## APP ENDIX B

## SAHPLE CALCOLATIONS OSING RON G22L16

## Calculation of Pressure Gradient

The pressure gradient was calculated fron data obtained using the following conditions:

$$
\begin{aligned}
& D_{c}=15.2 \mathrm{~cm} \\
& U_{G}=3.86 \mathrm{~cm} / \mathrm{sec} . \\
& \gamma_{0}=4.13 \mathrm{~m} \mathrm{mo} .
\end{aligned}
$$

For $D_{L}=0$, the pressure drop readings obtained vere 34.5-. 34.4-. 34.4-, 34.4-. 34.3-, 34.3-. 34.4-. 34.5-. 34.5-. 34.7-. and 34.6-ce vater for n through $H_{11}$. respectively.

The pressure drop readings obtained for $\sigma_{L}=5.14$ ci/sec mere 58.0- . 53.4-. 48.8-. 44.2-. 39.3- . 34.8-. 33.3-. 33.9- . 34.7- . 35.9- . and 36.6-cm vater for $\mathrm{m}_{1}$ through mil respectively.

The conductivity readings obtained for $\sigma_{L}=5.14 \mathrm{~cm} / \mathrm{sec}$ vere 1.67. 1.78, 1.73. 1.68, 1.68, 2.79, 3.59, 3.61, 3.62. and 3.57 mino at colun heights of 5. 13. 21. 29. 37. 45. 53. 61. 69, and 77 cm, respectively.

Calculation of the pressure drops as shown in the previous section (Appendix A) gave 4.5-. 9.1-. 13.7-. 18.5-. 23.0-. 24.6-. 24.1-. 23.3-. 22.3-. and 21.5-cn water for $\Delta h_{2}$ through $\Delta h_{11}$. respectively.

The pressure taps 1-11 in the 15.2-ca-ID coluna are locatea along the wall at heights of 1, 9. 17. 25. 33. 41. 49. 57. 65. 73. and 80 cm . respectively, above the bottoll of the bed. Fitting straight lines to the pressure arops in and abofe the bed results in a calculated bed height of 46. 75 cm 。

The total pressure drop at any point in the colum is the pressure arop due to flon ples the static head. Thus the total pressure drop is calculated fron the follouing:

$$
\begin{equation*}
\Delta P_{i}=\rho_{L} g\left(\Delta h_{i}+T_{i}-T_{1}\right) \tag{48}
\end{equation*}
$$

where
$\Delta P_{i}=$ total pressure arop betreen pressure taps $i$ and 1.
$T_{i}=$ height above colum botton for pressere tap i. Calculation of the total pressare drops then gives the follozing:

$$
\begin{aligned}
& \Delta \mathrm{e}_{2}=(0.995)(981)(4.5+9-1)=12201.2 \mathrm{dqn} / \mathrm{cma}^{2} \text {. } \\
& \Delta P_{3}=(0.995)(981)(9.1+17-1)=24500.0 \mathrm{dYn} / \mathrm{CH}^{2} . \\
& \Delta P_{4}=(0.995)(981)(13.7+25-1)=36798.8 \mathrm{aYn} / \mathrm{CH}^{2}, \\
& \Delta P_{5}=(0.995)(981)(18.5+33-1)=49292.8 \mathrm{dyn} / \mathrm{Cn}^{2}, \\
& \Delta P_{6}=(0.995)(981)(23.0+41-1)=69494.0 \mathrm{dyn} / \mathrm{CI}^{2} . \\
& \Delta \mathrm{P}_{7}=(0.995)(981)(24.6+49-1)=70864.5 \mathrm{dYn} / \mathrm{Ca}^{2} \text {. } \\
& \Delta P_{8}=(0.995)(981)(24.1+57-1)=78185.2 \mathrm{dyn} / \mathrm{CD}^{2} . \\
& \Delta P_{9}=(0.995)(981)(23.3+65-1)=85213.1 \mathrm{dyn} / \mathrm{Cn}^{2}, \\
& \Delta P_{10}=(0.995)(981)(22.3+73-1)=92045.8 \mathrm{ayn} / \mathrm{cIn}{ }^{2}, \\
& \Delta P_{11}=(0.995)(981)(21.5+80-1)=98097.5 \text { ayn/Cm². }
\end{aligned}
$$

