-

1.11

1

. •

.

۶

•

:

4

ù T

4 . r. t. . .

,

.

;

÷

.

. .

. .

.

TABLE OF CONTENTS

t

į

.

.

١.	Summary	Page I
П.	Introduction	3
m.	Discussion of Results	5
۱۷.	Future Program	20
۷.	Appendix	22

- 1 -

i Summary

During the month of August, work on the methanation project focused mainly on the initiation of the catalyst – liquid scan, as well as implementation of several system improvements; such as the high pressure rotameter and the differential pressure meter.

Using the Penndrake Code 4417 white mineral oil in connection with Girdler G65 - RS, Catalyst and Chemicals XC150-02, and Harshaw Ni -0104- 101 catalysts, we investigated the effect of temperature, liquid flow rate and gas flow rate on the reaction system. The experimental results indicate that

- all three catalysts have the desired selectivity and activity for the rapid reaction of CO and H₂ to produce methane.
- At temperatures slightly above 300°C, total pressure of 800 psig and VHSV's ranging from 500 to 1000 hrs⁻¹ conversions in the 80-90% range have been attained.
- A reaction rate constant, assuming ideal plug flow and a rate of reaction first order in CO have been calculated. The rate constant increases with temperature and liquid flow rate.

Anna A seetto

- 2 -

However, the effect of gas flow rate is not so clear. The rate constant increases with increased gas flow rate with the CCI catalyst, but decreases with the other two catalysts. Carbon dioxide is produced to a small extent, about 1-3% of the water-free effluent, by all of the catalysts. The Girdler catalyst seems to require temperatures 40 to 50°C higher to reach the same conversion level cataled with the CCI and Harshow catalyst. The lower nickel content of the former may explain this difference since the rate constant calculated for all the catalysts are quite similar when expressed in terms of metal content of the catalyst.

- 3 -

II Introduction

During the month of August we initiated the catalyst - liquid scan as proposed at the July Project Review meeting. The liquid phase for this set of runs was Penndrake Code 4417 white mineral oil; the catalysts were Girdler G65 -RS, Catalyst and Chemical XC150-02, and Harshaw Ni -0104 - 101. All three catalysts were ground to 30-50 mesh and treated with hydrogen for at least 24 hours at C50-400°C. In addition, several improvements, as proposed in Progress Report #3, have been implemented. A discussion of these improvements as well as a more detailed examination of the experimental result follows:

II. System Improvements

- Sample loop size in the Carle chromatograph was reduced to 200_µl in order to eliminate errors due to column over loading. This problem arises because of the high methane concentrations in the product stream.
- 2. An atmospheric, low temperature (0°C) liquid-gas separator was added to the system to remove product water vapor and small amounts of liquid phase carryover. This is doubly important because water adversely effects the quantitative separation of components by the molecular sieve column.
- 3. A high pressure rotameter was added so as to insure accurate control of the gas flow in the reactor.
- 4. Addition of the differential pressure cell allows us to follow the progress of fluidization, since it will be possible to determine incipient fluidization and therefore more accurately determine bed expansions. Preliminary results indicate that fluidization occurs when the pressure drop is 85% of

1.1

- 4 -

the theoretical value for a liquid-only fluidized bed. This is in line with the results reported in Progress Report $\frac{4}{2}$.

- 5. We have made changes in the piping system, so that pump suction draws from several inches above the bottom of the high pressure iiquid – vapor separator. This is to prevent the pumping of any condensed water phase directly into the catalyst bed. The condensed water can result when the gas – liquid separation unit is cooled down after a days run. The catalyst manufacturers have noted that water can temporarily deactivate the catalyst due to adsorption on the catalyst active sites.
- 6. After several discussions with the catalyst manufacturers we have ascertained that the addition of nitrogen to the system will present no problem with respect to the formation of ammonia. In fact, nitrogen is the recommended gas whenever turning down a commercial methanation unit. An extra benefit is using a nitrogen purge rather than a hydrogen purge in the reduced time for the effluent gas to reach equilibrium concentrations.

III. Discussion of Results

After the initial work with the Girdler G65-RS Catalyst, an experimental program was initiated. In essence what was attempted was to carry out a temperature, flowrate scan during the course of a week. A day for start up and another day for shut down was necessary thus leaving three days to carry out the experiments. During these three days the following experiments were carried out.

Day 1 - Temperature scan at low gas flow rate and low liquid flow rate

; ;

7

1

Day 2 - Temperature scan at low gas flow rate and high liquid flow rate

Day 3 - Repeat forfirst datum point of Day 1 followed by a temperature scanat high gas and low liquid flow.

The full data sheets are given in Appendix 1. The important data have been extracted and are presented in Tables 1 through 3 and Figures 1 through 3 for the three liquid – catalyst systems.

In order to examine the data in a systematic fashion, we have assumed ideal plug-flow in the reactor and a reaction rate first order in CO concentration, as a preliminary model. The integrated rate equation results in the following expression for the rate constant.

$$K = VHSV \log \begin{pmatrix} C_o \\ C \end{pmatrix}$$

where VHSV and K are given in units of ft^3 gas @ STP and C over C_o can be in any ft^3 fluidized bed-hr

consistent concentration units. At constant pressure, mole fractions are the most convenient units to use in the concentration ratio expression. The feed concentration is known, and the reactor exit concentration may be evaluated by the following procedure.

- 6 -

Let the component formula represent its concentration in the effluent, in mole percent, as measured by the chromatograph. Since we trap out product water before entering the chromatograph, the actual component concentration in the reactor is lower than that measured by the chromatograph. We can account for this difference by calculating the theoretical water produced during the following reactions to the measured products:

$$CO + 3H_{2} \longrightarrow CH_{4} + H_{2}O$$

$$2CO + 5H_{2} \longrightarrow C_{2}H_{6} + 2H_{2}O$$

$$3CO + 7H_{2} \longrightarrow C_{3}H_{8} + 3H_{2}O$$

$$CO + H_{2}O \longrightarrow H_{2} + CO_{2}$$

The resulting expression for the actual reactor exit concentration is then

$$X_{\text{recctor}} = \begin{bmatrix} |CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + 2C_2H_6 + 3C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6 + C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6 + C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6 + C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6 + C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6 + C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6 + C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6 + C_3H_8 - CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6 + C_3H_8 + CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6 + C_3H_8 + CO_2| \\ CO + H_2 + CH_4 + C_2H_6 + C_3H_8 + CO_2| + |CH_4 + C_2H_6$$

By this procedure, it is possible to calculate the concentration of each component in the reactor and thus estimate rate constants. It should be noted that the rate constants are based on a volumetric gas flow at STP, and not at reaction pressure and temperature. This simplification is valid for the results presented in this report in which the total pressure was constant and the liquid phase has a negligible vapor pressure. Under varying pressure and temperatures and when liquids with a substantial vapor pressure are used this assumption is probably not valid.

As shown in Appendix 1; conversions based both on CO consumed and methane produced are given. The difference between these two is a measure of the system's selectivity. In calculating the above mentioned conversions it is assumed that all the carbon seen in the effluent is balanced by the carbon fed in the gas feed. Thus carbon deposition and liquid degradation is assumed to be negligible. A check on this assumption is made via a hydrogen balance which is reported as the molar ratio of hydrogen in the gas feed to the hydrogen in the product gas. In most experiments the carbon and hydrogen balances are very close.

Another means to check the accuracy of the material balance as well as a mean to instantly ascertain more or less what conversion level is being attained is to compare inlet and outlet gas flow since the shrinkage in volumes is directly related to the conversion. All of these checks and balances are being used to monitor the reaction and to detect any unusual behavior of the system.

Revenue gastermet was rafe, w

- 7 -

- 8 -

System 1: Penndrake Code 4417 + Girdler G65-RS

The result for runs 50-26-1, 50-27-2 were briefly presented in Progress Report #3. In addition we completed several runs with a second charge of the catalyst runs 50-28 and 50-29. The results are presented in Table 1 and Figure 1. Since these data had been taken before the program had been formalized, the reactions conditions are somewhat haphazardly distributed. It is apparent, however, that increase liquid and gas flow significantly increased the rate constant. This might result from a combination of increased mass transfer rates as well as a reduction in back mixing. It is also readly apparent from the data that temperature has a noticeable effect on the rate constant.

5

10.000

4

Table 1

. 9

Experimental Data Girdler G65–RS (27% Ni) (193 grams of catalyst)

-	Run	Ţ	L*	V		Ro	ote	R	ate Cons	tants
	#	°C	gal/min-ft ²	L/hr.	-1 hrs	lb -mo l CO	es/hr-ft ³ <u>CH</u> 4	κ	к ₂	к _з
	50-26-1	320	14.75	200	842	367	346	310	6.09	22.6
	50-27-1	320	29.50	2 50	878	453	371	478	11.2	41.7
ł	50-27-2	320	29.50	400	1338	494	412	313	7.75	28.7
	-50-28-1**	330	29.91	168	941	518	496	606	15.7	58.1
	50-28-2	340	30.24	39 8	21 <i>5</i> 8	869	794	604	16.0	60.0
•	50-29-1*	300	21.26	70	420	236	227	313	7.59	28.1

 $K_1 = ft^3 gas/ft^3 of fluidized bed -hr$ $K_2 = ft^3 gas/lb of catalyst -hr$ $K_3 = ft^3 gas/lb of metal -hr$

- This is the liquid flow rate in gallons/min cross sectional area
- ** A riew batch of catalyst was used with a total weight of 110 grams

- 11 -

System 2: Penndrake Code 4417 + CCi XC150-02

The results (Table 2 and Figure 2) for this catalysts follow the same trends observed previously with respect to temperature and flow rate. Temperature dependence is detailed in the series of Runs 50-30-1, 50-30-2, and the series 50-31-1 and 50-31-2. The curve in the 50-30 series is apparently due to the substantial CO₂ produced in Run 50-30-3, over 6%, which is almost 4 times the amount produced at the next lower temperature. The effect of liquid flow rate probably overstated by the comparison of the 50-30 runs (low liquid flow rate) with the 50-31 runs (high liquid flow rate), because close observation will show that Run 50-32-1 duplicates the conditions of Run 50-30-1, yet the K value is substantially higher. This seems to be an indication that the catalyst has become more active during the course of the tests. It is possible that the reduced catalyst was weighed prior to loading. The oxidized surface may very well have been reactivated during the initial runs causing the observed increase in activity at a later point.

20

-

2

.

~

·

.

• • • •

:

ź

=

	Table 2	
ссі хс	-15 - -02 (58%	6 Ni)
(160	grams of catal	yst)

	Run	T	<u>L*</u> (%)	<u>v</u>	VHSV	R	ate		Rate Cor	nstants	
1 5	# 50-30-1	°C 276	gal/min-ft ² 8,90	L/hr. 195	hrs ⁻¹ 943	lb-mol CO 439	es/hr-ft ³ <u>CH</u> 427	- ۲۱ 359	К ₂ 7.46	K3 12.9	
	56-30-2	301	9.06	195	948	487	467	459	9.49	16.4	
	50-30-3	320	9.24	195	952	544	487	665	13.7	23.6	
	50-31-1	275	20.61	200	793	458	436	611	15.5	26.7	
	50-31-2	299	21.07	205	806	503	486	1097	27.4	47.2	
	50-32-1	277	8.96	205	99 2	508	483	500	10.4	17.9	
	5 0- 32-2	278	8,93	413	1895	771	701	542	11.9	20.5	

$$K_1 \approx ft^3 \text{ gas/ft}^3 \text{ of fluidized bed -hr}$$

 $K_2 \approx ft^3 \text{ gas/lb of catalyst -hr}$
 $K_3 = ft^3 \text{ gas/ lb of metal -hr}$

* - liquid flow in gal/min-cross sectional area

- 12 -

· · · · #

System 3: Penndrake Code 4417 - Harshaw Ni -0104- 101

The results (Table 3 and Figure 3) for the Harshaw catalyst are similar in value and trend to the CCI catalyst. Temperature dependence is detailed by the series of Runs 50-33-1, 50-33-2, and 50-33-3. The second series of Runs, 50-34, at the high liquid flow rate, unfortunately show no temperature dependence. We tend to attribute this to some deactivation process occuring during the days run. This hypothesis is supported by the significant drop in K value as exemplified by a comparision of Run 50-35-2 with the early Run 50-33-2. The cause of the deactivation is not yet known, though water adsorption on the catalyst might be a possible reason for the loss in activity. Additional data are necessary prior to fully ascertaining

if catalyst activity is decreasing in our system.

- 15 -

Table 3 Harshaw Ni 0104 –101 (58%Ni) (262 grams catalyst)

<u> </u>	<u>L*</u>	<u> </u>	VHSV	. 1	Rate		Rate Co	nstants
				lb-mole	es/hr-ft			
°C	gal/min-ft ²	L/hr.	-1 hrs	<u>co</u>	CH ₄	ĸ	к ₂	к _з
275	. 8.88	205	950	479 -	450	454	5.99	10.3
294	9.08	205	950	527	497	638	8.41	14.5
318	9.74	205	950	569	543	912	12.0	20.7
271	20.64	200	762	428	398	536	8.59	14.8
296	21.13	200	762	433	406	561	9.00	15.5
321	21.50	200	774	440	413	564	9.04	15.6
247	8.68	206	917	157	138	715	0.958	1.65
290	9.04	200	926	458	412	424	5.60	7.65
296	9.11	392	1817	661	581	440	5.80	10_0
	T °C 275 294 318 271 296 321 247 290 296	T L* °C gal/min-ft ² 275 8.88 294 9.08 318 9.74 271 20.64 296 21.13 321 21.50 247 8.68 290 9.04 296 9.11	T L^* V °Cgal/min-ft2L/hr.2758.882052949.082053189.7420527120.6420029621.1320032121.502002478.682062909.042002969.11392	TL*VVHSV°Cgal/min-ft²L/hr.hrs¹2758.882059502949.082059503189.7420595027120.6420076229621.1320076232121.502007742478.682069172909.042009262969.113921817	TL*VVHSVIb-mole°C $gal/min-ft^2$ L/hr. hrs^{-1} CO2758.88205950479 ⁻¹ 2949.082059505273189.7420595056927120.6420076242829621.1320076243332121.502007744402478.682069171572909.042009264582969.113921817661	IL*VVHSVRate Ib-moles/hr-ft3°Cgal/min-ft2L/hr.hrs1CO CH_4 2758.882059504794502949.082059505274973189.7420595056954327120.6420076242839829621.1320076243340632121.502007744404132478.682069171571382909.042009264584122969.113921817661581	IL*VVHSVRate Ib-moles/hr-ft3°Cgal/min-ft2L/hr.hrs1CO CH_4 K12758.882059504794504542949.082059505274976383189.7420595056954391227120.6420076242839853629621.1320076243340656132121.502007744404135642478.682069171571387152909.042009264584124242969.113921817661581440	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $K_1 = ft^3 gas/ft^3 fluidized bed -hr$ $K_2 = ft^3 gas/lb of catalyst -hr$ $K_3 = ft^3 gas/lb of metal -hr$

* - liquid flow in gal/min-cross sectional area

- 17 -

The data presented in the first three figures show a considerable scatter namely because of the varying liquid and gas flow rates. The effect of these two flow variables on the pseudo reaction rate constant is not unexpected in fluidized systems, particularly those in which gas and liquid are present along with the catalyst.

As indicated in Figure 4 and 5 a close correlation can be obtained if only those data points at similar liquid flow rates are considered. For the CCI and Harshaw catalysts the points chosen were for liquid flow rates of about 9 gallons/min-ft² and for the Girdler catalyst the liquid rate was close to 30 gallons/min-ft².

The first thing to notice is that the rate constant are pretty similar for all systems studied. This, to a certain extent, is not unexpected since all the catalysts are commercially used and clearly Girdler, CCI and Harshaw are selling catalysts of similar properities. The possibility that the similarity of rate constant is due to the fact that the system is mass transfer limited, or affected by mass transfer considerations cannot be disregarded. There are two experimental facts that seem to indicate a mass transfer affected system. Firstly, the relatively low energy of activation of the system and secondly, the noticeable effect of liquid flow rate.

At this point it is too early to clearly ascertain the effect of the flow variables. The second liquid scan will provide us with substantially more data ideally suited for evaluating the effect of mass transfer on the reaction. We will continue to evaluate in the future various rate expressions based both on reaction kinetics and mass transfer mechanisms, since the present model is too simplistic to explain all the experimental facts. 100 IN 100 IN 100 IN 100

IV. Future Program

- 20 -

In the coming six weeks we plan to finalize the catalyst liquid scan and thus arrive at the second milestone of our process development.

The high pressure – variable flow pump arrived at the end of August but it has not been put to use because of a small defect in the housing which causes it to buckle under pressure. The pump should be ready to use by September 15. At this point the following system will be evaluated.

System	Liquid	Catalyst	Variables to Investigate	of Evaluation
T	Pseudocumene	Girdler	Temperature, Gas and Liquid Flow	9/22
2	Pseudocumene	CCI	11	9/30
3	Dow ther m	Harshaw	"	10/6
4	Dowtherm	Girdler		10/13
5	Best Combination of Cataly	of Liquid and st		10/27

At the completion of this experimental program, a realistic choice of catalyst and liquid can be made to initiate the third and last portion of the experimental program envisioned for Phase 1 of this project.

The results up to date are very encouraging since a number of catalysts have performed quite satisfactorily using a paraffinic oil as the recirculating liquid. On looking at the proposed time table to this project, it is clear that we must start our efforts or the design and procurement of the equipment needed for the process development unit. During the month of September it is planned to contact the vendors and contractors to get a better estimate of the lag time required to deliver equipment in the coming six months. Our

preliminary process design figures will be updated based on the present experimental results which fortunately closely parallels the results predicted at the time that the research proposal was prepared.

In conjunction with these efforts, the data generation and analysis will be simplified by making use of an area integrator and a mini-computer; the goal being to automatically calculate feed and effluent compositions, conversion, selectivity and rates of reaction directly from the chromatograms.

Finally, in order to maximize the use of the present experimental unit, a staggered work schedule is being considered and probably will go into effect at the end of the month.

