

DE88006044

ENGINE TESTING FOR SYNFUEL OPERATION

SOUTHWEST RESEARCH INST. SAN ANTONIO, TX

JAN 1988

U.S. Department of Commerce National Technical Information Service

One Source. One Search. One Solution.

NTIS

Providing Permanent, Easy Access to U.S. Government Information

National Technical Information Service is the nation's largest repository and disseminator of governmentinitiated scientific, technical, engineering, and related business information. The NTIS collection includes almost 3,000,000 information products in a variety of formats: electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

NTIS has upgraded its bibliographic database system and has made all entries since 1990 searchable on **www.ntis.gov.** You now have access to information on more than 600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites

Because many Government agencies have their most recent reports available on their own web site, we have added links directly to these reports. When available, you will see a link on the right side of the bibliographic screen.

Download Publications (1997 - Present)

NTIS can now provides the full text of reports as downloadable PDF files. This means that when an agency stops maintaining a report on the web, NTIS will offer a downloadable version. There is a nominal fee for each download for most publications.

For more information visit our website:

www.ntis.gov

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161

A major purpose of the Techni cal Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal hability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ENGINE TESTING FOR SYNFUEL OPERATION

Daniel W. Dickey Shannon Vinyard Tim J. Callahan Thomas W. Ryan III Mary Ann Warner-Selph Norman R. Sefer

Date Published - January 1988

Work Performed for the U.S. Department of Energy, Office of Transportation Systems Alternative Fuels Utilization Program

> Report Prepared by Southwest Research Institute San Antonio, Texas 78284 under Subcontract 11X28609 for OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract DE-AC05-840R21400

ORNL	/Sub85-28609/1	$\overline{}$
DE88	006044	

ACKNOWLEDGEMENT

The authors would like to thank the United States Department of Energy for funding this research. Thanks are also extended to Martin Marietta Energy Systems for administering the contract, to the contract technical manager Ron Graves of Martin Marietta (Oak Ridge National Laboratory), and to the John Deere Product Engineering Center for supplying the test engine. We would also like to thank the Fuels and Lubricants Laboratory, National Research Council, Canadian Department of Energy, Mines and Resources under the direction of Dr. Robert B. Whyte for providing the tar sands-derived synfuel at no cost to either the United States Department of Energy or Southwest Research Institute.

The authors would also like to acknowledge J. Sealy for his contribution of engine installation and data acquisition, P. Quipp for his technical assistance, M. Warner-Selph for providing the emissions analysis, T. Callahan for supplying the combustion analysis, and N. Sefer for providing the fuel analysis. We would also like to express our appreciation to N. Broussard for typing the report, to L. Mix for his editorial support, and to D. Kneifel, R. Branecky and S. Mitchem for providing assistance with the numerous plots and figures.

TABLE OF CONTENTS

	Page
LIST OF ILLUSTRATIONS ·····	iv
LIST OF TABLES ·····	viii
1. SUMMARY ·····	1
2. INTRODUCTION ·····	3
 2.1 BACKGROUND 2.2 OBJECTIVE 2.3 APFROACH 	3 3 4
3. CONCLUSIONS ·····	6
4. RECOMMENDATIONS	9
5. TEST SETUP AND PROCEDURES	10
 5.1 TEST MATERIAL 5.2 TEST SETUP 5.3 PHASE I TEST PROCEDURE 5.4 PHASE II TEST PROCEDURE 	10 12 15
6. RESULTS ·····	2U 22
6.1 PERFORMANCE TESTS	22
 6.1.1 Performance and Emissions 6.1.2 Combustion Analysis Results 6.1.3 Conclusions 6.1.4 Recommendations 	22 25 44 45
6.2 COLD STARTING TESTS	45
6.2.1Cold Start Test at 0°C6.2.2Cold Start Test at -20°C	46 46
 6.3 IDLE DEPOSIT TESTS 6.4 PHASE II RESULTS 	46 53
6.4.1 Performance and Emissions Results, Simulated Air-to-Air Aftercooling	53
6.4.2 Combustion Analysis Results, Simulated Air-to-Air Aftercooler	65

v

TABLE OF CONTENTS, Cont'd.

6.4.3	Performa Air-to-A Injection	ance and Emissions Results, Simulated ir Aftercooler and High Pressure Fuel System	67
6.4.4	Combust Air-to-A Fuel Inje	ion Analysis Results, Simulated ir Aftercooler and High Pressure action System	73
6.5 P	HASE II (COLD START RESULTS AT 0°C AND -20°C	78
REFEI	RENCES		82
APPEN	NDIX A:	DIESEL FUEL PERFORMANCE DATA	
APPEN	DIX B:	SHALE FUEL PERFORMANCE DATA	
APPE	NDIX C:	TAR SANDS PERFORMANCE DATA	
APPER	NDIX D:	COAL LIQUID BLEND PERFORMANCE DATA	
APPE	NDIX E:	COAL LIQUID BLEND SCREENING TEST DATA	
APPE	NDIX F:	0°C COLD START DATA	
APPEI	VDIX G:	-20°C COLD START DATA	
APPEI	idix H:	HEAT RELEASE RATE DIAGRAMS AND CUMULATIVE HEAT RELEASE CURVES FOR THE SHALE, TAR SANDS, 57 PERCENT EDS AND BASELINE CONTROL D-2 AT EACH SPEED/LOAD CONDITION	
APPE	NDIX I:	PHASE II DIESEL FUEL PERFORMANCE DATA	
APPEI	NDIX J:	PHASE II TAR SANDS PERFORMANCE DATA	•
APPEI	NDIX K:	PHASE II 57 PERCENT EDS PERFORMANCE DATA	
APPEI	NDIX L:	PHASE II, 0°C COLD START DATA	
APPEI	NDIX M:	PHASE II, -20°C COLD START DATA	
APPEI	NDIX N:	PHASE I CYLINDER PRESSURE AND FUEL INJECTION PRESSURE DIAGRAMS	
APPEI	NDIX O:	PHASE II CYLINDER PRESSURE AND FUEL INJECTION PRESSURE PRESSURE DIAGRAMS, SIMULATED AIR-TO-AIR AFTERCOOLER	
APPEI	NDIX P:	PHASE II CYLINDER PRESSURE AND FUEL INJECTION PRESSURE DIAGRAMS, SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION SYSTEM	

vi

LIST OF ILLUSTRATIONS

.

Figure		Page
5.1	SCHEMATIC OF THE ENGINE IN THE TEST CELL	13
5.2	PHOTOGRAPH OF TEST ENGINE INSTALLED IN THE REFRIGERATED TEST CHAMBER •••••••	14
5.3	DYNAMOMETER ARRANGEMENT OUTSIDE REFRIGERATED TEST CELL ·····	15
5.4	SCHEMATIC OF THE COOLING SYSTEM ·····	1 6
5.5	TRANSDUCER PRESSURE MEASUREMENT POINTS ······	17
5.6	DATA POINTS USED FOR PERFORMANCES, COMBUSTION, AND EMISSIONS ANALYSES	19
5.7	SCHEMATIC OF THE IDLE DEPOSIT TEST SEQUENCE ·····	20
5.8	SCHEMATIC OF THE COAL LIQUID BLEND SCREENING TEST DATA POINTS	21
6.1	PERFORMANCE RESULTS AT 2200 RPM	23
6.2	BRAKE SPECIFIC EMISSIONS, 2200 RPM ·····	24
6.3	PERFORMANCE RESULTS AT 1400 RPM	26
6.4	BRAKE SPECIFIC EMISSIONS, 1400 RPM ·····	27
6.5	PERFORMANCE RESULTS AT IDLE	28
6.6	BRAKE SPECIFIC EMISSIONS, IDLE ······	29
6.7	HEAT RELEASE RATE FOR SHALE AND CONTROL D-2 FUELS AT 1400 RPM, 50 PERCENT LOAD	32
6.8	HEAT RELEASE RATE FOR TAR SAND AND CONTROL D-2 FUELS AT 1400 RPM, 50 PERCENT LOAD	33
6.9	HEAT RELEASE RATE FOR 57 TE CEND EDS AND CONTROL D-2 FUELS AT 1400 RPM, 50 PERCENT LOAD	34
6.10	HEAT RELEASE RATE AND IGNITION DELAY FOR ALL FUELS AT IDLE CONDITION ••••••	35

vii

LIST OF ILLUSTRATIONS, Cont'd.

Figure	\cdot	Page
6.11	HEAT RELEASE RATE AND IGNITION DELAY FOR ALL FUELS AT 1400 RPM	36
6.12	HEAT RELEASE RATE AND IGNITION DELAY FOR ALL FUELS AT 2200 RPM	37
6.13	PEAK CYLINDER PRESSURES AND RATES OF PRESSURE RISE FOR EACH FUEL AT IDLE	38
6.14	PEAK CYLINDER PRESSURES AND RATES OF PRESSURE RISE FOR EACH FUEL AT 1400 RPM •••••••••	40
6.15	PEAK CYLINDER PRESSURES AND RATES OF PRESSURE RISE FOR EACH FUEL AT 2200 RPM ······	41
6.16	INJECTION TIMING AND BRAKE POWER AT EACH ENGINE SPEED	42
6.17	POINT OF IGNITION AND BRAKE POWER AT EACH ENGINE SPEED	43
6.18	COLD START DATA AT 0°C	47
6.19	COLD START DATA AT -20°C	48
6.20	PISTON AND CYLINDER HEAD DEPOSITS AFTER 8 HOURS CONTINUOUS IDLE, CONTROL D-2 FUEL	49
6-21	PISTON AND CYLINDER HEAD DEPOSITS AFTER 2 HOURS FULL POWER, CONTROL D-2 FUEL	50
6.22	PISTON AND CYLINDER HEAD DEPOSITS AFTER 8 HOURS CONTINUOUS IDLE, SHALE FUEL	51
6.23	PLETON AND CYLINDER HEAD DEPOSITS AFTER 2 HOURS FULL POWER, SHALE FUEL ••••••••••••••••••••••••••••••••••••	52
6.24	PISTON AND CYLINDER HEAD DEPOSITS AFTER 8 HOURS CONTINUOUS IDLE, TAR SANDS FUEL	54
6.25	PISTON AND CYLINDER HEAD DEPOSITS AFTER 2 HOURS FULL POWER, TAR SANDS FUEL	55
6.26	PISTON AND CYLINDER HEAD DEPOSITS AFTER 8 HOURS CONTINUOUS IDLE, 57 PERCENT EDS FUEL	FR

viii

LIST OF ILLUSTRATIONS, Cont'd.

<u>Figure</u>		Page
6.27	PISTON AND CYLINDER HEAD DEPOSITS AFTER 2 HOURS FULL POWER, 57 PERCENT EDS FUEL	57
6.28	PERFORMANCE RESULTS AT 2200 RPM, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER	58
6.29	BRAKE SPECIFIC EMISSIONS AT 2200 RPM, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER	60
6.30	PERFORMANCE RESULTS AT 1400 RPM, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER ······	61
6.31	BRAKE SPECIFIC EMISSIONS AT 1400 RPM, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER	62
6.32	PERFORMANCE RESULTS AT IDLE, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER ·····	63
6.33	BRAKE SPECIFIC EMISSIONS AT IDLE, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER	64
6.34	HEAT RELEASE RATE FOR TAR SAND AND CONTROL DF-2 FUELS AT 1400 RPM, 50 PERCENT LOAD, SIMULATED AIR-TO-AIR AFTERCOOLER ••••••••••••••••••••••••••••••••••••	66
6.35	HEAT RELEASE RATE FOR 57 PERCENT EDS AND CONTROL DF-2 FUELS AT 1400 RPM, 50 PERCENT LOAD, SIMULATED AIR-TO-AIR AFTERCOOLER	67
6.36	PERFORMANCE RESULTS AT 2200 RPM, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION SYSTEM	69
6.37	BRAKE SPECIFIC EMISSIONS AT 2200 RPM, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION SYSTEM	70
6.38	PERFORMANCE RESULTS AT 1400 RPM, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION SYSTEM	71
6.39	BRAKE SPECIFIC EMISSIONS AT 1400 RPM, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION SYSTEM	72

íx

LIST OF ILLUSTRATIONS, Cont'd.

Figure		Page
6.40	PERFORMANCE RESULTS AT IDLE, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION SYSTEM	74
6.41	BRAKE SPECIFIC EMISSIONS AT IDLE, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION SYSTEM	75
6.42	HEAT RELEASE RATE FOR TAR SAND AND CONTROL DF-2 FUELS AT 1400 RPM, 50 PERCENT LOAD, SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION SYSTEM	76
6.43	HEAT RELEASE RATE FOR 57 PERCENT EDS AND CONTROL DF-2 FUELS AT 1400 RPM, 50 PERCENT LOAD, SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION SYSTEM	77
6.44	COLD START DATA AT 0°C, PHASE II WITH ETHER INJECTION COMPARED TO PHASE I	79
6.45	COLD START DATA AT -20°C, PHASE II WITH ETHER INJECTION COMPARED TO PHASE I	81

х

LIST OF TABLES

Number

Page

.

.

.

5.1	Chemical and Physical Analyses of	
	the Test Fuels	11
5.2	Engine Specifications ·····	12
5.3	Refrigerated Test Chamber Specifications	12
5.4	Instrumentation List	18
6.1	Summary of Combustion and Heat Release Data	31
6.2	Summary of Combustion and Heat Release Data at 1400 RPM, 50 Percent Load Simulated Air-to-Air Aftercocler	65
6.3	Summary of COmbustion and Heat Release Data at 1400 RPM, 50 Percent Load, Simulated Air-to-Air Aftercooler and High Pressure	77
	ruer miernon pystem	11

. .

.

1. SUMMARY

A heavy duty diesel engine was tested for operation on minimally processed synthetic fuels. Fuels included in this test were a reference No. 2 diesel fuel and liquid products derived from shale, tar sands, and coal. Performance, gaseous and particulate emissions, cold startability and deposit formation with extended idle were tested. Phase I includes baseline testing of a state-ofthe-art heavy duty diesel engine meeting current Federal emissions standards. Phase II includes determining practical engine modifications to enhance synfuel operation and a repeat of selected Phase I tests. This report is the result of Phases I and II.

The Phase I engine test procedure was conducted as follows. First, performance data was taken for control diesel fuel, shale fuel, and tar sands fuel. Cold start tests were then conducted on those fuels. Finally, idle deposits tests were run on the fuels. After completion of these tests, the coal liquid blends screening test was run and performance data was taken for this fuel.

A performance analysis of the Phase I data reveals that the three synfuels are a viable alternative to the reference No. 2 diesel fuel in terms of brake thermal efficiency and maximum power output. At engine speeds of 1400 and 2200 rpm, the BSHC, BSCO, and $BSNO_x$ emissions of the three synfuels closely resemble the diesel fuel emissions, especially at high loads. Unfortunately, the smoke and particulate emissions are higher for the tar sands and 57 percent EDS fuels. The shale fuel, however, yields less smoke and particulate emissions compared to the diesel fuel at these two engine speeds.

The greatest variation in the combustion characteristics of these four fuels was due to the increased ignition delay of the 57 percent EDS and tar sands fuels. This increased delay, however, did not result in audible engine knock.

The performance data at engine idle shows that the diesel fuel was the best performer. In general, the gaseous, smoke, and particulate emissions were higher for the synfuels at engine idle.

The cold start test results show that the engine had trouble starting on the tar sands and 57 percent EDS fuels, especially at -20° C. The engine would not start at -20° C with the 57 percent EDS fuel.

The results of the 8-hour idle test show that the three synfuels did not have significant soot deposit problems compared to the control diesel fuel.

The shale fuel's overall performance was as good as the reference diesel fuel's except for a slight reduction in brake thermal efficiency and an increase in gaseous and smoke emissions at idle. The tar sands fuel was consistently the poorest performer in this unmodified engine with the 57 percent EDS fuel's performance only slightly better. The reduction in engine performance when operating on the synfuels may be partially attributed to the fact that the fuel injection timing was optimized for diesel fuel No. 2. Three engine modifications were made during Phase II. These modifications were:

- 1. Simulate air-to-air aftercooling.
- 2. Add a high pressure fuel injection system.
- 3. Add an ether injection system.

The Phase II test procedure was conducted as follows. Performance data was taken for the control diesel, tar sands, and 57 percent EDS fuels after making engine modification No. 1. These tests were repeated on the engine with modification Nos. 1 and 2. The ether injection system was then added and cold start tests were run at 0° C and -20° C for the 57 percent EDS fuel.

The results of the Phase II tests show that these three engine modifications were successful in solving some of the synfuel operational problems encountered during Phase I. Adding a high pressure fuel injection system reduced the synfuel full load smoke emissions relative to the control diesel fuel. This modification also reduced the smoke and particulate emissions of all three fuels compared to the Phase I results.

Simulating air-to-air aftercooling reduced the brake specific fuel consumption by an average of 3 percent and greatly reduced the low load $BSNO_X$ emissions for all three fuels. Unfortunately, the synfuels low load $BSNO_X$ emissions were consistently higher than these same control diesel fuel emissions.

The combustion analysis results showed that the tar sands and 57 percent EDS fuels still suffer from longer ignition delays compared to the control diesel fuel. This longer delay is due to the synfuels' different chemical composition.

The ether injection system solved the synfuel cold start problems by enabling the engine to start at -20° C on the 57 percent EDS fuel.

In summary, after making the three engine modifications, the tar sands and 57 percent EDS fuels' performance were as good as or better than the control diesel fuels' performance with the following exceptions. The two synfuels had higher low load BSCO emissions, higher full load particulate emissions at 2200 rpm, and higher $BSNO_X$ emissions across the entire load range at 1400 rpm.

2. INTRODUCTION

2.1 BACKGROUND

Development of non-petroleum fuel sources continues to be a goal of this country. This project examines several operational problems of synthetic fuel usage in a heavy duty diesel engine and will further address modifications needed to optimize performance with minimally processed synfuels.

Some specific questions involving synthetic fuel operation in diesels include:

- --- How do synfuels affect diesel engine cold starting?
- How are particulates affected?
- Will synfuels increase emissions levels of an engine beyond regulated limits?
- Are combustion chamber deposits affected with long-term idle on synfuels?
- Will power or fuel economy be reduced?
- Is engine damage due to knock likely?
- What engine modifications are needed to optimize operation on synfuels?