The calculated bed height was found to be 44.75 cm . Thus, pressure taps $1-6$ were locatea in the bed, while taps 7-11 were situated above the bed. Performing a least-squares linear fit to the total pressure drops in the bed as a function of height resalts in the following equation:

$$
\begin{equation*}
\Delta \mathrm{P}_{\text {in bed }}=-1698.4+1542.2 \mathrm{~h} . \tag{49}
\end{equation*}
$$

Pressure Gradient The solid holdup can be determined by using Eq. (3):

$$
\begin{equation*}
\varepsilon_{S}=\rho_{S} \mathrm{AH} \tag{3}
\end{equation*}
$$

Substitution of numerical values yields:

$$
\varepsilon_{S}=(9556.3) /(2.243)(182.4)(44.75)=0.522 .
$$

Equation (2) is:

$$
\begin{equation*}
\Delta P=g H\left(\varepsilon_{L} \rho_{L}+\varepsilon_{G} \rho_{G}+\varepsilon_{S} \rho_{S}\right) \tag{2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
d(\Delta P) / d(H)=g\left(\varepsilon_{L} \rho_{L}+\varepsilon_{G} \rho_{G}+\varepsilon_{S} \rho_{S}\right) \tag{50}
\end{equation*}
$$

assuming that the holdups are constant over the entire bed and that $d(\Delta P) / \mathcal{L}(h)$ is the slope of the $\Delta P-v e r s u s-h$ line. Thus, substitution into the above yields:

$$
\begin{aligned}
& 1542.2=981\left[0.995 \varepsilon_{L}+0.0013 \varepsilon_{G}+2.243(0.522)\right] \\
& 1.572=0.995 \varepsilon_{L}+0.0013 \varepsilon_{G}+1.171 \\
& 0.401=0.995 \varepsilon_{L}+0.0013 \varepsilon_{G}
\end{aligned}
$$

Substituting into Eq. (1) gives:

$$
\begin{aligned}
& \mathbf{1}=\varepsilon_{L}+\varepsilon_{G}+\varepsilon_{S} \\
& \mathbf{1}=\varepsilon_{L}+\varepsilon_{G}+0.522
\end{aligned}
$$

Therefore,

$$
\varepsilon_{L}+\varepsilon_{G}=0.478
$$

Solving these two equations simultaneously then yielas the remaining two holiaps:

$$
\begin{aligned}
& 0.401=0.995 \varepsilon_{\mathrm{L}}+0.0013 \varepsilon_{\mathrm{G}} . \\
& 0.478=\varepsilon_{\mathrm{L}}+\varepsilon_{\mathrm{G}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \varepsilon_{\mathrm{L}}=0.403 \\
& \varepsilon_{\mathrm{G}}=0.075 \\
& \varepsilon_{\mathrm{S}}=0.522
\end{aligned}
$$

## Conductivity Method for Deternination of overali Eolaups

Equation (7), in which the conductivity is measured at the midale of the bed, can also be usea to calculate the oferall holdups;

$$
\begin{equation*}
\varepsilon_{\mathrm{L}}=\gamma / \gamma_{0} \tag{7}
\end{equation*}
$$

The bed height is $44_{p} 75 \mathrm{~cm}$, and the conductivity at the midale of the bed is 1.73 mmos. Thus,

$$
\varepsilon_{L}=1,73 / 4.13=0,419 .
$$

Substituting into Eg. (2) Yields:

$$
\begin{aligned}
& 1542.2=981\left[0.995(0.419)+0.0313 \varepsilon_{G}+2.243 \varepsilon_{S}\right] \\
& 1.572=0.417+0.0013 \varepsilon_{G}+2.243 \varepsilon_{S} . \\
& 1.155=0.0013 \varepsilon_{G}+2.243 \varepsilon_{S} .
\end{aligned}
$$

