APPEMDIX A

CAICUIATIOA Of BED HEIGET AGB PRESSURE
 DROP FOR ROH G50E13

$$
\sigma_{G}=3.58 \mathrm{~cm} / \mathrm{sec}
$$

The moneters are read at static conditions (mhen gas and liquid velocities are zero to correct for the slighily different position of the manoneters with the meter sticks. Then for a given gas flow rate, the liquid rate is varied, and the manometer heights measured at each liguid rate. The pressure drop due to flow between a particular manometer and the botton pressure tap is calculated from the following:

$$
\begin{equation*}
\Delta h_{i}=m_{1}-m_{i}+\left(m_{i, 0}-m_{1,0}\right) \tag{44}
\end{equation*}
$$

where
$\Delta h_{i}=p r e s s u r e ~ d r o p ~ d u e ~ t o ~ f i o n ~ b e t w e e n ~ t a p s ~ i ~ a n d ~ i, ~$
$\mathbb{m}_{1}=$ height of liquia in manometer 1 (bottom tap).
$\mathrm{m}_{i}=$ height of liquid in manometer i,
$m_{i, o}=$ height of liquid in manometer i under static conditions,
$H_{1,0}=$ keight of liquia in manometer 1 under static conditions.

Some of the ran data for run G50Ei3 are shoun in Table 8. The first line shows the manoneter heights under static conaitions. Iine 2 shoms the manometer heights for a superficial liquid velocity of $10.14 \mathrm{~cm} / \mathrm{sec}$. The pressure

Table 8. Raw data for run G50e13

	Line 1	Line 2
Gas velocity, cm/sec	0	3.58
Liquid velocity, cm/sec	0	10.14
Bed height, cm	37	65
m_{1}. cmater	45.8	66.5
m ${ }_{2}$ cmater	45.8	63.5
m_{3}. Cm water	45.8	60.3
m_{4}, camater	45.6	57.3
m_{5}. cm water	45.5	54.2
m_{6}, cm water	45.5	51.0
m_{7}, cmater	45.5	48.3
m. cm vater	45.4	45.4
m_{9}, ca water	45.5	44.8
Hof cm water	45.5	45.9
nil cm water	45.5	47.0

drops can then be calculated by using the follouing equation:

$$
\begin{align*}
& \Delta h_{2}=m_{1}-m_{2}+\left(m_{2,0}-m_{1,0}\right) \quad, \tag{4.5}\\
& \Delta h_{2}=66.5-63.5+(45.8-45.8)=3.0 \text { cmimater, } \\
& \Delta h_{3}=66.5-60.3+(45.8-45.8)=6.2 \text { cll water. } \\
& \Delta h_{4}=66.5-57.3+(45.6-45.8)=9.0 \mathrm{~cm} \text { water, } \\
& \Delta h_{5}=66.5-54.2+(45.5-45.8)=12.0 \mathrm{cin} \text { water, } \\
& \Delta \mathrm{t}_{6}=66_{2} 5-51.0+(45.5-45.8)=15.2 \text { cill nater. } \\
& \Delta h_{7}=66.5-48.3+(45.5-45.8)=17.9 \text { canater. } \\
& \Delta h_{8}=66_{2} 5-45.4+(45.4-45.8)=20.7 \text { cin water. } \\
& \Delta h_{9}=66.5-44.8+(45.5-45.8)=21.4 \text { cmater, } \\
& \Delta h_{10}=66_{x} 5-45.9+(45.5-45.8)=20.3 \mathrm{~cm} \text { water; } \\
& \Delta t_{I I}=66_{m} 5-47.0+(45.5-45.8)=19.2 \text { cm water. }
\end{align*}
$$

The pressure taps 2-11 in the 7.62-CE-ID column are located along the colum wall at heights of 8.8, 17.8. 26.8. 35.8, 44.8. 53.6. 62.3. 71.3. 80.3. and 88.8 cm , respectively. above the botton of the bed. Plotting the pressure arops Δh versus their respective tap height resuits in Fig. 2 (see page 8) Fitting straight lines to the pressure drop in and above the bed results in:

$$
\begin{align*}
\Delta h_{\text {in bed }} & =0.194+0.3307 \mathrm{~h} \tag{46}\\
\Delta h_{\text {above bed }} & =30.37-0.1257 \mathrm{~h} \tag{47}
\end{align*}
$$

Where h is the height above the botom of the bed. Solving these two equations simultaneously gives the point of
intersection of the two lines, corresponing to the calculated bed height and the pressure lrop a=ross the bed. As shown in Fig. 2 (see page 8), the point of intersection corresponds to a calculated height of 66 cm and a pressure drop of 22 cm water.

Calculating the bed pressure drop in this manner for each liquid rate and then plotting the two falues as shown in Fig. 48, the minimum liquid fluilization velocity at the set gas rate can be found as the intersection of the curve for the pressure drop through the packed bad and that for the pressure drop through the bed once it has been fluidized. For $U_{G}=3.58 \mathrm{~cm} / \mathrm{sec}$. $\sigma_{L, m f}$ is found to be 2.15 cm/sec.

Figure 48. Use of the bed pressure-drop-versus-liguid velocity curves to obtain the minimum liquid fluidization velocity.