To adequately address these questions, a representative engine is needed. The engine should be a state-of-the-art, direct injection, multicylinder engine in widespread use. Furthermore, the engine should be turbocharged and aftercooled, and capable of meeting current emissions standards. Deere & Co. provided such an engine, which will be described later in this report, under a nocost consulting agreement to provide engine hardware and manufacturers recommendation.

Funding for this project was provided by the U.S. Department of Energy, with contract monitoring and administration provided by Martin Marietta Energy Systems under Subcontract No. 11X-28609C.

This project was conducted in two phases. In Phase I, synfuels were tested in a standard configuration engine. During Phase II, the engine was modified to provide better operation on the test fuels.

2.2 OBJECTIVE

The objective of this project was to determine the effects of minimally processed synfuels on heavy duty diesel engine operation. The fuels include a shale-derived product, a tar sands-derived product, and a coal liquid blend. The coal liquid blend is a mixture of coal liquid and petroleum diesel fuel. These fuels will be compared to a reference diesel fuel. Engine performance, gaseous and particulate emissions, combustion characteristics, cold startability, and deposit formation with extended idle will be determined. Results of these tests will be used to determine practical engine modifications for enhanced operation on these synfuels. These modifications will be incorporated in Phase II.

2.3 APPROACH

A heavy duty, direct injection diesel engine was instrumented and installed in a test cell in the Engine Research building at SwRI. One cylinder was instrumented to provide combustion data. The engine exhaust was sampled for gaseous and particulate emissions. Motoring and absorption dynamometers were connected to the engine for performance and cold start testing. The Fuels and Lubricants Division at SwRI provided combustion analysis. The Department of Emissions Research operated the emissions instrumentation and provided emissions analysis.

The Phase I test sequence was as follows:

- 1. Performance, combustion, and emissions tests were run on the control diesel fuel, shale fuel, and tar sands fuel, respectively.
- 2. Cold starting tests were run at 0° C and then at -20° C for the three fuels listed above.
- 3. Idle deposit tests were run on the fuels listed above,
- 4. Coal liquid blend screening tests were run on fuels composed of 40 percent, 50 percent, and 57 percent (by volume) EDS coal liquid blended into petroleum diesel fuel. These tests included cold starting at 0°C and -20°C.
- 5. Performance, combustion, and emissions tests were run on the selected blend (57 percent EDS).
- 6. Idle deposit tests were run on 57 percent EDS.

After completing the Phase I tests, three Phase II engine modifications were made based on the Phase I results. These modifications were:

- (1) simulate air-to-air aftercooling
- (2) add a high pressure fuel injection system
- (3) add an ether injection system

Optimization of the fuel injection timing was also considered as a Phase II engine modification. This engine modification was not implemented due to the amount of time required to adjust the fuel injection timing for each synfuel. Air-to-air aftercooling was simulated by modulating the flow of laboratory water through the engine's stock air-to-water aftercooler. This modification reduced the intake air temperature to temperatures between 40° C and 70° C (depending upon engine speed and load) which were the lowest temperatures that could be achieved using this setup.

The high pressure fuel injection system was supplied by John Deere and consisted of a high pressure Nippondenso Model RE 26126 fuel injection pump with 12 mm bore x 12 mm stroke plungers. The new fuel pump raised the measured maximum fuel injection pressure from 65 MPa to 90 MPa. These two fuel pressures were measured at an engine speed of 2200 rpm/100 percent load for the old and new fuel pumps, respectively. After installing the new fuel injection system, the fuel injection timing was set at 1400 rpm, 50 percent load so that fuel injection began at 11° BTDC. This 11° BTDC fuel injection timing was identical to the Phase I fuel injection timing at this same engine condition (1400 rpm, 50 percent load), although the dynamic speed-load timing characteristics of the new pump may be different from the Phase I fuel injection pump. A complete set of cylinder and fuel injection pressure diagrams corresponding to the engine test conditions are given in Appendices N through P.

The ether injection system was purchased from John Deere and used an electric solenoid control valve to inject ether into the engine intake manifold.

These three engine modifications were then tested by repeating a modified version of the Phase I test procedure.

The Phase II test sequence was as follows:

- 1. Performance, combustion, and emissions tests were run on the control diesel, tar sands, and the 57 percent EDS fuels after simulating air-to-air aftercooling.
- 2. These tests were then repeated on the engine with both modifications (simulated air-to-air aftercooling and the addition of the high pressure fuel injection system).
- 3. The ether injection system was added to the engine (now with all three engine modifications) and cold start tests were run at 0° C and -20° C for the 57 percent EDS fuel.

3. CONCLUSIONS

The following conclusions are made based on the engine test data collected during Phase I.

A performance analysis of this data reveals that the three synfuels are a viable alternative to the reference No. 2 diesel fuel in terms of brake thermal efficiency (BTE) and maximum power output. In fact, the 57 percent EDS fuel shows a slight increase in BTE at 2200 rpm across the entire load range while the tar sands fuel yields a slightly higher maximum power output compared to the reference diesel fuel. Unfortunately, these same two fuels exhibit higher smoke opacity and particulate emissions. The shale fuel, however, yields less smoke and particulate emissions compared to the diesel fuel.

The measured brake specific emissions (BSHC, BSCO, and $BSNO_x$) of the three synfuels closely resemble the diesel fuel emissions, especially at high loads. The greatest variation occurs at the lowest load condition where it is interesting to note that at 2200 rpm, the $BSNO_x$ emissions from the three synfuels are considerably lower than the baseline diesel fuel.

The high-speed combustion data reveal that the total heat release for the four test fuels is almost identical over the entire load range. This result is expected since the engine BTE and output power are nearly identical for the four fuels at each load setting.

The greatest variation in the combustion characteristics of these four fuels is due to the increased ignition delay of the 57 percent EDS and tar sands fuels. This is the expected result since the cetane number of these two fuels is low compared to the shale and diesel fuels. The increased ignition delays for the tar sands and 57 percent EDS fuels explains why their average and maximum rates of cylinder pressure rise are higher when compared to the diesel and shale fuel values. These greater rates of prevsure rise, however, did not result in audible engine knock during the engine tests. The lowest peak cylinder pressure occurred with the 57 percent EDS fuel since it has the longest ignition delay with combustion occurring later during the expansion stroke, as shown in Appendix N.

At 0°C the engine started in less than 5 seconds on the diesel, shale, and tar sands fuels. The 57 percent EDS fuel required more than four times this amount of time, or 20 seconds, to start. At -20° C the engine started on shale and diesel fuel in about 20 seconds. The tar sands fuel required nearly twice this amount of time to start and the engine would not start on the 57 percent EDS fuel. All of these cranking times are acceptable for typical applications of this engine.

The performance data at engine idle shows that the diesel fuel is the best performer. The diesel fuel has the highest BTE, lowest smoke opacity, and lowest gaseous emissions. The tar sands fuel is the poorest performer at idle with the lowest BTE and the highest smoke and particulate emissions. At idle the gaseous, smoke and particulate emissions are higher for the synfuels compared to the diesel fuel. The only exception is that the shale fuel has the lowest particulate emissions at idle.

The high-speed combustion data at engine idle follows the same trend observed at 1400 and 2200 rpm.

The results of the eight-hour idle test show that the three synfuels do not have significant soot deposit problems compared to the diesel fuel. All four fuels cause a light buildup of black soot on the head, valves, pistons, and turbo exhaust. Some of this soot disappears during the two-hour burnoff period. (This period is defined by running the engine at rated speed and load for two hours following the eight-hour idle test.) The only noticeable difference between the synfuels and diesel fuel is that the 57 percent EDS fuel causes a reddish color deposit on the cylinder head that is present before and after the burnoff period.

In summary, the three synfuels compared very well with the reference diesel fuel in terms of BTE, maximum output power, and gaseous emissions in the unmodified engine at 1400 and 2200 rpm. The shale fuel's overall performance was as good as the reference diesel fuel except for a slight reduction in BTE and increase in gaseous and smoke emissions at idle. The tar sands fuel was consistently the poorest overall performer with the 57 percent EDS fuel's performance only slightly better.

The major problems encountered during Phase I tests were an increase in the smoke and particulate emissions for the 57 percent EDS and tar sands fuels at 1400 and 2200 rpm. The three synfuels also suffered from poorer idle performance. The BTE was lower and the gaseous, smoke and particulate emissions were higher during idle for the synfuels compared to the reference diesel fuel. The one exception was the shale fuel which had the lowest particulate emissions at idle. Another major problem was the poor startability of the engine on the tar sands and especially the 57 percent EDS fuel. Surprisingly, engine knock was not a problem during these tests despite the increased ignition delay of the tar sands and 57 percent EDS fuels.

The following conclusions were made based on the engine test data collected during Phase II.

Modifications can be made to a direct injection, heavy duty diesel engine which improve engine performance while operating on minimally processed synfuels. The Phase II modifications selected were able to solve some of the operational problems encountered during Phase I.

Adding a high pressure fuel injection system solved a Phase I operational problem by reducing the tar sands and 57 percent EDS fuels' full load smoke emissions relative to the control diesel fuel. This modification also reduced the smoke and particulate emissions of all three fuels compared to the Phase I results.

Reducing the intake air temperature to 140° F by simulating air-toair aftercooling reduced the brake specific fuel consumption by an average of 3 percent and greatly reduced the low load BSNO_x emissions for all three fuels. Unfortunately, the synfuels' low load $BSNO_x$ emissions were consistently higher than these same diesel fuel emissions. Lowering the intake air temperature also increased the three fuels' ignition delay periods which resulted in higher initial heat release rates and higher rates of cylinder pressure rise.

The 57 percent EDS and tar sands fuels still have longer ignition delays compared to the control diesel fuel. Engine modifications did not improve the synfuel combustion characteristics relative to the control diesel fuel since the increase in ignition delay is a function of the differences in the fuels' chemical compositions.

Adding an ether injection system solved the synfuel coid starting problem by enabling the engine to start at -20° C on the 57 percent EDS fuel.

In summary, after making the three engine modifications (simulating air-to-air aftercooling, adding a high pressure fuel injection system, and adding an ether injection system), the tar sands and 57 percent EDS fuels' performance were as good as or better than the control diesel fuel's performance with the following exceptions. The two synfuels had higher low load BSCO emissions. The two synfuels also had higher full load particulate emissions at 2000 rpm and higher BSNO_x emissions across the entire load range at 1400 rpm. The tar sands fuel had higher full load particulate emissions at 1400 rpm and at engine idle.

4. RECOMMENDATIONS

The results of the Phase I and Phase II short-term performance tests indicate that the shale, tar sands, and 57 percent EDS fuels are viable alternatives to the reference No. 2 diesel fuel. SwRI now recommends that these three synfuels be subjected to a transient cycle durability test to determine the long-term effects on engine performance and wear. The results of these durability tests will determine whether the synfuels' longer ignition delays and corresponding higher rates of pressure rise and greater maximum cylinder pressures will lead to premature engine failure. Although audible engine knock was not detected during the steady-state performance tests, damaging knock may occur during extended and repeated transient engine loading. SwRI also recommends that transient emissions tests be conducted with the synfuels to determine the effects on transient exhaust emissions.

Further work is required to optimize the combustion chamber and fuel injection systems for synfuel operation. The high pressure fuel injection system that was added to the engine during Phase II was designed to operate on No. 2 diesel fuel. Changes in the fuel injection nozzle may help to optimize the spray penetration and atomization of the more dense and viscous tar sands and 57 percent EDS fuels. This modification may help to reduce the synfuels' low load BSCO formation by improving fuel/air mixing. Fuel/air mixing can also be improved by modifying the intake port to improve intake air swirl.

SwRI also recommends that performance tests be conducted with variable fuel injection timing since the timing was held constant during Phase I and Phase II testing. The fuel injection timing should be changed to accommodate the tar sands and 57 percent EDS fuels' longer ignition delays. Changes in fuel injection timing may help to reduce the two synfuels' $BSNO_X$ and particulate emissions.

5. TEST SETUP AND PROCEDURES

5.1 TEST MATERIAL

Four fuels were used in this project. Table 5.1 shows the chemical and physical analyses of the test fuels. The control fuel for this program is Fhillips D-2 control fuel, Lot G-075. The three synthetic test fuels were supplied to the SwRI Engine and Vehicle Research Division through the SwRI Synthetic Fuel Center.

The tar sands fuel was a result of cooperation between the United States Department of Energy and the Canadian National Research Council, Department of Energy, Mines and Resources. The tar sands fuel was originally anticipated to be a Canadian 1990s diesel fuel. This projection was made during the energy crisis in the late 1970s; however, due to the changing situation with world petroleum supplies, the tar sands fuel will probably not appear in the Canadian marketplace until several years later than was originally anticipated. The fuel contains 78 percent (by volume) of a diesel fuel cut (produced from a 50/50 mixture of conventional western Canadian and tar sands crudes) and 22 percent (by volume) of a hydrogen-treated, cracked stock. By 1990 the tar sands content of the Canadian crude oil pool is predicted to rise from the current 12 percent to 23 percent.

The shale oil-derived fuel originated from Utah shale oil produced by Geokinetics with their in situ retorting process. The crude shale oil was partially hydrogenated by Sun Tech, Inc. in their laboratory at Marcus Hook, Pennsylvania. About 3200 gallons of the upgraded crude were distilled to separate 1700 gallons of diesel fuel. The product is a good quality No. 2-D diesel fuel with the unusual characteristic of high (940 ppm) nitrogen content.

The coal-derived fuel used Exxon Donor Solvent (EDS) middle distillate which was provided to the SwRI Synthetic Fuel Center through the DOE Bartlesville Energy Technology Center. The EDS middle distillate was produced by the demonstration unit operated by Exxon at Baytown, Texas. The EDS process employed two stages of hydrogenation: the first dissolved the coal via noncatalytic digestion, and the second upgraded the coal liquids by conventional fixed-bed hydrotreating. The middle distillate and other products were then separated by fractionation. After the middle distillate was received at SwRI, it was treated with sodium hydroxide to extract phenols and other polar compounds. The coal-derived fuel used in the engine tests was a mixture of EDS and the Phillips D-2 control diesel fuel. These two fuels were mixed due to the poor fuel quality of the EDS. The coal liquid-diesel fuel blend was the poorest quality fuel in the program.

One of the objectives of the tests was to determine the maximum amount of EDS fraction that could be used without encountering operational problems. In Table 5.1, a 57 percent blend is presented.

Fuel Identification Sample No.	Test	Phillips D-2 Control Fuel PL-0420-F	EDS Middle Distillate (1) FL -0765-P	\$7% ED\$ 43% D-2 FL-1068-F	Canadian 1990 Diesel Fuel (2) PL-0704-F	Partially Upgraded Fuel FL-0411
Gravity, *API	Method D-1298	35.1	21.4	26.8	27,5	39.5
Specific Gravity at 60° F		0.8493	0.9254	0.8938	0.8899	0.8275
Distillation, °P	D-86			•		
IBP/5% Recovered 10/20 30/40 50/60 70/80 90/95 FBF Recovery, V% Residue/Loss, V%	· ·	373/400 417/442 462/481 496/516 537/563 598/625 651 99.0 1.0/0.0	412/424 431/440 449/461 473/489 509/534 573/611 643 98.0 2.0/0.0	394/419 430/443 454/466 483/501 522/550 587/624 656 99.0 1.0/0.0	338/376 392/426 450/488 517/550 584/621 567/700 763 99.0 1.0/3.0	356/387 404/430 448/465 484/502 522/546 579/605 646 99.0 1.0/0.0
Cetane Number	D-613	46.5	23.5	32.9	34,9	51.1
Cetane Index	D-976	45.4	22.6	31.1	36.0	51.2
Viscosity, eSt at 40°C	D-445	2.50	2.53	2.51	2.91	2.44
Pour Point, *F (*C)		1 (-71)	-54 (-48)	-17 (-27)	-44 (-12)	0 (-18)
Hydrocarbon Type, V96	D-1319			•	•	
Saturates Olefins Aromatics		66.2 1.6 32.2	18.3 6.5 75.2	35.4 5.2 59.4	32.7 0.0 67.3	81.0 1.2 17.8
Aromatic Carbon, M%	UV		1. S. S.			
Monocyclic Dicyclic Tricyclic			22.46 6.36 1.31		10.65 10.18 3.31	4.12 1.53 0.21
Elemental Analysis, M%						
Carbon Hydrogen Sulfur Oxygen Nitrogen	D-3178 MOD D-2622 (3) (4)	86.50 12.95 0.36 0.012	88.50 10.90 0.01 0.32 0.028	87.47 11,67 0.15 —	87.04 11.75 0.67 0.028	86.03 13.80 0.04 0.050 0.094
lifeat of Combustion	D-240					
Gross, BTU/1b MJ/kG		19477 45.304	18788 43.70 1	19040 44.287	19006 44.2 08	19744 45.996
Net, BTU/lb MJ/kG		18295 12.556	17794 41.388	17975 41.811	17934 41.715	18516 43.068
Existent Gum, mG/100 mL	D-381 .					
Unwashed Washed		4.3	14.53	-	309 30,1	4.8
Oxidation Stability, min.	D-525	–	_			
Flash Point, *F (*C)		158 (70)	199 (93)	-	144 (62)	157 (69)
Reid Vapor Pressure, PSI	O−123	-	_	<u>~</u>		0
Calc. Vapor Pressure, PSI at 500°F	D-2889		-	_	-	34
Surface Tension, (Fuel Air is Dync/cm) D-971 MOD	-	29.9	·	28.5	26_8
NOTES: (1) Phenolics removed from EDS by caustic extraction. (2) Canadian fuel includes components derived from tar sands. (3) Oxygen content determined by neutron activation. (4) Nitrogen content determined by visual chemuluminescence. — Not determined						

Table 5.1. Chemical and Physical Analyses of the Test Fuels

The engine used for this test was a John Deere model 6466A. This is a six-cylinder, in-line, direct injection, open chamber, medium swirl turbo-

charged and aftercooled engine. This engine model is common in John Deere applications for agricultural and construction equipment. It is also sold on an OEM basis for various applications, such as generator sets and irrigation pumps. Further engine specifications are shown in Table 5.2.