ŝ

a statistica de la secondação de constante de la seconda de la seconda de la seconda de la seconda de la second

	Dun Numbon		50_1 1	- 22 - Reactor Diamet	er: ches	0.81 with	2 18" thermov
		-	7/25	Reactor Length	· inches	480	
	Doerator	-		Settled Bed He	ight: inches	240	
	Catalvst	-	Girdler G65-RS	Catalyst Weigh	t: grams	193.5	
1	liquid	2	Poorderska Code 4417	Catalyst Size		30-50 mes	<u></u>
•	Lidara	L	PORCHIRE CLME 5517	Empty Reactor	Volume, cm ³	395.5	
	Liquid Flow	r; ga]/min-f	t ²	<u>14,75</u>	······································		
	iniet Gas P	Tow; Incers	~/nr .				
	Outlet Gas	Flow; inter	S^/AF N-3 €	[15 (Approximate)	<u>, </u>		
	Feed Gas Co	mposition;	VOL. %	76			
	H2				<u> </u>		<u> </u>
							<u> </u>
	Utr	ier					
	Pressure; p	osig	1 Uninka, inches		······		
	Estimated (Latalyst Bed	Height; Inches	_28.80			
		Salt Path					
	Height	Height					
	(in.) 0	(in.)		306			
	3	0		320			
	12	9		320			
ī	18	15		320			
	30	27					
	36	33		320			
	48	45		320			
	Pressure D	rop; psi					
	Catalyst V	HSV; Vol. Ga Vol. Fi	as @ STP*/hr- lu:dized Bed				
	Outlet Gas	Concentrat	ion; Vol. %				
	H ₂			51.0			<u> </u>
	CO			12.25			
	Сн	4					
	CO	2		1.0			····
	^N 2						
	Ot	her	H ₂ O	balance			
	0t	her	$C_{2}H_{6} + C_{3}H_{8}$	0,3			
	% Conversi	on Based On	: CO	68.4			
	*		CH ₄	64.5			
	moles H ₂ in	n/moles H ₂ ac	counted for in products	0.924		<u></u>	
	Overall Re	actor Rate;	Lb-moles CH ₄ /hr-ft [~] of Fluidized Bed	346			
	*25 ⁰ C, 1 a	tm	Lb-moles CO/hr-ft ³ of Fluidized Bed	0.367		40.000.000	

• . .

•

ĉ

.

į

the second se

•

.

Ä		- 23 -			
Run Number	50-27-1	Reactor Dia	ameter;ches	0.81 with a 1/3	thermowell
Date	7/26	Reactor Ler	ngth; inches	48.0	
Operator	,	Settled Bed	d Height; inches	24.0	
Catalyst	Girdler G65-RS	Catalyst We	eight; grams	193 5	
Liquid	Penndrake Code 4417	Catalyst Si	ize	<u>30-50 mesh</u>	
~	_	Empty React	tor Volume, cm ³		
Liquid Flow	; ga]/min-ft ²		29.50		
-Inlet Gas F	low; liters*/hr	250 (Approxim	ate) .400 (Approxim	ate)	
_Outlet Gas	Flow; liters*/hr	105 (Approxim	gte) 230 (Approxim	nate)	
Feed Gas Co	mposition; Vol. %				
^н _ н ₂			75		
. co			25		
, Oth	er				<u></u>
Pressure; p	sig	800	800		
Estimated C	atalyst Bed Height; inches	34.56	36.29	<u> </u>	
Temperature	Profile:				
*Reactor	Salt Bath				
Height	<u>Height</u>	_			
		306			
6	3				
12	9		320		
24	21	320	320		
30	27				
42	35 39		320		· · ·
48	45	320	320		
ressure Dr	op; psi			<u> </u>	
Catalyst VH	SV: Vol. Gas @ STP*/hr-	878	1338		
) 1 Unitlat Gas	Concentration: Vol 4				
	concentration, vor. »	44 5	E4 0		
"2 ()		<u> 40, </u>	<u>54.0</u> 15.7		
cu ru		28.0	18.0		
ά ^{ch} 4		4 0	<u> </u>		
2 N			<u></u>		
"2 0+b					· · · · · · · · · · · · · · · · · · ·
	$C_2H_6 + C_3H_8$	<u> </u>	<u> </u>		<u></u>
conversio					
			<u>40.3</u>	<u> </u>	
	to a Date. 15 malas CH /hr ft	.3			
	of Fluidized Bed	.371	0.412		
~∠5 ⁰ C, 1 at	Lb-moles CO/hr-ft ³ m of Fluidized Bed	- 453	.494		

21 C - 2

•

• • • • •

....

a ;

.

•

•

:

:

İ

State 1

ų į

					-	
		- 24 -		· · · · 1/2	".	
Run Number	<u>_50-28</u> <u>2</u>	Reactor Diam	eter;ches	U.8 with a /8 thermower		
Date	8/11	Reactor Leng	th; inches			
		Settled Red	Height; inches			
Latalyst	Girdler G65-K5	Catalyst Wei	ght; grams			
Liquid	Penndroke_Code 4417	Catalyst Size	e 	<u>30-50 mesh</u>		
	. ?	Empty Reactor	r Volume, cm			
Liquid Flow; ga]/min-	-ft ⁻	29.91				
Inlet Gas Flow; liter	-s*/hr 165-170	(Approximate)	<u>395–400 (Approx</u>	cimate		
Outlet Gas Flow; lite	ers*/hr	55-58	185			
Feed Gas Composition:	; Vol. %					
^H 2		75.		·		
CO		25				
Other						
Pressure; psig		800	800			
Estimated Catalyst Be	ed Height; inches		22.35			
Temperature Profile:						
Reactor Salt Bath	1					
in.) - (in.)	-	307	1			
3 0		332	340			
6 3						
12 9		331	340			
24 21		327	340			
30 27						
36 33 42 39		324			<u>_</u>	
48 45		322	322			
Pressure Drop; psi						
Catalyst VHSV; Vol. (as @ STP*/hr-					
Vo!. i	Tuidized Bed	941	2158			
outlet Gas Concentrat	tion; Vol. %	40.0	56.0			
^H 2 (was also	used as purge)		<u> </u>			
CO		9.1	16.3			
CH ₄		55.0	25.5			
^{C0} 2		1.6	1.7			
^N 2						
Other C ₂ H	ι ₆ + C ₃ Η ₈	0.4	0.3			
Other						
Conversion Based On	^{1:} CO	86_3	63_1			
	СН	82,6	57.7			
moles H ₂ in/moles H ₂	, accounted for in product	0.971	1.002			
Jerall Reactor Rate	; Lb-moles CH ₄ /hr-ft ³ of Fluidized Bed	0.496	0.794			
-25 ⁰ C, 1 atm	Lb-moles CO/hr-ft ³ of F!uidized Bed	0.518	.869			

481

<u>*</u>.

•- -

.

÷

. . .

and the second second

2

10.04.14

A reasonable to the

and a second of the second

-

•

-

• • •

		- 25 -		T	u
kun Number	50-29-1	Reactor Diam	eter; inches	0 <u>.81 with a /</u>	8 thermowell
- Date		Reactor Leng	th; inches		
. Operator		Settled Bed	Height; inches	15.0	
Catalyst	G65-RS Girdler	Catalyst Wei	ght; grams	110	
Liquid	Penndrake Code 4417	Catalyst Siz	e	<u>30-50 mest</u>	<u>ı </u>
4) 4)		Empty Reacto	or Volume, cm ³		
Liquid Flow; gal	/min-ft ²	21.26			
Inlet Gas Flow;	liters*/hr	70 Nominal			
Outlet Gas Flow;	liters*/hr	35			
• Feed Gas Composi	tion; Vol. %			· ·	
Ha		75.			
- co		25.		<u></u>	<u> </u>
Other			······································		
Pressure: psig		800	<u></u>		14 Contraction
Estimated Catalys	st Bed Heicht: inches	20,25		• • • • • • • • • • • • • • • • • • •	
Temperature Profi	ile:			· · · · · · · · · · · · · · · · · · ·	·····
Reactor Salt	Bath				
Height Height	iht				
(in.) 0 - (in.)				
	~				
12 9		300			
18 15					
30 27					
36 33					
42 39 48 45					
Pressure Dron: ns	:i		······································		
Catalyst VHSV: Vo	1. Gas @ STP*/hr-	••••••••••••••••••••••••••••••••••••••	······································		
Vo	ol. Fluidized Bed	420			<u></u>
Outlet Gas Concer	itration; Vol. %				
H2		44.0			
cõ		6.5			
CH		46.5			
۰, د02		1.0			
Na					
0ther	$C_{A}H_{L} + C_{A}H_{A}$	0.4			
Other	2 0 3 8		·····	······································	
3 Conversion Base	d ûn: CO	88.1			
	CH4	84.7			
moles H _a in/moles	H ₂ accounted for in product	0.894			<u> </u>
Overall Reactor R	ate; Lb-moles CH ₂ /h -ft ³	.227			
	lb-moles cover st3	₩ 30 00 °			
*25 ⁰ C, 1 atm	of Fluidized Bed	_236			

1

~

- 444

	- 26 - Poactor Diam	tor	0.81 with a 1/8"	thermowel
		the inches	49.0	
0.000 <u>8/23</u>	Sottled Red J	laight inches	23.0	
	Catalyst Weir	att. arame	159.4	
Liquid Pendake Code 4417	Catalyst Merg	girc, grans	30-50 mesh	
liquid Flow: cal/min-ft ²				<u></u>
Inlet Gas Flow- liters*/hr	19.5	195	195	
Outlet Gas Flow liters*/hr	90.90	71-90		
Feed Gas Composition: Vol %				<u>, , , , , , , , , , , , , , , , , , , </u>
H_	75	75	75	
2 CO	25		25	
Other		- <u></u>		
Pressure: nsia	820	835	800	<u></u>
Estimated Catalyst Bed Height: inches	20.07	24.96	24.85	
Temperature Profile:				
Reactor Salt Bath				
Height Height				
(1n.) 0 - (1n.)	212	234	254	
3 U 6 3	276			
12 9	276		320	
	277	303	318	
30 27				
36 33 42 39				<u> </u>
48 45	274	297	311	
Pressure Drop; psi	مین کاری 			
Catalyst VHSV; Vol. Gas @ STP*/hr- Vol. Fluidized Bed	943.	948	952	
Outlet Gas Concentration; Vol. %				
H ₂	48.0	39.0	27.0	····
CO	14_3	12.0	7.7	·
Сн ₄	37.5	47.5	59.0	
CO ₂	0.6	1.6	6.2	
^N 2	3_0	1.5	1.2	
Other C2H2+C3H8	0,2	0.2	0.3	į
Other _			<u></u>	
<pre>\$ Conversion Based On: CO</pre>	72.9	80.5	89.5	
CH,	71_0		80.2	
moles H ₂ in/moles H ₂ accounted for in product	0.984	1.008	1,083	
Overall Reactor Rate; Lo-moles CH ₄ /hr-ft [*] of Fluidized Bed	.427	0.467	0.487	
*25 ⁰ C, 1 atm Lb-moles CO/hr-ft ³ of Fluidized Bed	.439	0.487	_544	

i da la la

.

.

		1 7			
un Number 5	0-31-1.2	Reactor Dia	meter; unches ().81 with a /8	thermowell
Pate	8/24	Reactor Leng	gth; inches	48.0	
Operator	~, ~	Settled Bed	Height; inches	23.0	
-Catalyst	CCI XC150-02	Catalyst We	ight; grams	159.4	
Liquid	Penndrake Code 4417	Catalyst Si	ze	30-50 mesh	
		Empty Reacto	or Volume, cm ³	395.5	
Liquid Flow; gal/min-f	t ²	20.61	21.07		
Indet Gas Flow; liters	:*/hr	200	200		
Outlet Gas Flow; liter	s*/hr	66	53-58		
Feed Gas Composition;	Vol. %			<u> </u>	
⊼ H ₂		75	75		
- co		25	25		
- Other					
_Pressure; psig		800	800		
Lstimated Catalvst Bed	Height: inches	30,59	30.13		
Temperature Profile:				·	
Reactor Salt Bath					
Height Height					
(1n.) 0 - (1n.)					
12 9		276	299		
18 15					
30 27					
36 33		273			
42 59		270	293		
Pressure Drop; psi					
Catalyst VHSV; Vol. Ga Vol. Fl	s @ STP*/hr- uidized Bed	793	806		
Outlet Gas Concentrati	on; Vol. %				
Ho		25.5	16.0		
cō		6.5	2.0		
CHA					
с0 ₂		0.7	0.7		
No		11.8	0.8		
Other C.H.	+C2H	1.0	1.0		
0ther					<u> </u>
Genversion Based On:	со	90.5	97.7		
	CH.	86.1	94.4		**** <u>*********************************</u>
moies Ha in/moles Ha	accounted for in produc	t 1.006	0.990		
Overall Reactor Rate;	Lb-moles CH _d /hr-ft ³ of Fluidized Bed	0.436	0.486		
*25 ⁰ C. 1 atm	Lb-moles CO/hr-ft ³	.458	0.503		

enter de la companya
Run Number	5	0-32-1	- 28 - Reactor Dia	meter:	.81 with a 1/8" thermow	
Nate		8/25	Reactor Length; inches Settled Bed Height; inches		480	
Operator	-	94.2.3			23.0	
Catalyst	-	CCI-XC150-02			159.4	
linuid	-	Peondrake Code 4417	Catalyst Si	ze	30-50 mesh	
Liquit	-		Empty React	or Volume, cm ³	395.5	
Liquid Flo	w: gal/min-1	t ²	0.04	8 93		
Inlet Gas	Flow; liters	s*/hr	205	413		
Outlet Gas	Flow: liter	rs*/hr	86-91	240-250		
Feed Gas C	omposition;	Vol. %				
H,			75	75		
2 C0	1		25	25		
Ot	her					
Pressure:	psig		800	800		
Estimated	Catalyst Bed	d Height; inches	2507	26.45		
Temperatur	e Profile:					
Reactor Height	Salt Bath Height					
in.) ₀	_ (in.)		208	184	·	
3	0		276			
12	9		278	278		
18	15		278			
30	27					
36	33		278			
48	45		276	266		
Pressure [)rop; psi					
Catalyst V	/HSV; Vol. G Vol. F	as @ STP*/hr- luidized Bed		1895	<u></u>	
Outlet Gas	6 Concentrat	ion; Vol. %				
Hz	2		44,0	55,0		
CC)		11.3	16.2		
Cł	¹ 4		43.5	26.0		
CC	$\hat{2}$		1.2	1.6		
N,	2		2.2	0.3		
01 01	ther C ₂ H	6 + C ₃ H ₈	0.6	<u> </u>		
% Convers	ion Based On	: CO	80.2	63.8		
		CH,	76.3		• •	
moler H :	n/moles H a	- 4 counted for in product	0.981	1.009		
Overall R	eactor Rate;	Lb-moles CH ₄ /hr-ft of Fluidized Bed	3 	.701		
0		Lb-moles CO/hr-ft ³		0.773		

.

ميد الما

• 2

.

and the second sec

.

ŧ

-`

<u>-</u>			^r × 1	•	
Run Number	50-33- . 3	- 29 - Reactor Dia	meter:	0.81 with a 18	" thermowell
Date 8/29		Reactor Length; inches		480	
	<u>Heisida (110</u>	Catalyst Si	78		
	-Fenndrake Code 4417	Fmpty Reactor Volume, cm ³		395.5	
Liquid Flow. gaz/min-ft ²		888	908	9.79	
Inlet Gas Flow: lit	ers*/hr		205	205	
- Outlet Gas Flow: li	ters*/hr	80-90	. <u> </u>	72-75	<u></u>
Feed Gas Compositio	n: Vol. %				·
Ha		75	75	75	
		25.	25.	25.	
•• Other					
Pressure: osig		200	800	800	
Estimated Catalyst	Red Height: inches	26.2	26.2	26.2	
Temperature Profile	: °C		· · · · · · · · · · · · · · · · · · ·		
Reactor Salt Ba	th				
Height Height	· · · · · · · · · · · · · · · · · · ·				
$\frac{1}{1}$ 0 - (1).	2	215	245	280	
				326	
12 9		276	296	323	
				306	
30 27					
36 33		269			
48 45		264	272	290	
'ressure Drop; psi Catalyst VHSV; Vol. Gas @ STP*/hr- Vol. Fluidized Bed		0,72	0.72	0.72	
		950	950	950	
Outlet Gas Concentra	ation; Vol. %				
Ha		45_6	38.0	27.3	
cõ		12.0	8.4	4.8	
CH_4 CO_2 N_2 $Other$ $C_2H_6 + C_3H_8$ $Other$ $Conversion Based On: CO$ CH_4		42.5	53.0	70,8	
		1.5	2.0	2.6	
		1.5	0.5	0.3	
		0.5	0.5	0.4	
		79_0	87.0	93.9	
		74,3	82.0	89.5	
noles H ₂ in/moles H ₂ accounted for in product		0,989	0.982	0.987	
uverall Reactor Rate	e; Lb-moles CH ₄ /hr-ft ³ of Fluidized Bed	0,450	0.497	0.543	
*25 ⁰ C, 1 atm	Lb-moles CO/hr-ft ³ of Fluidized Bed	0.479	0.527	0.569	

1.23

1	Run Number	50-34- > 3	- 30 - Reactor Di	ameter:	0.81 with a 1	/8" iha
1	Date	8/30	Reactor Length; inches Settled Bed Height; inches		<u>48.0</u> <u>24.5</u> 242.2	
	Operator	0				
	Catalvst	Harshow Ni 0104-101				
-	Liquid		Catalyst St	iza	30-50 me	sh
		······································	Empty React	tor Volume cm ³	395.5	
•	Liquid Flow; ga]/mir-ft ²	20.04	21 13	21 50	
	Inlet Gas Flow;	liters*/hr	20.04	200	200	
	Outlet Gas Flow	; liters*/hr	70-78		75-78	
	Feed Gas Composi	ition; Vol. %				
:	Ha		75	75	75	
-	cõ		25.	25.	25.	
•	0ther					
	Pressure; psig		800	800	800	
	Estimated Cataly	yst Bed Height; inches	31.85	31.85	31.36	
	Temperature Prot	file:				
• •	Reactor Salt	t Bath				
	Height Hei	ight				
•	- 0 -	(111.)			2/2	
.	6 3					
4 •	12 9		271		324	
÷.	24 21		270		318	
-	30 27				218	
•	42 39					
	48 45		261	290	311	
•	^o ressure Drop; p	osi	0_69	0_61	0.65	
- - -	Catalyst VHSV; N N	Vol. Gas @ STP*/hr- Vol. Fluidized Bed	762	762	774	
-	Jutlet Gas Conce	entration; Vol. %				
	H ₂		38.8		37.0	····
	CO		7.2	7.2	7.5	
ç F	сн ₄		49.0	55.0	57.5	
-	^{C0} 2			2_8	2.8	
	N ₂		4.0	0.4	0.2	
	Other	$C_{2}H_{6} + C_{3}H_{8}$	0.4	0.4	0.4	
	Other					
	Conversion Bas	sed On: CO	88.0	89.1	89.1	
		CH	81.8	83.5	83.7	
•	moles H _o in/mole	s H ₂ accounted for in product	0_964	0.970	0,981	
	Jverall Reactor	Rate; Lb-moles CH ₄ /hr-ft ³ of Fluidized Bed	0.398	0.406	0.413	
- - -	⁻ 25 ⁰ C, 1 atm	Lb-moles CO/hr-ft ³ of Fluidized Bed	0.428	0.433	0.440	
				~ <u>~</u>		

.

