the j-th column below the main diagonal are eliminated. In this regard, every step of the

(16)
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Gaussian elimination is equivalent to a premultiplication of Eq. (14) by a lower triangular matrix
with non-zero components located on the main diagonal and on the j-th column. Thus, during the
first step of the Gaussian elimination, Eq. (14) is premultiplied by the matrix

1 0.0
Sy /Spx 1O

A= 17
_—S},xl/le‘,cl 0.. 1_
This yields the system of equations
Sy Sxxy - Sxy [[H1
0 szxz;l sz)’;l d H, r= { 0 }, (18)
“yN
I 0 Sy - Syy;l_ -1
where § =Sy, /S x, - In this manner, during the j-th step of the Gaussian elimi-

Xl ; ) S5 . . . T
nation, the 8ystem 6Fequation’dbtainéd at the end of the previous (j— 1) step is premultiplied by
the matrix

10 .. 0 .. 0
L_|00 1 0 (19)
PTL0 0 =S, i 1/Seaior e O

0 0 o =Sy i 1/Sxpijct - 1

Then, the Gaussian elimination procedure can be formalized as a prer—nultiplication of Eq. (14) by
the matrix

A=AA . Af. (20)

Since all matrices A ; in Eq. (20) are lower triangular, the assembled matrix A is also lower trian-
gular. Also, note thaf all elements of the main diagonal of the matrix A are equal to 1. The system
of equation obtained after completion of the Gaussian elimination can be written as

-
-1 ~Syn

where S is the upper triangular matrix.

In this regard it is pointed out that Eq. (21) can be obttainegl directly from Eq. (13) by pre
multiplying it by the vector 2m({X’, YY) /T = 2n(A™{X', Y}) /T and taking mathematical
expectation. Note that the matrix S of Eq. (21) can be viewed as the cross-spectral density matrix
of the vector-process {X', y}' and the vector-process {x’, y}'. Therefore, it can be concluded from
the triangular form of S that the process X, is uncorrelated from any of the processes x; for j </,
and the process y is uncorrelated from the vector-process x . Further, the spectral density matrix of
the vector-process {x', 3} can be found from the equation

-~

S = @E[{X} (%, ?}] = A[S’Q‘ SH} ah® = §a"". (22)
Y

yx Uyy

3 T
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Since both matrices S and (A")” are upper triangular, the matrix S¢3 54 is also upper triangular.
Moreover, the matrix Sy, 53 is a symmetric spectral density matrix of a random vector; it is a
diagonal matrix. That is, the random vector-process {X,y} is a vector-process with uncqrrelated
components. Also, note that since the elements of the main diagonal of the matrix (A" are all
equal to 1, the main diagonal of the matrix S5 51 is identical to the main diagonal of the matrix
S. That is, upon implementing Gaussian elimination on Eq. (14), the elements of the main diago-
nal of the obtained matrix S represent the spectral density functions of the corresponding orthogo-
nalized processes.

In conjunction with the preceding developments, it is pointed out that the Gaussian elimi-
nation procedure of the system of equations (14) is equivalent to a “Gram-Schmidt” type of
orthogonal decomposition of the random vector-process {x, y} ; this approach was previously
pursued in Refs. [6,7,8,9] for identification of the MISO system transfer functions H j(i ®).

Finally, it is noted that the matrix A can be determined in a more efficient manner, from a
computational standpoint, by using the Cholesky decomposition of the matrix of Eq. (14). Indeed,

Eq. (22) yields
-1 I 1%
. =A S_,_:(S_,_,A ):LL, 23
Sie Sy ( J{z,y}) J @) 23)

where L is the lower triangular matrix of the Cholesky decomposition. Since the Cholesky decom-

position is unique, one finds )
-1
L=A"[S ' 24
/ &5 (24)

Note that the elements of the main diagonal of the matrix L represent the square root of the spec-
tralt density functions of the corresponding components of the orthogonalized vector-process
{x,5}.