Tt	able 5.2 Engine Specifications
Model:	John Deere 6466A
Туре:	In-line, six-cylinder, two valves per cylinder
Induction System:	Turbocharged and aftercooled
Bore:	116 mm
Stroke:	121 mm
Displacement:	7.6 liters
Compression Ratio:	17.0:1
Rated Power:	150 kW at 2 200 r pm
Peak Torque:	900 N-M at 1400 rpm
Injection System	a: Bosch in-line, pump with 11 mm bore x 11 mm stroke plungers

The oil sump was filled with John Deere Torq Gard 15W-46 lubricant. The coolant was a mixture of 50 percent water and 50 percent antifreeze. Coolant outlet temperature was controlled to 92°C.

5.2 TEST SETUP

Since several types of testing are included in this program, the test installation was planned to minimize changeover efforts between types of tests. The engine is located in a refrigerated test chamber; characteristics of this chamber are listed in Table 5.3; Figure 5.1 shows a schematic of the engine in the test cell.

FIGURE 5.1. SCHEMATIC OF THE ENGINE IN THE TEST CELL

A driveshaft runs through the wall of the test chamber and connects to two dynamometers in series. The regenerative dynamometer is used for motoring the engine at a constant speed during cold start testing, whereas the eddy-current dynamometer is used as needed for power absorption in excess of the capabilities of the regenerative dynamometer. An exhaust dilution tunnel and emissions measurement equipment are located outside of the test cell, as well as fuel supply drums and other necessary equipment.

Figure 5.2 is a photograph of the test engine installed in the refrigerated test chamber. Figure 5.3 shows the dynamometer arrangement located outside the refrigerated test chamber.

Since several performance and cold start tests were planned, a cooling system was designed to minimize changeover efforts. A schematic of this cooling system is shown in Figure 5.4. The cooling system has two modes of operation. First, a shell tube heat exchanger was located outside the refrigerated chamber. This heat exchanger was used for performance testing. A small radiator and fan arrangement were located inside the refrigerated test chamber; this arrangement was used between cold start tests. SwRI has found that cold start testing is simplified and accelerated by using an external electric pump to circulate coolant through the engine between cold start attempts. This system was employed to minimize time required between cold start tests.

The engine is fully instrumented with Type T thermocouples for temperature measurement, various pressure transducers, a laminar flow element for measuring air flow, and a "Micro-Motion" mass fuel flow measurement

FIGURE 5.2. PHOTOGRAPH OF TEST ENGINE INSTALLED IN THE REFRIGEBATED TEST CHAMBER

15

FIGURE 5.3. DYNAMOMETER ARRANGEMENT OUTSIDE REFRIGERATED TEST CELL

meter. Cylinder pressure and fuel injection pressure are monitored with pressure transducers, and injection timing is monitored by a Hall Effect needle lift sensor. A 720 pulse per revolution shaft encoder generates clock pulses for computer acquisition of engine pressure data. Figure 5.5 shows the transducer pressure measurement points. Table 5.4 is a complete instrumentation list.

5.3 PHASE I TEST PROCEDURE

The Phase I test procedure was conducted as follows. First, performance data was taken for the control diesel fuel, shale fuel, and tar sands fuel. Cold start tests were then conducted on those fuels. Finally, idle deposits tests were run on the fuels. After completion of these tests, the coal liquid blends screening test was run and performance data was taken for this fuel.

Figure 5.6 shows the data points used for performance, combustion,

FIGURE 5.4. SCHEMATIC OF THE COOLING SYSTEM

and emissions analysis. These nine points are those suggested by the Engine Manufacturers' Association for alternative fuels testing. The 100 percent power at rated and at torque peak speeds is the maximum attained for each fuel. The 50, 25, and 0 percent outputs were set according to the torque values obtained with the control diesel fuel. In reality, the 0 percent output had to be increased to 7 percent as shown in Figure 5.6. The 7 percent load was the minimum required to ensure stable dynamometer operation.

Temperatures, pressures, speed, load, air flow, fuel flow, and exhaust smoke at each of the test points were recorded by a computer. A high-speed analog-to-digital data acquisition device in conjunction with our computer recorded cylinder pressure, injection pressure, and needle lift for each one-half crank angle degree of operation. These data were used for combustion analyses, including apparent rate of heat release, centroid of heat release, maximum pressure rise, maximum pressure, and ignition delay which will be presented later in this report.

Gaseous emissions measurements were made with a 13-Mode emissions cart. These emissions included hydrocarbons, carbon monoxide, oxides of nitrogen, oxygen, and carbon dioxide. The particulate emissions were measured by the use of an exhaust dilution tunnel.

Two or three repetitions of each data point were run for each of the four fuels tested.

Cold start testing in the laboratory is rather difficult. For this reason, perhaps, there is no standardized test procedure. Some of the synthetic fuels were anticipated to cause cold start problems due to low cetane number. Our test, therefore, was designed to illustrate these problems while maintaining

- 3. AIR AFTER TURBO COMPRESSOR
- 4. EXHAUST BEFORE TURBO
- 5. EXHAUST AFTER TURBO
- **6. CRANKCASE**
- 7. OIL GALLERY

FIGURE 5.5. TRANSDUCER PRESSURE MEASUREMENT POINTS

standardized conditions for accurate comparison.

One of the problems of laboratory cold start testing is determining the exact moment the engine begins running under its own power and is no longer being motored by the starter or cranking mechanism. For this test, we chose to use motoring torque as an indication of engine start. This motoring torque was supplied by the dynamometer. The torque was recorded by a strip chart recorder. When the mean motor and torque went from negative (torque applied to the engine) to positive (torque applied to the dynamometer), then the engine was deemed to have started. The time measured to mean positive torque was used to compare cold startability of the test fuels.

Cold start testing was conducted at 0° C and -20° C. Two to three attempts were made on each fuel. The cranking speed was determined by using a set of storage batteries, cold soaked to ambient conditions. The engine was

lien	Rangu	Stator	Monitor (Consele)	Computer Data Acquisition
Coolant, Iniet	-10 to 736°F (-22 to 110°C)	T Thermocouple	X (Deric)	x
Coolant, Outlet	-19 to 234°F (-22 to 118°C)	Ŧ	x	x
Oil Sump	-18 to 266°F (-13 to 128°C)	т	x	. ×
Air, Ambient	-19 to 20"? (-22 to 50"C)	T	x	x
Air, Before Turbo	-18 to 128"2" (-12 to 58"C)	· T	x	x
Air, After Turbo	-18 to 486°F (-22 to 256°C)	Ŧ	x	x
Air, Intake Manifold	-18 to 300" F (-11 to 150"C)	т	x	x
Fast, in Regins	-18 to 128°F (-12 to 58°C)	Ŧ	x	×
Ingine, Black	-18 to \$26"? (-12 to 125"C)	Ŧ	x	x
Engine, Head	-10 to 236°F {-11 to 125°C}	т	x	x
Exhaust Ports (8)	-18 to 1486"? (-73 to 148"C)	3	x	x
Exhaust, After Turba	-18 to 1298°F (-32 to 638°C)	J	x	r.
Promotos				
Air, After Filter	0 to 15 pie (0 to 100 kPa)	Transformer		x
Air, After Leminer Fiow Blommet	0 to 15 pain (8 to 199 hPa)	Trainducer		x
Air, After Terbe	8 to 186 pais (8 to 786 tPa)	Transform	E	x
Libert, Before Turbo	ê Le 166 paig (8 Le 766 kîfa)	Translacer		x
Exhant, After Turbo	6 to 225 poie (8 to 176 kPa)	Transdacer		I
Cristma	0 to 25 pole (8 to 170 kPs)	Translator and manuscript	X	x
Oli, Gallery	0 to 100 paig (8 to 700 ktm)	Transdoor and gauge	×	x
Puel, Beford Mjoetica Puelo	6 to 106 pt (6 to 106 kPa)	Gengo	X	
Parl, Injustion Line No. 1		Kintler \$877122	Castillosoope	High-speed
Cyllefer, Ziring Pressers Mineritaneous		Kintler 6121A3	Ostilietospe	Righ-speed
Kigine Terges	8 to 3000 spal	68-Loth gur/ magnetic pickup	x	x
Tariyan	8 % T88 10-ft (8 % 958 sim)	Lood call on oddy- current dynamous tur	x	x
		Torque shaft drivellos (Estat-Lollow Model 1195)	x	High-speed
Cresichaft Pasition	Easts 1/2 crank angle degree	Shaft uneeder	Onciliosaspe	lligh-speed
Teni Tiou	8 to 80 lb/hr (8 to 40 kg/hr)	Nicro-Motion Sjawmeter	×	x
AL TIM	8 to 1998 C796 (28 to 28 m ³ /min)	Lowiner Play Rissont.		X (Franc. 1 & 2)
lajorier Noodie Lift, Cylinder \$1		Presimeter	Oscilloscope	filgh-speed
Basks Openity		OSTH3 meter	x	High-speed
Beromolzic Prantes		Kome Beremeter		
Wet Build Temperature		Psychometer		
' Dry Salb Temperature		Paychmenter		

Table 5.4. Instrumentation List

cranked with the on-board starter and these storage batteries, in order to determine a baseline cranking speed. This speed was found to be 182 rpm with the particular military model 6TN 500 cold cranking amp batteries used. The motoring dynamometer was then set to 182 rpm to provide constant cranking speed throughout the test.

FIGURE 5.6. DATA POINTS USED FOR PERFORMANCE, COMBUSTION, AND EMISSIONS ANALYSES

Continuous idle testing was the final evaluation performed on each fuel. The cylinder head and turbocharger were removed for a pretest inspection. These were cleaned as necessary. Next, the injection system was filled with test fuel and the engine cooled to room temperature. The engine was then started and idled continuously for eight hours. This time period was chosen as the maximum duration normally encountered by an engine of this type and application, such as idling an engine overnight in a truck stop in the northern United States.

Following the eight-hour idle period, the cylinder head and turbocharger were removed and inspected. Deposits were examined, and photographs were taken within 24 hours of shutdown. The engine was then reassembled without cleaning. It was started and operated at rated speed and load for two hours. During this time period, any deposits that could be removed due to burnoff should disappear. The cylinder head and turbocharger were again removed for inspection. The degree to which the deposits were "burned off" was then examined and the deposits remaining were those anticipated to be a problem for the particular test fuel. The engine was then cleaned in preparation for the next idle test. Figure 5.7 shows a schematic of the idle deposit test sequence.

FIGURE 5.7. SCHEMATIC OF THE IDLE DEPOSIT TEST SEQUENCE

Since one of the objectives of this program was to determine the maximum amount of coal liquid that could be substituted for a diesel engine without encountering operational problems, a simple coal liquid blend screening test was devised. Engine performance was evaluated at 100 percent load and speed, 50 percent load at torque peak speed, and at idle. The engine was monitored closely for knocking and smoke emissions. After this short performance test, cold starting attempts were made at 0° C. Figure 5.8 shows a schematic of the coal liquid blend screening test data points.

Three blends of coal liquid/diesel fuel were tested under this screening procedure. These were nominally chosen to be 40, 50 and 60 percent by volume. In actuality, the highest blend was 57 percent. This was the blend chosen for further performance, emissions and combustion analysis testing. This fuel was then subjected to the previously described test procedure.

5.4 PHASE II TEST PROCEDURE

Modifications were made to the Phase I test procedure which were the result of Phase I conclusions. No further tests were conducted with the shale fuel because its performance and emissions are identical to the control diesel fuel performance and emissions. The extended idle deposit tests were not performed during the Phase II tests because the engine did not produce excessive idle deposits when idling on the synfuels compared to the control diesel fuel. Also, cold start tests were only performed on the 57 percent EDS fuel since its cold starting performance was unacceptable during the Phase I tests. The cold start test procedure was identical to Phase I test procedure except ether was injected for one second blasts every five seconds until the engine reached maximum speed.

FIGURE 5.8. SCHEMATIC OF THE COAL LIQUID BLEND SCREENING TEST DATA POINTS

Engine performance and emissions tests were conducted after simulating air-to-air aftercooling (modification No. 1) for the control diesel, tar sands, and 57 percent EDS fuels. Air-to-air aftercooling was simulated by circulating laboratory water through the engine's stock air-to-water aftercooler. This modification reduced the intake air temperature to temperatures between 40° C and 70° C (depending upon engine speed and load), which were the lowest temperatures that could be achieved using this setup. The high pressure fuel injection system was then added (modification no. 2) and engine performance and emissions tests were repeated on the engine with both modifications for all three fuels. The test procedure was identical to the Phase I test procedure except repetitions were not performed for each data point. The ether injection system was then installed and the cold start tests were performed at 0 and -20°C with the 57 percent EDS fuel.

6. **RESULTS**

Presented here are the results from the Phase I standard engine tests. They are presented in the following sequence:

- Performance Testing
- Cold Start Testing
- Idle Deposit Tests

6.1 PERFORMANCE TESTS

Results from the performance tests are presented in two sections. The first section deals with engine performance in terms of power and fuel economy. Emissions analyses results are also included, with gaseous and particulate data presented.

The second section presents combustion analysis data obtained from digitized, high-speed, cylinder pressure data.

6.1.1 Performance and Emissions

Performance testing was conducted at three speeds: rated (2200 rpm), peak torque (1400 rpm), and idle. 'There are two graphs for each speed. The first of these is titled "Performance" and includes brake thermal efficiency, smoke opacity, and particulates versus brake power. The second graph is titled "Emissions" and includes brake specific hydrocarbons, brake specific carbon monoxide, and brake specific oxides of nitrogen versus brake power. The idle test points are shown as bar graphs.

The data points shown on the graphs represent the numerical average of the two-to-three repetitions of each data point run for a given test fuel. Complete tabular data for each repetitions are shown in Appendices A, B, C and D for the control diesel, shale, tar sands, and coal liquid blend fuels, respectively. Appendix E contains tabular data for the coal liquid blend screening test, consisting of 40 percent, 50 percent, and 57 percent EDS by volume. Particulate data represents the average weight increase for two particulate sample filters for each repetition.

Figure 6.1 shows performance results at 2200 rpm. All fuels provided nearly equivalent thermal efficiency and power. The tar sands gave slightly higher peak power, and shale the lowest. Fifty-seven percent EDS produced the highest thermal efficiency across the load range. Smoke opacity was higher with the aromatic containing fuels (tar sands and coal liquid). Full power particulate concentrations also increased dramatically with these two fuels.

Brake specific emissions at 2200 rpm are shown in Figure 6.2. Light load brake specific emissions levels were high for all fuels. High load BSHC and BSCO were nearly equal for all four test fuels. Surprisingly, the control DF-2 fuel produced the highest $BSNO_x$ over most of the load range.

FIGURE 6.2. BRAKE SPECIFIC EMISSIONS AT 2200 RPM
Performance at 1400 rpm, Figure 6.3, closely resembled the 2200 rpm results. Thermal efficiency for all of the synfuels was slightly higher, particularly at the light loads. Smoke opacity increased significantly, as might be expected with this turbocharged engine. Particulate concentrations generally followed smoke opacity, and were high for the tar sands and coal liquid blend fuels. The 57 percent EDS blend particulate data point at 138 kW is in question. Due to laboratory error, only one sample filter was available for weighing at this power level.

In Figure 6.4, BSCO increases for all fuels at the full power point. BSHC and $BSNO_x$ levels are similar to the 2200 rpm results.

Idle tests were conducted at a constant 27 N-M load for consistency in results. Figures 6.5 and 6.6 show performance and emissions, respectively, at the idle condition. The tar sands fuel appeared to be the poorest performer, with low brake thermal efficiency, high smoke and particulates, and high gaseous emissions levels.

6.1.2 Combustion Analysis Results

Combustion in a diesel engine is a complex process involving injection and atomization of the fuel, fuel evaporation, fuel-air mixing, autoignition of premixed fuel, and diffusion burning of the droplet cloud. Changes in fuel properties would be expected to affect all of these processes. Changes in viscosity and specific gravity can lead to changes in the injection and atomization of the fuel. The distillation range would affect fuel evaporation. Differences in atomization and evaporation characteristics can in turn lead to differences in the fuel-air mixing. Changes in the chemical composition of the fuel as well as changes in the fuel-air mixing can affect the ignition and combustion processes. Fuel property changes are, therefore, likely to affect the heat release rate, the thermal efficiency, and the exhaust emission levels.

As previously discussed, the 57 percent EDS fuel, with a relatively low cetane number of 32.9, actually had a higher thermal efficiency than the control D-2 fuel, with a relatively high cetane number of 46.5. This was attributed to a longer ignition delay time resulting in a larger portion of the energy being released during the premixed burning period of combustion. The low cetane number fuel, performed as a closer approximation to constant-volume combustion and, therefore, had a higher thermal efficiency.

Fuel property effects were also observed in the emissions data as presented in the preceding section. In particular the smoke opacity data at high loads correlated well with the aromatic content of the fuel. This correlation has been reported by other researchers.⁽¹⁾ The fuel with the highest aromatic content, the tar sand with 67.3 percent aromatics, had the highest smoke opacity at the high load conditions. The 57 percent EDS fuel had the second highest aromatic content of 59.0 percent and also had the second highest smoke opacity. This trend was similar for the remaining two fuels.

As mentioned the thermal efficiency data and exhaust emissions have been presented in the previous section. In this section the effects of the fuel

FIGURE 6.4. BRAKE SPECIFIC EMISSIONS AT 1400 RPM

FIGURE 6.5. PERFORMANCE RESULTS AT IDLE

properties on several combustion parameters are examined. These parameters include the heat release rate, ignition delay, peak cylinder pressures, maximum rates of pressure rise and average rates of pressure rise.

Combustion analysis for this program was based upon the acquisition of cylinder pressure data at one-half crank angle degree increments for one hundred engine cycles. These cycles were then averaged to obtain a representative engine cycle for analysis. An average engine cycle was obtained for each test fuel at each of nine different speed-load conditions. The pressure data for the average engine cycle was used as input to a computer program which was used to calculate the apparent rate of heat release, the centroid of the heat release rate diagram, the cumulative heat release, the ignition delay, the maximum cylinder pressure, the maximum rate of pressure rise, and the average rate of pressure rise. The heat release rate diagrams and the cumulative heat release curves are presented in Appendix H for the shale, tar sand, 57 percent EDS fuels, and the baseline control D-2 fuel at each speed-load condition. A summary of these data is provided in Table 6.1 for each fuel at each speed-load condition. A complete set of cylinder pressure and fuel injection pressure diagrams corresponding to the engine test conditions (listed in Table 6.1) are given in Appendix N.