Substituting into Eq., (1) gives:

$$
1=0.419+\varepsilon_{G}+\varepsilon_{S} .
$$

or

$$
\varepsilon_{G}+\varepsilon_{S}=0.581
$$

Solving these two equations simultaneously then fields the remaining two holdups:

$$
\begin{aligned}
& 1.155=0.0013 \varepsilon_{G}+2.243 \varepsilon_{S} . \\
& 0.581=\varepsilon_{G}+\varepsilon_{S} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\varepsilon_{\mathrm{L}} & =0.419 . \\
\varepsilon_{\mathrm{G}} & =0.066 . \\
\varepsilon_{\mathrm{S}} & =0.515 .
\end{aligned}
$$

## Calculation of Incremental Holdups

Equation (7) can be used to calculate the liquid holdup as a function of height in the column:

$$
\begin{equation*}
\varepsilon_{\mathrm{L}}=\gamma / \gamma_{0} \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
& \text { At } h=5 . \varepsilon_{L}=1.67 / 4.13=0.434 . \\
& \text { At } h=13 . \varepsilon_{L}=1.78 / 4.13=0.431 . \\
& \text { At } h=21 . \varepsilon_{L}=1.73 / 4.13=0.419 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { At } h=29, \varepsilon_{L}=1.68 / 4.13=0.407 \text {. } \\
& \text { At } h=37, \varepsilon_{\mathrm{L}}=1.68 / 4.13=0.407 \text {. } \\
& \text { At } h=45, \varepsilon_{L}=2.79 / 4.13=0.676 \text {. } \\
& \text { At } h=53 . \varepsilon_{\mathrm{L}}=3.59 / 4.13=0.869 \text {, } \\
& \text { At } h=61, \varepsilon_{\mathrm{L}}=3_{*}, 61 / 4.13=0.874 \text {, } \\
& \text { At } h=69, \varepsilon_{L}=3,62 / 4.13=0.887 \text {. } \\
& \text { At } h=77 . \varepsilon_{L}=3.57 / 4,13=0.864 .
\end{aligned}
$$

Substitution into Eq. (10) for just the column increnent around the colum height of 5 cm resalts in:

$$
\begin{gather*}
\mathrm{dP} / \mathrm{dh}=g\left(\varepsilon_{\mathrm{L}} \rho_{\mathrm{L}}+\varepsilon_{G} \rho_{G}+\varepsilon_{S} \rho_{S}\right)  \tag{10}\\
\left(\Delta P_{2}-\Delta P_{I}\right) /\left(T_{2}-T_{I}\right)=g\left(\varepsilon_{\mathrm{L}} \rho_{\mathrm{L}}+\varepsilon_{G} \rho_{G}+\varepsilon_{S} \rho_{S}\right) \tag{51}
\end{gather*}
$$

or

$$
\begin{aligned}
& (12201.2-0) /(9-3)=981\left[0.995(0.404)+0.0013 \varepsilon_{G}+2.243 \varepsilon_{S}\right] . \\
& 1.153=0.0013 \varepsilon_{G}+2,243 \varepsilon_{S} .
\end{aligned}
$$

Substitution into Eq。 (1) yields:

$$
\begin{aligned}
& 1=0.404+\varepsilon_{G}+\varepsilon_{S} \\
& 0.596=\varepsilon_{G}+\varepsilon_{S}
\end{aligned}
$$

Simultaneous solution of these two equations then gives:

$$
\begin{aligned}
& 1.153=0.0013 \varepsilon_{G}+2.243 \varepsilon_{S} \\
& 0.596=\varepsilon_{G}+\varepsilon_{S}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \varepsilon_{\mathrm{G}^{\prime}}=0.082 \\
& \varepsilon_{\mathrm{S}}=0.514 .
\end{aligned}
$$

Substitution into Eq. (10) for the column increment around the column height of 13 cm yields:

$$
\begin{equation*}
\left(\Delta \mathrm{P}_{3}-\Delta \mathrm{P}_{2}\right) /\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)=\mathrm{g}\left(\varepsilon_{\mathrm{L}} \rho_{\mathrm{L}}+\varepsilon_{\mathrm{G}} \rho_{\mathrm{G}}+\varepsilon_{\mathrm{S}} \rho_{\mathrm{S}}\right), \tag{52}
\end{equation*}
$$

or

$$
\begin{aligned}
& (24500-12201.2) /(17-9)=981\left[0.995(0.431)+0.0013 \varepsilon_{G}-2.243 \varepsilon_{S}\right] . \\
& 1.138=0.0013 \varepsilon_{G}+2.243 \varepsilon_{S} .
\end{aligned}
$$