÷

-			- 31 -		1 _{/01}	ta a
			Reactor Diameter; ihes		0.81 with a /8	thermowell
	Late	8/31	Reactor Leng	th; inches	48.0	
	Uperator		Settled Bed Height; inches Catalyst Weight; grams			
	Catalyst	<u>Harshaw Ni-0104-101</u>			202.2	. <u> </u>
•	Liquid <u>Penndrake Code 441</u> 7		Catalyst Size			·····
-		2	Empty Reacto	r Volume, cm	375.5	
2	_iquid Flow; gal/min.	ft ^c	8.68	9:04	9.11	
	'Inlet Gas Flow; liter	s*/hr				
	Joutlet Gas Flow; lite	rs*/hr	1 55-170	95-97		
-	Feed Gas Composition;	Vo]. %				
	F ^H 2		75.	75	75	
-	CO		25	25		
	0ther					
	ressure; psig		800	800	800	
	Estimated Catalyst Be	d Height; inches	26.46	26.22	26.22	
	[emperature Profile:					
	Reactor Sait Bath					
	Height Height					
	$\begin{bmatrix} n \\ - \end{bmatrix} \begin{bmatrix} 0 \\ - \end{bmatrix} \begin{bmatrix} - \\ - \end{bmatrix} \begin{bmatrix} 1 $			220	200	
				300		
:	12 9			290	298	
1			242	280	-290	
	30 27					
	36 33		234	275		
1	42 39		2.28	267	272	
	.ressure Drop: psi		0.68	0.72	0.61	
	Catalyst VHSV; Vol. G Vol. F	as @ STP*/hr- luidized Bed	917	926	1817	
Outlet Gas Concentration: Vol %		····		<u></u> <u></u>	<u> </u>	
	Ha	,	67.0	48.0	63.0	
-;	cõ		21.7	11.8	17.5	
	CH,		7.0	36.5	20.4	
•	co		0.1	2.5	1.9	
;	No		0.8			·····
;	2 Other	C_H_+C_H_	0.4	0.7	0.3	
-	Other	2.6 3.8				
Conversion Based On: CO		26.9	77 5	57.0		
Curversion based on. CO		23.6	69.7	50.1		
	les H ₂ in/moles H ₂ ac	counted for in product	1.005	0.992	0.974	
14	Overall Reactor Rate;	Lb-moles CH _A /hr-ft ³ of Fluidized Bed	0.138	0.412	.581	
1	*25 ⁰ C. 1 atm	Lb-moles CO/hr-ft ³ of Fluidized Bed	0.157	0.458	0.661	

- -

- -

<u>...</u>

. .

•

1 ļ

......

براهر من زرية ال

.

· ...

1 - .

.

COI - MPR -- 5

•

Chem Systems Inc.

. . .

÷

. .

• •

LIQUID PHASE METHANATION PROGRESS REPORT NO. 5

Prepared by Chem Systems Inc. For the American Gas Association September, 1972 1_

ί,

TABLE OF CONTENTS

. .

•

I	Summary	Page	1
II	Discussion of Results	Page	4
III	Process Development Unit	Page	14
IV	Future Experimental Program	Page	15
Appe	ndix I	Page	16

۲

î

ŧ

I SUMMARY

During the first half of September, work on the project dealt mainly with correcting several mechanical deficiencies in the new high pressure liquid circulation pump, as well as further development of the analytical and calculation procedures. For the latter half of the month, we continued with our liquid-catalyst scan as outlined in Progress Report No. 4.

Using pseudocumene (1,2,4-trimethyl benzene) in connection with Girdler G65-RS and Catalysts and Chemicals $XC-150-1-02^*$, we investigated the effect of temperature, liquid flow rate, and gas flow rate on the reaction system.

The experimental results show that for the G65-RS catalyst, we have been unable to maintain catalyst activity for any length of time, a problem noted previously. In subsequent talks with the manufacturer, they have indicated that this material has relatively poor water resistance. They are sending us samples of other more water resistant catalysts for evaluation.

The results for the CCI catalyst, on the other hand, are very encouraging. For example, at a temperature of 300° C, a pressure of 815 psia, with a VHSV of 2680(ft³ gas at STP/ft³ fluidized bed-hour), (this is equivalent to a VHSV of 2110 when not including the flow of pseudocumene vapor due to the liquid vapor pressure of 173 psig at 300° C), one hundred percent of the feed CO had reacted, with molar selectivities to CH₄, CO₂, C₂H₆ and C₃H₈ of 92.26, 4.16, 2.66 and 0.92 percent respectively.

*This is the correct name for this catalyst; not XC-150-02 as noted in Progress Report No. 4. 1.

£

and a surpresent a spirit at

Reaction rate constants, assuming ideal plug flow and a reaction first order in CO, have been calculated. The rate constant increased with increased temperature and liquid flow.

As the reaction rates in the pseudocumene system were substantially higher than those obtained when using mineral oil, we attempted to quantify these differences as a function of the liquid properties through mass transfer calculations. We have analyzed both mass transfer from the gas phase to the bulk liquid, and from the bulk liquid to the catalyst surface. Mass transfer rates, by either mechanism, are $2\frac{1}{2}$ times greater in pseudocumene than they are in mineral oil; for the most part this accounts for the higher reaction rates ubtained in pseudocumene.

In summary,

- The main cause of catalyst performance variations is suspected to be their resistance to water. Insufficient separator temperatures at high conversions have led to water condensation which is believed to be the main cause of catalyst deactivation noted in various instances.
- Aromatic polymethylbenzenes (eg. pseudocumene) seem to be satisfactory reaction solvents from both a reaction rate and stability viewpoint. Rates measured with pseudocumene seem to be as much as IOX greater than those realized with mineral oils and it is possible that this is due to a greater gas solubility and diffusion rate.
- Complete CO conversions have been realized at greater than anticipated flow rates and at relatively low temperatures (eg. $\leq 300^{\circ}$ C).

2.
Future tests will be run at lower per pass conversion to (1) attain better rate data, (2) better compare aromatic vs. paraffinic liquids and (3) to better compare Harshaw vs. CCI catalyst. The best system will be utilized in a variable scan, the results of which will be used in a more sophisticated reaction model.

Dowtherm will also be tested as a reaction solvent.

Ż

·····

II DISCUSSION OF RESULTS

The full data sheets are given in Appendix I. The important data have been extracted, and are presented in Tables 1 and 2, and Figures 1 and 2. As a matter of conventence, we also present the values obtained with mineral oil for comparison.

The only basic change in reporting the data is that now the rate constants are reported based on the gas flow at the reactor temperature and pressure, rather than at standard conditions. These rates include the flow of organic vapor which is a result of the substantial liquid phase vapor pressure. The vapor pressure of the process liquid also affects the gas phase concentrations in such a way that CO feed concentrations vary from about 19.8 to 23.0 mole per cent, down from its tank value of about 25 per cent.

The reason for including the organic vapor in the gas flow rate is that it enables us to compare runs on an equivalent reactor vapor flow rate (or residence time) basis.

4.

÷

¥.

3

:

1.1.1

System 1: Girdler G65-RS + Pseudocumene (See Figure 1 and Table 1)

We again have had trouble maintaining activity levels with the G65-RS catalyst. While Run 50-36-1 falls right in line with the runs reported for the mineral oil scan, all subsequent runs with this catalyst charge show a severely reduced activity.

Because of this problem, we are not considering any further work with the G65-RS catalyst in this reactor. However, we have been sent samples of more water resistant (as indicated by the manufacturer) methanation catalysts (G60, G69, and G87-RS), and we will examine them, in comparison to G65-RS, in our small submerged bed reactor.

Mr. Richard Fritz, of Girdler, has indicated that aside from physical adsorption of water, catalyst deactivation may be a result of water induced oxidation of the active nickel component. He has not offered any precise mechanism for the deactivation.

In order to ameliorate the problem of water deactivation, we might run the reactor at a higher temperature, or at a reduced total pressure. Both of these would give us a greater margin of safety in operating the unit, with respect to the formation of a condensed water phase.

5.

÷

TABLE 1

:

.

-

.

1

:

.

Girdler G65-^{ng} + Mineral Oil

Run		L; Gal/ min-Ft ²	V; L/Hr Feed Gas	V/W ⁽¹⁾ Ft ³ Gas @ Reactor T & P/Lb Cat-Hr	Rate (Lb Moles/I CO <u>Reacted</u>	k 10 ³ Lb Cat-Hour) CH Prodûced	Rate Const <u>K</u> 1(1)	tants $\frac{k_2^{(1)}}{k_2^{(1)}}$	Comments
<u>41 neral 01</u> 50-26-1	1 <u>1</u> 320	14.75	200	.596	7.23	6.81	11.13	219	Initial Run
50-27-1 50-27-2	320 320	29.50 29.50	250 400	.743	10.60 12.25	8.68 10.22	17.16	. 349	Catalyst Begins Deactivation (2)
50-28-1 50 -28-1	330	29,91 20,24	168 200	.892 2.15	13.40	12.85	22.12	.573	Initial Run
50-29-1 50-29-1	300	21.26	02	.352	5,71	5.49	10.86	.263	Catalyst Subsequently Deactivated (3)
Pseudocume	ne								
$50-36-1$ $\binom{4}{4}$ $50-36-2$ $\binom{4}{4}$	275 309	20.0 21.7	200 200	. 604	4.01 3.25	1.57 2.52	6.10 5.38	.108 .0966	Initial Run Catalyst Begins
50-37-1 (4)	280	79.9	200	.613	.379	.340	.330	.00864	Deactivation Much Reduced Activity (Commane 50-36-1)
50-37-2 ⁽⁴⁾	305	84.7	200	. 705	1.14	1.10	. 795	0080.	(compare 30-30-1) Much Reduced Activity (compare 50-36-1)
50-38-1 ⁽⁴⁾	308	21.9	200	.716	.660	.620	1.18	.0213	(compare 30-30-1) Much Reduced Activity (fommare 50-36-1)
50-38-2 ⁽⁴)	324	23.2	200	.802	1.79	1.69	2.97	.0537	(Compare 30-30-1) Much Reduced Activity (Compare 50-36-1)
50-38-3 ⁽⁴)	330	23.7	400	1.68	1.14	1.14	2.93	.0536	Much Reduced Activity (Compare 50-36-1)
(1) Includ	les org	anic vapoi	r present 1	n gas phase due to v	apor pressu	re of liquid.	κ ⁽¹⁾ ⁼	Ft ³ Gas @ Ft ³ Fluid	<u>Reactor T & P</u> <u>Bed-Hr.</u>
(2) Reactor render	or not 's cata	purged at lyst total	end of day 11y non-act	s run. Condensed wa Ve.	ter phase u	pon cooling	K 2 ⁽²⁾ = 1	t ³ Gas @	Reactor T & P

Reactor not purged at end of days run. Condensed water phase upon cooling renders catalyst totally non-active. (3) Low temperature in separator during following days run probably gaused condensed water phase. Activity not recoverable.

(4) 204.9 orns

.

1

System 2: CCI XC-150-1-02 + Pseudocumene (See Figure 2 and Table 2)

It is readily apparent that the rate constants and reaction rates for the pseudocumene runs are significantly higher than those obtained when using the mineral oil as the liquid phase. Reaction rates were up to four times greater, probably higher, since there was essentially no CO in the effluent even at the highest feed gas rates.

The difficulty in making cuantitative judgments among the runs themselves is that the low CO concentration makes it difficult to accurately determine the $\log(C_0/C)$ ratio, and hence kinetic K values. This is especially so for the runs where effluent concentration is essentially zero, and might remain so even if the feed rate was made higher. Since we plan future runs with catalyst, we will do so at reduced catalyst loading so that we can obtain CO breakthrough, and therefore more accurately determine kinetic parameters.

Runs 50-39-1, 2 were obtained using a low liquid flow level with the first catalyst charge. The very low CO exit concentration for 50-39-1 makes the K value somewhat indeterminate. Because of a plugged line at the reactor inlet, we had to take the system down, clean it out and reload with a second charge of catalyst. Runs 50-43-1, 2, 3 were run at similar conditions to the 50-39 runs and fall right in line with the values obtained for 50-39-1, 2. We attribute the sudden decline in activity for Run 50-43-2 to an accumulation of water from the previous high conversion run, caused by too low a separator temperature to prevent a condensed water phase in the system.

By raising the temperature we were able to restore most of the activity (Run 50-43-3) within a short period of about 2 hours. Further work is planned to explore the effect of water on the catalyst-liquid system.

ſ

Runs 50-42-1, 2, 3 were run at a higher liquid flow which favors an increased mass transfer rate. The higher K values result chiefly from the higher gas flows as the effluent concentrations were again so low as to again make the $\log(C_0/C)$ term somewhat indeterminate.

Another substantial difference obtained with pseudocumene as compared to mineral oil is the higher CO_2 concentrations in the effluent. At this time it is not possible to draw conclusions because this may be a result, in part, of the lower H_2/CO ratio of this batch of feed tanks, and the higher conversion levels.

• • •

1. J. 1.

(2) 162.4 grams catalyst
(3) 176.4 grams catalyst

(4) Plugged line required reactor to be emptied and refilled.

+ 100	Mineral Oil Pseudocumene
	n

TABLE 2

:

: : ;

	т	l: Gal/	V: I/Hr	3 V/W ⁽¹⁾	Rate : (Lb_Moles/	x 10 ³ Lb Cat-Hour)	Rate C	onstants	
Run	o <u>c</u>	min-Ft ²	Feed Gas	Ft [©] Gas @ Reactor T & P/Lb Cat-Hr	CO Reacted	CH _A Produced	$\underline{K_1}^{(1)}$	K2(1)	Comments
Mineral O	<u>i1</u>								
50-30-1 50-30-2 50-30-3 50-31-1 50-31-2 50-32-1 50-32-2	276 301 320 276 299 277 278	8.90 9.06 9.24 20.61 21.07 8.96 8.93	195 195 200 205 205 413	0.649 0.679 0.701 0.666 0.711 0.684 1.38	9.13 10.1 11.2 11.6 12.6 10.6 17.0	8.88 9.67 10.0 11.1 12.2 10.0 15.4	11.9 15.9 23.8 20.2 38.8 16.6 18.0	0.247 0.329 0.490 0.513 0.968 0.345 0.395	Initial Run Increases Activity - Compare 50-30-1 Still Active
Pseudocum	ene								
50-39-1 (2 50-39-2 (2 50-42-1) 50-42-2 (3 50-42-2 (3 50-42-3 (3 50-42-3 (3 50-43-2 (3 50-43-3)	285 287 281 283 301 257 263 300	19.6 19.8 48.6 48.5 50.3 18.7 19.0 20.6	200 400 795 795 200 400	0.793 1.60 1.56 2.88 3.16 0.650 1.33 1.57	11.9 23.6 23.6 46.3 47.0 12.0 5.67 23.8	11.2 22.2 22.0 40.8 43.4 10.9 4.02 20.9	> 102 108 75.8 131 > 350 67.6 3.38 125	> 2.38 2.52 2.60 4.35 > 12.6 1.64 0.086 3.03	Initial Run Reactor Inlet Plugged(4 Initial Run Still Active
(1) Inclu	des or	ganic vapo	r present d	ue to vapor pressure	e of liquid.	$K_1^{(1)} =$	Ft ³ Gas @	Reactor T & I)

Ft³ Fluidized Bed-Hour $K_2^{(1)} = \frac{Ft^3 Gas @ Reactor T \& P}{Lb CataTyst-Hour}$

1.14

1

In an attempt to explain the differences between runs made with mineral oil and pseudocumene, we have recalculated mass transfer rates at both the 50% and 95% conversion levels. Operating conditions were 300° C, 815 psia, and a liquid flow of 20 gal/min-ft². A summary of these calculations follow (see Progress Report No. 3, Section II for details).

······································	Mir	neral Oil	Pseu	Idocumene
Diffusion Coefficient; cm ² /sec	2.4	47 (10) ⁻⁴	13.2	2 (10) ⁻⁴
Henry's Law Constant; atm/mole fraction Mass Transfer Coefficie	ent;	483	1	.095
cm/sec 1. Gas Bubble to Lic 2. Liquid to Catalys	quid (st Surface (0.150 0.0387	().536).122
Conversion Level	50%	95%	50%	95%
CO Partial Pressure; atm Gas Concentration:	9.23	1.32	7.30	1.04
moles/cm ³ Liquid Concentration; moles/cm ³	3.9 (10) ⁻⁵	4.6 (10) ⁻⁶	4.9 (10) ⁻⁵	7.0 (10) ⁻⁶
Mass Transfer Rate;* gram-moles/hr				
1. Gas Bubble to Liquid	25.5	3.81	61.5	8.82
2. Liquid to Cata- lyst Surface	36.9	10.2	344	49.0

*The conditions in our 0.81" diameter reactor are as follows:

(1) Volume of Fluidized Bed = 300 cm^3

(2) Gas Bubble Interfacial Surface Area $\simeq 1 \text{ cm}^2/\text{cm}^3$ Fluidized Bed

(3) Catalyst Interfacial Surface Area $\simeq 5.3 \text{ cm}^2/\text{cm}^3$ Fluidized Bed

12.

なるしたいまたいがい

į

Therefore, even at the highest gas flow rate, equivalent to about 8.2 gram-moles of CO per hour, we can see that the point value mass transfer rates by either mechanism are still larger than the amount of unreacted CO remaining. In theory, this means that the reaction rate is not mass transfer limited. Nevertheless, the fact that the mass transfer rate (from the gas bubble to the liquid phase) and the reaction rate are of the same order of magnitude, coupled with the knowledge that the calculations are not completely rigorous, leads us to believe that the higher mass transfer rates in pseudocumene, 2½ times the rates in mineral oil, are responsible for the substantially higher reaction rates in pseudocumene.

15.

1

III PROCESS DEVELOPMENT UNIT

We are just beginning design of the process development unit (PDU) based on the latest reaction rate figures developed in the 0.81" liquid fluidized bed reactor. During October, after we have a more detailed idea of the type and size of equipment required for the PDU, we will contact vendors to ascertain lead times for the manufacture and delivery of the major items. Still to be resolved is whether or not we will purchase a packaged gas generator or we will build one of our own design. 1

h

¢

in a second state has a the

• •

IV FUTURE EXPERIMENTAL PROGRAM

We plan a series of experiments with the CCI-XC-150-1-02 catalyst in both mineral oil and pseudocumene at a reduced catalyst loading so that we can obtain the type of data suitable for a more rigorous kinetic analysis.