The heat release rate diagrams for the 1400 rpm - 50 percent load test condition are presented in Figures 6.7 through 6.9 for each test fuel as compared to the corresponding baseline fuel result. Figure 6.7 is a plot of heat release rate versus crank angle for the shale and control D-2 fuels. As shown in the figure, the heat release rates were essentially identical for both fuels. Also illustrated in Figure 6.7 are the centroids of the areas under the heat release rate diagrams. The location of the centroid for the control D-2 and shale fuels are indicated by a plus sign and an asterisk, respectively. The centroid of the heat release rate diagram, in particular the crank angle at which the centroid occurs, has been shown to be correlated with indicated power.⁽²⁾ Trendwise, as the location of the centroid moves toward TDC for a given amount of total heat released, a higher indicated power is produced. This indicates that the most efficient manner of releasing heat and thus producing the most power would be the release of all the energy instantaneously at TDC.

As depicted in Figure 6.7 there is a significant difference in the crank angle at which the centroids are located for the shale and control D-2 fuels. Examination of the heat release rate diagrams indicates that this difference does not appear to be caused by differences in the combustion characteristics but by what appears to be noise or oscillations in the heat release rate curves well before ignition occurs and also after combustion ends.

It is anticipated that the noise problem would affect the validity of the centroid calculation as well as calculation of the cumulative heat release. Therefore, these parameters are presented but are not discussed. It is felt that comparison of the heat release rate diagrams on a relative basis is still valid as well as comparison of ignition delay times, peak cylinder pressures, and rates of pressure rise.

As indicated in Figure 6.7, the rate of heat release for the shale fuel

Test Code	Engine Speed	Ind. Power	Max. Press.	Max. Press.	Avg. Press.	Total Heat	Ig. Delay	Cent: Xbar	roid Ybar
No.	(RPH)	(kW)	(MPa) (1	Rise kPa/deg)	Rise (kPa/deg)	Release (Joules)	(deg)	(deg ATDC)	(J/deg)
111	838.	6.34	5.15	348.85	141.20	462.92	5.80	4.95	10.02
121	825.	5.68	5.23	373,60	144.75	455.24	5.40	6.10	10,45
131	835.	5.92	5,38	488.60	169.15	482.09	7.35	6.40	19.34
161	846.	6.46	5.20	428.00	157.70	499.10	7,50	6.50	15,19
112	1403.	143.46	14,61	555.15	391.90	3774.21	4,90	10.45	40.59
122	1400.	140.91	14.28	528.75	373.05	3671.02	4.75	11,50	40.51
132	1402.	146.52	15.00	660.90	407.00	3800.2C	5,50	11,90	43.12
162	1401.	150.21	15.07	635.75	424.55	3902.29	6.00	12,50	45.10
113	1402.	71.04	9.16	613.75	270.75	2043.05	5.45	7,40	25.80
123	1400.	71.76	9.27	589.90	273.15	1930.71	5,30	10.30	27,29
133	1400.	67.44	8, 88	826.50	278.15	1870.16	7.20	9.85	31.43
163	1401.	63.88	8.44	893.25	306.00	1920.21	7.40	7.65	33.49
114	1398.	36.13	6.96	688.95	255.20	1080.05	5.60	7,95	26.03
124	1402.	36.99	7.02	676.45	252,95	1068.17	5.70	6.40	25.87
134	1402.	37.46	7,15	890.10	325.90	1129.21	7,70	7.55	39.01
164	1403.	35.45	7.17	1060.00	380.20	1196.38	7.40	10.30	46.89
115	1398.	17.16	5.50	397.55	158.05	619.07	6,80	8.45	15,12
125	1397.	17,94	5.57	386.80	157.40	635.74	6,45	8.75	14.83
135	1404.	12.71	5.40	365.35	165,60	547.04	8.85	9.70	18.70
165	1400.	12.25	5.28	376.70	155.75	550,76	7.75	10.65	16.47
116	2201.	177,24	12,22	331.80	152.75	3393.62	4,50	11.90	31.94
126	2201.	170.88	11.79	326.20	139.15	3203.31	4.80	15.35	30.95
136	2201.	167.79	11.95	349.65	130.45	3191.12	5.95	15.65	31.10
166	2200.	182.43	12.56	326.90	167.45	3259.70	5.40	14.95	38.69
11/	2200.	83.3/	8.03	232.70	90.83	1759.36	4.50	12,85	17.50
127	2200.	84.18	/.80	229.70	94.94	1694.80	3.00	15.50	18.20
137	2201.	84.99	0,12	339.90	100.03	1133.38	7 20	10,90	20.10
101	2190.	80.94	8.27	430.20	218.00	1900-00	7.20	17.00	23.03
118	2200.	40.88	6.04	183.70	15,97	928.41	5.55	17.05	10.58
128	2202.	41.92	5.99	185.65	20.66	944.90	5.70	16.85	10.31
138	2202.	43,18	6.02	235.00	67.07	1029.03	8,70	15.90	19,32
168	2200.	44.01	5.80	228,45	48.10	1115.22	9,60	21.80	22.35
119	2200,	22.51	5.30	161,95	-16.90	613.11	7.50	14.90	8.86
129	2200.	21.79	5.30	163.75	-22.40	608.35	7.65	16.10	8.73
139	2200.	22.32	5.27	162.65	-32.10	714.93	9.85	16.40	13.18
197	2198.	14.20	5.11	155.20	-62,15	494.48	12.05	16,00	10.80
Secon	d digit	of Test	Code ind		el type:				
1 - D	iesel fu	el			,				

Table 6.1. Summary of Combustion and Heat Release Data

1 - Diesel rue 2 - Shale 3 - Tar sands 4 - 57% EDS

•

was essentially identical to the rate of heat release for the control D-2 fuel. This indicates that the combustion characteristics of these two fuels were similar, as would be expected by examining their cetane numbers. The shale and control D-2 fuels had cetane numbers of 51.1 and 46.5, respectively.

FIGURE 6.7. HEAT RELEASE RATE FOR SHALE AND CONTROL D-2 FUELS AT 1400 RPM, 50 PERCENT LOAD

The heat release rate diagram of the tar sand fuel is compared to the control D-2 fuel in Figure 6.8. As demonstrated in the figure, the ignition delay of the tar sand fuel was 1.7 crank angle degrees longer than the ignition delay of the control D-2 fuel. The longer ignition delay allowed more fuel to evapoarte prior to ignition and resulted in an increased initial rate of heat release for the tar sand fuel. The longer ignition delay of the tar sand fuel would be expected due to its relatively low cetane number of 34.9.

The 57 percent EDS fuel blend also had a relatively low cetane number of 32.9. Thus, when compared with the control D-2 fuel, the 57 percent EDS fuel blend would also be expected to have a longer ignition delay period. This effect is illustrated in Figure 6.9 for the 57 percent EDS and control D-2 fuels. The ignition delay of the 57 percent EDS fuel was 1.9 crank angle degrees longer than the ignition delay of the control D-2 fuel. The longer ignition delay time resulted in more evaporation of the fuel prior to ignition and a correspondingly larger portion of the heat being released during the initial

premixed burning phase of combustion.

FIGURE 6.8. HEAT RELEASE RATE FOR SHALE AND CONTROL D-2 FUELS AT 1400 RPM, 50 PERCENT LOAD

It would appear that the major difference in the combustion characteristics of these fuels is in the ignition delay period. For these particular fuels the ignition delay trend seems to correlate well with the trend in cetane number. Figure 6.10 is a bar chart showing the ignition delay and total apparent heat release for the four test fuels at the idle condition. The tar sand and 57 percent EDS fuels had longer ignition delay periods than the control D-2 and shale fuels. This trend can be attributed to changes in the cetane number from fuel to fuel. Identical trends can be observed for the ignition delay values at 1400 and 2200 rpm. These data are illustrated in Figures 6.11 and 6.12, respectively. As shown in the figures, the tar sand and 57 percent EDS fuels had longer ignition delay times at all load conditions. The longest delay times for each fuel were observed at the light load condition where boost pressure and cylinder temperature were lowest. At the high load condition, the increased boost pressure and higher cylinder temperatures resulted in shorter delay times for each fuel.

In terms of engine durability, change in peak cylinder pressures and rates of pressure rise due to changes in fuel properties could lead to decreased engine life. Figures 6.13 through 6.15 illustrate the peak cylinder pressure, maximum rate of pressure rise, and average rate of pressure rise for the idle,

FIGURE 6.9. HEAT RELEASE RATE FOR 57 PERCENT EDS AND CONTROL D-2 FUELS AT 1400 RPM, 50 PERCENT LOAD

1400 rpm, and 2200 rpm conditions, respectively. Figure 6.13 illustrates that the tar sand and 57 percent EDS fuels had higher rates of pressure rise even though peak cylinder pressures were similar. The rates of pressure rise correlated well with the peak heat release rates observed for these fuels and can be attributed to differences in ignition delay.

The peak cylinder pressures and the rates of pressure rise for each fuel are presented in Figure 6.14 for the various load conditions at 1400 rpm. Based on visual observation, the peak cylinder pressures were similar at all loads except the 50 percent power condition. At 50 percent power, the 57 percent EDS and tar sand fuels appeared to have lower peak pressures than the control D-2 fuel. However, these two fuels also had the most variation in the peak pressure measurement at this particular condition. The standard deviation for the peak pressures of the control D-2, shale, tar sand, and 57 percent EDS fuels were 0.01, 0.06, 0.67, and 1.02 MPa, respectively. It was not possible to conclude whether this variation was actual cylinder pressure variation due to heavy knock or variation induced by transducer performance under severe combustion conditions. Within the amount of variation observed there was no significant difference in peak pressures at this condition.

The rate of pressure rise data do indicate differences between the test fuels. The rates of pressure rise are defined in the following manner. The

FIGURE 6.10. HEAT RELEASE RATE AND IGNITION DELAY FOR ALL FUELS AT IDLE CONDITION

FIGURE 6.11. HEAT RELEASE RATE AND IGNITION DELAY FOR ALL FUELS AT 1400 RPM

FIGURE 6.12. HEAT RELEASE RATE AND IGNITION DELAY FOR ALL FUELS AT 2200 RPM

FIGURE 6.13. PEAK CYLINDER PRESSURES AND AND BATES OF PRESSURE RISE FOR EACH FUEL AT IDLE

.

maximum rate of pressure rise is numerically the largest rate of pressure change during the entire cycle. The average rate of pressure rise is calculated by taking the difference in the pressure at ignition and the peak pressure, divided by the corresponding difference in crank angle.

As indicated in Figure 6.14 the average and maximum rate of pressure rise data follow similar trends. At the light load condition the rates of pressure rise were similar for all fuels. The largest difference between fuels occurred at the 25 percent load condition. At this point the 57 percent EDS fuel had the highest rate of pressure rise, followed by the tar sand fuel. The rates of pressure rise were similar for the shale and control D-2 fuel. This would appear to be in a agreement with the heat release and ignition delay data. The 57 percent EDS and tar sand fuel had longer ignition delays and higher rates of heat release indicating more severe combustion, hence, higher rates of pressure rise. The differences in the maximum rates of pressure rise decreased from fuel to fuel as load was increased to 50 and 100 percent. The average rates of pressure rise appeared to be similar at the 50 and 100 percent load conditions.

The peak cylinder pressures and the rates of pressure rise for each fuel are presented in Figure 6.15 for the 2200 rpm conditions. As shown in the figure there appeared to be little difference in peak pressures between fuels at the part load conditions. The major difference in peak pressures occurred at the full power condition where the 57 percent EDS fuel had higher peak pressures than the base fuel. At this particular load the standard deviations of the peak pressures for the 57 percent EDS and tar sand fuels were again higher than those of the control D-2 fuel. The standard deviations were 0.13, 0.04, 0.45, and 0.40 MPa for the control D-2, shale, tar sand, and 57 percent EDS fuels, respectively. Despite the larger variation in peak pressures for the 57 percent EDS fuel it still appeared to have a significantly higher peak pressure than the control D-2 fuel.

As with the 1400 rpm data, the average and maximum rate of pressure rise data had similar trends, as indicated in Figure 6.15. At the no-load and full-load conditions all fuels had similar rates of pressure rise. The major differences occurred at the 50 percent load condition where the 57 percent EDS and tar sand fuels had much higher rates of pressure rise than the control D-2 and shale fuels.

Since the differences in peak pressures were small, the wide variation in the maximum rate of pressure rise data raises an obvious question. How can there be differences in the maximum rate of pressure rise but no difference in peak pressures? The answer to this question comes from the realization that the maximum rate of pressure rise occurred at a different crank angle, hence different cylinder volume, for each fuel and load.

Figure 5.16 shows the injection timing for each speed-load condition. At idle, the injection timing was 15 crank angle degrees before TDC. As speed increased the injection timing was retarded toward TDC. For the light loadcondition the injection timings were 10.8 and 4.3 degrees BTDC for 1400 and 2200 rpm, respectively. As load was increased, the injection timing was advanced. At the maximum power condition this advance was 3.5 degrees for 1400 rpm and 4.7 degrees for 2200 rpm. Thus each speed-load point had a

FIGURE 6.14. PEAK CYLINDER PRESSURES AND RATES OF PRESSURE RISE FOR EACH FUEL AT 1400 RPM

FIGURE 6.15. PEAK CYLINDER PRESSURES AND RATES OF PRESSURE RISE FOR EACH FUEL AT 2200 RPM

different injection timing.

Combine this fact with the ignition delay information previously presented and the result is shown in Figure 6.17, which is a plot of the point of ignition versus power for each speed. Examination of Figure 6.17 reveals that the ignition point of all fuels at the part load conditions for the 2200 rpm data occurred after TDC. At this point in the cycle the piston is moving down and cylinder volume is increasing. At the part load conditions the peak heat release rate typically occurred during the premixed combustion phase or within about 10 crank angle degrees following ignition depending on speed and load. It would typically be expected that the maximum rate of pressure rise would occur at the same crank angle as the maximum heat release rate. At the 2200 rpm conditions, ignition and hence the maximum heat release rate occurred well after TDC for the part load conditions. Therefore, any heat released would result in a lower pressure rise as a result of the increasing combustion chamber volume.

Given this situation, it is possible that the maximum pressure due to combustion can be lower than the peak cylinder pressure due to compression. Also, dependent upon the rate of pressure drop due to the increasing volume and upon the energy input, it is also possible that the maximum pressure during combustion can be lower than the cylinder pressure at ignition. This later case

would lead to a negative average rate of pressure rise due to combustion, at least based upon the current definition.

With the previous discussion in mind the following points can be made concerning Figures 6.14 and 6.15. With regard to the 2200 rpm data in Figure 6.15, the late ignition and low energy input at the no-load condition did lead to a negative average rates of pressure rise for all fuels. This means that the maximum pressure during combustion was lower than the pressure at ignition. At the other load conditions the energy input and ignition timing was such that a positive average rate at pressure rise was obtained.

The ignition timing and peak heat release rate would also be expected to affect the maximum rate of pressure rise. At the no-load condition, the ignition occurred so late in the cycle, and the heat release rate was so low, that the maximum rate of pressure rise was due solely to compression. The maximum pressure rise data for the control D-2 and shale fuels increased nearly linearly with power. I. might be expected that this increase was due to higher energy input as load increases. This, however, was not the case. The maximum rates of pressure rise for the control D-2 and shale fuels were actually due only to compression and not combustion. For these two fuels, the maximum rate of pressure rise increased with power because of an increase in turbo boost pressure and hence, an effective increase in compression ratio at the higher loads. The high energy input at the full load condition would be expected to be sufficient to result in a significant amount of pressure rise. However, examination of the heat release rate diagrams (Appendix F) indicate that there were relatively low peak heat release rates during the premixed combustion and that a significant amount of the heat was released during diffusion burning late in the cycle. As a result, the maximum rate of pressure rise at the full power condition occurred during compression for all fuels. At the 25 and 50 percent load conditions the peak heat release rate during the premixed phase of combustion for the tar sand and 57 percent EDS fuels were sufficient to result in a rate of pressure rise which was greater than that occurring during compression.

It should be noted that since the combustion occurred mainly after TDC for the 2200 rpm conditions the rates of pressure rise were significantly lower at 2200 rpm than at 1400 rpm. At 1400 rpm ignition occurred before TDC for all load conditions. The peak heat release rates occurred mainly before TDC while the combustion volume was decreasing, thus resulting in high rates of pressure rise. The maximum pressure rise data would therefore be expected to correlate well with the peak heat release rate. Examination of the heat release diagrams indicates that the 57 percent EDS and tar sand fuels had higher heat release rates during the premixed burning and therefore had higher rates of pressure rise. Typically, a longer ignition delay for the 5? percent EDS and tar sand fuels resulted in the peak heat release rate occurring approximately 2 crank angle degrees closer to TDC than the control D-2 and shele fuels. This would also be expected to result in increased rates of pressure rise. The one exception to this was at the no-load condition where the peak heat release rate and maximum rate of pressure rise for the 57 percent EDS and tar sand fuels occurred 2 degrees after TDC while the peak heat release rate and maximum rate of pressure rise for the control D-2 and shale fuels occurred 2 degrees before TDC. This difference was related to the ignition delay times and resulted in similar rates of pressure rise for all fuels at this condition even though the 57 percent EDS and tar sand fuels had higher peak heat release rates.

6.1.3 Conclusions

The results presented have been somewhat affected by the pressure transducer noise problem which was manifested by oscillation in the heat release rate diagram prior to, and following the combustion period. Even though the heat release rate diagrams were somewhat ragged in appearance due to the noise, the overall shape of the diagrams were not believed to have been affected to a great extent. Relative comparisons of the heat release rate diagrams, therefore, appeared to be appropriate.

The effects of the pressure oscillations were most pronounced on the cumulative heat release calculation and calculations of the centroid of area of the heat release rate diagram. Therefore, comparison of these parameters was not considered valid. Parameters which were not expected to be affected, include: the ignition delay, peak cylinder pressure, and the rates of pressure rise. Fuel-to-fuel comparisons were made based on these parameters. Comparisons of the various parameters resulted in the following conclusions:

- 1. The performance of the shale fuel was essentially identical to that of the control D-2.
- 2. The ignition delay was longer for the 57 percent EDS and tar sand fuels than for the control D-2 fuel. The longer delay times were due to the poorer ignition quality of the 57 percent EDS and tar sand fuels.
- 3. The longer ignition delay times for the 57 percent EDS and tar sand fuels resulted in more fuel evaporation before ignition and hence, higher heat release rates than the control D-2 fuel during the premixed combustion phase.
- 4. The higher peak heat release rates for the 57 percent EDS and tar sand fuels typically resulted in higher rates of pressure rise. This trend was not observed at some conditions due to ignition and combustion occurring late in the cycle.
- 5. The major difference in performance of the test fuels can be related to the ignition delay times of the various fuels. Injection timing also tends to be an important parameter in accounting for differences in fuel performance.