Substitution into Equation (1) gives:

$$
\begin{aligned}
& 1=0.431+\varepsilon_{G}+\varepsilon_{S} \\
& 0.569=\varepsilon_{G}+\varepsilon_{S} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\varepsilon_{G} & =0.062 \\
\varepsilon_{S} & =0.507
\end{aligned}
$$

In this manner, all of the holdups =an be obtained as a function of height in the column, as shown in Table 9.

## Fit of Local Increqental Holdups

The local holdups for Run G22L15 for $\sigma_{L}=5.14 \mathrm{~cm} / \mathrm{sec}$ are plotted as a function of column position in fig. 35 (see page 89). Each holdup curve was fitted using the error function as described previously. The zonstant portion of the holdups was calculated by jetermining the best horizontal fit to the gas and solid hollup curves, starting at the bot tom (or top) of the column and progressing toward the middle of the colum, one point at a time. Points were

Table 9. Calculation of holdups as a function of position nithin the colemn.

| Coluna height ( c (I) | Iiguia holdup | $\begin{gathered} \text { Gas } \\ \text { holdup } \end{gathered}$ | $\begin{array}{r} \text { Solid } \\ \text { holdup } \end{array}$ |
| :---: | :---: | :---: | :---: |
| 5 | 0.404 | 0.082 | 0.514 |
| 13 | 0.431 | 0.062 | 0.507 |
| 21 | 0.419 | 0.068 | 0.513 |
| 29 | 0.407 | 0.064 | 0.529 |
| 37 | 0.407 | 0.081 | 0.513 |
| 45 | 0.676 | 0.092 | 0.233 |
| 53 | 0.869 | 0.131 | 0.030 |
| 61 | 0.874 | 0.126 | 0.071 |
| 69 | 0.877 | 0.123 | -0.001 |
| 77 | 0.864 | 0.136 | 0.009 |

continually added until one was found that gave a poor horizontal fit. Consequently, the gas hollup in the bed was determined using the lowest five points:

$$
\varepsilon_{G}{ }^{\prime \prime \prime}=(0.082+0.062+0.068+0.064+0.081) / 5=0.072 .
$$

Similarly, the gas holdup above the bed vas determined using the uppermost four points:

$$
\varepsilon_{G}^{\prime \prime}=(0.136+0.123+0.126+0.131) / 4=0.129
$$

The solid holdup in the bed, on the other han ${ }^{1}$, used only the lowest three points since adjition of the fourth point gave a poor horizontal fit:

$$
\varepsilon_{S}{ }^{\prime \prime}=(0.514+0.507+0.513) / 3=0.511 .
$$

Once the constant portions of the holdup curves are determined, an average is calculated. Por the gas holdup curve, this average was:

$$
\varepsilon_{G, a v g}=(0.072+0.129) / 2=0.1005
$$

The er ror function is then fitted to two points on either side of this arerage, using the point of infleztion. $I_{G}$, and a stan dard deviation, $\sigma_{G}$. as follows:

$$
\begin{aligned}
\operatorname{erf}\left(Y_{A}\right) & =\left(\varepsilon_{G, A}-\varepsilon_{G, a v g}\right) /\left(\varepsilon_{G, a v g}-\varepsilon_{G}{ }^{\prime \prime \prime}\right), \\
& =(0.131-0.1005) /(0.1005-0.072)=1.0702 ; \\
\operatorname{erf}\left(Y_{B}\right) & =\left(\varepsilon_{G, B}-\varepsilon_{G, a v g}\right) /\left(\varepsilon_{G, a v g}-\varepsilon_{G}{ }^{\prime \prime \prime}\right), \\
& =(0.092-0.1005) /(0.1005-0.072)=-0.2982 ;
\end{aligned}
$$

where

$$
\begin{aligned}
\varepsilon_{G, A}= & \text { the loal gas holdup at the first } \\
& \text { point above } \varepsilon_{G, \text { avg }} . \\
\varepsilon_{G, B}= & \text { the losal gas holdup at the first } \\
& \text { point belon } \varepsilon_{G, a v g} .
\end{aligned}
$$