Upon evaluating the transfer functions of the equivalent MISO system by solving equation
(14) with the use of the Cholesky decomposition procedure, the unknown structural parameters of
the non-linear model can be obtained by using a curve-fitting procedure over the frequency range
of interest. Several computational issues of the developed identification method warrant additional
remarks. First, the introduced equivalent MISO and the ordering of its components must be
selected based on a physical model which makes use of the available knowledge regarding the non-
linear structural behavior. A physically motivated model can provide mathematical forms for the
base functions of Eq. (2), or indicate the most expeditious expansion of the non-linear excitation
force into a series of functions in a statistically equivalent sense. Note that the components that
better describe the system physics correspond to the higher value of the coherence function and
should be assigned to the first elements of the vector x. Second, the proposed identification
method can be sensitive to the error of estimating the power spectral density functions. It is a
common practice in linear spectral analysis to use an appropriate window to reduce the effect of
leakage in spectral estimation. Further, overlapping and zooming can be applied to the estimation
process to recover the information lost during windowing [11]. Note that a biased estimation of the
corresponding spectral density functions and inadequate MISO system representation may yield a
matrix S, (@) which is not positive definite for certain frequencies. Finally, it should be noted that
noise may be induced during the measurement. The proposed method relies on the assumption,
which is quite reasonable in most circumstances, that the noise is statistically independent from the
structural excitation and response quantities; filtering techniques must be applied to reduce this
noise as much as possible.

S-E-E S-?.:y

NUMERICAL EXAMPLE

To illustrate the application of the proposed method, a single-degree-of-freedom system
excited by a wave force is considered. The wave force is modeled by Morison’s equation. Thus, the
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motion of the system is governed by the equation

mg+cq+kqg = of|lu—g|(u—g)+oa,m,(h—§)+myg. . (25)
The numerical values m = 100,¢c = 1,k = 025, m, = 10, o;; = 0.9,and o, = 1.25
are used. This structure has system natural frequency ®, = ~k/m = 0.05, and damping ratio

{ = 0.1. The Gaussian surface wave elevation is generated consistently with the Pierson-
Moscowitz spectrum [9] corresponding to a wind speed of 25.74 m/s, using a superposition of
sinusoids at 1000 frequency points uniformly spaced in the interval [0, 1.5] rad/sec. The horizontal
wave velocity and acceleration at a depth of 10m in a “deepwater” location are computed using
linear wave theory. A steady current of 0.5 m/s is superimposed on the velocity at the same
location. Note that the assumption of an infinite water depth and of linear wave theory are adopted
for simplicity and the proposed identification algorithm does not hinge upon these assumptions.
Figure 2 shows the time histories, one-sided power spectra, and probability density functions of the
water particle velocity and the displacement response. The low frequency response and the non-
Gaussian distribution of the response are clearly discernible.

For the considered example the values of the parameters o/; and o, are assumed to be
unknown and are identified based on the simulated data. The base functions are selected as
lu—4l(u—¢) and u—¢. The following decomposed system is derived: x;, = [u—gl(u—4),
X, =U—-§, y=(m-my)§ +cqg+kq, H(in) = o;, and H,(i®w) = o,m,. Results of
identification are shown inaFigure 3. The transfer functions H,(i®w) = o; and H,(i®) = a,m,
are found to be constant; the parameters are obtained as @; = Real(H;(®)) and
&, = Real(H,(®))/m,, accordingly. The broken lines represent the true parameters, o; and
ol,. The averaged parameters are &; = 0.896 and &, = 1.231. Note that beyond the cutoff
frequency (@ = 1.5 rad/sec) the identified values are of no interest. Shown in Figure 4 are the
cumulative coherence functions associated with the SISO system having the input x; and with the
MISO system with the inputs x, and x,. Full frequency range is displayed, although only the
range of [0, 1.5] rad/sec is to be observedz. The coherence functions in Figure 4 provide a measure
of the validity of the decomposed system and indicates the confidence with respect to the identified
transfer functions. Indeed, a quantitative error analysis can be pursued to relate the confidence
limit of an identified parameter to the coherence of its associated transfer functions. Also, it was
found that the developed identification method is quite robust, with respect to adding noises to the
observed excitation and response processes, within the frequency range containing the frequencies

which are significant for describing waves and structural behavior.

CONCLUDING REMARKS

Method of identification of non-linear structural systems has been developed. It is based on
the decomposition of system nonlinearities in terms of base functions, and on subsequent
treatment of these base functions as input-output variables of an equivalent MISO linear system.
The transfer functions of the MISO are determined by solving a system of frequency domain
equations with the use of the Cholesky decomposition. The numerical example involving identifi-
cation of the parameters of a non-linear wave force on the offshore structure demonstrates the
applicability and usefulness of the proposed identification method.
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