6.1.4 Recommendations

Recommendations for engine modifications are based upon the assumption that the engine has been optimized for the control D-2 fuel and that it is desirable to match the performance of the test fuels to that of the control D-2 fuel. The ignition delay period was one of the major differences between fuels. The longer ignition delay for the tar sand and 57 percent EDS fuels resulted in higher rates of pressure rise at the intermediate load conditions. The highest rates of pressure rise occurred at the 1400 rpm, intermediate load condition. At these conditions, the ignition delay time can be minimized for the tar sand and 57 percent EDS fuels by optimizing the injection timing and increasing the compression ratio.⁽⁴⁾ This should result in lower rates of pressure rise.

Changes in injection timing and compression ratio would also effect the thermal efficiency and exhaust emissions. An increase in compression ratio would likely result in a slight improvement in thermal efficiency. The effect of any changes on the exhaust emissions would be difficult to estimate. At 2200 rpm, the injection timing was already significantly retarded from the idle timing resulting in ignition and combustion late in the cycle. At the 2200 rpm conditions slightly advancing the timing may improve thermal efficiency. This however may increase the NO_x emissions.

6.2 COLD STARTING TESTS

The cold starting tests were performed at ambient temperatures of 0° C and -20° C. The time required for the engine to register a positive torque and reach maximum rpm was recorded two to three times for each fuel and then averaged numerically. Full rack fuel setting was used during the starting tests.

6.2.1 Cold Start Test at 0°C

The results of the cold start tests at 0° C are shown in Figure 6.18. The bottom bar graph shows that the control diesel and shale fuels started in just under 4 seconds while the tar sands fuel started in just under 5 seconds. The 57 percent EDS fuel required 20 seconds to start. This result was expected since the tar sands and 57 percent EDS fuels have poorer ignition quality and thus longer ignition delays compared to the shale and control diesel fuels. The top bar graph in Figure 6.18 shows that the control diesel fuel and shale fuel reached maximum rpm in about the same amount of time. These two fuels reached maximum rpm shortly after starting (approximately 3 seconds) while the tar sands and 57 percent EDS fuels required much more time (approximately 18 and 100 seconds, respectively) to reach maximum rpm. These poor results for the tar sands and 57 percent EDS fuels were probably due to the large amount of fuel that accumulated in the combustion chamber during the no start condition. Subsequent misfiring for these two fuels also helps to explain why they inhibited the engine from reaching maximum rpm shortly after starting.

6.2.2 Cold Start Test at -20°C

The results of the cold start tests at -20° C are shown in Figure 6.19. In general the engine required much more time to start and reach maximum speed at this lower ambient temperature. The engine would not start at -20° C on the 57 percent EDS fuel.

The results of these two cold start tests show that the starting performance of the shale fuel was as good as the diesel fuel. The starting performance of the tar sands and 57 percent EDS fuels, however, was less than desirable.

6.3 IDLE DEPOSIT TESTS

The results of the idle deposit tests are presented in the form of photographs taken of each cylinder head and piston after the 8-hour idle test and two-hour burnoff period. Figures 6.20 through 6.27 are photographs of the number four cylinder (considered to be representative) after the 8-hour idle test and 2-hour burnoff period for the control diesel, shale, tar sands, and 57 percent EDS fuels, respectively.

Figure 6.20 shows that after running the engine for 8 hours on the control diesel fuel there was a light coat of black soot on the head, valves, and piston. The heaviest coat of carbon occurred where the fuel plume came in contact with the piston. A black tarry substance was also formed on the intake valve and piston outer edge. Figure 6.21 shows the combustion chamber after the 2-hour burnoff period. A light coat of carbon was still present on the head, valves, and pistons. This soot was easily wiped off. The black tarry substance was consumed during the burnoff period.

An inspection of Figures 6.22 and 6.23 show that the shale fuel's idle test results are similar to the control diesel fuel results. The shale fuel left a lighter coat of soot in the combustion chamber with more of the tarry substance

FIGURE 6.18. COLD START DATA AT 0°C

FIGURE 6.19. COLD START DATA AT -20°C

FIGURE 6.21. PISTON AND CYLINDER HEAD DEPOSITS AFTER 2 HOURS FULL POWER, CONTROL D-2 FUEL

FIGURE 6.23. PISTON AND CYLINDER HEAD DEPOSITS AFTER 2 HOURS FULL POWER, SHALE FUEL

present around the piston edge when compared to the No. 2 diesel fuel results. The piston was only coated with soot where the fuel plume contacted the piston.

Figures 6.24 and 6.25 show that after running the engine for 8 hours on the tar sands fuels there was very little buildup of soot in the combustion chamber. A small amount of tar was present after the 8-hour test but, as was the case with the other fuels, this tar disappeared after the 2-hour burnoff period.

Figures 6.26 and 6.27 show that the 57 percent EDS fuel also left a light coat of soot on the head, valves, and piston. The major difference between this fuel's results when compared to the other fuels is that there was a reddish carbon present on the head before and after the 2-hour burnoff period.

In summary, the engine did not seem to suffer from excessive soot deposits when idling on the synfuels compared to the control diesel fuel. The tar sands fuel appeared to leave the least amount of soot deposits in the combustion chamber.

6.4 PHASE II RESULTS

The Phase II performance results are presented in three sections. The first section covers the performance, emissions and combustion analysis results after making the first engine modification (simulating air-to-air aftercooling). The second section covers these same results after making the first and second engine modifications (simulating air-to-air aftercooling, and adding the high pressure fuel injection system). The third section covers the cold starting results. The results will be discussed by first comparing the synfuels' performance relative to the control diesel fuel's performance with the given engine modification(s). All three fuels' performance will then be compared with the Phase I results.

As in Phase I, performance testing was done at three speeds: rated (2200 rpm), peak torque (1400 rpm), and idle. There are two graphs for each speed. The first of these is titled "Performance" and includes brake thermal efficiency, smoke opacity, and particulates versus brake power. The second graph is titled "Emissions" and includes brake specific hydrocarbons, brake specific carbon monoxide, and brake specific oxides of nitrogen versus brake power. The idle test points are shown as bar graphs. Complete tabular data for the control diesel, tar sands, and 57 percent EDS fuels are given in Appendices I, J, and K, respectively.

6.4.1 Performance and Emissions Results, Simulated Air-to-Air Aftercooling

Figure 6.28 shows the performance results at 2200 rpm after simulating engine air-to-air aftercooling. The tar sands and 57 percent EDS fuels showed a slightly higher brake thermal efficiency compared to the diesel fuel at the 25 percent and 50 percent load conditions. The two synfuels produced more smoke at full load compared to the control diesel fuel. All three fuels have nearly equal full load particulate emissions. Reducing the intake air

FIGURE 6.24. PISTON AND CYLINDER HEAD DEPOSITS AFTER 8 HOURS CONTINUOUS IDLE, TAR SANDS FUEL

FIGURE 6.26. PISTON AND CYLINDER HEAD DEPOSITS AFTER 8 HOURS CONTINUOUS IDLE, 57 PERCENT EDS FUEL

FIGURE 6.28. PERFORMANCE RESULTS AT 2200 RPM, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER

temperature to 140°F at 2200 rpm reduced the brake specific fuel consumption slightly as compared to the Phase I results.

The brake specific emissions at 2200 rpm are shown in Figure 6.29. The BSHC, BSCO, and $BSNO_x$ emissions were nearly identical for all three fuels at the 59 percent and 100 percent load conditions. The tar sands and 57 percent EDS fuels' BSHC and BSCO emissions increased significantly at the lowest load condition while these same diesel fuel emissions remained equal to the Phase I results. The tar sands and 57 percent EDS fuels' $BSNO_x$ emissions were identical over the entire load range and higher than the diesel fuel emissions. In Phase I the synfuel $BSNO_x$ emissions were lower than the control diesel fuel's over the entire load range. Reducing the intake air temperature to 140° F cut the $BSNO_x$ emissions in half for all three fuels at the lowest load condition compared to the Phase I results. The BSNO_x emissions were not significantly reduced at full load since the reduction in intake air temperature is relatively small compared to the combustion temperatures produced at full load.

Figure 6.30 shows the engine performance results at 1400 rpm for the simulated air-to-air aftercooled engine. All three fuels exhibited identical thermal efficiency curves. The cooler intake air caused a slightly higher brake thermal efficiency across the entire load range compared to the Phase I results. This increase is attributed to the longer ignition delays caused by the lower intake air temperature. The longer ignition delays caused more constant volume combustion and thus higher thermal efficiency. The two synfuels also produced a higher maximum power compared to the control diesel fuel. The tar sands and 57 percent EDS fuels' smoke and particulate emissions were identical to the diesel fuel emissions at low load. The two synfuels caused higher smoke and particulates emissions at full load compared to the diesel fuel which is identical to the Phase I result. Reducing the intake air temperature to 140°F slightly reduced the full load smoke and particulate emissions and brake specific fuel consumption compared to Phase I performance results.

The brake specific emissions at 1400 rpm are shown in Figure 6.31 for the simulated air-to-air aftercooled engine. The BSHC, BSCO, and $BSNO_X$ emissions were identical for all three fuels at the 50 percent and 100 percent load conditions. The tar sands and 57 percent EDS fuels' gaseous emissions were higher than the diesel fuel emissions at the lowest load condition. The BSHC emissions were almost identical to the Phase I results. The BSCO full load emissions were cut in half and the BSNO_X emissions were reduced at light loads compared to the Phase I results.

The engine performance results at idle for the 140°F intake air temperature are shown in Figure 6.32. The tar sands fuel had the highest brake thermal efficiency, smoke, and particulate emissions compared to the 57 percent EDS and control diesel fuels. The two synfuels also had higher brake thermal efficiency, smoke opacity, and particulate emissions compared to the Phase I tests. The control diesel fuel's performance remained about the same.

Figure 6.33 shows the gaseous emissions at idle for the reduced intake air temperature. The two synfuels have slightly higher BSHC, BSCO, and $BSNO_X$ emissions compared to the control diesel fuel. Reducing the intake air

FIGURE 6.32. PERFORMANCE RESULTS AT IDLE, PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER

temperature slightly reduced the BSHC and increased BSCO emissions for all three fuels, while greatly reducing the synfuels' BSNO_X emissions compared to Phase I results.

6.4.2 Combustion Analysis Results, Simulated Air-to-Air Aftercooler

As in Phase I, the effects that the synfuels have on diesel engine combustion were determined by calculating the heat release rate, cumulative heat release, ignition delay, maximum and average rates of pressure rise, and the peak cylinder pressure for each fuel. The combustion analysis data at 1400 rpm, 50 percent load is presented because, based on the Phase I results, this data is a good indicator of the effects that the synfuels have on diesel engine combustion. The combustion and heat release data at 1400 rpm, 50 percent load is presented in Table 6.2 for the engine with simulated air-to-air aftercooling. A complete set of cylinder and fuel injection pressure diagrams corresponding to the simulated air-to-air aftercooled engine are given in Appendix O.

Table 6.2.	Summary of Combustion and Heat Release Data
	at 1400 RPM, 50 Percent Load
	Simulated Air-to-Air Aftercooler

Fuel Type	Maximum Pressure (MPa)	Maximum Rate of Pressure Rise (kPa/deg)	Average Rate of Pressure Rise (kPa/deg)	Total Heat Release (joules)	Ignition Delay (deg)
DF-2	8.50	833.8	267.8	1840.10	6.0
Tar Sand	8.86	1206.0	377.5	1889.77	7.6
57% EDS	8.93	1180.0	361.7	1896.83	7.3

The heat release rate diagrams for the 1400 rpm, 50 percent load condition are presented in Figures 6.34 and 6.35 for each synfuel compared to the corresponding control diesel fuel result. Figure 6.34 is a plot of heat release rate versus grank angle degrees for the tar sand and control diesel fuels. The figure shows that the peak heat release rate of the tar sand fuel is greater than the diesel fuel. This greater initial heat release rate is due to the longer ignition delay of tar sand fuel. As shown in Figure 6.34 and Table 6.2, the tar sand fuel had an ignition delay 1.6 degrees longer than the control diesel fuel. The longer ignition delay allowed more of the tar sand fuel to evaporate prior to ignition, which resulted in its higher initial heat release rate compared to the control diesel fuel. The longer ignition delay of the tar sand fuel is due to its relatively low cetane number of 34.9 compared to the diesel fuel's cetane number of 51.1. Despite the higher initial heat release rate of the tar sand fuel, the two fuels had similar total heat releases as shown in Table 6.2. The greater initial heat release rate of the tar sand fuel, however, did result in higher maximum and average rates of pressure rise compared to the control diesel fuel. Both fuels produced

about the same maximum cylinder pressure.

FIGURE 6.34. HEAT RELEASE RATE FOR TAR SAND AND CONTROL D-2 FUELS AT 1400 RPM, 50 PERCENT LOAD, SIMULATED AIR-TO-AIR AFTERCOOLER

The heat release rate of the 57 percent EDS fuel is compared with the control diesel fuel in Figure 6.35. The ignition delay of the 57 percent EDS fuel is 1.3 degrees longer than the control diesel fuel. This increased ignition delay allowed more of the 57 percent EDS fuel to accumulate and vaporize in the combustion chamber before autoignition. The result was a higher initial heat release rate and higher maximum and average rates of pressure rise for the 57 percent EDS fuel compared to the control diesel fuel. The 57 percent EDS fuel's longer ignition delay was due to its low cetane number of 32.9. By comparing these combustion analysis results with the Phase I results, it can be seen that the ignition delay increased slightly for all three fuels by simulating air-to-air aftercooling.

Simulating air-to-air aftercooling on the engine had the effect of increasing the ignition delay and maximum and average rates of pressure rise for all three fuels. The ignition delays increased due to the lower intake air temperature. The total heat release and maximum cylinder pressure for all three fuels remained about the same as the Phase I results.

FIGURE 6.35. HEAT RELEASE RATE FOR 57 PERCENT EDS AND CONTROL DF-2 FUELS AT 1400 RPM, 50 PERCENT LOAD SIMULATED AIR-TO-AIR AFTERCOOLER

Thus, the major difference in the combustion characteristics between the two synfuels and the control diesel fuel is attributed to the synfuel's longer ignition delay period. Reducing the intake air temperature to 140°F by simulating air-to-air aftercooling did not improve the synfuel's combustion performance relative to the diesel fuel. In fact, lowering the intake air temperature reduced the combustion performance of all three fuels relative to Phase I results by increasing the maximum and average rates of cylinder pressure rise. Excessive rates of cylinder pressure rise can cause diesel engine knock, although no audible knock was detected during these tests.

6.4.3 Performance and Emissions Results, Simulated Air-to-Air Aftercooler and High Pressure Fuel Injection System

Figures 6.36 through 6.37 correspond to engine performance and emissions plots at 2200, 1400, and idle speed after adding the high pressure fuel injection system to the engine (modification No. 2). These results also include the effects of the simulated air-to-air aftercooler (modification No. 1).

Figure 6.36 shows engine to rformance results at 2200 rpm. The tar sands and 57 percent EDS fuels' maximum power were about equal and slightly higher than the diesel fuel's maximum power. The two synfuels had higher brake thermal efficiency across the entire load range compared to the diesel fuel with the tar sands fuel yielding the highest brake thermal efficiency. All three fuels showed a slight improvement in brake thermal efficiency which resulted in a significant increase in maximum output power compared to the Phase I results.

All three fuels produced about the same amount of smoke over the entire load range. The smoke produced at full load was about half the amount produced during Phase I.

The two synfuels showed a significant reduction in part load particulate emissions compared to the diesel fuel. However, at full load, the tar sands and 57 percent EDS fuels yielded higher particulate emissions than the diesel fuel. All three fuels showed a reduction in particulate emissions compared with the Phase I results.

The improved performance results at 2200 rpm can be attributed to better fuel/air mixing produced by the high pressure fuel injection system. Increased output power and brake thermal efficiency along with reduced smoke and particulate emissions suggests better air utilization through improved fuel/air mixing.

The gaseous emissions at 2200 rpm for the two engine modifications are shown in Figure 6.37. All three fuels produced the same amount of gaseous emissions over the entire load range. The one exception was the two synfuels which produced higher BSCO at the lowest load condition. Compared to the Phase I results, all three fuels produced the same amount of BSHC, the two synfuels produced more BSCO at the lowest load condition, and all three fuels produced less BSNO_x at the lowest load condition.

The performance results at 1400 rpm after the two engine modifications are shown in Figure 6.38. The two synfuels produced slightly higher maximum power compared to the control diesel fuel. This same result was observed at the 2200 rpm condition. The brake thermal efficiency of the tar sands fuel was higher than the other two fuels at low load conditions. The two synfuels produced less smoke than the control diesel fuel over the load range. The tar sands fuel produced more particulates and the 57 percent EDS fuel produced less particulates than the control diesel fuel. All three fuels showed a great reduction in smoke and particulate emissions compared to the Phase I results.

Figure 6.39 shows the 1400 rpm gaseous emissions results after the two engine modifications. All three fuels produced the same amount of gaseous emissions with the exception of the synfuels which produced slightly higher $BSNO_X$ compared to the diesel fuel. Compared to the Phase I results, all three fuels produced the same amount of BSHC, reduced BSCO at high load, and reduced $BSNO_X$ at the lowest load condition.

The engine performance at idle after the two engine modifications is

AND HIGH PRESSURE FUEL INJECTION SYSTEM

PHASE II SIMULATED AIR-TO-AIR AFTERCOOLER AND HIGH PRESSURE FUEL INJECTION

shown in Figure 6.40. The tar sands fuel has the highest brake thermal efficiency, lowest smoke opacity, and the highest particulate emissions. The 57 percent EDS fuel's performance was equivalent to the control diesel fuel's except for a slight increase in particulate emissions. Compared to Phase I results, the tar sands fuel showed a significant increase in brake thermal efficiency and a reduction in smoke opacity. The control diesel fuel produced more smoke compared to the Phase I result.

Figure 6.41 shows the gaseous emissions results at idle. All three fuels had nearly equivalent gaseous emissions except for the 57 percent EDS fuel which had higher BSCO emissions compared to the other two fuels. The major difference between these results and the Phase I results was a significant reduction in $BSNO_X$ for the two synfuels.