The teras $Y_{A}$ and $Y_{B}$ are then found by taking the inverse error function of 1.0702 and $-0.2982_{\text {a }}$ respectively. Since the error function cannot be greater than 1 or smaller than -1. any suck values are set equal to 0.9999 or -0.9999. Then,

$$
\begin{align*}
Y_{A} & =\operatorname{erf}^{-1}\left[\operatorname{erf}\left(Y_{A}\right)\right],  \tag{55}\\
& =\operatorname{erf}^{-1}(0.9999)=2.765 ; \\
Y_{B} & =\operatorname{erf}^{-1}\left[\operatorname{erf}\left(Y_{B}\right)\right],  \tag{56}\\
& =\operatorname{erf}-1(-0.2982)=-0.265 .
\end{align*}
$$

The stancara deviation around $\varepsilon_{G, a v g}$ is given by:

$$
\begin{equation*}
\sigma_{G}=\left(h_{A}-I_{G}\right) / Y_{A}=\left(h_{B}-I_{G}\right) / Y_{B}, \tag{57}
\end{equation*}
$$

where

$$
\begin{aligned}
& h_{A}=\text { position of first point where } \varepsilon_{G}>\varepsilon_{G, a v g} \\
& h_{B}=\text { position of first point where } \varepsilon_{G}<\varepsilon_{G, a v g}
\end{aligned}
$$

Solving the two equations simultaneously gives $I_{G}$ :

$$
\begin{gathered}
I_{G}=\left(Y_{A} h_{B}-Y_{B} h_{A}\right) /\left(Y_{A}-Y_{B}\right), \\
=[(2.765)(45)-(-0.265)(53)] /[2.765-(-0.265)]=45.7 \mathrm{~cm} .
\end{gathered}
$$

Then, the standard deviation can be found by using one of the above equations:

$$
\sigma_{G}=(53-45.7) /(2.765)=2.64 \mathrm{~cm}
$$

The gas holdup curve is then fitted using Eq. (32):

$$
\begin{equation*}
\varepsilon_{G}=\left[\left(P_{G}-1\right) /-2\right] \varepsilon_{G}^{\prime \prime \prime}+\left[\left(P_{G}+1\right) / 2\right] \varepsilon_{G}^{\prime \prime}, \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{G}=\operatorname{erf}\left[\left(h-I_{G}\right) / \sigma_{G}\right] \tag{33}
\end{equation*}
$$

For a column position of 10 cm above the bottom of the bed:

$$
\begin{aligned}
& \left.P_{G}=\operatorname{erf}[(10-45.7) / 2.64)\right]=\operatorname{erf}(-13.523)=-1 \\
& \varepsilon_{G}=[(-1-1) /-2] 0.072+[(-1+1) / 2] 0.129=0.072 .
\end{aligned}
$$

For a column position of 47 cm above the bottol of the bed:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{G}}=\operatorname{erf}[(47-45.7) / 2.64]=\operatorname{erf}(0.492)=0.516 . \\
& \varepsilon_{G}=[(0.516-1) /(-2)] 0.072+[(0.516+1) / 2] 0.129 . \\
& \varepsilon_{G}=0.017+0.098=0.115 .
\end{aligned}
$$

For a column position of 70 cm above the botton of the bed:

$$
\begin{aligned}
& P_{G}=\operatorname{erf}[(70-45.7) / 2.64]=\operatorname{erf}(9.205)=1 . \\
& \varepsilon_{G}=[(1-1) /(-2)] 0.072+[(1+1) / 2] 0.129=0.129 .
\end{aligned}
$$

The solid holdup curve is fittel in the same manner, remembering that $\varepsilon_{S}^{\prime \prime}=0$. The liquid holdup curve is then fitted as the residual of Eq. (1).