We hope to be able to operate within a range of conversions of about 50%-90%. The variable scan will be as follows:

Feed Composition:	25% CO, 75% H ₂
Pressure:*	815 psia
Catalyst Loading:	40 grams

	Liquid Flow:	<u>Gas Flow</u> :	Temperature:
Set	<u>gal/min-ft²</u>	<u>liters/hr</u>	<u>°c</u>
1	20.0	200	260
	20.0	200	285
	20.0	200	310
2	40.0	200	260
	40.0	200	285
	15.0	200	285
	30.0	200	285
3	40.0	400	260
	40.0	400	285
	40.0	400	310
	20.0	400	310
4	20.0	400	260
	20.0	400	285
	15.0	400	285
	30.0	400	285

*This might be lowered so as to reduce the chance for the formation of a condensed water phase.

.....

.

ł

i ne

ſ

......

And she at

-1- 14 -··

16.

41

APPENDIX I

NUME 19 1

.

and the second
:

ر چې د د د د <mark>م</mark>تر د د

ر برجه جانب من ماند.

÷

ż

à

.

÷

· · · · · · ·

¢

and the company

i i

12 m

-

والمراجع والمحاج والمحاج

.

1

i a Number _		Reactor Diam	eter; i hes 0.	.8 <u>1 with 1/8" T</u>	nermowell
Date	9/19/72	Reactor Leng	th; inches	48.0	
(erator _	RR	Settled Bed	Height; inches	24.3	
Latalyst	Girdler G65-RS	Catalyst Weig	cht; grams	204.9	
l cuid	Pseudocumene	Catalyst Size	е	<u> </u>	sh
		Empty Reactor	r Volume, cm ³	395.5	
liquid Flow; gal/min-f	t ²	20.0	21.7		
: iet Gas Flow; liters	*/hr	200	200		
Dutlet Gas Flow; liter	s*/hr	135	121		
; ed Gas Composition;	Vol. %			•	
H ₂	•	74.3	74.3		
cō	• •	25.3	25.3		
Other				·	
Fessure; psig		800	800		
Estimated Catalyst Sed	Height; inches	27.5	27.9		
: mperature Profile:					
Reactor Sait Eath					
Height Heicht					
		249	272		
6 3		272 274	303 303		
12 9		272 282	303 309		
		276 286	306 314		
30 27		286 292	310 310 -		
36 33		296 295	318 315		
42 39		296 250	321 207		
48 45		298	321		
Flessure Drop; psi		.51	.51	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
C'taiyst V/W; Ft' Gas T & P/H	@ Reactor r-Lb Catalyst	. 604	.705		
Outlet Gas Concentrati	on; Vol. %				
H2 -		70.8	70.4		
cõ		18.5	19.7		
CHA		4.8	7.3		
ç02		0.4	0.8		
No		0.4	0.45		
Other - C_2H_6		1.1	0.45		
Other - C_3H_8		1.6	0.15		
% Conversion Based On:	CO	39.7	32.5		
	CHA	15.6	25.0		
in les H ₂ in / Moles H ₂ / for in Pr	Accounted roducts	898	.908		
Overall Reactor	Lb-moles CO/hr- # Catalyst	4.01	3.28		
*25 ⁰ C, 1 atm	Lb-moles CH ₄ /hr- # Catalyst	1.57	2.52		17.

Han Number	37-1,2	Reactor Diam	neter; ies 0.	8 <u>1 with 1/8" T</u>	hermowell_
a te	9/20/72	Reactor Leng	th; inches	48	
Q_erator	<u>K</u>	Settled Bed	Height; inches	24.3	
Catalyst	Giraler G65-RS	Catalyst Wei	ght; grams		
4 quid	Pseudocumene	Catalyst Siz	се З	<u> </u>	esh
Ê	2	Empty Reacto	or Volume, cm	395.5	
ل quid Flow; gaj/min-t	ft ²	79.9 ·	84.7		
Inlet Gas Flow; liters	s*/nr	200	200		
tlet Gas Flow; liter	rs*/hr	168	146		
Feed Gas Composition;	Vol. 2			•	•
H2		74.0	74.0		
ε. co	s 2	25.0	25.0	······	·
. Cther			•		
R.essure; psig		800	800		•
Estimated Catalyst Bed	Height; inches	40.6	41.3	·	
Imperature Profile:					
Reactor Salt Eath	•				
		256 1	076 I	1	ĩ
3 0		274	297		
б 3		275 275	297 301		
12 9		285 275	<u>304 301</u> 309 301		
24 21		285 275	311 301		
30 27		285 275	312 301 - 315 301	·	
42 39		289 275	324 301		
48 45		289 213	321 239		
Pressure Drop; psi		.65	.65		
(talyst V/W; Ft ³ Gas T & P/H	@ Reactor r-Lb Catalyst	.613	.705		
C tlet Gas Concentration	on; Vol. %				
H ₂ -		71.3	74.3		
cõ		24.4	23.3		
CHA		0.85	2.9		
, CO,		0.1	0.1		
N ₂		1.0	1.0		
Other - $C_2 H_c$					•••
Other - $C_2 H_0$					
% Conversion Based On:	C0	3.8	11.4		
	CHe	3.4	11.0		
les H ₂ In / Moles H ₂ A for in Pr	ccounted oducts	.1.015	0.941	·	
t erall Reactor ate x 10 ³	Lb-moles CO/hr- # Catalyst	0.379	1.14		
	Lo-moles CH ₄ /hr-	0 240	1.10		10

14 S. C. and the second 175⁻¹

10

t

i n Nuller	<u>85</u> -5 - 3	Reactor Diam	eter: inches U	.or with 1/8, th	
Date	9/21/ , 2	Reactor Lend	th: inches	48	
E erator	R ²	Settled Bed	Height: inches	24.3	
Gutalyst	Girdler G65-RS	Catalyst Wei	cht: grams	204.9	
L'azid	Pseudocumene	Catalyst Siz	20	30-50 me	sh
1		Empty Reacto	r Volume, cm ³	395.5	
Liquid Flow: gai/min	n-ft ²	21 9	22.2	23.7	
1 let Gas Flow; lit	ers*/hr	200	200	400	
Dutlet Gas Flow; 11	ters*/hr	135	134	276	
F ed Gas Composition	n; Vol. %		· · · · · · · · · · · · · · · · · · ·		
U	•	74.5	74.5	74.5	
CO	a .	24.7	24.7	24.7	
Other			· ·		·····
F essure; psig		800	800	800	······································
Estimated Catalyst !	Bed Height; inches	28.0	28.1	29.5	
T aperature Profile	1				
Reactor Salt Bat	Lh .				
$(i \cdot)$ $n \mid - (i \pi \cdot)$	7	274 !	201	200	1
3 0		295 298	318 321	315 326	
6 3		295 298	319 322	316 326	
		312 298	324 321	327 326	
24 21		31.4 298	336 322	338 326	
30 27		314	338	339	
35 33		314 298	339 321	339 326	_
48 45		316 216	336 216	335 324	
P.essure Drop; psi		0.54	0.54	0.54	
Catalyst V/W; Ft ³ (as @ Reactor	<u></u>			
T & f	/Hr-Lb Catalyst	715	.802	1.58	
Outlet Gas Concentra	ation; Vol. %				
H ₂		72.0	70.0	74.6	
CO		23.7	22.4	23.5	
CH ₄		1.5	4.7	1.4	
c0 ₂		0.2	0.3		
N ₂		0.4	0.5	0.2	······································
Other - C2 ^H 6	5			-	··· ··
Other - C ₃ H ₈	}		-		
<pre>% Conversion Based (</pre>	Dn: CO	6.7	18.2	5.6	
Mips H In / Malas H	CH ₄	6.3	17.2	5.6	~ <u></u>
for in	2Products	0.998	0.986	0.952	
Overall Reactor te x 10 ³	_ Lb-moles CO/hr- # Catalyst	0.660	1.79	1.14	
*25 ⁰ C, 1 atm	Lb-moles CH ₄ /nr- # Catalyst	0.620	1.69	1.14	10

2-

<u>19</u>

an wewser 50-31 ,2	Reactor Brass	eter; nes 0.s	1 with 1/8" The	mowell
Date 9/25/72	_ Reactor Leng	th; inches	48	
perator R ²		Height; inches	24.0	-
Catalyst CCI XC-150-1-02	- Catalyst Wei	uht; grams	162.4	
licuid * Pseudocumene		e	30-50 mest	n
	Empty Reacto	r Volume, cm ³	395.5	
iguid Flow: gai/min-ft ²	19.6	19.8	مراجع میکنو کو کردی کند. مراجع	
inlet Gas Flow: liters*/hr	200	400		······································
futlet Gas Flow: liters*/hr	51	112		
ed Gas Composition: Vol. %				•
E Ha	76.0	76.0		
	23.7	23.7		
Other	· · · · · · · · · · · · · · · · · · ·	مىلىرىنىڭ تۇرىپى بىلەركىرىكى .		
ressure: psig	800	800		•
Estimated Catelyst Bed Height: inches	28.8	28.8		
Emperature Profile:				
Reactor Salt Feth				
<u>Heicht</u>				
$(n_{-})_{0} = (i\pi_{-})$	_ 278_ !	277	[1
	281 275	281 276	_	
	288	288		
18 15	238 279	292 276		
	290 1	292	<u> </u>	
35 33	293	293	``	
42 39	292 276	294 278		
48 1 45	292 233			
Pressure Drop; psi	0.54	0.54		
Italyst V/W; Ft Gas @ Reactor	0.793	1.60		
Autlet Eas Concentration: Voi 2				
Ha	6.7	17.7		
····2 ·····	0.05	1.09	<u></u>	
CH_	86.1	76.7		
	.4.13	3.03		
N N	2.24	0.53		
"2	0.48	0.45		<u> </u>
0^{\pm}	0.29	0.43		;
	Q			
A conversion based on: CO	93.5	92.0		
oles H ₂ In / Moles H ₂ Accounted	· · · · · · · · · · · · · · · · · · ·	JL.J		
for in ² Products	1.111	1.057		
Rate x 10 ³ # Catalyst		23.56		
tb-moles CH ₄ /ir- # Catalyst	11.15	22.17		20

,....

•

•

un Aumber		Reactor Diam	eter; nes u	.51 Wills 1/6 ind	rinewe
Date	9/29/72	Reactor Leng	th; inches	48	
perator	<u>R²</u>	Settlad Bed	Height; inches	27.0	
Catalyst	CCI-XC-150-1-02	Catalyst Wei	ght; grams	176.4	
iquid •	Pseudocumene	Catalyst Size	e	30-50 mes	h
		Empty Reactor	r Volume, cm ³	395.5	
iquid Flow	; ga]/min-ft ²	48.6	48.5	50.3	
.niet Gas F	low; liters*/hr	400	795	795	
^o utlet Gas I	Flow; liters*/hr	111	225	199	
eed Gas Cor	mposition; Vol. %			•	
H2		73.4	73.4	73.4	
ະອົ.	ک	25.5	25.5	25.5	
. Cthe	2 r .		•		
ressure; p	sig	800	800	800	
Estimated Ca	atalyst Bed Height; inches	42.1	44.2	43.9	
emperature	Profile:				
Reactor	Salt Sath Heicht				
n.) 0	(in.)	269	268	287	
3	0	277	276	295]
12	5 9	282	282	<u> 298 292 </u>	
18	15	284 275	286 1 274	304 293	
30	27	288 276	289 1	$\frac{307}{308}$	
36	33	288	293	309	
42	39 45	288 275	294	309 293	
Fressure Bro		0.54	0.54		
istalvet V/k	J_{-} E_{+}^{3} D_{-} A_{-}	0.54	0.54	0.54	
itelyse in	T & P/Hr-Lb Catalyst	1.56	2.88	3.16	
Cutlet Gas (Concentration; Vol. 2				
H		8.5	19.8	10.0	
00		0.10	1.35	0.004	
CHA		83.7	71.0	84.2	
C0,		5.03	5.60	3.80	
N ₂		1.67	0.45	0.46	
Othe	$r - C_2 H_6$	0.84	1.38	1.21	
Othe	$r - C_3 H_3$	0.12	0.41	0.28	
. Conversion	Based On: CO	99.9	98.4	100.0	
.	CH	93.2	86.7	92.3	
Jes H ₂ In	Moles H_ Accounted for in Products	0.996	0.996	0.985	
ate x 10 ³	tor <u>L</u> b-moles CO/hr- # Catalyst	23.61	46.26	47.01	
*25 ⁰ C, 1 atm	Lb-moles CH4/hr- # Catalyst	22.03	4 C.76	43.39	

Number	50-43-15,3	Reactor Diam	eter; in s	0.51 with 1/8" T	hermowell
e	10/2/72	Reactor Leng	th; inches	4\$	
rator	R ²	Settled Bed	Height; inches	27.0	
zalyst	CCI XC-150-1-02	Catalyst Wei	ght; grams	176.4	
Erd .	Pseudocumene	Catalyst Siz	e	30~50 m	esh
1		Empty Reacto	r Volume, cm ³	395.5	
uid Flow; gal/	min-ft ²	18.7	19.0	20.6	
a.et Gas Flow; 1	iters*/hr	200	400	400	· · · · · · · · · · · · · · · · · · ·
'let Gas Flow;	liters*/hr	55	305	118	
_d Gas Composit	ion; Vol. %			······································	•
Ha	•	74.3	74.3	74.3	
co.		25.8	25.8	25.8	
Other			<u>.</u>		
ssure; psig		800	800	800	···
stimated Catalyst	t Bed Height; inches	32.4	34.0	32.4	
joerature Profil	le:				
actor Salt	Beth				
ght Heic	nt				
0 - (1)	ā.)	245			
3 U 6 3		255 216	259 218	296	
12 9		259 250	266 252	302	
18 15		<u>260 250</u> 261 250	265 252	<u>303 299</u>	
30 27		263 249	269 251	312 298	
* 36 33		264 248	270 250	313	
48 45		265	271	313 299	
essure Drop; psi		0.43	0.43	0.43	
llyst V/W; Ft ³ T &	Gas @ Reactor P/Hr-Lb Catalyst	0.650	1.33	1.57	
witlet Gas Concent	tration; Vol. 2				
H ₂ -		11.2	71.0	23.3	
cõ		0.14	23.4	0.50	
CH		80.4	5.16	68.0	
co,		3.70		6.35	
N2		2.61	0.16	0.40	
$\overline{\text{Other}} - C_2$	H ₆	1.48	-	1.18	
Other - C_3	H ₈	0.45	0.07	0.26	••
Linversion Based	On: CO	99.8	23.7	99.4	
_	CHA	90.8	16.8	87.2	
s H ₂ In / Moles for	H ₂ Accounted in ² Products	0.984	1.017	0.982	
erall Reactor = = x 10 ³	Lb-moles CO/hr- # Catalyst	11.99	5.67	23.79	
.5°C, 1 atm	Lb-moles CH ₄ /hr- # Catalyst	10.86	4.02	20.86	22.

LIQUID PHASE METHANATION

PROGRESS REPORT NO. 6

Prepared by Chem Systems Inc. For The American Gas Association October, 1972

TABLE OF CONTENTS

I	Summary		Page	1		
II	Discussion of Results					
III	Process	Development Unit	Page	11		
IV	Future Experimental Program					
Appen	dix I	Run Data Sheets	Page	14		
Appen	dix II	Analysis of Dowtherm A and Pseudocumene	Page	22		
Appen	dix III	Major Equipment Descriptions	Page	26		
Appen	dix IV	Programs and Printout	Page	39		

I SUMMARY

During the month of October we attempted to evaluate Dowtherm A as the inert reaction medium. However, both effluent gas analysis as well as a liquid phase chromatograph indicate that the biphenyl ether constituent of Dowtherm A is highly reactive in the presence of an active nickel hydrogenation catalyst at the high H_2 concentrations used. A conservative estimate shows that approximately 65% of the biphenyl ether had reacted within a period of several hours yielding degradation products tentatively identified as benzene, toluene, cyclohexane, lower aliphatics, at least one higher alkylbenzene, as well as a moderate amount of phenol. At this time the decision was made to cease further experiments with Dowtherm A.

Subsequently, we examined Harshaw Ni 0104-101 with pseudocumene to complete the catalyst scan with pseudocumene (results for Girdler G65-RS and CCI C-150-1-02 were reported in Progress Report No. 5). The Harshaw catalyst performed fairly successfully for two days before plugging of the lines (due to a previously accumulated residue caused by an overheat condition during the Dowtherm runs) caused us to take the system down. The performance in pseudocumene was superior to the performance in mineral oil but the level of activity is still somewhat less than with CCI C-150-1-02.

Because the gas feed requirements had been so high for the previous runs and because conversion levels were about 100%, we used a reduced catalyst loading for the next series of runs in which we re-examined CCI C-150-1-02 in pseudocumene. Using approximately $\frac{1}{2}$ of the previous catalyst loading and $\frac{1}{2}$ of the previous gas feed rate, we were able to obtain reaction rates between two and three times as high as those previously obtained with this catalyst-liquid combination. Accordingly, calculated kinetic rate constants were also higher.

For the first time in the program we have had difficulty maintaining catalyst activity with the CCI catalyst. Further improvements in heat input distribution and temperature monitoring are being implemented so as to insure complete removal of the product water which is considered to be the culprit for the decrease in catalyst activity. In addition, analysis of the pseudocumene shows that sulfur concentration is less than 0.6 ppm, while arsenic concentration is less than 0.4 ppm. At these concentration levels, these poisons are probably not the cause of deactivation.

A preliminary design for the process development unit (PDU), consisting of a Syn-Gas generator capable of producing 6000 SCFH of a gas containing 20% CH₄, 20% CO and 60% H₂, and a Liquid Phase Methanation Reaction System, has been completed. We have contacted at least three vendors for each of the two main process sections and we will be receiving their cost estimates shortly. We are also investigating the extent of site preparation necessary to accommodate the PDU at the planned location.

The experimental work presented in this progress report completes the catalyst and liquid scan and initiates the experimental program designed to generate the process data necessary for the design of the PDU unit. We propose to generate data for four systems which comprise two liquids (pseudocumene and a paraffinic oil) and two catalysts (Harshaw's and CCI's methanation catalysts).

-2-

II DISCUSSION OF RESULTS

The full data sheets are given in Appendix I. The important data have been extracted and are presented in Tables 1 and 2. As a matter of convenience, we present some of the previous data for comparison.

Because of the simplistic nature of the kinetic model, the listed kinetic k values will serve only as a guide to the response of the system to various design parameters. Studies are currently underway to formulate a more realistic kinetic model.

System 1: Harshaw Ni-0104-101 + Dowtherm A

As soon as this system was put on-stream, it was readily apparent from effluent gas analysis that something unusual was occurring. Carbon dioxide effluent concentrations of greater than 30% were recorded as compared to the usual level of only 5%. In addition, the gross hydrogen imbalance indicated major side reactions were occurring.