In general, the effect of the two engine modifications can be summarized as follows. Reducing the intake air temperature to 140° F by simulating air-to-air aftercooling had little effect on engine performance but greatly reduced the low load BSNO_x emissions for all three fuels. Adding the high pressure fuel injection system cut the full load smoke and particulate emissions in half while slightly increasing the BSNO_x emissions over the entire load range.

These results suggest that NO_x emissions are more sensitive to intake air temperature while smoke and particulate emissions are a function of fuel/air mixing.

There were two instances where engine modifications were able to improve the synfuel's performance relative to the control diesel fuel's performance. After adding the high pressure fuel injection system at 1400 and 2200 rpm, the two synfuels produced about the same amount of smoke as the control diesel fuel. The tar sands fuel consistently produced the least amount of smoke. This, is a great improvement over the Phase I results where these two synfuels produced more smoke than the control diesel fuel. Thus, adding the high pressure fuel system alleviated the Phase I problem of increased synfuel smoke emissions. Adding the high pressure fuel injection system not only improved the performance of the synfuels relative to the diesel fuel, but also greatly reduced the smoke emissions from all three fuels compared to the Phase I results. The second instance also occurred at 1400 and 2200 rpm, where adding the high pressure fuel injection system was successful in reducing the 57 percent EDS fuel's particulate emissions to a point where they were equal to or less than the diesel fuel particulate emissions. The tar sands fuel particulate emissions still remained higher than the diesel fuel particulate emissions.

6.4.4 Combustion Analysis Results, Simulated Air-to-Air Aftercooler and High Pressure Fuel Injection System

The combustion and heat release data at 1400 rpm, 50 percent load is presented in Table 6.3 for the engine with both engine modifications. A complete set of cylinder and fuel injection pressure diagrams corresponding to the simulated air-to-air aftercooled and high pressure fuel-injected engine are given in Appendix P.

The heat release rate diagrams are presented in Figures 6.42 and 6.43 for each synfuel compared to the corresponding control diesel fuel result. Figures 6.42, 6.43 and Table 6.3 show that the two synfuels have longer ignition delays and thus higher corresponding heat release rates and maximum and average rates of pressure rise compared to the control diesel fuel. All fuels have similar total heat releases and maximum cylinder pressures. Adding the high pressure fuel injection system slightly improved the synfuel's combustion performance by reducing the tar sands and 57 percent EDS fuel's ignition delays relative to the control diesel fuel's ignition delay. This improvement can be attributed to the high pressure fuel injection system's ability to better atomize the more dense and viscous synfuels. This improved spray atomization increased the rate of fuel-air mixing and reduced the synfuel's physical ignition delay period.

Fuel Type	Maximum Pressure (MPa)	Maximum Rate of Pressure Rise (kPa/deg)	Average Rate of Pressure Rise (kPa/deg)	Total Heat Release (joules)	Ignition Delay (deg)
DF-2	9.63	959.8	340.4	1902	5.2
Tar Sand	9.82	1229.0	395.7	1815	5.6
57% EDS	10.05	1318.0	417.8	1855	6.2

Compared to the Phase I combustion analysis results, the three fuels

have slightly lower ignition delay periods and similar total amounts of heat release. However, the maximum cylinder pressure and maximum and average pressure rise rates are higher for the engine with the simulated air-to-air aftercooler and high pressure fuel injection system. It would be expected that the maximum pressure and pressure rise rates would be the same for two operating conditions where the ignition delays and total heat released (quantity of fuel injected) were the same. This can be explained by realizing that the high pressure fuel injection system can inject more fuel into the combustion chamber per crank angle degree. This increased fuel injection rate allows more fuel to accumulate in the combustion chamber prior to autoignition and is responsible for the higher maximum cylinder pressure and higher rates of pressure rise compared to the Phase I results.

The greatest variation in the combustion characteristics between the three fuels is still attributed to the increased ignition delay period of the tar sands and 57 percent EDS fuels relative to the control diesel fuel. Adding the high pressure fuel injection system reduced the synfuel's ignition delay period by reducing the physical delay. Unfortunately, this modification caused the maximum cylinder pressure and pressure rise rates to increase due to the high fuel injection rate which can seriously affect engine durability.

The ignition delay period is primarily governed by the chemical delay period which is a function of the fuel's chemical properties. Engine modifications can be made which will reduce the synfuels' physical delay period. However, it is unlikely that engine modifications can be made which will make the combustion characteristics of the synfuels identical to the control diesel fuel since the combustion of a fuel is more a function of its chemical composition than the particular engine configuration used.

Thus, after adding the two engine modifications (simulating air-to-air aftercooling and high pressure fuel injection system), the tar sands and 57 percent EDS fuels' engine performance were as good as or better than the control diesel fuel's performance with the following exceptions. The two synfuels had higher low load BSCO emissions in all instances except at engine idle where the tar sands fuel had the same BSCO emissions as the control diesel fuel. The two synfuels had higher full load particulate emissions at 2200 rpm and higher BSNO_x emissions across the entire load range at 1400 rpm. The tar sands fuel also had higher full load particulate emissions at 1400 rpm and at engine idle.

6.5 PHASE II COLD START RESULTS AT 0°C AND -20°C

Cold start tests were repeated at 0 and -20° C using an ether injection system and the 57 percent EDS fuel. The cold start data is presented in Appendices L and M. The cold start tests were repeated to reduce this fuel's starting time at 0°C and to verify that the engine would start at -20° C where it failed to start during Phase I tests. Figures 6.44 and 6.45 are plots which show the Phase II results using an ether injection system with the 57 percent EDS fuel. Also shown on these plots for comparison are the 57 percent EDS fuel's Phase I cold starting times. Figure 6.44 shows that at 0°C the engine started in 9.4 seconds and reached maximum speed in 33.2 seconds using the 57 percent EDS

O° C COLD STARTING

FIGURS 5.44. COLD START DATA AT 0°C, PHASE II WITH ETHER INJECTION COMPARED TO PHASE I

fuel. This is a significant improvement over the Phase I times of 20.5 and 122.5 seconds, respectively.

Figure 6.45 shows that adding the ether injection system enabled the engine to start at -20° C in 25 seconds and reach maximum speed in 67 seconds. Thus adding an ether injection system solved the synfuel cold starting problem encountered during Phase I.

-20° C COLD STARTING

FIGURE 6.45. COLD START DATA AT -20°C, PHASE II WITH EITHER INJECTION COMPARED TO PHASE I

REFERENCES

- 1. Ryan, T.W., III, Storment, J.O., Wright, B.R., Waytulonis, R.W., "The Effects of Fuel Properties and Composition on Diesel Engine Exhaust Emissions—A Review," SAE Paper 810953.
- 2. Callahan, T.J., Yost, D.M., Ryan, T.W., III, "Acquisition and Interpretation of Diesel Engine Heat Release Data," SAE Paper 852068.
- 3. Personal Communication with D.M. Yost, Southwest Research Institute, April 1, 1986.
- Callahan, T.J., Ryan, T.W., III, O'Neal, G.B., Waytulonis, R.W., "Control of Diesel Exhaust Emissions in Underground Coal Mines-Single Cylinder Engine Optimization for Water-in-Fuel Microemulsions," SAE Paper 830553.
- 5. Sefer, N. R. and J. Erwin, "Synthetic Gasolines and Diesel Fuels from Processing of Shale Oils and Coal Liquids," SAE Paper 861542.
- Sefer, N. R., J. Erwin and J. A. Russell, "Synthetic Fuel Center Construction and Alternatice Test Fuels Production," SwRI Final Report prepared for U.S. Department of Energy, Contract No. DOE/CS/50070-1, September 1985.

APPENDIX A DIESEL FUEL PERFORMANCE DATA

TEST RESULTS **** N#W# SYNFUEL PROJECT 03-8538

BASELINE CONTROL 0-2

.

.

DURINE CONTINUE	• •									
RUN NUMBER TEST CODE DAY TIME (1 PHASE TYPE FUEL ENGINE HOURS	(julian) military)	11 1 1 5281 101520 1 CONDF2 46.1	11 2 1 5281 11 955 1 CONDF2 47.1	3 11 3 1 5281 131939 1 CONDF2 48.5	4 5281 143941 1 CONDF2 49.5	5281 5281 15 648 15 00052 50.0	11 6 1 5281 153126 1 CONDF2 55.4	7 5291 155634 1 CONDF2 50.8	8 5281 161918 1 CONDF2 5[.2	11 9 1 5281 1641 6 1 CONSF2 51.6
ENGINE PARAMETER ENGINE SPEED TURQUE POWER BSFC BMEP BTE	S (rpm) (N-X) (KW) (g/kw-hr) (bar) (2)	835 15.7 1.4 1278. .3 6.6	1378 854.8 125.1 237. 14.0 35.7	1397 639.8 93.6 227. 10.5 37.2	1482 427.2 62.7 235. 7.8 36.8	1397 214.4 31.4 256. 3.5 31.8	2197 666.5 153.3 231. 11.8 36.6	2195 498.5 114.6 239. 8.2 35.4	2196 332.8 76.5 258. 5.5 32.8	2286 168.0 38.7 316, 2.8 26.8
ENGINE FLOW PARAD FUEL FLOW AIR FLOW AIR FUEL RATIO CHEMICAL AIR FUE SMOME OPACITY	HETERS (kg/hr) (kg/hr) L RATIO (Z)	1.8 189.4 107.8 119.4 .7	29.6 574.5 19.4 18.7 15.8	21,3 471.2 22.1 21.1 9.4	14.8 400.3 27.1 26.3 8.8	8,3 348.0 41.7 40.8 3.2	35. 5 959.5 27.1 27.0 6.2	27.4 836.9 30.5 31.5 5.7	19.7 712.8 36.2 36.1 5.5	12.2 481.4 49.2 49.3 3.9
TEMPERATURE PARA CDOLANT IN COOLANT GUT DIL SUMP OIL CALLERY INTAKE AIR CELL ANDIENT BOOST B4 INNER C FUEL IN EXHAUST 51 EXHAUST 51 EXHAUST 52 EXHAUST 54 EXHAUST 54 EXHAUST 54 EXHAUST 56 EXHAUST 56	NETERS (de OOLER OOLE)	g.c) 84 86 98 28 28 28 28 28 28 28 28 28 28 28 71 33 138 139 141 147 141	87 96 1186 1331 66 1331 134 687 687 687 687 687 687	84 91 753 3259 3091 33 25 55 55 55 55 55 55 55 55 55 55 55 55	87 1 1030 3354 8033 4428 3453 4428 4453 4453 4453 4453	88 903 2004 22 568 557 568 1020 4 1020 4 52 568 557 528 1255 557 555 557 555 557 555 557 555 557 555 557 5555	87 9322 1085 1552 1128 5588 5585 5895 489	91 94 1129 1293 1293 1293 1293 1293 1293 1293	92 75 1988 36 77 15 94 39 38 15 19 37 35 34 41 19 35 37 44 44 44 44 44 44 44 44 44 44 44 44 44	91 55 55 8 55 9 11 55 34 20 57 34 35 56 8 57 39 11 55 34 20 57 34 35 34 35 34 20 57
PRESSURE PARAMET DIL FUEL EXHAUST B4 TURBO FILTER RESTRICTI BOOST AF INNERCC EXHAUST STACK	ERS (kpa) (kpa) (kpa) (0N (pa) (0LER(kpa) (kpa)	268.7 164.4 ****** 99.5 .9 1.3	306.8 145.8 ****** 373.3 95.5 4.7	307.7 153.2 ##### 298.6 55.9 2.1	309.5 160.4 ***** 248.8 30.3 2,4	369.5 167.0 ****** 224.0 *12.5 2.4	338.9 112.4 ****** 771.4 118.0 2.7	337.3 116.0 ****** 647.0 \$5.0 4.1	348.6 121.4 ****** 522.6 54.1 4.1	342.1 127.8 ****** 423.0 27.9 3.7
emission paramet BSHC BSCO BSNOX CO2 O2	E95 (g/ku-hr) (g/ku-hr) (g/ku-hr) (Z) {Z)	16.211 28.750 84.137 1.7 18.1	.4229 12.155 8.9973 11.4 4.9	.6617 4.7144 16.249 18.3 6.8	.7329 3.8328 11.252 8.2 9.6	1.2863 3.7171 12.249 5.2 13.7	,7996 1.8686 8.1383 8.0 9.9	.9994 2.8172 7.4361 7.8 11.2	1.1821 2.6141 5.3567 5.9 12.7	1.8202 4.0530 5.5295 4.3 14.8
ANDIENT PARANETE BARO.PRESSURE ADSOLUTE HUMIDII RELATIVE HUMIDII	ERS (mm-Hg) (Y (gn/16) (Y (Z)	748.4 114.7 65.7	740.4 114.7 65.7	749.4 112.3 54.9	740.4 112.3 54.9	740.4 112.3 54.9	740.4 112.3 54.9	740.4 113.5 50.4	740.4 113.5 50.4	748.4 113.5 50.4
INDICATED PARAHI IKU ISFC (I IMEP ITE, actual ITE, theoretical RATIO, actual/ti	ETERS (bar) (bar) (Z) (Z) heoretical	8.2 214.1 1.5 39.5 62.9 .628	139.5 212.3 15.7 39.8 56.0 .711	108.2 196.7 12.1 43.0 56.9 .755	77.6 190.2 8.7 44.5 58.2 .764	46.3 188.4 5.2 46.9 60.4 .776	185.0 191.7 13.2 44.1 58.2 .758	146.2 187.4 187.4 45.1 58.9 .767	118.2 182.2 7.7 46.4 59.7 .777	78.1 174.3 5.0 48.5 61.0 .795

85

.

**** SYNFUEL PROJECT 03-8538 TEST RESULTS ****

.

BASELINE CONTROL D-2

. •

RUH HUMBER TEST CODE DAY . (juli: TIME (milita) PHASE TYPE FUEL ENGINE HOURS	18 11 1 2 10) 5303 103345 1 CONDF2 64.4	11 11 2 2 5303 1210 4 1 CONDF2 65,4	12 11 3 2 5303 1420 4 1 CONDF2 66.5	13 11 4 2 5303 144513 1 CONDF2 66.9	11 5 1 5303 151852 1 CONDF2 67.5	11 6 2 5384 11 7 3 11 7 3 1 COHDF2 69.2	16 11 7 2 5304 114940 1 CONDF2 70.5	17 11 8 2 5305 10 330 1 CONDF2 72.8	18 11 9 1 5305 183331 1 CONDF2 73.3
ENGINE PARAMETERS ENGINE SPEED (r) TORQUE (M) POMER () BSFC (g/bu-1) BMEP (b) BTE	0n) 832 -n) 36.7 (U) 3.2 3r) 258. ar) .6 (Z) 32.7	1402 916.6 134.6 217. 15.1 39.5	1398 457.2 66.9 228. 7.5 37.1	1400 229.7 33.7 253. 3.8 33.4	1399 64.3 9.4 407. 1.1 20.8	2208 676.7 154.5 231. 11.8 36.6	2197 333.6 77.2 5.5 11.0	2281 168.2 39.8 396. 2.8 27.7	2202 45,5 10,5 637 13,3
ENGINE FLOW PARAMETERS FUEL FLOW (kg/ AIR FLOW (kg/ AIR FUEL RATIO CHEMICAL AIR FUEL RATIO SMOLE (PACITY	nr) .8 hr) 191.6 231.7 D 107.3 (Z) .5	29.2 609.5 28.9 19.8 14.1	15.3 418.4 27.4 26.1 7.9	8.5 355.6 41.7 40.1 3.1	3.8 330.3 86.2 82.6 92.6	35.7 1012.4 28.4 28.9 5.6	19.8 745.1 37.7 37.6 4.9	11.8 621.5 52.5 59.4 3.8	6.7 549.6 82.2 78.6 3.8
TEMPERATURE PARAMETERS COOLANT IN COOLANT GUT OIL SUMP OIL CALLERY INTAKE AIR CELL ANBIENT BODST AF INNER COOLER FUEL IN EXHAUST #1 EXHAUST #1 EXHAUST #3 EXHAUST #4 EXHAUST #4 EXHAUST #6 EXHAUST #6 EXHAUST #6 EXHAUST STACK	(deg.c) 87 90 92 28 41 47 74 147 128 155 158 155 158 148 155	83 91 1\$9 1222 57 1222 5784 5784 5784 5784 5784 5784 5784 5784	87 11 12 12 12 12 12 12 12 12 12 12 12 12	91 94 104 123 55 57 57 57 57 57 57 57 57 57 57 57 57	92 93 100 98 24 44 78 33 211 205 223 196 214	88 932 1128 128 129 57 1409 3325 5532 5532 5532 5532 5532 5532 553	90395345999340 10234599934044499112259934444991122544444444444444444444444444444	91 53 66 53 54 56 55 56 56 56 56 56 56 56 56 56 56 56	92 994 20 20 21 20 24 20 24 20 24 27 24 27 24 27 24 24 24 27 24 24 24 24 24 24 24 24 24 24 24 24 24
PRESSURE PARAMETERS OIL (h FUEL (k FUEL (k FILTER RESTRICTION (k) BOOST AF INMERCODLER(k EXHAUST STACK (k)	pa) 264.0 pa) 136.9 µa) ###### pa) 124.4 pa) 1.6 pa] .7	311.4 114.9 ##### 423.0 102.1 2.6	313.2 123.9 ###### 273.7 34.2 1.3	313.9 128.7 ****** 224.0 13.9 1.3	315.4 134.0 ******* 224.0 5.5 1.7	342.7 75.5 ##4### 744.5 125.1 4.4	345.4 87.1 ****** 572.3 58.9 2.7	340.7 93.4 ***** 447.9 30.9 2.0	341.6 97.9 ***** 598.1 15.7 1.7
ENISSION PARAMETERS BSHC (g/kw-) BSCO (g/kw-) BSHOX (g/kw-) CD2 D2	hr) 3.3332 hr) 5.9279 hr) 19.428 (Z) 1.9 (Z) 19.8	,5848 9.8713 9.4421 10.8 5.3	.7885 2.7074 13.647 8.2 8.9	1.3252 3.4139 14.665 5.3 13.0	4.5832 8.0320 19.370 2.5 16.9	.9507 1.9022 10.434 7.4 10.5	1.3299 2.8061 9.2337 5.7 13.3	2.4723 4.7498 8.0178 4.2 14.7	8,5192 12.160 31.904 2.6 17.1
ANGLENT PARAHETERS BARD.PRESSURE (An- ABSOLUTE HUMIDITY (gn/ RELATIVE HUHIDITY	Hg) 737.9 16) 59.0 (Z) 58.2	737.9 59.8 58.2	736.6 71.9 52.1	735.6 71.9 52.0	736.6 71.9 52.8	735.8 57.9 78.0	735.8 59.9 78.0	732.3 68.5 66.9	732.3 68.5 65.9
INDICATED PARAMETERS IKU ISFC (bg/iku- IMEP (b ITE,actual ITE,theoretical RAILO, actual/theoreti	9.7 hr) 85.2 ar) 1.8 (Z) 99.2 (Z) 63.7 cal 1.557	149.2 195.5 16.7 43.3 56.5 .765	82.1 186.1 9.2 45.4 55.3 .780	48.5 175.8 5.4 48.1 69.4 .797	23.9 169.6 2.6 52.7 62.5 .842	186.5 191.4 13.3 44.2 58.5 .756	108.9 181.5 7.7 46.6 59.9 .778	70.9 167.2 5.0 51.6 61.2 .826	42.5 157.3 53.8 62.4 .861

