

ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

Annual Technical Progress Report No. 1 for the Period July 1, 1999 – June 30, 2000 DE-FG-26-99FT40594

Principal Investigators:

M.H. Al-Dahhan

Assistant Professor and Associate Director Chemical Reaction Engineering Laboratory

M.P. Dudukovic

The Laura and William Jens Professor and Chairman Director, Chemical Reaction Engineering Laboratory

L.-S. Fan

Distinguished University Professor Chairman, Department of Chemical Engineering Washington University

Department of Chemical Engineering

Campus Box 1198 One Brookings Drive St. Louis, Missouri 63130 Fax: 314-935-4832 Phone: 314-935-7187

E-mail: muthanna@che.wustl.edu

Washington University

Department of Chemical Engineering

Campus Box 1198 One Brookings Drive St. Louis, Missouri 63130

Fax: 314-935-4832 Phone: 314-935-6021

E-mail: dudu@wuche3.wustl.edu

Ohio State University

Department of Chemical Engineering 140 West 19th Avenue-Room 125 Columbus, Ohio 43210-1180

Fax: 614-292-3769 Phone: 614-292-7907

E-mail: FAN@er6s1.eng.ohio-state.edu

Industrial Collaborator

B. Toseland

Co-Investigators

Washington University: Ohio State University: Air Products and Chemicals

N. Rados, Dr. A. Kemoun, Dr. Y. Wu

R. Lau, W. Peng

July 25, 2000

Prepared for the United States Department of Energy Award No. DE-FG-26-99FT40594 Award Period: July 1, 1999 – June 30, 2002

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency therefor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

Annual Technical Progress Report No. 1 for the Period July 1, 1999 – June 30, 2000 DE-FG-26-99FT40594

ABSTRACT

This report summarizes the accomplishment made during the first year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. A technical review of the variables affecting SBCR performance, some aspects of bubble dynamics and hydrodynamics properties and physical properties of FT waxes and catalyst have been performed. The needed experimental facilities and measurement techniques have been evaluated and prepared. Exxon Norpar 14 has been suggested as a solvent to be used that mimics at room temperature and pressure up to 200 psi the hydrodynamics of FT waxes. A new correlation has been developed and tested to predict gas-liquid mass transfer coefficient at high pressure operation based on high pressure gas holdup and atmospheric data of gas-liquid mass transfer coefficient.

ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

Annual Technical Progress Report No. 1 for the Period July 1, 1999 – June 30, 2000 DE-FG-26-99FT40594

TABLE OF CONTENTS

			Page No.
	Discla	imer	ii
		ict	iii
	Table	Contents	iv
		f Figures	vi
	List of	f Tables	vii
	Execu	tive Summary	viii
1,	INTR	ODUCTION AND MOTIVATION	1 2
	1.1	Slurry Bubble Columns Reactors (SBCR)	
	1.2	Overall Objectives	3
	1.3	Accomplishments During the First Year	4
	1.4	Plan for the Next Year	4
2.	TECH	NICAL REVIEW	5
	2.1	Variables Affecting Slurry Bubble Column (SBCR)	WES
		Performance	5
	2.2	Some aspects of bubble dynamics and hydrodynamic	
		properties	7
		2.2.1 Bubble Dynamics	7
		2.2.2 Macroscopic Hydrodynamics	10
	2.3	Models used for FT reactor performance prediction	10
	2.4	Physical Properties of FT Systems	13
	2.4.1	Fischer-Tropsch waxes and solvent	13
	2.4.2	Solid Phase (Catalyst)	17
3.	and the department of	ARATION OF THE EXPERIMENTAL FACILITIES AND	12
	THE	ADV ANCED MEASUREMENT TECHNIQUES	18
	3.1	High pressure and high temperature 2" diameter slurry	150
		bubble column	18
	3.2	High pressure 6 inch diameter slurry bubble column	19
	3.3	Particle Image Velocimetry (PIV)	24
	3.4	Laser Dopper Anemometer (LDA)	24
	3.5	Computer Automated Radioactive Particle Tracking (CARPT)	27