A liquid phase chromatogram was performed (Appendix II) on both the organic and aqueous overhead phases. The organic phase was the less dense one. This is opposite to the relative densities of the starting material; Dowtherm A being denser than water. As indicated in Appendix II, a chromatogram of the virgin Dowtherm A shows two peaks; equivalent to biphenyl ether and biphenyl in a 2.1/1.0 area ratio. The organic phase effluent shows these peaks to be in a ratio of only 0.77/1.0 with the biphenyl area only slightly changed. Since it is impossible to effect a single stage separation between these components, this reflects the change in composition in the reactor liquid phase and indicates that about 60% of the original amount of biphenyl ether had reacted to products consisting heavily of benzene, with lesser amounts of toluene, cyclohexane, lower aliphatics, and one high boiling alkylbenzene. Analysis of the aqueous phase indicated a single large peak corresponding to phenol. A distinctive phenolic odor was readily apparent.

System 2: Harshaw Ni-0104-101 + Pseudocumene

The results for this catalyst-liquid scan are presented in Table 1 along with the results when mineral oil was used as the liquid phase. As with the CCI catalyst, it is readily apparent that the rate constants and reaction rates for the pseudocumene runs are significantly higher than those obtained when using mineral oil as the liquid phase. Reaction rates were up to four times higher than previously obtained.

During the first day of running, Runs 50-45-1,2, at a liquid flow rate of 20 gal/min-ft², a gas VHSV of about 1800 ft³ feed gas/ft³ bedhour, and a temperature of about 272° C, we reacted over 97% of the feed CO with selectivity to hydrocarbons of 87.5%; the rest being converted to CO₂. An increase in reaction temperature to 300°C was more than sufficient to completely react all the feed CO with the selectivity to hydrocarbons increasing to just over 93%.

The catalyst started to deactivate during the second day of running (Run 50-46-1) but by raising the temperature we were able to partially restore the activity, as indicated by Run 50-46-2. Unfortunately, before we could proceed further, an accumulation of deposits (formed during an overheat condition while running with Dowtherm A) caused the pump to plug. The reactor system, including the high pressure separator, was then completely disassembled and cleaned before the next catalyst-liquid scan was performed.

-5-

				Harst	Table 1 Ninera	l Oil			
Run	T ^o C	L; Gal/ <u>min-Ft²</u>	V; L/Hr Feed Gas	V/W ⁽¹⁾ Ft ³ Gas @ Reactor T & P/Lb Cat-Hr	Rate x (Lb Moles/Ll CO Reacted	10 ³ 5 Cat-Hour) CH ₄ Produced	Rate Con <u>K</u> 1	stants <u>K2⁽¹⁾</u>	<u>Comments</u>
lineral	<u>011</u> (1	2)							
50-33-1	275	8.88	205	0.416	6.32	5.93	15.1	0.199	Initial Run
6-33-2	294	9.08	205	0.430	6.95	6.55	21.9	0.289	
i0-33-3	318	9.74	205	0.448	7.50	7.16	32.6	0.429	
i0- 34-1	271	20.64	200	0.403	6.87	6.39	17.7	0.283	
i0-34-2	296	21.13	200	0.422	6.95	6.52	19.3	0.310	Decrease in Activity
0-34-3	321	21.50	200	0.440	6.95	6.53	20.3	0.325	
0-35-1	247	8.68	200	0.385	2.09	1.84	2.25	0.0302	Severely Reduced Activity
i0: 35 -2	290	9.04	200	0.416	6.04	5.43	14.5	0.191	Substantial Recovery From Run 50-35-2
0-35-3	296	9.11	392	0.818	8.72	7.66	15.2	0.198	
'seudocu	mene	(3)							
0-45-1	272	18.6	400	0.95	16.93	13.90	86.8	1.21	Initial Run
0-45-2	301	20.3	400	1.11	17.47	15.77	336.8	4.73	
0-46-1	273	46.8	800	1.93	7.39	6.39	6.31	0.116	Started to Deactivate - Raised Temperature and Activity Partially Recovered
0-46-2	301	50.1	800	2.21	30 .90	25.85	139.7	2.58	Reactor Inlet Plugged ⁽⁴⁾
1) Incl 2) 262. 3) 253. 4) Plug	udes d 2 gran 7 gran ged li	organic vap ns catalyst ns catalyst ine require	or present	due to vapor pressu to be emptied and re	re of liquid.	. К ₁ К ₂	$\frac{(1)}{Ft^3} = \frac{Ft^3}{Ft^3} \frac{Gas}{Ft^3}$ $\frac{(1)}{Ft^3} = \frac{Ft^3}{Lb} \frac{Gas}{Cata}$	s @ Reactor uidized Bed s @ Reactor alyst-llour	T&P -Hour T&P

System 3: CCI C-150-1-02 + Pseudocumene

• .

Because of the extremely high conversion levels obtained at the high catalyst loadings previously used with this catalyst-liquid pair, we re-examined this system at a low catalyst loading in order to ascertain the maximum rates of conversion obtainable. Overall reaction rates were from 2-4 times greater than previously obtained. The results for both the high and low catalyst loadings are presented in Table 2, while the summary run sheets are given in Appendix I.

The reaction rates for this catalyst are some four times greater than the rates obtained with Harshaw Ni-O104-101 under similar operating conditions. However, since the runs using the Harshaw catalyst were done with extremely high conversions, we are also going to re-examine this system at a reduced catalyst loading.

For the first time in this research program, we have had trouble maintaining catalyst activity with this CCI catalyst. Sometimes the catalyst immediately begins to deactivate (Runs 50-47-1 or 50-50-1) on the initial test, or it may deactivate at some later point in the variable scan (Run 50-52-1). This is an indication that deactivation is being caused by some mechanical malfunction of the unit and that it is not a problem inherent of the reaction system investigated. We are examining our heat input distribution and temperature monitoring systems so as to insure complete removal of our product water. There is some evidence that the (1) recorded reactor temperatures may be up to 20⁰C lower in reality, and (2) the recorded salt bath temperature may be up to 20°C higher in reality than indicated by the temperature indicator. The problem has been tentatively identified as a combination of (1) an irregular malfunction within the Minimite temperature indicator, and (2) a faulty thermocouple lead. It is possible, therefore, that temperatures we assumed to be safe were in fact close to the point

, •

. .

where water vapor might form a condensed phase. Steps have been taken to correct the temperature monitoring system malfunctions and thus guarantee that the product water is continuously removed from our system with the CH_4 and unreacted CO and H_2 .

Ta	bl	e	2
	_		

,

CCI + Pseudocumene

Run	T OC	L; Gal/ <u>min-Ft²</u>	V; L/Hr Feed Gas	V/W ⁽¹⁾ Ft ³ Gas @ Reactor <u>T & P/Lb Cat-Hr</u>	Rate : (Lb Moles/I CO <u>Reacted</u>	x 10 ³ Lb Cat-Hour) CH _A Produced	Rate Cor <u>K1⁽¹⁾</u>	nstants <u>Ka</u> (1)	<u>Comments</u>
<u>scudocumen</u> 0-59-1(2) 0-39-2(3) 0-42-1(3) 0-42-2(3)	10 235 287 281 283 301	19.6 19.8 48.6 48.5 50.2	200 400 400 795 705	0.793 1.60 1.56 2.88 2.16	11.9 23.6 23.6 46.3	11.2 22.2 22.0 40.3	102 108 75.8 131	2.38 2.52 2.60 4.35	Initial Run Reactor Inlet Plugger Initial Run
$\begin{array}{c} 0-42-3(3)\\ 0-43-1(3)\\ 0-43-2(3)\\ 0-43-3(3)\\ 0-4/-1\\ 0-48-1(4)\\ 0-48-2/4 \end{array}$	257 263 300 260 283 302	18.7 19.0 20.6 20.0 16.9 19.8	200 400 400 300 400 400	0.650 1.33 1.57 Initial Run ~ Cata 6.06 6.68	12.0 5.67 23.8 lyst showed 80.8 88.2	43.4 10.9 4.02 20.9 a continuous 69.1 78 5	67.6 3.38 125 non-recovera	12.6 1.64 0.086 3.03 (ble decline 3.21 5.12	Still Active in activity. Initial Run
0-48-3(4) 0-49-1(4) 0-49-2(4) 0-50-1(6)	327 284 302 275	21.7 47.8(5) 51.3(5)	400 400 400 600	8.09 6.05 6.68 Initia] Run - Cata	94.4 80.4 86.7	86.0 72.2 76.5 a continuous	- - - non-recovera	9.57 3.45 5.24	Pump lost prime, line plugged; emptied and refilled. in activity.
C-51-1(6) 0-51-2(6) 0-52-1(6)	300 315 296	49.1 51.3 19.6	400 550 600	8.67 13.33 12.73	116.0 137.0 69.7	102.0 123.0 63.6	-	7.11 6.31 1.35	Initial Run Catalyst losing activity irreversibl,.
1) Include 2) 162.4 g 3) 176 4 c	is orga Iranis c	unic vapor atalyst	present du	e to vapor pressure	of liquid.	$\kappa_1^{(1)} = \frac{F}{F}$	t ³ Gas C Rea t ³ Fluidized	actor T <u>& P</u> I Bed-llour	
4) 42.0 gr 5) Pump ma a flow	ams ca y have of app	talyst initially proximately	/ lost prim / 25 gal/mi	e in ₂ one head which n…ft ² .	would give	$K_2^{(1)} = F_p$	t ³ Gas © Rea ound Catalys	i <u>ctor T & P</u> st-llour	1 2 1

a flow of approximat G) 32.5 grams catalyst

Reaction Modeling

As soon as an improved reaction model is formulated, we will attempt to examine our data in light of the proposed mechanism. At the present time we can say that there appears to be some mass transfer restraint in the reaction system as indicated by the strong effect of liquid phase properties and, to a lesser extent, by the effect of liquid phase velocity. It is also apparent that the strong temperature dependence indicates the kinetic rate of reaction can also be a dominant factor.

The model to be developed will have to be able to take into account both of these factors. A literature review of liquid-solid fluidization systems is underway in order to provide a starting point for mathematical modeling efforts.

III PROCESS DEVELOPMENT UNIT

We nave finished the preliminary design for the liquid phase methanation reactor system; a schematic is shown in Figure 1 while more detailed descriptions of the individual units are given in Appendix III. It was our feeling that the synthesis gas generator should be designed as a complete package by a company with considerable expertise in that area. For this reason we have contacted at least three companies who will submit a design proposal and cost estimate for a gas generator to deliver 6000 SCFH of a 20% CO, 20% CH₄ and 60% H₂ stream to our reactor at a pressure of 1050 psig. The companies are (1) Gas Machinery/ Gas Atmospheres Inc. (Roy Bednarski), Strongsville, Ohio; (2) Howe-Baker Engineers Inc. (Larry Roesler), Tyler, Texas; and (3) Demarkus Corp. (0. Rudy Matzner), Buffalo, New York. We have contacted other companies but for a variety of reasons they were unable to submit a proposal. A schematic flow diagram of the synthesis gas generator is given in Figure 2.

In addition, we have contacted three companies to submit a design proposal and cost estimate for the complete slurry methanation reactor system including all major process equipment, instrumentation and controls, and auxiliary equipment. These companies are (1) Artisan Industries Inc. (Dr. Francis Brown), Waltham, Massachusetts; (2) Chem-Pro Inc. (Philip Schweitzer), Fairfield, New Jersey; and (3) Demarkus Corp. (0. Rudy Matzner) Buffalo, New York. We are currently receiving the required information.

We have also contacted several contractors to obtain estimates for site preparation with respect to utility requirements (gas, electricity and water) and the installation of necessary safety equipment.

IV FUTURE EXPERIMENTAL PROGRAM

In addition to the ongoing program to obtain reliable kinetic data suitable for reaction modeling, two further refinements in operation procedure have been planned. Future runs will be performed at a pressure of 1000 psig and the catalyst will now be reduced <u>in situ</u>. This will give us some necessary experience in the reduction procedure as it will be performed in the process development unit.

We are currently using a mini-computer to handle the routine data analysis. The scope of each of the two programs is described in Appendix IV with a description of the actual calculations performed. Sample printouts of actual results are presented for each program.

On a short term basis, we plan to concentrate on learning how to operate the unit in such a manner that catalyst deactivation is avoided. In our opinion, this will require closer monitoring of temperatures in the gas-liquid separator as to prevent water condensation and recycle of large amounts of this product with the liquid phase. In addition, we will examine the effect of various shutdown procedures on the catalyst behavior. This is another plausible reason for the observed catalyst deactivation. Upon satisfactory operation of the unit with no catalyst deactivation for a run period greater than a week, we will initiate a process variable scan.

The purpose of this is essentially two-foid. First, to ascertain the effect of mass transfer in the system; another reason for the variable study is to generate the process engineering data necessary for the design of the process development unit. It should be kept in mind that a choice of catalyst and liquid must be made prior to starting the experimental work in the above mentioned PDU. Variables to be explained are gas and liquid flow, temperature, particle and reactor size, feed concentration, and operating pressure.

-14-

APPENDIX I

.

Run Data Sheets

· —							
R n Number	50-52	React	or Diame	eter; hes C.S	3 <u>1 with a 1/3"</u>	Thermowell	
Date	10/31/72	React	or Lengt	h; inches			
0 grator	RR	Settl	ed Sed H	leight; inches	<u> </u>		
Catalyst	CCI C-150-1-02	Catal	yst Weig	iht; grams	32.5		
L quid f	Pseudocumene	Catalyst Size			30-50 mesh		
		Empty	Reactor	Volume, cm ³	395.5		
L'ouid Flow; gaj/min-	-ft ²	19.	54			·	
L.let Gas Flow; liters*/hr		60	0				
Ontlet Gas Flow: lite	ers*/hr	35	0				
F ed Gas Composition	Ho	74	5			•	
volume Percent:	cō .	25.	4				
P :ssure; psig		03	0				
Estimated Catalyst Be	ed Height; inches	6.	0				
Te perature Profile:							
Reactor Salt Batt	'n						
Height Heicht	-						
[11]] 3 0 (in.)		296	284		<u> </u>	1	
6 3 12 9		300	290				
24 21		300	295				
3ō 33							
Prossure Drop; psi					······································		
Ca ≥lyst V/W; Ft ³ Ga T & P/	s @ Reactor Hr-Lb Catalyst	12	2.73		_		
Ou let Gas Concentrat	tion; Vol. %					<u>, ,</u>	
Ha	-	64	1.48	·			
2 C0		22	2.67				
CH.			.93				
cn4), 16				
2			1.29		·		
¹¹ 2			1 40	<u> </u>			
Uther - $L_2^{H_6}$			0.06				
Uther - L3H8				<u></u>			
% Conversion Based Un	n: CO	30			······		
% olar Selectivity t	co: CH ₄	9					
	co ₂						
	с ₂ н ₆					·	
	с _з н ₈]	1.31			• _	
Moles H. In / Moles 4	Accounted						
for in ²	Products		1.02	<u> </u>			
Rale x 10 ³	LD-MOIES CO/hr- # Catalyst	69	9.66	<u> </u>			
DIC 1 stm	Lb-moles CH ₄ /hr-	-					
c. C, I GUM	, outerfat	6	3.62				

-

_n Number	50-51 .2	Reacto	or Diama	eter;	hes 0.81	with 1/8" T	nermowell
ate	10/27/72	React	or Leng	th; inc	hes .	40 5	
erator	RR & AW	Sett]	ed Bed I	Height;	inches	20 E	
atalyst	CCI C-150-1-02	Catal	yst Weig	ght; gr	Suis	32.5	ch
guid	Pseudocumene	Catal	yst Siza	e	· 3		50
- -		Empty	Reactor	r Volum	ie, cm ^o	395.5	
ouid Flow: gay/min	-ft ²	49.	05 ·	51.	31		
Tole: Gas Flow: lite	rs*/hr	40	0	55	0		
-tlet Gas Flow: lit	ers*/hr	11	.0	19	0		·
_ed Gas Composition	H	74.	8	74.	<u>8</u>		
olume Percent:	co -	25.	2	25.	2		
essure: psid		80	0	80	0		- <u></u>
Istimated Catalvst B	ed Height: inches	7.	69	7.	72		
T nerature Profile.							
Parton Salt Sat	'n						
ight Heicht							
") 3 0 (ir)	_	299	290	308	<u> </u>		
6 3		301	294	317	<u> </u>		·
24 21		303	304	320	<u> </u>		
36 33			304	320			
i essure Drop; psi							
Lalyst V/W; Ft ³ Ga	is @ Reactor	0	67	13	33		
T & P/	Hr-Lb Catalyst						
let Gas Concentrat	tion; Vol. %	20	70	11	03		
н ₂ .			./0		. <u>05</u> 		- <u></u>
CO		5	.82		./2		
· CH4		56	.80	39.	.9/		• <u>•••••••</u> •••
^{C0} 2		6	. 12	<u> </u>	.2/		
No		0	.66	0.	.35		
Other - C ₂ H _c		0	.74	0	.61		
Other - C_2H_0		0	.07	0.	.06		
Conversion Based Or	n: CO	91	.74	79.	.19		
. A Inlar Selectivity t	:0: CH.	87	.91	89.	.56		
		9	.47	7	.32		
	^с 2 С-Н-	2	.31	2	.73		
,	~2~6 с н		.30	0	.37		
	`3''8						
los H In /Malas H	Accounted						
for in	Products	<u> </u>	.05	1	.02	•	
all Reactor ate x 10 ³	Lb-moles CO/hr- # Catalyst	115	.7	137	.3		
2 ⁾ C 1 2+m	Lb-moles CH ₄ /hr- # Catalyst ⁴	101	7	199	0		
r ly ralli		101	• /	172			

R i Number	50-49 2	Reactor Diar	meter; i hes	0.81 with 1/8" Thermowell
Da te	10/24/72	Reactor Leng	gth; inches	48
0 Brator	RR	Settled Bed	Height; inches	66
Catalyst	CCI C-150-1-02	Catalyst Wet	ight; grams	42.0
🗉 quid 📩	Pseudocumene	Catalyst Siz	ze	30-50 mesh
-		Empty Reacto	or Volume, cm ³	395.5
L quid Flow; day/	nin-ft ²	47.81	51.32*	Pump may have already_lost
Inlet Gas Flow; 1	iters*/hr	400	400	prime in one of the two
0 tlet Gas Flow; 1	liters*/hr	-	-	stopped at end of run when
i ed Gas Compositi	ion H ₂	75.1	75.1	we attempted to change
volume rercent:	co	24.9	24.9	
P essure; psig		800	800	
Estimated Catalyst	t Bed Height; inches	8.44	9.34*	· · · · · · · · · · · · · · · · · · ·
T operature Profil	ie:			
Reactor Salt E H ight Heich	Seth			
[i .] 3 0 (i:)	282	300* 288	Thermodousle broke before
6 3		284 268	290	profile could be madel
24 21		285 274	290	
36 33		286 275		
P :ssure Drop; psi	I	0.14	0.14	
Cacalyst V/W; Ft ³ T &	Gas @ Reactor P/Hr-Lb Catalvst	6.05	6.68	
0: :let Gas Concent	cration; Vol. %	<u></u>		
H ₂ .	•	41.95	42.05	
CŪ		9.71	5.81	· · · · · · · · · · · · · · · · · · ·
CH.		44.05	45.87	
CO_		2.24	5.30	
2 No		0.77	0.58	
"2 Other - Ω	Ha	1.05	0.36	
Other - C_	ть Н	0.22	0.03	· · · · · · · · · · · · · · · · · · ·
% Conversion Based	8 0n: C0	83.47	89.94	
% Molar Selectivit	v to: CH.	89.80	88.27	
	co.	4.57	10.21	
	С_Н.	4.30	1.37	
	~2~6 Calla	1.34	0,15	
	~38			
Holes H ₂ In / Moles	H ₂ Accounted	0 002	0.020	
דסד rall Reactor	Lb-moles CO/hr-		0.938	
Rate x 10 ³	# Catalyst	80.43	86.67	
[∗] c ^o C, 1 atm	Lb-moles CH ₄ /hr- # Catalyst	72 22	76 5	
- 3		12.22	70.5	

.