**** SYNFUEL PROJECT 03-8538 TES

TEST RESULTS ****

BASELINE CONTROL D-2

RUN NUMBER TEST CODE DAY TIME PHASE TYPE FUEL ENGINE SOURS	(julian) (military)	19 11 1 3 5305 1138 4 1 CONDF2 74.4	20 11 2 3 5305 123030 1 CONDF2 75.3	21 11 3 3 5305 13 444 1 CONDF2 75.8	22 11 4 3 5395 132813 132813 1 CONDF2 76.3	23 11 5 2 5305 135140 1 CDNDF2 76.7	24 11 5 3 5305 142945 1 CONDF2 77.3	25 11 7 3 5305 152719 1 CONOF2 73.2	26 11 8 3 5309 101213 1 CONDF2 89.3	27 11 9 2 5309 14 256 1 CONDF2 83.1
ENGINE PARAHETI ENGINE SPEED TORQUE POWER BSFC BHEP BTE	ERS (rpa) (N-H) (XW) (g/kw-hr) (bar) (Z)	841 37.7 3.3 489. .6	1379 976.6 131.3 225. 14.7 37.5	1402 458.7 67.4 226. 7.5 37.5	1394 229.6 33.5 249. 3.8 34.3	1394 64.5 9.4 388. 1.1 21.8	2293 673.7 155.4 229. 11.1 36.9	2200 337.2 77.7 20.5 33.9	2198 168.5 38.8 311, 2.8 27,2	2201 45.3 10.4 632. .7 13.4
ENGINE FLON PAI FUEL FLON AIR FLON AIR FUEL RATID CHEMICAL AIR F SMOKE OPACITY	RAMETERS (kg/hr) (kg/hr) UEL RATIO (Z)	1.6 192.4 120.8 97.3 1.8	29.6 608.3 20.6 19.4 14.3	15.2 423.1 27.8 25.9 9.3	8.3 355.0 42,6 39.3 3.9	3.7 327.2 90.1 80.5 1.5	35.6 1021.3 28.6 28.4 6.9	19,4 755.4 38.9 37.7 5.1	12.9 634.3 52.7 51.7 3.9	6.6 557.7 84.2 2.3
TEMPERATURE PA COOLANT IN COOLANT IN OIL SUMP UIL GALLERY INTAKE AIR CELL AMBIENT BOOST AF INNER FUEL IN EXHAUST 41 EXHAUST 42 EXHAUST 43 EXHAUST 44 EXHAUST 44 EXHAUST 46 EXHAUST 46 EXHAUST 46 EXHAUST 46 EXHAUST 46	raneters (de Cooler Cooler	g, c) 93 94 21 39 474 73 159 165 165 165 165 165 165	85 97 115 22 578 578 578 578 633 578 633 578 633 578 633 578 633 578	87 1 1862 1335 782 333 4451 4451 4454 4854 4554 4554 4554 4554 4554	91 94 181 191 219 334 357 334 353 353 353 353 353 353 354 353 354 353 354 353 354 355 355	9249981744773398562228244	88 73 2128 2155 1489 755 1489 755 1489 755 1489 755 1489 755 758 758 758 758 758 758 758 758 758	90 94 1063 200 552 910 3333 407 34 411 442 379	91 93 1063 21 337 34 31 337 354 354 354 354 354 354 354 354 354 354	92 33 1042 351 226 106 351 228 251 228 2488 2488 2488 2488 2488 2488 2488
PRESSURE PARAM DIL FUEL EXHAUST B4 TUR FILTER RESTRIC BODST AF INNER EXHAUST STACK	ETERS (kpa) 80 (kpa) TION (pa) COCLER(kpa) (kpa)	254.6 123.6 ***** 124.4 1.3 1.7	304.7 107.5 ****** 447.9 101.5 2.4	306.7 126.2 ****** 298.6 33.4 2.8	307.4 132.3 ****** 248.8 14.3 1.7	389.1 136.5 **##** 224.8 5.7 1.7	335,8 81,1 #***** 846,1 126,4 2.7	340.4 87.7 ***** 577.2 60.3 2.4	347.4 95.8 ****** 472.8 32.8 2.8	338.9 188.6 ****** 472.8 17.3 2.4
emission param BSHC BSCO BSCO DSNOX CO2 O2	ETERS (g/kw-hr) (g/kw-hr) (g/kw-hr) (Z) (Z)	7.0823 7.0189 36.817 2.1 17.8	.7271 9.3683 9.7078 11.1 5.6	1.8561 2.6738 12.836 8.3 9.5	1.4150 3.3345 14.019 5.4 13.5	4.7053 6.8555 18.111 2.6 16.9	1.2534 1.9117 9.7951 7.5 10.4	1.6237 2.6833 7.1037 5.6 12.8	2.2953 4.4346 9.2868 4.1 14.B	13.177 11.279 13.333 2.6 17.1
AMBIENT PARAME BARD.PRESSURE ABSOLUTE HUMIT RELATIVE HUMIT	TERS (mm-Hg) ITY (gn/16) ITY (Z)	732.8 74.2 51.1	732.8 74.2 61.1	732.8 74.2 61.1	732.8 74.2 61.1	732.8 74.2 61.1	732.8 74.2 61.1	732.8 74.2 61.1	745.7 43.3 31.9	745.7 50.4 35.9
INDICATED PARA IKU ISFC IMEP ITE,actual ITE,theoretica RATIO, actual/	HETERS (kg/ibs-hr) (bar) (Z) 1 (Z) (theoretical	10.4 152.5 1.9 55.4 63.1 .879	146.2 212.4 15.4 41.8 56.4 .741	82.1 195.4 9.2 45.6 58.4 .782	48.5 171.9 5.4 49.2 60.5 .814	23.9 153.0 23.7 55.3 62.6 .882	187.2 191.4 13.3 44.4 58.5 .759	109.7 176.9 7.8 47.8 59.1 .796	78.9 169.7 5.0 49.8 61.3 .813	42.5 155.1 54.5 62.72

APPENDIX B SHALE FUEL PERFORMANCE DATA

**** SYNFUEL PROJECT 03-8538 TEST RESULTS ****

SHALE PERFORMANCE TEST

Run Number Test Code Day Time Phase Type Fuel Engine Hours	(julian) (military)	28 12 1 1 5310 94218 1 SHALE 85.0	29 12 2 1 5318 103844 SHALE, 85.9	30 12 3 1 5310 11 850 1 SHALE 86.4	31 12 4 1 5318 113317 SHALE 96.8	32 12 5 1 5310 115651 1 SHALE 87.2	33 12 6 1 5310 131017 1 SHALE 98.4	34 12 7 1 5319 133554 SHALE 89.8	35 12 8 1 5310 1356 9 1 SHALE 89.2	36 12 9 1 5310 142623 1 SHALE 89.7
ENGINE FARAMET ENGINE SPEED TORQUE POWER BSFC BMEP BTE	TEPS (N-H) (N-H) (KJ) (g/ku-hr) (bar) (Z)	925 37.4 3.2 527. 15.9	1403 883.3 129.7 223. 14.5 37.5	1400 459.3 226. 7.6 36.9	1396 231.2 33.6 247. 3.9 33.9	1393 65.4 9.5 380. 1.1 22.3	2200 652.0 150.2 231. 10.7 36.1	2196 335.8 77.2 253. 5.5 33.9	2197 168.4 38.7 388. 2.9 27.1	2191 45,4 10,4 629, 13,3
ENGINE FLOW PA FUEL FLOW AIR FLOW AIR FUEL RATIO CHEMICAL AIR F SHOKE OPACITY	RAMETERS (kg/hr) (kg/hr) FUEL RATIO (X)	I.7 171.0 112.4 180.6 .6	28.9 612.1 21.2 28.2 11.1	15.2 424.9 27.8 26.5 8.0	9.3 338.3 43.1 40.2 3.1	3.6 333.6 91.9 82.9 .7	34.7 996.4 28.7 28.8 5.1	17.6 747.3 38.2 38.4 4.6	11.9 624.5 52.3 50.6 3.8	6.6 552.8 94.4 79.8 2.2
TEHPERATURE PA CODULANT UN CODULANT UNT OIL SUMP OIL SUMP OIL GALLERY INTAKE AIR CELL ANDIENT BOOST AF INNEE BOOST AF INNEE FUEL IN EXHAUST \$1 EXHAUST \$1 EXHAUST \$3 EXHAUST \$5 EXHAUST \$6 EXHAUST \$16 EXHAUST \$16	ARAMETERS (de CODLER CUDLER	ц. с.) 91 92 94 19 19 163 163 163 163 164 164 164 166 179	83 91 1105 21 53 123 594 574 586 629 681 584	90 94 16 13 22 56 75 33 12 73 55 88 88 26 46 57	9143112558832533244 1931125883253324 3533244 353324 35325 35355 355555 355555 355555 355555 355555 355555 355555 355555 355555 355555 355555 355555 355555 355555 355555 355555 355555 355555 3555555	72 33 9783 87 9783 87 978 978 978 978 978 978 978 978 978	88 92 112 1080 1114 1114 5331 5331 5331 5331 5331 5331	90385099352444 189359352444 189354444591554 4444531554	9173 66335 48 78 85555 557 55 55 55 55 55 55 55 55 55 55 5	924422 10387533 103877539 10297557 102975757 102975757 102975757 102975757 102975757 102975757 102975757 102975757 102975757 102975757 102975757 102975757 102975757 102975757757 10297577577577577577757777777777777777777
PRESSURE PARAL DIL FUEL EXHAUST B4 TUE FILTER RESTRI BOOST AF INNEL EXHAUST STACK	IETERS (kpa) (kpa) RBO (ipa) CTION (pa) RCOOLER(kpa) (kpa)	258.7 129.1 ****** 124.4 2.6 1.9	312.3 113.7 497.7 99.9 2.7	314.8 126.4 ****** 348.4 36.1 2.8	315.3 134.3 48488 298.6 15.1 2.9	316.9 143.3 ***** 273.7 6.9 2.8	342.5 85.3 ***** 1945.1 119.8 4.4	345.8 93.4 \$***** 746.5 58.7 2.7	345.1 98.9 ***** 597.2 31.3 3.4	347.2 184.5 ###### 522.6 16.7 3.4
emission paral BSHC BSCD BSMCX CD2 D2	HETERS (g/ku-hr) (g/ku-hr) (g/ku-hr) (Z) (Z)	11.268 9.8912 52.386 2.0 17.4	.8264 8.3486 9.3528 18.6 5.5	1.1286 3.0259 12.356 8.8 8.9	1.9319 3.6599 12.824 5.2 13.3	6.1948 6.1434 15.292 2.5 16.9	1.2965 2.8175 8.5719 7.4 9.9	1.9147 2.7437 7.4358 5.5 12.3	2.9918 4.1636 7.8441 4.1 14.8	11.283 11.798 11.936 2.6 16.9
AMBIENT PARAN DARO.PRESSURE ABSOLUTE HUMI RELATIVE HUMI	ETERS (an-Hg) DITY (gn/15) DITY (Z)	748.7 56.1 68.6	748.7 56.1 68.6	748.7 56.1 68.6	748.7 56.1 68.6	748.7 56.1 68.6	748.7 56.1 68.6	739.9 71.4 47.9	739.9 71.4 47.1	739.9 71.4 47.0
INDICATED PAR IKU ISFC IMEP ITE,actual ITE,theoretic RATIO, actual	AMETERS (kg/ikw-hr) (bar) (Z) al (Z) /theoretical	9.7 175.3 1.8 47.7 63.1 .757	144.7 199.9 16.2 41.8 56.6 .738	82.1 185.6 9.2 45.9 58.4 .771	48.5 171.3 5.4 48.8 60.5 .896	23.9 152.0 2.7 55.1 62.7 .877	192.8 198.8 13.0 43.8 58.5 .748	188.9 179.6 7.7 46.5 69.8 .776	70.1 178.2 5.8 49.1 61.2 .8	41.8 156.8 53.3 62.5 .853

.

**** SYNFUEL PROJECT 03-8538 TEST RESULTS ****

SHALE PERFORMANCE TEST

Rum Hunder Test Codz Day Tine Phase Type Fuel Engine Hours	(julian) (military)	37 12 1 2 5311 93848 1 SHALE 92.2	38 12 2 2 5311 1845 9 1 SKALE 93.3	39 12 3 2 5311 1112 1 1112 1 SHALE 93.8	40 12 4 2 5311 1130 9 SHALE 94.2	41 12 5 2 5311 12 029 1 SHALE 94.6	42 12 6 2 5311 124944 1 SHALE 95.4	43 12 7 2 5311 1316 4 1 SHALE 95.8	44 12 8 2 5311 1342 3 SHALF 96.2	45 12 9 2 5311 14 546 1 SHALE 96.6
ENGINE PARAMET ENGINE SPEED TORQUE POWER BSFC BMEP BTE	ERS (rpn) (N-H) (KU) (g/ku-hr) (bar) (Z)	823 37.4 3.2 519. .6 16.1	1396 868.8 127.0 225. 14.3 37.2	1398 458.1 67.0 230. 7.5 36.3	1405 230.2 33.9 253. 3.8 33.1	1393 64.1 9.3 401. 1.1 20.9	2198 649.7 149.5 234. 10.7 35.8	2202 335.6 77.4 257. 5.5 32.5	2201 168.3 38.8 317 2.8 26.2	2199 45.5 10.5 663, .7 12.6
ENCINE FLOW PA FUEL FLOW AIR FLOW AIR FUEL RATIO CHEMICAL AIR F SHORE OPACITY	RAMETERS (kg/hr) (kg/hr) UEL RATIO (Z)	1.7 192.8 115.4 160.3 1.8	28.5 600.8 21.1 21.1 12.4	15.4 426.7 27.7 26.5 8.1	8.6 365.1 42.7 40.6 3.5	3.7 337.5 90.1 83.1 1.2	34.9 1016.3 28.8 29.0 5.1	19.9 758.2 38.2 38.0 4.9	12.4 51.2 51.2 3.9	7.8 561.3 90.7 79.0 2.9
TENPERATURE PA COOLANT IN COOLANT OUT OIL SUMP OIL CALLERY INTAKE ALB CELL ANBIENT BOOST AF INMER FUEL IN EDMANST A1 EXMANST A1 EXMANST A1 EXMANST A1 EXMANST A1 EXMANST A1 EXMANST A5 EXMANST A6 EXMANST A6	RAMETERS (de CEOLER COOLER	g.c) 72 73 75 75 74 18 74 16 74 16 74 16 74 16 74 16 75 16 57	81 89 1144 73 322 55 71 58 58 58 58 58 58 58 58 58 58 58 58 58	89 92 11 11 12 13 17 15 23 14 44 15 14 44 15 14 44 15 14 44 15 14 14 14 14 14 14 14 14 14 14 14 14 14	91 97 97 12 12 12 12 12 12 12 12 12 12 12 12 12	923 9997 233 298 777 320 1191 1998 22181 1998 22181 22181 22181 22181 22181 22181 22181 22181 22181 22181 22181 2218 218	97 92 1107 27 384 108 5385 549 549 549 549 549 549 544	993857 99857 39814 43192 44192 4337 43370	91 33 1033 27 33 75 83 44 9 349 33 348 82 341 348 84 33 341 348 35 41 3 349 35 41 35	223 4117 332 14 5 655 865 865 865 865 865 865 865 865 8
PRESSURE PARAM UIL FUEL EXHAUST B4 TUR FULTER RESTRIC BODST AF INNER ECHAUST STACK	ETERS (kpa) (kpa) (kpa) (kpa) (kpa) (kpa)	256.1 138.8 ###### 149.3 2.4 1.8	312.6 118.8 622.1 96.3 2.4	314.6 125.9 ****** 447.9 35.9 1.7	316.4 135.2 ****** 398.1 15.5 1.7	317.3 142.3 ***** 373.3 6.7 1.7	342.3 84.7 ##### 1318.9 120.2 4.4	344.6 92.9 ###### 978.5 59.3 3.0	345.9 97.8 ***** 796.3 31.7 2.7	347.4 103.6 ###### 721.6 17.1 2.4
ENISSION PARAP BSHC BSCO BSHD1 CO2 D2	ETERS (g/ku-hr) (g/ku-hr) (g/ku-hr) (Z) (Z)	9.7490 18.125 45.807 2.8 16.8	.8846 8.3796 9.8267 18.6 5.4	1.1927 2.7671 12.932 8.0 9.1	1.8960 3.1175 12.696 5.2 13.3	6.2877 6.6406 17.333 2.5 17.1	1.3442 1.9832 8.3117 7.4 10.2	1.7599 2.6012 7.6283 5.5 12.9	3.0676 4.2938 8.0434 4.1 14.8	11.266 12.283 13.690 2.6 16.8
ANDIENT PARAM BARO. PRESSURE ABSOLUTE HABIT RELATIVE HUMI	ETERS (mm-Hg))ITY (gn/16))ITY (Z)	743.7 50.8 56.2	743.7 50.8 56.2	743.7 50.8 56.2	743.7 51.8 56.2	746.5 53.6 40.8	746.5 53.6 40.8	746.5 53.6 40.8	746.5 53.6 40.8	746.5 53.6 40.8
INDICATED PAR IXU ISFC IMEP ITE, actual ITE, theareticz RATIO, actual	HETERS (kg/ikw-hr) (bar) (Z) (1) (Z) (theoretical	9.7 172.3 1.8 48.5 63.8 .769	141.7 281.3 15.9 41.5 56.6 .734	82.1 187.9 9.2 44.5 58.3 .762	48.5 176.4 5.4 47.4 60.5 .783	23.9 156.9 2.7 53.3 62.6 .850	181.3 192.7 12.9 43.4 58.6 .741	108.9 182.4 7.7 45.8 60.9 .764	70.9 174.6 5.0 47.9 61.2 .783	42.5 163.5 3.0 51.1 62.4 .819