	3.6	Computed Tomography (CT)	29
	3.7	Physical properties measurements techniques	32
		3.7.1 Density measurement	32
		3.7.2 Viscosity measurement	33
		3.7.3 Surface tension measurement	33
4.	SUG	GESTED SYSTEM TO BE USED	34
5.		DICTION OF MASS TRANSFER COEFFICIENT IN	
	BUBBLE COLUMNS OPERATED AT HIGH PRESSURE		
	BAS	ED ON ATMOSPHERIC PRESSURE DATA	36
	5.1	Procedure development	36
	5.2	Comparison of model prediction and experimental data	38
	5.3	Summary	39
	5.4	Nomenclature	41
6.	REFI	ERENCES	41
ДРР	ENDIX	Α	47

LIST OF FIGURES

Figure No.	Caption	Page No.
Figure 1.1	Slurry bubble column and the integrated effects of phase mixing and transport on the reactor design and scale-up	2
Figure 2.1	Variables that affect SBCR performance	6
Figure 3.1	Schematic diagram for high pressure and high temperature slurry bubble column.	20
Figure 3.2	Photo of high pressure and high temperature 2 inch diameter slurry bubble column.	21
Figure 3.3	Gas flowsheet for the high pressure 6 inch diameter bubble	22
	column	44
Figure 3.4	High pressure bubble column (probe measurement	22
	variation) design	23
Figure 3.5	Schematic diagram of PIV system	25
Figure 3.6	Laser Doppler Anemometer Setup	26
Figure 3.7	Transmitting optics applied on traverse system	26
Figure 3.8	Configuration of the CARPT experimental setup	28
Figure 3.9	Time and azimuthally averaged axial velocity and shear stress radial profiles	28
Figure 3.10	Configuration of the CT experimental setup (Kumar, 1994).	29
Figure 3.11	Density measurement apparatus setup	32
Figure 3.12	Viscosity measurement apparatus setup	33
Figure 3.13	Surface tension measurement apparatus setup	34
Figure 5.1	Comparison of model prediction and experimental data of	20
Figure 5.2	Letzel (1999)	39
1 iguie 3.2	Kojima(1997)	40
Figure 5.3	Comparison of predicted $k_{L}a$ and observed $k_{L}a$	40

LIST OF TABLES

Table No.	Caption	Page No.
Table 2.1	Summary of models for prediction of the Fischer-Tropsch process performance	13
Table 2.2	The Physical Properties of Fischer Tropsch	15
Table 2.3	Temperature-Independent Parameters for Properties of <i>n</i> -Paraffins	17
Table 2.4	Temperature-Dependent Parameters for Properties of <i>n</i> -Paraffins	17
Table 4.1	Range of FT waxes properties used	34

ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

Annual Technical Progress Report No. 1 for the Period July 1, 1999 – June 30, 2000 DE-FG-26-99FT40594

EXECUTIVE SUMMARY

The objective of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals is to advance the understanding of the hydrodynamics of Fischer-Tropsch (FT) Slurry Bubble Column Reactors (SBCR) via advanced diagnostics techniques. The emphasis during this first year was: i) on technical review of the variables affecting SBCR performance, some aspects of bubble dynamics and hydrodynamic properties and the physical properties of FT waxes and catalyst, ii) on preparation of the experimental facilities and the advanced measurement techniques, iii) on identifying the solvent that mimic FT waxes at FT operating conditions and the gas and solid phase to be used in the hydrodynamics investigation, v) on development of a new procedure to estimate the mass transfer coefficient at high pressure based on atmospheric pressure data.

This report summarizes the accomplishments made during the first year of this project. The report is organized in individual sections. Each section represents a distinct task.

Section 1 provides an introduction, a review of the objectives and tasks set for the project, list of accomplishments during the first year and plans for the second year.

Section 2 summarizes the technical review made. However, the detailed review of the aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions is discussed in Appendix A.

Section 3 describes the preparation made for the advanced techniques that will be used in the hydrodynamic investigations and for the in-situ physical properties (density, viscosity and surface tension) measurement of the selected solvent that mimic the FT waxes at FT operating conditions.

In section 4, the suggested system of air-Exxon Norpar 14-glass beads has been identified. Exxon Norpar 14 mimics at room temperature and pressure up to 200 psi the hydrodynamics of FT waxes.

Section 5 discusses the development of a new correlation to predict gas-liquid mass transfer coefficient at high pressure operation based on high pressure gas holdup and atmospheric data of gas-liquid mass transfer coefficient. This is part of the attempt to improve the scale-up procedure of bubble column reactors.