-17-

E o Number	50-41 1.2.3	Reactor Diam	eter: ir hes (.81 with 1/8	Thermowell
	10/23/72	Reactor Leng	th; inches	48	
C anator	RR & AW	Settled Bed	Height; inches	6	
	CCI C-150-1-02	Catalvst Wei	oht; grams	42.0	
Lalaiyst	Pseudocumene	Catalyst Siz	ρ	30-50	mesh
<u>.</u> quiu		Emoty Reacto	r Volume, cm ³	395.5	
tin it There are from t	2	18.9	19_8	21.7	
L'quio Flow; gal/min-1	· · · / h	400	400	400	
1.let Gas Flow; liters	5*/ IIF	120	113	101	<u> </u>
Untlet Gas Flow; 11ter	rs*/nr H	74_7	74.7	74.7	
Volume Percent:	''2 CO ·	25.3	25.3	25.3	
P accuration		800	800	800	••••••••••••••••••••••••••••••••••••••
Fetimated Cataluct Par	Vojabte inchas	7 21	7 20	7 26	
Loumaren Latatyse Del	i nergine, menes				
Height Heicht					
i.) 3 0 (i)		280 272	303 285	326 I 310	I
6 3		283 272	306 294	328 313	
24 21		28/ 2/2	306 296	330 314	
- 36 33		288	309 298	330 314	
Pressure Drop; psi		0.14	0.14	0.14	
Calyst V/W; Ft ³ Gas T & P/H	@ Reactor r-Lb Catalyst	6.06	6.68	8.09	
let Gas Concentrati	on; Vol. %				
H2		41.0	35.1	25-6	•
··· cõ		10.37	6.4	2.67	
CH		41.88	51.87	65.01	
·		5.27	5.64	5.82	
- No		0.64	0.59	0.66	
\mathcal{L} Cther - $C_{2}H_{c}$		0.69	0.37	0.24	
Other - Collo		0.16	0.03	< 0.005	
Conversion Based On:	CO	82.53	90.11	96.39	
% folar Selectivity to	 : CH.	85.48	88.92	91.16	
agine bereauting to		10.75	9.67	8.17	
	552 CoH-	2.79	1.27	0.66	
	~26 C_H_	0.98	0.14	0.01	
•	~3''8				
res H ₂ In / Moles H ₂ A	ccounted oducts	_ 1.06	1.02	- 1.01	
v rall Reactor $\frac{1}{2}$. Rate x 10^3	Lb-moles CO/hr- # Catalyst	80.80	88.23	94.37	
2 ^D C, 1 atm	Lb-moles CH ₄ /hr- · # Catalyst	69.06	78.45	86.04	
					-18-

٠

.

1						
8 a Number	50-46 2	Reactor Diam	eter; thes 0.	<u>B1 with 1/8" Th</u>	ermowell	
Date	10/10/72	Reactor Leng	th; inches	48		
C erator	RR	Settled Bed I	Height; inches			
Catalyst	Harshaw Ni 0104-101	Catalyst Weig	ght; grams			
i quid .	Pseudocumene	Catalyst Size	2	30-50 mesh		
		Empty Reactor	r Volume, cm ³	395.5		
t quid Flew; raj/nim	I-ft ²	46.8	50.1			
Inlet Gas Flow; lite	ers*/hr	800	800			
C tlet Gas Flow; lit	ers*/hr	585	210			
ed Gas Composition	H ₂	74.85	74.85			
volume Percent:	CO .	25.15	25.15			
P essure; psig		800	800			
Estimated Catalyst B	Red Height; inches	35.3	35.5			
T mperature Profile:	1					
Reactor Salt Bat Hight Heicht	'n					
(i -) 3 0 (i)	T	272 256	299	ſ	1	
6 3		272 258	300			
24 21		274 260	302 276			
3ā 33		277 260	305			
P issure Drop; psi		0.65	0.65			
Cocalyst V/W; Ft ³ G T & P	as @ Reactor /Hr-Lb Catalyst	1.93	2.21			
0 :let Gas Concentra	tion; Vol. %					
H ₂		69.88	33.28			
co		23.40	2.83			
CH,		6.02	55.13			
τ0 ₂		0.03	6.52			
N ₂		J.24	0.28			
Cother - Colla		0.38	1.62			
Other - C-H-		0.05	0.33			
% Conversion Based 0	n• C O	22.93	95.88	« <u></u>		
<pre>/ Moiar Selectivity</pre>	1. CU	86 44	83.67			
2 INTEL SCIECCIVICY	ro. cn ₄	0.45	9 90			
		10.79	<u>J.90</u>			
	² "6	2 32	1 50			
	~ 3 [•] 8		<u>1.30</u>			
Moles H ₂ In / Moles H ₂	Accounted Products	.1.00	1.01			
Ov rall Reactor Rate x 10 ³	<pre>Lb-moles C0/hr- # Catalyst</pre>	7.39	30.90			
*2 ⁰ C, 1 atm	Lb-moles CH ₄ /hr- # Catalyst	6.39	25.85			

÷

-19-

E o Number	50-45-7 2	Reactor Diame	eter; ir-hes	0.81 with 1/8" Thermowell
R II Mumber	10/9/72	Reactor Lengt	th; inches	48
Date Compton	RR	Settled Bed H	leight; inches	23.5
	Harshaw Ni 0104-101	Catalyst Weig	int; grams	253,7
	Pseudocumene	Catalyst Size		30-50 mesh
		Empty Reactor	Volume, cm ³	395.5
1	²	796 -	20.3	
quid Flow: cal/mi	n- Tt -	/00		
Lalet Gas Flow; Int		150	100	
Untiet Gas Flow; 13	ters/llr n H	72 7	72 7	The hydrogen analysis
volume Percent:	" "2 C0	27.3	27.3	may be 1% or 2% too low.
	20 -	800	800	,,, , ,, ,, ,, , ,, , , ,
F essure; psig	Ded Notabt, Inches	26.8	27.0	
	bed nergin; mulles			· · · · · · · · · · · · · · · · · · ·
I mperature Protite			-	• •
Reactor Salt Sa Height Height				• •
(i.) 3 0 (i.	5	268	2961	1
6 3		269 265	299 282	
12 9 24 21		272 265	302 283	
36 33		279 265	306 283	
Pressure Drop; psi	· .	0.68	0:68	······
C talyst V/W; Ft ³ T &	Gas @ Reactor P/Hr-Lb Catalyst	0.95	1.11	
0 tlet Gas Concentr	ation; Vol. %		•	
H2	•	28.3	4.80	·
cō		2.26	< 0.005	,
CH		58.2	86.4	
C0,		. 8.89	6.57	
No		0.67	0.97	
Cther - Coll	~	1.43	1.07	
Other - $C_{2}H$		0.32	0.20	•
% Conversion Based	S On: CO	96.9	100	
Molar Selectivity	to: CH	82.08	90.25	
nordi Sciectivity	co. ch ₄	12.54	6,86	
	с.н	4.03	2.24	
,	С2''6 С Н	1.34	0.64	
	3''8			·····
Aoles H ₂ In / Moles H	Accounted Products		0.966	
$\frac{1}{2}$ erall Reactor $\frac{1}{2}$ kate x 10^3	_ Lb-moles CO/hr- # Catalyst	16.93	17.47	
5 ⁰ C, 1 atm	Lb-moles CH ₄ /hr- # Catalyst	13.90	15.77	-20-

÷

R. Number	50-44-1 3.	Reactor Diama	eter; ir es	0.81 with 1,	/8" Therman
Date	10/4	Reactor Leng	th; inches	48	
Or rator	RR	Settled Bed H	leight; inches	32	.5
Catalvst	Harshaw Ni 0104-101	Catalyst Weig	pht; grams	30	8
ii uid	Dowtherm A	Catalyst Size		30	-50 mesh
		Empty Reactor	· Volume, cm ³	39	5.5
Li uid Flows gal/min-	-ft ²	~15	~15	~15	
Injet Gas Flow; liter	rs*/hr	800	800	800	
Outlet Gas Flow: lite	ers*/hr	125	125	125	
F d Gas Composition	H ₂	75.3	75.3	76.0	
Volume Percent:	cõ .	24.7	24.7	24.0	
Pr ssure; psig		800	800	800	•
Estimated Catalyst Be	d Height; inches		-	_	
Te perature Profile.	•				
Reactor Salt Bath Height Reicht					
in) 3 0 (in.)		280		320	
12 9					
24 21					
				{	
(2) Just V/W- ' 5+3 (-)					
	Hr-Lb Catalvst				
Ju let Gas Concentrat	ion; Vol. %				
Ha	-	29.91	6.12	4.69	
cõ		9.50	. 93	. 22	
CH		27.55	43.51	63.04	
4 C02		30.08	46.92	30.63	
No.		1.51	.66	.45	·····
Other - Colle	•	1.04	1.01	.57	
Other - C-H-		.40	.85	.41	
4 Conversion Based On	:	85.5	99.0	99.8	
% .olar Selectivity to); CH.	AE 2			
······································	CG.		<u> </u>	21 0	
	с. ₂		<u> </u>	1 30	
	2''6 Calla	1 09	2.13	1.18	
	°3''8	1.90	2.0/	1.29	
loles H ₂ In / Moles H ₂ for in ² P We all Reactor Rate x 10 ³	Accounted roducts Lb-moles CO/hr- # Catalyst	<u>2_38</u>	2_91	<u>1_80</u>	
2! C, 1 atm	Lb-moles CH ₄ /hr- # Catalyst				· · ·
					-21-

-

.

APPENDIX II

Analysis of Dowtherm A and Pseudocumene

•

.

.

•

-22-

All samples were analyzed on a $10^{\circ} \times 1/8^{\circ}$ Durapak (n-octane/Poracil C) column programmed from 50-180°C at 13° /minute using a FID.

Dowthern A

A sample composed of two immiscible layers which had been taken from the reactor overhead after being subjected to 320⁰C was analyzed and compared to unused Dowtherm A.

Unused Dowtherm A showed two distinct peaks (biphenyl and biphenyl ether) at an area ratio of 2.1 biphenyl ether to biphenyl. The organic (top layer) of the used Dowtherm A showed the same two peaks at a ratio of C.77 biphenyl ether to biphenyl. In addition, there was a heavy concentration of a compound with a retention time corresponding to benzene plus lesser concentrations of what appear to be toluene, cyclohexane, lower aliphatics and one high boiling alkylbenzene. The water (bottom layer) showed only one peak which corresponded in retention time to phenol.

It can be concluded that the biphenyl ether undergoes a more severe breakdown at operating conditions as evidenced by the change in area ratios of used to unused Dowtherm 5. A conservative estimate is 65% of biphenyl ether loss and a slight loss of biphenyl after use.

Analysis of Dowtherm A and Pseudocumene Used as Liquid Phase in Methanation

A proposed breakdown route is:

A quantitative comparison of used and unused Dowtherm A with internal standards would have to be made in order to determine the extent of degradation accurately and the amount of polymer formation which is non-detectable by G. C.

Pseudocumene

Pseudocumene used in three different runs (Harshaw, CCI and Girdler catalysts) and taken from the reactor overhead were analyzed. The chromatograms indicate that a slight degree of hydrodealkylation occurred causing formation of alkylcyclohexane and predominantly components corresponding in retention time to toluene and xylenes. Overall, degradation appeared to be minimal and the presence of lower boiling materials was magnified due to the nature of the sample, i.e. more lower boiling materials would concentrate in the reactor overhead.

Analysis of Dowtherm A and Pseudocumene Used as Liquid Phase in Methanation

More meaningful information could be obtained, if needed, by sampling the liquid phase in the reactor during operation and quantifying major components by use of internal standards.

· ·

4

APPENDIX III

Major Equipment Descriptions

•

•

-26-

Major Equipment Descriptions

Methanation Pilot Plant

A. Syn-Gas Generator

1. Desulfurizer

Two methods are available: (1) activated carbon which must be reactivated with steam on a one to two week basis (room temperature operation), and (2) ZnO which is renewed every six months (old bed is discarded). This unit operates at $700-800^{\circ}F$.

2. Reformer Furnace

Circular design. Contains two to three 2"-3" packed and flanged catalyst tubes. Overall height, floor to top of fired section, must be 15' or less. Direct fired - burners must be capable of handling gas of heat content from 450 BTU/SCF to 1000 BTU/SCF. Total furnace input heat demand is approximately 1.3-1.6 mm BTU/hour.

3. Amine Reboiler

• •

- .

Does not need to be directly fired. Enough waste heat is available from furnace process effluent to regenerate MEA. Usual method is to quench furnace effluent (at 1500° F) with recycled condensate to saturation temperature ($\sim 700^{\circ}$ F), then recovering entire condensate from reboiler effluent.

4. <u>CO₂ Absorber</u>

Maximum height is 17'.

-27-

5. Blender

Equipment needed to blend $\rm CO_2$ absorber effluent with 1200 SCFH $\rm CH_4$ at about 150 psig.

6. Compressors

Three compressors are needed: (1) precompressor to compress 2400 SCFH of CH₄ from 5 psig to 150-160 psig, (2) CO₂ recycle compressor to compress 500 SCFH of CO₂ (from MEA reboiler) from 130 psig to 160 psig, and (3) after compressor to compress 6000 SCFH of 60% H₂, 20% CO, and 20% CH₄ from 130-150 psig to 1050 psig.

7. Steam Generator

Packaged unit to deliver approximately 250-300 #/hour steam at 160 psig $(365^{0}F)$. Heat input is approximately 0.7 mm BTU/hour.

8. Cooling Water Tower

Capable of handling 400-500 gpm of treated water. Roof mounted, designed for 20° F Δ T. For use with both Syn-Gas Generator and PDU.

9. Water Treatment

Deionization and/or softening unit. Delivery to be normally 36 gph. up to a maximum of 150 gph. Maximum rate includes about 70 gph for the cooling tower which may not be needed.

10. Flow and Product Composition

Natural gas feed to furnace = 1200 SCFH of CH_4 . CO_2 absorber effluent = 4800 SCFH of 75% H₂, 25% CO. Flow from generator to be 6000 SCFH of 60% H₂, 20% CO, and 20% CH₄ at 1050 psig. Turn-down ratio on generator

to be 2/1 with greater turn-down via bypass. Total natural gas feed to Syn-Gas Generator = 2400 SCFH CH₄ (1200 SCFH for reaction and 1200 SCFH for blending). Product H_2/CO ratio variable from 3/1 upward, ratio less than 3/1 obtainable via external injection of CO₂ into recycle line.

11. Utilities Consumption

Utilities should try to be minimized, but estimated at:

Gas	2400 SCFH
Water	72 gph for steam generation + cooling
	tower make-up
Electricity	30 KW @ 120 v
	75 KW @ 440 v (3 phase)

12. Instrumentation

Generator to be completely equipped with all instrumentation necessary for flow and temperature control. All controls fail-safe for safety purposes. Effluent product to be continuously analyzed for all components via optical or gas chromatographic methods.

13. Materials of Construction

Dictated by temperature/pressure/concentration requirements.

14. Electrical Connections

Must be explosion-proof.

B. PDU Unit

1. Reactor

Flanged. 8" I.D. x 10' L flange to flange. Internals - scintered disc gas dispersion and catalyst support plate located at bottom flange. Liquid dispersion ring with downflow jets located below liquid inlets. 200-300 mesh screen 4"-6" below top flange. (See Notes 1 and 2). Operating pressure = 1050 psig and operating temperature = $480-680^{\circ}F$.

2. Liquid Separator

Flanged, 12" I. D. x 5' L with liquid-gas demister and liquid level control/indicator/alarm. Operating pressure = 1050 psig and operating temperature = $580-680^{\circ}F$.

3. Gas Quench and Condenser

Condenser is shell and tube. Total exchange area is about 40 ft². Dimensions are approximately 12" I.D. x 5' L. Cooling media is high temperature heat transfer oil. Quench uses waste water from water degassifier. Operating pressure = 1050 psig and operating temperature = $550-600^{\circ}$ F. Approximate heat duty on condenser = 70,000-100,000 BTU/hour.

4. After Cooler

Shell and tube, same size as condenser. Cooling media is H_20 from cooling tower. Operating pressure = 1050 psig and operating temperature = $100-300^{\circ}F$. Approximate heat duty = 50,000-75,000 BTU/hour.

5. Condenser Receiver

Flanged, 12" I.D. x 5'L. With liquid-gas demister, oil liquid level control/indicator and oil/ H_2O interface control/indicator. Operating

pressure = 1050 psig and operating temperature = $100-150^{\circ}$ F.

6. Oil Degassifier

Flanged, 12" I.D. x 3'L with liquid-gas demister and liquid level control/indicator. Operating pressure = 10 psig and operating temperature = $80-150^{\circ}F$.

7. H₂O Degassifier

Same as Item 6.

8. Process Oil Storage

May be 55 gallon drum depending on code requirements. Otherwise is flanged, 12" I.D. x 4' L with liquid lev indicator (sight glass). Operating pressure = 0-5 psig and operating temperature = $80-100^{\circ}$ F.

9. Process Oil Make-Up Pump

Flow = 20-40 gph, self-priming, $\triangle P = 1050$ psig. Operating temperature = 80-100^oF.

10. Process Oil Cooler

Shell and tube type. Total exchange area = 50 ft^2 . Dimensions are approximately 12" I.D. x 5' L. Cooling media is high temperature heat transfer oil. Exit temperature controlled by varying cooling oil flow. Operating pressure = 1050 psig and operating temperature = $480-680^{\circ}F$. Approximate heat duty = 350,000-400,000 BTU/hour.

11. Process Oil Pump

Flow = 20-40 gpm, self-priming, $\Delta P = 10-20$ psig. Operating pressure = 1050 psig and operating temperature = 480-580^oF; with flow rate indicator/ control/alarm.

12. Filters

High temperature and pressure. About 100 mesh. Operating pressure = 1050 psig and operating temperature = $480-580^{\circ}$ F.

13. Heat Transfer Oil System

Packaged system capable of delivering 25-30 gpm of oil at $300-400^{\circ}$ F with self-priming pump, H₂O or air cooler, 60-100 gallon storage tank and direct fired furnace capable of burning gas of heat content from 450 BTU/SCF to 1000 BTU/SCF or kerosene.

14. Materials of Construction

All units and piping to be made of 316 stainless steel and constructed to meet any necessary code requirements.

15. Electrical Connections

Must be explosion-proof.

- Note 1: Sliding float or other instrumentation to determine catalyst bed height inside reactor.
- Note 2: Externals Removable, electrically heated jacket. Thermocouples vertically along wall at 12" intervals extending into reactor 2"-3". T/C at about 4'-5' level connected to temperature alarm. Differential pressure cell capable of compensation for cold and hot leg.

Quantity	<u>Rate</u>	<u>% н</u> 2	<u>% CO</u>	<u>% СН</u> 4	<u>% Н₂0</u>	% 0il	o _F <u>Temperature</u>	Psig Pressure	Bas
Reactor Feed	6,000SCFII	60	20	20		None	80 - 120	1,050	is:
Liquid Gas Separator	4,340SCFH	N¶1	Ni 1	55 .3	27.7	17.0	570 - 670	1,050	Mater
Effluent	id 20-40 GPM					100	570 - 670	1,050	'ia E
Oil Degasser Input	22 GPH					100	80 - 120	10	salano
# 20 Degasser Input	8-9 GPH				100		80 - 120	10	e At
Condenser Receiver Gas Effluent	2,400SCFH	Nil	Nil	100	Nil	Nil	80 - 120	10	100% Fe
Process Oil Pump Output	20-40 GPM					100	480 - 570	1,050	eed Co
Process Oil Make-Up Pump Output	20-40 GPH					100	80	1,050	onversio
Quench Pump Output	4- 5 GPH				100		80	1,050	n Wit

16. Material and Heat Balances

Chem Systems Inc.

Material Balance At 100% Feed Co 5. 0 With Volatile Oil

-33-

-33a-HEAT BALANCE (REACTOR): · · · · · · · · · FOR REACTOR TEMPERATURE -INLET = 250°C OUTLET = 300 °C. Feed Composition = 60 1. Hz, 20 1. Co, 201. CH4 $C_{DNNERSION} = 100%$ - + + = (6.97)(9.2)(572-77) = 31741 $H_{co} = (7.07) (3.1) (572-77) = 10 849$ <u> ZHR = 58380</u> $H_{C+4} = (10.29) (4,2) (572-77) = 31580$ $H_{H_{20}} = (8.215)(3.1)(572-77) = 12.606$ 5Hp = 44186 $\Delta H_{f} = (-102, 632) (3.1) = 318, 159$ NALUE FOR AHE Taken from Bureau of MINES REPORT OPERATION OF A SPRAYED RENEY WICKEL TUBE WALL REACTOR FOR PRODUCTION OF & High-BTU 645.

 $\Delta H = \Xi H_p = \Xi H_R + \Delta H_T = -332,353 \text{ BTU/H}$ FOR PSELOD CUMENE @ 300°C (VOLFFILE Dic): Cp = 0.75 BTU/10.F h= 0.05cp PZ = 170 PSIG <u> Sp.6= 0.56</u> K= 0.048 674/ne.fe= ("F/+t) For MINGRAL Oir @300°C (Now-VOIGTILE Dic): Cp= 0.69 BT-/160= pl= 0.46 cp P* = 0.55 PSia <u>56= 0.68</u> K= 0.0:5 BTS/ha f=2 ("F/jt) For Reator DT = 50 °C = 90 °F Q= Cp_ ST m_ M= Q/CPAT mpsEupocamone = 4933 */nR = 1058 6PH = 18 GPM GPSEHDOCUME = 18.0 Gal min + 0.35+2= = 50.5 GPM/FE Veseupperinene -3:5-cm/sic. minical oic = 5352 #/re = 947 GPH = 16 GPM

-34-

Grineral oic = 45_6pm/ge2 Vmineral oic = 3.1 cm/sic. FOR PROCESS DIL COOLER USIUS DOWTHERM 6 AS COOLING OIL : ΔT PROCESS STC = (300 - 250 °C) = 50°C = 90°F AT GOLING DIC = (200 - 150 °C) = 50°C = 90 °F $m_{(001,106,0)} = (333,000,074/H) (\frac{16.5F}{0.5IBT4}) (\frac{1}{90^{0}F}) = 7255 = 16R$ Geodeling oil = (1255-0/4x) (- gal)(-1) = -979 GPH = 17 GPM $Q = UA(\Delta T)$, $(AT)_{Lm} = \frac{DT_{c} - \Delta T_{r}}{ln(\Delta T_{c}/\Delta T_{r})} = \frac{(100 - 100)}{ln(100)} = 0 \circ C = DT - \frac{100}{ln(100)}$ assuming U 2 60, th $H = (333,000 \text{ BT4/H}) (\frac{H + 1 + 2^{-5} \cdot F}{60 \text{ BT4}}) (\frac{1}{180} \circ F) = 3/4t^{2}$ For 3/4" BWG Heat Exchanger tubes 5/L = 0.17 f=2/f= FOR 5' tubes S = D.84 ft2/tube., THEN: -+50'l =- -55 tubes, --THEN PROLESS OIL COOLER SHOULD BE ABOUT 12. 0.

Queich = 35 6PH H20 to lower temperature to ≈ 250 °C = 480°F. FOR THE CONDENSER: DTEFFLUENT STREAM = (250 - 170) = 50°C = 144°F = (200 - 150)°(= 50°C = 90°F A TOOLING-OIL $-m_{CODLING-DT_{a}} = (90,000 \text{ BT4/MR}) \left(\frac{10 \text{ F}}{0.51 \text{ BT4}}\right) \left(\frac{1}{907}\right) = 1961 \text{ The}$ $G_{601146} = (1961 = /2e) (\frac{321}{8.33}) (\frac{1}{59}) = 265 GPH = 4.4 GPM$ $Q = UA (\Delta T)_{LM}$ $(\Delta T)_{1m} = \frac{50-20}{\ln(-5^{\circ}/10)}$ = 33°C = 59°F again assuming U=260 them $F = (90,000 \text{ GT4/H}) \left(\frac{H^2 + f^2 - f}{60 \text{ GT4}} \right) \left(\frac{1}{59 \text{ of}} \right) = 26 \text{ f}^2$ For 3/4" BWE Heat Exchanger tubes: NIUDES = 26/0.84 +t2/74BE +50'1. = 46 TUBES.

-36-

FOR the CONDENSER AFTERCOOLER: △ TEFFLUENT STREAM = (170°C- 50°C) = 120°C = 216°F AT COOLING 70 = (42 - 30) = 12°C = 22°F mesoning Ha = (70,000 BT4/H) (10 +F) (12+F)= 3182 #/ine $= (3182^{\pm}/m_{e})(\frac{92}{8.33^{\pm}})^{\pm} 382 \text{ GPH} = 6.4 \text{ GPM}$ General Ha Q= UA (AT) m = 58.2 °C = 105 °F (AT) in = ln (12\$/20 also assaming U= 60, the $A = (70, 600 \text{ etu}/\mu) \left(\frac{\mu \cdot f z^2 \cdot f}{60 \text{ etu}}\right) \left(\frac{1}{105 \text{ of}}\right) = 11 \text{ f}^{2}$ FOR 3/4" BWG TUBES; NTUBES = 11 /0.84 ft / HUBE = 14 TUBES (BWG-12) + 50 1. = 21 tubes. REACTOR EFFLUENT FEED TO REFORMER FURNACE AND TO STEAM GENERATOR AND TO HEAT TRANFER OIL FURNACE WILL VARY FROM 6000 SCFH OF 60% Hz, 20%. CO, 20%. CHy to

-37-

2400 SCFH OF 1001. CH4 So THAT TOTAL HEAT CONTENT / HOUR _WILL WARY FROM 2.7 mm BTY FOR FEED GAS TO _ 2.4 mm BTY FOR 100 J. SH4 645. Reformer fur Nace will demand 1.3 -1.6 mm 6-1/4x and Ston generator at 302" STEEnfair will demand D.T-0.8 mm OTH/re. Total comment 2-2.4 mm OTH/he, leaving an excess of 0-0.7 mm Bruthe.

-38-

APPENDIX IV

Programs and Printout

•

-

-39-

.

.

.

10: UB FROM: TWS -40-DFTE: 10/30/72 SUBJ- METHENATION DATA REDUCTION PROGRAM THIS PROGREM _ PERFORMS_ THE FOLLOWING CALCULA TIONS IN THE DRIER INDIUTER 1. INPUT - Liquio FLOW in LIAR = FL - Liquis density in glee at sume TEMFERATURE = PL - Liquid density in glac at REACTOR TEMPERATURE = RE OUTPUT - LIQUID FLOW IN gal/min. FT2 = Fi - Liquio VELOCITY IN COMPLE = U EQUATIONS : $F_{L}^{*} = F_{L} \left(\frac{e}{\ln R}\right) \times \frac{1}{3.785 L} \frac{1}{60 mm} \times \frac{(2.54 \times 12)^{2} cm^{2}/4t^{2}}{3.24 cm^{2}} \times \frac{\ell_{L}^{p}}{10 R}$ $F_{L}^{*} = -F_{L} \left(\frac{1.263}{1.263} \left(\frac{\varphi_{L}^{P}}{\varphi_{L}} \right)^{--} \right) \left(\frac{P_{P} NTED}{1.263} \right)$ 2 = REALTOR CROSS SECTIONAL $U = F_{L}(e|ne) \times \frac{\psi_{L}^{P}}{\psi_{L}^{R}} \times \frac{1}{3600 \text{ sec}} \times \frac{1}{2} \times \frac{1}{3.24 \text{ cm}^{2}}$ $u = F_{L}^{*}(0.0679) \qquad (STOREP)$ 2. INPUT - LIQUID VISCOSITY AT REACTOR TEMPEHETURE IN POISE = //L HVERAGE CATALYST PARTICLE DIAMETER IN CM = dp (FRITH MATIC AVERAGE OF CATALYST MEST SIZE) = dp

Two CHARACTERISTIC CATALYST CONSTANTS = K & K2 _ CHAR-CTECISTIC ELLIDIEATION RELADEDS NUMBER = Rept Height of the undistribud CATALYST SED IN INCHES = HSB GAS FLOW PEXPANSION FACTOR = Fex = 1.0 - 1.1 OUTPUT - FLUIDIBATION REYNOLDS Number correlation = Cy (RER)2 ADJUSTED (FOR OCS FLOW) ESTIMATED EXPANDED CATALYST BED height in inches = H EQUATIONS: $\varphi_{L}^{s} = K_{1}(\varphi_{L}^{R}) + K_{2}$ $\frac{1}{C_{d}(Re_{R})^{2}} = \frac{4(980)}{3} \frac{dp^{3} \varphi_{L}^{R}(\varphi_{L}^{S} - \varphi_{L}^{R})}{\mu_{L}^{2}}$ $\frac{d\rho^{3}\rho_{L}^{R}(\varphi_{L}^{S}-\varphi_{L}^{R})}{(PRINTED)}$ = (1307) A GRAPHICEL ODREELETION EXISTS BETWEEN C. (Rep.) 2 4 Rept, THE REYNOLDS Rumber INPUT IS USED TO CALCULATE LIQUID TERMINAL VELOCITY, Un, FROM : $U_{t} = \frac{\left(Re_{pt}\right)\left(\mathcal{M}_{L}\right)}{\left(\varphi_{L}^{R}\right)\left(\delta p\right)} \qquad (STORED)$ (STORED) E = 0.736

-41-

-42 and_{1-} $H'/H_{56} = \frac{(1-\epsilon_{50})}{(1-\epsilon)} = \frac{0.51}{(1-\epsilon)}$ and, $H = (H^{c})(F_{ex})$ (PRINTED) - TOTAL GAS IMPUT IN LINE = F. 3. INPUT - MOLE 1. N2 IN FEED = CN2 - MOLE ! CO IN FEED = Co - MOLE 1. NZIN EFFLUENT = CN ----- MOLE 1. CO IN EFFALENT = CLO - 1. CO_CONVERSION ____ = K - · /. CH4 41ELO = Y -1.1. CO2 Selectivity = Sco2 - CATALYST Weight (qms) = W' - TOTAL Reactor PRESSURE IN PSIZ = PT - LIQUID VAPOR PRESSURE at REALTOR TEMPERATURE IN PSIZ=P - REALTOR TEMPERATURE IN OK OUTPUT - OVERALL REACTOR Rate in 10-moles CO/IDCFTFLYST-HR = RCO - OVERALL REACTOR RATE 2103 IN ID-moles CH4/ IbCATALYST- HR = RCH4 - EFFLUENT WATER DILUTION FACTOR = FH20 - Liquid VAPOR PRESSURE DILUTION FACTOR = PT-P*/PT - VAPOR FLOW RATE AT REALTOR TEMP & PRESSURE IN te The = V - CATALYST V/W in fegas at REACTOR TEP/IDCATELYST - ha= V/W - CORRECTED MOLE /. CO IN FEED = Co - CORRECTED MOLE 1. CO IN EFFLUENT . C'CO $-\log\left(\frac{c_{co}}{c_{co}}\right)$

EQIATIONS: W= CATALYST WEIGHT IN 165 = W/454 gms/16 (STORED) $\frac{P_{co} = F_{q}(2|hR)(K)(C_{co})}{28.32(2|4c^{3})(359 + \frac{322}{273})(10)W(10)}$ $R_{co} = \frac{(F_{4})(K)(C_{co})}{(W)(1+1-730)} (PRINTEC)$ $R_{cH_{4}} = \frac{(F_{q})(Y)(C_{c_{p}})}{(W)(111730)} (PRINTED)$ $V = F_{q} \left(\frac{2}{h_{2}}\right) \times \frac{T_{R}}{T_{ane}} \times \frac{P_{Amb}}{P_{T}} \times \frac{P_{T}}{(P_{T} - P^{*})} \times \frac{1}{25.32 \pounds/\xi^{23}}$ $V = (F_a) (T_R) \left(\frac{0.00174}{[P_T - P^*]} \right) (P_{einTED})$ V/W = V/W (PRINTED) $C_{ran}^{o/} = C_{co-}^{o} \left(\frac{P_{T}-P^{*}}{P_{T}}\right) \left(P_{RIN}TED\right)$ $\frac{C'_{co}}{C_{co}} = \frac{C_{co}}{C_{co}} \left(\frac{P_{T} - P^{\star}}{P_{T}} \right) \left(F_{H_{2}O} \right) \left(\frac{P_{RINTEO}}{P_{RINTEO}} \right)$ To CALIULATE Frondet:

-43-

T= TOTAL MOLES IN EFFLUENT LESS ANY HOD FORMED 100 = TOTAL MOLES IN Fred. S_=1 / Select INITY TO L PRODUCT F = MOLES OF L COMPONENT IN FEED E:= MOLES DE L' COMEDNENT IN EFFLUENT THEN : -T-Cco 100 Eo $= C_{co}$, $E_{co} =$ X 100 Fco - T Cco/100 Fco - Eco 100 = K≡ 100 C° - (T) (Cco) K = C°co therefore: Cio (1 - 12/100) (STORED Cco and it: N:= NUMBER OF CAREON ATOMS IN i compound Ci= mole 1. of i composiNO IN EFFLUENT Pi= moles of i Preduct IN EFFLUENT. Yi= MOLE 1. Yield to i PRODUCT.

-44-

• • • • • • • • • • • • •

 $\frac{\text{Hum}:}{S_{i}} = \left(\frac{Ni(P_{i})}{F_{co}}\right)_{100}$ $(S_{i})(K) = \frac{Ni(P_{i})}{(F_{io} - \overline{E}_{io})} \times \frac{(\overline{F}_{io} - \overline{E}_{io})}{\overline{F}_{io}} \times (100)^{2} = Y_{i}^{2}$ $Y_{i} = \frac{N_{i}(P_{i})}{F_{i}} \times (100)^{2}$ $\left(Y_{i}\right)\left(\mathcal{L}_{\omega}^{\circ}\right) = N_{i}^{\circ} P_{i}^{\circ} (100)^{2}$ $P_{H-2} \equiv P_{CH_{4}} + 2P_{c_{2}} + 3P_{c_{2}} - P_{co_{1}}$ $\underline{P_{H_{20}}} = \left(\sum N_i P_i \right) - 2 P_{co_2}$ $P_{\text{Hbo}} = \left(\sum \frac{(S_{i})(K)(C_{io})}{100^{2}} \right) - \frac{2(S_{io})(K)(C_{io})}{100^{2}}$ $P_{H_{\Sigma O}} = \left[\frac{(\kappa)(c_{\omega})}{(r_{00})^2} \right] \left[\left(\sum (s_i) \right) - 2(s_{\omega_{\Sigma}}) \right]$ $= \frac{(K)(C_{\omega})}{(100)^{2}} \left[\frac{100-2(S_{\omega_{z}})}{(100)^{2}} \right]$ $P_{H_{2}0} = \frac{-KC_{20}}{100} \left[\frac{1-0.02(S_{02})}{1-0.02(S_{02})} \right]$ (STORED)

-45-

 $F_{H_{20}} = \frac{T - F_{N_{2}} + F_{N_{2}}}{T - F_{N_{2}} + F_{N_{2}} + P_{H_{20}}}$ and : EN2 x100 $C_{N_{-}} = \frac{(C_{N_2})(\tau)}{100}$ $E_{N_2} =$ $\frac{F_{N_2}}{100} = F_{N_2}$ ("= Hurefore: $F_{H_2O} = \frac{T - (C_{N_2} \times T_{100}) + F_{N_2}}{T - (C_{N_2} \times T_{100}) + F_{N_2} + P_{M_2O}} (STORED)$ ON THE POLLOWING PAGE IS A SAMPLE PRINT -04T DF THE PROGRAM WITH THE VAR. 345 ENTRIES AND RESULTS LABELED, ----------

-46-

-47-ENTRIES RESULTS Lig. Frows (2/hz.). 30-0000 0.7250 Quig e Fump 0.5000 YNE & REACTOR L q. Frow (min ft) 49 . 0 5 4 0 A 400.0000 = GAS-FLOW-(2/HR)----3.0004 HLIG QREACTOR (POISE) 0 + 0 4 5 0 do (cm) 0+8290 к, 1-2400 K2 Cy (Rept) 331234 • 6345 Â 315-0000 Re pe (in) 5.0000 HEIGHT OF SETTLED BED EXPANDED BED 1.0000 EXPANSION FACTOR EIGHT (in) -7•5371 0-0000 Nz mole 1. in FEED 25+2100 CO-0 • 5 5 0 0 N2] mole % in EFF. 5-3230 co 91-7400 %. CO CONVERSION 30+5400 1- CH4 CONVERSION % CO2 SELECTIVITY 9-4700 32+5000 CATA-WT- (975) # i les Reo ×103 115 • 6629 KCH4X10 101•5594 314 • 7000 172.0000 573.0000 From (+c3/ha TR (°K) 35 0.6205 E WART TIP A Y/W 3+5581 A Cu° (m/.) 19.3875 A <u>co (m/.)</u> -3•0053 A Long (cos/co) -0-3206 Å METHANATION DATA REDUCTION PROGRAM.
TODB -48-FROM: TWS DATE: 10/31/72 SUBJ: METHANATION GAS CONVERSION PROGRAM THIS PROBRAY PERFORMIS THE FOLLOWING CALCULATIONS THE DR DER IN DICATED, 1. INPUT - H2 STO ADJUSTMENT FACTOR = 105,000/A (STO) = FH. - CO STANDARD AREA = AS - MONE 1. CO in STANDARD = C ca $-COFEEALEA = A_{co}^{E}$ OUTAIT - MOLE ! H2 in FEED = C" - MOLE /. CO in Feed = Cio EQNATIONS: $C_{co}^{\circ} = A_{co}^{F} \left(\frac{c_{co}^{\circ}}{A_{co}^{\circ}} \right)$ $C_{H_{2}}^{*} = 100 - C_{co}^{*}$ THESE FEED CALCULATIONS DICLUPY THE FIRST TWO BRANCH POINTS OF THE PROBRAM and THE PROSEAM NORMALLY LOOPS BACK TO THE BEGINNING OF BP & SO THAT FEED DATA IS RETAINED FLOM ONE SET OF EFPLUENT ANALYSES TO ANOTHER. H RETURN TO THE BEGINNIUG OF THE PROGRAM PRUST BE PERFORMED MANUALLY, BY DEPRESSING T()-D- RESUME. UNCIPACITED 2. INPUT - MOLE 1. H2 in EFFLUENT = CH OF AREA VS 1. H2 $= C_2 \quad \text{EFFLUENT} \quad \text{AREA} = \text{Ac}_2$ $-co_{\mu} = A_{co_{\mu}}$

	· · · · · · · · · · · · · · · · · · ·
	- C3 EFFLUENT AREA = Ac3
	$-N_2 = A_N_2$
	$-CHq$ $'' = A_{cHq}$
-	$-co$ $= A_{co}$
OUTENT	- EFFLUENT mole 1. H2 = CH2
	$- \frac{1}{20} = \frac{1}{20} = \frac{1}{20}$
······································	$- \cdots \qquad " \qquad " \qquad C + q = C_{c+q}$
	<u> </u>
•	$\frac{1}{N_2} = \frac{C_{N_2}}{N_2}$
	$ \cdot$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot
	$- \frac{1}{2} $
· · · · · · · · · · · · · · · · · · ·	- 1. CO CONVERSION = K
······································	- mole /. CH4 Yield = Y
and the construction of the second	- MOLE /. Selectivity TO CHy = Scott
	-11 11 11 12 12 13 12 12 12 12 12 12 12 12
	$-\gamma$ γ γ γ γ γ γ γ γ γ
•	$- \frac{1}{2} - $
	- moles Hz in Feed = Him
	- MOLES H2 ACCOUNTED FOR BY EFFLUENT ANHLYSIS
·••• ·	$= H_{out}$
· · · · ·	- Hu Hour
Equations	S ;
	Ni= NUMBER OF CAREON ATOMS IN L COMPONENT
	FL= PUBLISHED THERMAL CONDUCTIVITY FACTOR FOR L COMPONENT.

-49-

 $C_{H_2} = C'_{H_2} \left(\frac{E_{H_2}^{S}}{E_{H_2}} \right) - (PRINTED)$ $C_{i} = \frac{A_{i}}{F_{i}} \times \frac{(100 - C_{H_{i}})}{\sum A_{i} f_{F_{i}}} (PRINTED)$ $K = \left(\frac{\sum N_i C_i}{\sum N_i C_i} \right) - \frac{C_{LO}}{\sum N_i C_i} \left(\frac{1}{2} + \frac{1}$ $Y = \left(\frac{C_{CH4}}{\sum N_i C_i}\right) \times 100 \quad (PRINTED)$ $S_{i} = \left(\frac{C_{i}}{\sum N_{i}C_{i}} \right) - C_{co} \frac{(P_{R_{i}} \cup T_{CO})}{(\sum N_{i}C_{i}) - C_{co}} \right)$ **—** $H_{1} = \frac{C_{H_{Z}}}{C_{co}} \qquad (STORED)$ $\frac{C_{H_{2}} + 3C_{CH_{4}} + 5C_{c_{2}} + 7C_{c_{3}} - C_{c_{2}}}{1/2} \frac{1}{2} \frac{N_{c_{1}}}{N_{c_{1}}} \frac{(STOREC)}{2}$ Hu /Hout (PRINTED) ----ON THE FOLLOWING PAGE IS A SAMPLE PRINT-OUT OF PROGRAM WITH THE VARIOUS ENTRIES AND RESULTS LARELED

-50-

-51-

Chem Systems Inc. Research Center: 275 Hudson Street, Hackensack, N.J. (07601)

Telephone 201-342-2866

December 21, 1972

Dr. Ab Flowers American Gas Association 1515 Wilson Boulevard Arlington, Virginia 22209

Dear Dr. Flowers:

Enclosed is a copy of the monthly progress report covering the work done during the month of <u>November</u> and the first week in December. Copies are being sent to OCR, the AGA advisors and C. F. Braun.

As indicated in the report our work this month has been limited to one catalyst-liquid system, that is Harshaw and pseudocumene. Since we experienced a substantial number of experimental mishaps the amount of experimental data collected are relatively small. During that time the catalyst was kept in the reactor for close to three weeks; and while it is true that the activity decreased by a factor of three, even at the low activity level, it corresponds to a substantial productivity level. We feel, moreover, that the loss in activity is largely due to the aforementioned experimental problems which resulted in numerous shut downs. As discussed in our review meeting of December 6, 1972 we are concentrating on ascertaining the reasons for the catalyst activity changes with time. We have now run the same catalyst for four days, shutting down the unit at night, without observing a loss in activity and attaining conversions close to 100 percent at a VHSV of 4000 hrs $^{-1}$ at 300 °C. Next week we plan to carry out a continuous run of a minimum length of 48 hours. If successful in maintaining activity we will then start our process variable scan.

In the last week we have visited the companies bidding for construction of the synthesis gas generator and the methanation unit to be used in the process development phase. Chem Systems Inc.

Dr. Ab Flowers Page 2 December 19, 1972

A final decision will be made early next week and the successful bidders will initiate the work on the basis of a letter of intent.

Very truly yours,

CHEM SYSTEMS INC.

Washington get

Ramon L. Espino Director of Research of Development

RLE/hu

enclosure

Chem Systems Inc.

-

LIQUID PHASE METHANATION

Progress Report No. 7

November 1972

Prepared By Chem Systems

For

The American Gas Association

.

Cham Systems Inc.

LIQUID PHASE METHANATION

A. Experimental Work

During the month of November we attempted to evaluate the system: Ni-0104-101 + Pseudocumene, at a low catalyst loading, so that we could operate at conversion levels less than 100%. The first series of runs (50-53-1, 2, 3) were fairly successful. At a VHSV of greater that 8,500 SCFH/Ft³ fluidized bed we obtained conversions of over 92%.

However, during subsequent operation, a sharp decline in catalyst activity was noted. In an attempt to ascertain the cause of this deactivation a study of the effect of start-up and shut-down procedure was initiated. Early results indicate a strong relationship between activity loss and the start-up/shut-down, intermittent operation.

In addition, a peculiar cyclic conversion pattern was noted during at least two of the runs, 50-57-1 and 50-60-1. After reviewing the data along with the reactor operation procedure we have concluded that the cyclic operation is induced, for the most part, by the wide separator temperature fluctuations (over 80^oC) which result from the intermittent pumping of recycle pseudocumene back into the separator. We have subsequently modified our equipment and operation procedure to alleviate these problems. First, we have added block valves to the reactor inlet and outlet so that after purging the catalyst bed at the end of the run we can isolate the reactor and maintain temperature and pressure over night. In addition, we have added a reactor bypass line so that during start-up we can circulate the liquid while it is being heated to reactor temperature before sending it to the reactor. In this way we hope to be able to maintain a relatively constant environment over the catalyst bed, in an attempt to simulate round-the-clock operation. The data collected during the month are summarized in Table II-1. The drop in activity is clearly shown in terms of the decrease in rate of consumption of CO and generation of methane in terms of moles per hour per pound of catalyst. It should be noted that even when the reaction rate decreased by a factor of three, the productivity of the system is very substantial. This is shown in the table below:

	Predicted preference for	Performance of Harshaw -
	an economic liquid phase	pseudocumene system at
	methanator plant.	low activity level.
VHSV	1000	8550

#moles CH₄/hr-#catalyst 8.5

20.0-18.0

It should also be noted that the activity loss decreased in a stepwise manner rather than following a slow decline with time. This behavior lead us to believe that the loss in system activity is due to maloperation of the reactor rather than to an irreversible catalyst poisoning effect.

Chem Systems Inc.

B. Design of Process Development Unit

During the month we began to receive bids from the various contractors which had been asked to present preliminary bids on the construction of both the synthesis gas generator and the liquid phase methanation unit. These bids and their timing are summarized in Table II-2.

C. Future Work

i. Experimental

Our efforts will be mainly concentrated on investigating the reasons for the decrease in catalyst activity with reaction time. This will include a non-interrupted run lasting a minimum of 48 hours. Upon completion of this work we will initiate a program designed to achieve the goals enumerated below.

- <u>Generate Data for Operation of PDU and for Preliminary</u> <u>Process Evaluation</u>
- Evaluate Mass Transfer Effects
- <u>Choose Best Reaction Liquid</u>
- Study Catalyst Life and Determine Most Suitable Catalyst

Variables and Systems to be Investigated

Temperature	Particle Diameter
Pressure	Catalyst Loading
Liquid	Reactor Configuration
Catalyst	Feed Composition
Liquid Flow	Time - Catalyst Activity Effects
Gas Flow	

Cham Systems Inc.

ii. Design of PDU

Early in December a visit will be paid to Gas Machinery Atmospheres, Demarkus and Artisan. We have already narrowed down our choice to these three. Largely on the basis of our discussions with them, we will let out work for both the syn-gas generator and the liquid phase methonator not later than December 20.

Both Chem Systems and C. F. Braun will review the engineering provided by the chosen contractors.

iii. Other Items

On December 6 we had our second review meeting with the advisors from the AGA and Mr. Dykstra of OCR. Based on the encouraging results up to date we were given permission to proceed with the construction of the process development unit (PDU). Moreover, in order to meet the July 1974 deadline for start-up of the 10MM SCF/day pilot plant; we will prepare a bid book to be given to the contractors enumerated below on January 16, 1973. A contractor will be chosen early in February 1973 and hopefully construction of this plant will begin in June 1973.

> Chemico Lummus Brown and Root A. G. McKee Daniel Construction Pritchard Stearns-Rogers Olsen Engineering

Harshaw Ni-0104-101 + Pseudocumene - 53.5 gms. Catalyst

1

V L/IIr.	VHSV SCFIL Feed	$\frac{V/W^{(1)}}{1 \text{ Gas}} \text{Ft}^{3}/\#$	Rate , <u>#Moles</u> ,	x 10 ³ /#Cat-Hr	Cumulative contact	Comments
	Ft ³ Fluid ([lized Cat-Hr Bed	Reacted	CH ₄ Produced	liquid.	•
400	8550	.576	64.4	57.1	3	Initial run
400	8600	.616	70.4	63.1	5	Raised temperature
400	6915	. 626	71.0	63.4	7	Raised liquid flow. Shut down with N ₂ overnight.
400	7700	.546	22.7	17.7	29	Catalyst showed a continuous decline in activity at start-up. Finally leveled off after 7 hours.
400	8550	.622	46.1	38.4	133	Activity somewhat below than previous run. Shut down with N ₂ for 168 hours in order to repair pump.
400 -	8215	.604	39.9	35.8	205	Activity slightly lower than previous run.
400	8215	. 475	45.4	40.3	208	Pressure 1000 psig. Slight increase in activity. Shut down with N ₂ for 60 hours.

BLANK PAGE

Harshaw Ni-0104-101 + Pseudocumene - 53.5 gas. Catalyst

Run	T ^o C	L Gal/2	V L/IIr.	VIISV SCFH Feed Gas	V/W(1) Ft ³ /#	Rate , <u>#Moles/</u>	x 10 ³ #Cat-Hr	Cumulative contact	Comaten t
		M1n-FC		Ft ³ Fluidized Bed	Lat-Hr.	Reacted	CH ₄ Produced	nours with liquid.	
50-53-1	285	18.5	400	8550	.576	64.4	57.1	3	Initial run
50-53-2	[.] 298	18.6	400	8600	.616	70.4	63.1	5	Raised temperatur
50-53-3	302	46.5	400	6915	.626	71.0	63.4	7	Raised liquid flo overnight.
50-54-1	275	29.4	400	7700	.546	22.7	17.7	29	Catalyst showed a activity at star t off after 7 hour s
50-55-1	.303	18.8	400	8550	.622	46.1	38.4	133	Activity somewhat Shut down with N2 repair pump.
50-56-1	300	23.2	400 .	8215	.604	39.9	35.8	205	Activity slightly
(2) 50-56-2	300	23.2	400	8215	.475	45.4	40.3	. 208 ₈₂₁	Pressure 1000 psi activity. Shu† d
	N						•	· · · · ·	

۰.

Indle II-1

Harshaw Ni-0104-101 + Pseudocumene - 53.5 gms. Catalyst

<u>۷</u> _/Hr.	VHSV SCFH Feed Gas	V/y(1) Ft//	Rate #Moles/	x 10 ³ #Cat-Hr	Cumulative contact	Comments
	Ft ³ Fluidized Bed	Cat-Hr.	Reacted	Produced	liquid.	
400	8550	620	25.2	23.4	270	Cyclic variation in apparent activity at a
400	9550	620	28.9	26.5	271	level much lower than previous run. This
400	<u>8550</u>	.620	19.8	18.3	272	might be due to wide temperature variation in
400	8550	.620	23.5	21.8	273	separator. Shut down with H ₂ for 60 hours.
400	8550	.620	19.14	18.17	337	Pump seals failed soon after start up. Shut down with N ₂ for 16 hours.
400	8550	.620		~ -	350	Pump coupling failed during early part of run. Shut down with H ₂ for 150 hours to make pump repairs.
400	9550	.620	20.9	18.6	503	Cyclic variation in apparent activity. Shut
400	8550	.620	16.3	15.3	505	down with N ₂ . Back pressure regulator
400	8550	.620	24.7	22.7	507	failed at night and system depressurized.
400	8550	.620	29.0	20.5	525	Sharp change in product distribution. Reactor emptied after this run. Catalyst showed a change in color from its reduced state black to a metallic grey.

....

esent due to vapor pressure of liquid and it is measured at reaction conditions.

Harshaw Ni-0104-101 + Pseudocumene - 53.5 gms. Catalyst

Comme	Cumulative contact	x 10 ³ #Cat-Hr CH	Rate #Moles/ CO	V/W(1) Ft ³ /# Cat-Hr.	VIISV SCFII Feed Gas	۷ L/Hr.	L Gal/ Min-Ft ²	T ^o C		Run
,	liquid.	Produced	Reacted		Bed					
	*****	*****			· · · · · · · · · · · · · · · · · · ·	•				50-57-1
Cvclic variatio	270	23.4	25.2	.620	8550	400	19.3			<u>A</u>
level much love	271	26.5	28,9	.620	8550	400	19.3	_300	 _	B
might be due to	272	18.3	19.8	.620	8550	400	19.3	300		<u>C</u>
separator. Shu	273	21.8	23.5	.620	8550	400	19.3	300		D
Pump seals fail Shut down with	337	18.17	19.14	.620	8550	400	19.3	300	~	50-58-1
Pump coupling f run. Shut down make pump repai	350	~	1977) - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000	.620	8550	400	,19.3	4 300	~	50-59-1
	· · · · · · · · · · · · · · · · · · ·									50-60-1
Cvclic variatio	503	18.6	20.9	.620	8550	400	19.3	300		<u>A</u>
down with No. /	505	15.3	16.3	.620	8550	400	19.3	300		<u>B</u>
failed at night	507	22.7	24.7	.620	8550	• 400	19.3	300		C
Sharp change in Reactor emptied showed a change state black to a	525	20.5	29.0	.620	8550	400	19.3	300		50-61-1

(1) Includes organic vapor present due to vapor pressure of liquid and it is measured at reaction conditions.

(2) Pressure is 1000 psig.

.

.

TABLE II - 2

Syn-Gas Generator

Company	Cost	Construction Time
Demark us	\$135,000	5-6 Months
Gas Machinery	, 173,000	8-10 Months
Howe Baker	343,000	9-11 Months
	Methanation Unit	
Company	Cost	Construction Time

	<u>SS</u>	<u>(CS)</u>
Artisan Industries	\$ 91,000	(78,500)
Chem-Pro	251,600	(227,950)
Demarkus	75,000	(69,700)
Howe Baker	183,500	(Not Given)

.

Site Preparation

7-8 Months5-6 Months5-6 Months7-8 Months

Company	·	Cost	Construction Time
Meschel Construction Company		\$18,000	Compatible with Plant Installation
Vanas Construction Company		17,000	Compatible with Plant Installation

SATISFACTION GUARANTEED

Please contact us for a replacement within 30 days if the item you receive NTIS strives to provide quality products, reliable service, and fast delivery filling your order. if we have made an error in defective or ()

E-mail: info@ntis.gov Phone: 1-888-584-8332 or (703)605-6050

Reproduced by NTis

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are custom reproduced for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available.

Occasionally, older master materials may reproduce portions of documents that are not fully legible. If you have questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and related business information – then organizes, maintains, and disseminates that information in a variety of formats – including electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia training products; computer software and electronic databases developed by federal agencies; and technical reports prepared by research organizations worldwide.

For more information about NTIS, visit our Web site at <u>http://www.ntis.gov</u>.

Ensuring Permanent, Easy Access to U.S. Government Information Assets

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000