b

93/94

APPENDIX C

TAR SANDS PERFORMANCE DATA

XXXX SYNFUEL PROJECT 03-8538 TEST RESULTS XXXX

TARSAND PERFORMANCE TEST

RUN NUMBER TEST CODE DAY TINE PHASE TYPE FUEL ENGINE HOURS	(julian) (military)	46 13 3 1 5312 93515 1 TARSAN 99.0	47 13 2 1 5312 1031 13 1 TARSAN 99.9	48 13 3 1 5312 105245 1 TARSAN 108.3	49 13 4 1 5312 1125 1 1 TARSAN 103.8	50 13 5 1 5312 12 1 6 1 TARSAN 101.4	51 13 6 1 5312 125051 1 TARSAN 102.2	52 13 7 1 5312 1337 1 1 TARSAN 103.0	53 1381 5312 141534 1 TARSAN 103.6	54 13 9 1 5312 144150 1 TARSAN 104.0
ENGINE PARAMET ENGINE SPEED TORGUE POWER BSFC 3MEP BTE	ERS (n-m) (N-m) (kW) (g/kw-hr) (bar) (Z)	831 36.8 3.2 557. 15.5	1402 921.1 135.2 227. 15.2 38.1	1408 457.2 67.8 232. 7.5 37.2	1404 230.9 34.0 260. 3.8 33.2	1487 45.5 6.7 520, .7 16.6	2291 695.3 160.3 231. 11.4 37.3	2204 336.4 77.6 261. 5.5 33.1	2194 167.5 38.5 319, 2.8 27.1	2200 45.7 10.5 660 .8 13.1
ENGINE FLOW PA FUEL FLOW AIR FLOW AIR FUEL RATIO CHEMICAL AIR P SMOKE OPACITY	RANETERS (kg/hr) (kg/hr) VEL RATIO (2)	1.8 194.1 198.7 94.6 1.3	30.6 616.4 20.1 18.8 20.9	15.6 419.7 27.0 25.2 8.5	9.9 359.3 40.7 37.5 2.2	3.5 335.8 96.4 88.9 1.4	37.1 1022.2 27.6 27.0 8.4	20.2 763.1 37.7 36.7 6.8	12.3 624.3 58.9 49.6 4,1	6.9 555.1 30.1 78.3 1.7
TEMPERATURE PA CODLANT IN COCLANT CUT OIL SUMP OIL SALLERY INTAKE AIR CELL ANBIENT BOOST AF INNER FUEL IN EXHAUST #1 EXHAUST #2 EXHAUST #3 EXHAUST #3 EXHAUST #4 EXHAUST #6 EXHAUST \$6	RANETERS (de COOLER COOLER	g , c) 91 92 94 21 25 27 29 172 29 172 172 172 172 172 175 175 175 175 175 175 175 175 175 175	86 93 1895 24 389 732 6185 6071 6051 6051 6051 6051 6051 6051 6051 605	88 93 1022 23 762 83 22 4644 453 4445 452 454 452	91 943 1001 24 30 578 332 3321 3321 3321 3321 3321 3321 3321	90 22 896 25 29 48 76 33 44 79 55 19 79 55 19 79 79 79 75 19 79 75 19 75	87.2.84 97.1.84 11.2.7 11.347 5555 55564 493359 5566	903858409263389584498574498574448444527	92 44 64 33 84 33 44 65 24 64 33 44 65 24 64 33 44 65 24 75 75 75 75 75 75 75 75 75 75 75 75 75	9244227332 9994227332 999222222222222222222222222222222
PRESSURE PARAM OIL FUEL EXHAUST B4 TUR FILTER RESTRIC BCOST AF INNER EXHAUST STACK	ETERS (2pa) 200 (2pa) 210N (2pa) 210N (2pa) 200LER(kpa) (2pa)	257.4 169.8 ****** 199.1 2.8 1.3	311.4 94.3 ##### 821.2 103.7 2.7	312.7 117.7 ****** 547.4 34.5 2.0	313.8 130.2 ***** 323.5 14.1 2.0	315.9 134.1 ****** 423.8 5.8 2.0	341.0 81.6 ****** 1592.6 126.2 5.1	342.3 92.6 ***** 1119.8 , 68.9 3.4	343.4 98.7 ***** 895.8 30.7 3.4	315.3 103.1 ****** 796.3 16.2 3.0
EMISSION PARAP BSHC BSCO DSNOX CO2 O2	(g/ku-hr) (g/ku-hr) (g/ku-hr) (g/ku-hr) (Z) (Z)	8.9295 11.250 61.653 2.2 17.0	.6381 10.508 9.2246 11.5 4.9	,9289 3.0133 12.905 8.6 8.6	1.5290 2.9389 14.618 5.7 12.9	8.5789 11.826 26.599 2.3 17.2	1.8738 1.8249 8.9348 8.1 9.4	1,4644 2.6102 7.5452 5.9 12.9	2.7626 4.4574 9.8674 4.3 14.9	18.376 14.209 16.139 2.7 17.0
ANDIENT PARAM BARD.PRESSURE ABSOLUTE HUMII RELATIVE HUMII	ETERS (mm-Hg) DITY (gn/15) DITY (Z)	745.0 74.4 64.4	745.0 74.4 64.4	745.0 74.4 64.4	745.0 74.4 64.4	745.0 74.4 64.4	745.5 125.2 79.4	745.5 125.2 79.4	745.5 125.2 79.4	745.5 125.2 77.4
INDICATED PAR IKU ISFC IMEP ITE,actual ITE,theoretic, RATIO, actual	AMETERS (kg/itw-hr) (bar) (Z) al (Z) /theoretical	9.7 184.2 1.8 46.9 63.0 .744	149.9 204.4 16.8 42.2 56.3 .750	82.1 187.6 9.2 45.5 58.2 ,782	48.5 182.0 5.4 47.4 60.3 .787	21.6 161.0 2.4 53.6 62.8 .854	192.5 192.5 13.7 44.8 58.3 .769	109.7 184.6 7.8 46.8 59.9 .780	70.1 174.9 5.0 49.3 51.1 .907	42.5 163.3 52.8 62.4 .847

1

•

.

•

**** SYN VEL PROJECT \$3-8538 TEST RESULTS X***

.

TARSAND PERFORMANCE TEST

•

.

	RUN NUNBER TEST CODE DAY TINE PHASE TYPE FUEL ENGINE HOURS	(julian) (military)	56 13 1 2 5315 13 838 1 TARSAN 186.4	57 13 2 2 5315 135053 1 TAPSAN 107.1	58 13 3 2 5315 14 916 1 TARSAH 107.4	57 13 4 2 5315 142648 1 TARSAN 107.8	60 13 5 3 5315 145224 1 TARSAN 108.2	61 13 6 2 5315 151431 1 TARSAN 108.5	62 13 7 2 5315 153440 1 TARSAN 198.9	63 13 0 2 5315 155353 155353 155353 155353 155353 155353 105,2	64 13 9 2 5315 1615 0 1 TARSAN 109.6
	ENGINE PARANET ENGINE SPEED TORQUE POWER BSFC DHEP BTE	ERS (rpn) (N-H) (KW) (y/kw-hr) (bar) (2)	837 36.8 3.2 574. .6 14.5	1396 905.4 132.3 230. 14.9 37.5	1397 460.2 67.3 234. 7.6 36.9	1483 238.0 33.8 261. 3.8 33.0	1393 64.0 9.3 439. 1.1 19.6	2195 678.1 155.9 233. 11.2 37.0	2194 336.3 77.3 258. 5.5 33.4	2203 168.4 79.8 321. 2.8 26.9	2196 44.9 10.3 687. 7 12.6
	ENGINE FLOW PA FUEL FLOW AIR FLOW AIR FUEL RATIO CHEMICAL AIR I SHOKE OPACITY	RAMETERS {kg/hr} (kg/hr) FUEL RATIN (2)	1.9 194.3 101.2 95.4 1.5	30.5 600.0 19.7 18.8 21.9	15.7 117.4 26.5 25.1 8.7	8.8 354.7 40.2 38.4 2.4	4.1 329.8 80.4 78.9 1.5	36.4 1012.0 27.8 27.4 8.7	28.8 749.1 37.5 36.8 6.1	12.5 624.9 50.1 49.3 4.0	7.1 549.7 77.5 77.1 1.7
	TENPERATURE PI COOLANT IN COOLANT IN OIL SUMP OIL SUMP OIL SUMP DOST DA INNEI BOOST AF INNEI BOOST AF INNEI FUEL IN EXHAUST #1 EXHAUST #3 EXHAUST #3 EXHAUST #4 EXHAUST #4 EXHAUST #5 EXHAUST #6 EXHAUST STACK	ARANETERS (de R COOLER R COOLER	g.c) 91 92 94 24 243 73 155 155 158 158 158 158 159 155 155 155 155 155	- 86 93 1105 26 377 129 82 613 599 613 659 613 625 625 624	88 92 442 3377 33 33 339 95 24 44 45 95 24 44 45 95 24 44 45 95 24 44 45 95 24 44 45 95 24 45 95 24 45 95 24 45 95 24 45 95 24 45 95 24 45 95 25 25 25 25 25 25 25 25 25 25 25 25 25	91 933 1830 255 357 333 3208 3208 3209 3245 3245 3245 3245 3245 3245 3245 3245	923 997 2427 77 33 2192 2197 2192 2192 2192 2192 2192 2192	88 92 117 26 35 54 119 54 55 55 55 55 55 55 55 55 55 55 55 55	90388553296037359 1025396037359 40144522396 1025396037359 4014222372	92 94 1064 233 341 341 341 341 356 357 357 357 357 357 357 357 357 357 357	92 94 104 102 31 81 34 244 223 244 244 241 259 247
	PRESSURE PARA DIL FUEL EXHAUST B4 TU FILTER RESTRI BOOST AF INNE EXHAUST STACK	METERS (kpa) (kpa) RBO (kpa) CTION (pa) RCDOLER(kpa) (kpa)	262.8 167.8 ##### 248.8 1.9	313.1 83.1 ##### 895.8 ?9.4 2.0	314.8 115.1 ****** 597.2 33.8 .7	316.6 126.2 ****** 497.7 13.8 .7	317.8 131.9 ****** 472.8 5.1 .3	343.2 76.8 ***** 1741.9 124.8 4.4	344.5 86.0 ****** 1244.2 58.9 2.0	346.1 91.8 ***** 1045.1 30.7 1.3	347.4 97.0 ****** 920.7 15.2 1.0
	Enission Para BSKC BSCO BSKDI CO2 O2	HETERS (g/ku-hr) (g/ku-hr) (g/ku-hr) (Z) (Z)	18.344 13,462 57.560 2.2 17.7	.7648 10.834 9.1030 11.5 5.1	,8233 3.0630 10.326 8.7 9.2	1.4788 2.8269 14.131 5.6 13.0	5.1918 B.1531 22.401 2.7 16.9	1.0782 1.8128 7.8636 7.9 10.0	1.2454 2.4868 7.3698 5.9 12.8	2.2384 4.4412 6.7748 4.3 14.9	9.3537 14.769 12.788 2.7 16.9
	AMBIENT PARAN BARO. PRESSURE ABSOLUTE HUNI RELATIVE HUNI	ETERS (ma-Hg) DITY (gn/15) DITY (Z)	743.5 98.7 74.1	743.5 98.7 74.1	743.5 98.7 74.1	743.5 98.7 74.1	743.5 98.7 74.1	741.9 93.3 77.4	741.9 93.3 77.4	741.9 93.3 77.4	741.9 93.3 77.4
۴.	INDICATED PAR IKU ISFC IMEP ITE, actual ITE, theoretic RATIO, actual	AMETERS (2g/iku-hr) (bar) (2) al (2) /theoretical	18.4 183.7 1.9 47.8 62.8 .747	147.1 207.3 16.5 41.6 56.1 .741	191.8 191.8 9.2 58.1 .774	48.5 	23.9 171.8 2.7 53.2 62.4 .905	187.2 194.3 13.4 44.4 58.4 .761	108.9 183.3 7.8 47.1 59.9 .786	70.9 175.8 5.1 49.1 61.1 .303	41.8 167.7 38.8 58.8 62.3 .815

.

TEST RESULTS ****

TARSAND PERFOR	NANCE TEST	
RUN NUMBER TEST CODE DAY TINE PHASE TYPE FUEL ENGINE SOURS	(julian) (military)	55 13 5 2 5315 123439 1 14RSAN 105.7
ENGINE PARAHET ENGINE SPEED TORGIE POWER BSFC BMEP BTE	ERS (rpn) (N-A) (KU) (g/ku-hr) (bar) (Z)	1394 64,5 9,4 433. 1.1 19.9
ENGINE FLOW PA FUEL FLOW AIR FLOW AIR FUEL RATIO CHEMICAL AIR F SNOKE OPACITY	RAMETERS (kg/hr) (kg/hr) UEL RATID (2)	4.1 329.9 80.8 80.5 1.6
TEMPERATURE PA COOLANT IN COOLANT OUT OIL SUMP OIL SUMP OIL GALLERY INTAKE AIR CELL AMBIENT BOOST B4 INNET BOOST B4 INNET BOOST B4 INNET BOOST B4 INNET EXHAUST 41 EXHAUST 42 EXHAUST 43 EXHAUST 45 EXHAUST 45 EXHAUST 45 EXHAUST 45	Rameters (dz R Cooler Cooler	g.c) 92 939 97 25 32 32 32 32 32 32 32 32 32 32 32 32 32
PRESSURE PARAI OIL FUEL EXHAUST B4 TUN FILTER RESTRIN BOOST AF INNED EXHAUST STACK	NETERS' (hpa) (hpa) RBO (hpa) CTION (pa) RCOOLER(hpa) (hpa)	317.3 130.4 423.0 5.2 .7
EMISSION PARA BSHC BSCO 25N0x CO2 O2 O2	HETEIS (g/ku-hr) (g/tu-hr) (g/tu-hr) (Z) (Z)	5,6265 8,6175 24,135 2,6 17,1
AMBIENT PARAM BARO.PRESSURE ABSOLUTE HUMI RELATIVE HUMI	ETERS (nn-Hg) DITY (ga/15) DITY (Z)	743.5 98.7 74.1
INDICATED PAR IKW ISFC INEP ITE, actual ITE, theoretic PATIO	AHETEES (kg/ikw-hr) (bar) (Z) (a) (2) (themposics)	23.9 178.9 2.7 58.5 62.4

APPENDIX D COAL LIQUID BLEND PERFORMANCE DATA

**** SYNFUEL PROJECT 03-8538

TEST RESULTS ****

PERFORMANCE TEST 57 Z EDS

RUN MUMBER TEST CODE DAY TIME PHASE TYPE FUEL ENGLAE HOURS	(julian) (military)	1224 16 1 1 6039 112354 572EDS 158.9	1225 16 2 1 6038 121/57 1 57:4205 157.8	1226 16 J 1 6030 125512 1 57ZEDS 160.5	1227 16 3 1 6038 141824 572EDS 161.8	1228 16 5 1 6030 15 228 1 572ED5 162.5	1229 18 6 1 6030 153546 572ED5 163.1	1230 16 7 1 6030 16 514 572EDS 163.6	1231 16 8 1 6038 163257 1 572ED5 164.1	1232 18 9 1 6038 54711 577EDS 165.2
ENGINE PARAMETI ENGINE SPEED Torque Power Power BSFC BMEP BTE	ERS (rpa) (N-H) (XV) (g/kw-hr) (bar) (Z)	841 37.2 3.3 510. .6 16.9	1399 934.4 136,9 222. 15.4 38.7	1398 459.8 67.2 231. 7.5 37.3	1398 236.8 33.9 248. 3.8 34.7	1394 63.6 9.3 378. 1.8 22.7	2199 574.6 155.3 227. 11.1 37.9	2194 334.6 76.9 249. 5.5 34.5	2191 167,8 38,5 303, 2.8 26,4	2192 46.6 10.7 590. .8 14.6
ENGINE FLOW PAI FLEL FLOW AIR FLOW AIR FUEL RATIO CHEMICAL AIR FI SHOLE OFACITY	AHETERS (kg/hr) (kg/hr) JEL RATIO (Z)	1.7 192.9 115.3 97.0 1.1	30.4 684.3 19.9 19.5 18.7	15.5 409.8 26.4 24.8 8.4	8.4 347.1 41.4 38.4 1.4	3.5 327.9 93.4 83.1 1.5	35.2 1000.6 28.4 28.8 7.7	17.1 737.9 38.6 38.2 5.2	11.6 614.1 52.7 30.9 3.0	6.3 549.8 86.9 62.2 1.9
TEMPERATURE PAI CODLANT IN CODLANT OUT OUL SUMP OIL CALLERY INTAKE AIR CELL AMBIENT BOOST B4 INNER FUEL IN EDHAUST A1 EDHAUST A1 EDHAUST 42 EXHAUST 45 EDHAUST 45 EDHAUST 45 EDHAUST 5TACK	COOLER COOLER COOLER	19, c) 91 93 93 93 93 181 21 57 87 148 153 174 188 153	863 919 1184 211 377 1439 313 596 6151 599 6151 591	893 1022 331 881 3233 447 452 447 452 447 477	913 1099 2322 5764 40 3227 3228 3222 3222 3222 3222 3222 3222	72339877242838773422780 22253773422780 221982218422 1982218422	8579946555297429944897643	9837 1074 10251 990 342987 34780 4311 379 342987 347380 4311 379 342987 347380 4311 379 342987 347380 4311 379 342987 3474 347380 3474 3475 3475 34758 34778 34758 3477878 34778 34778 347778 347778 3	51450252525252525355554560 10225252525252555555555555555555555555	92 93 102 100 228 60 797 378 238 2413 243 243 243 243 243 243 243 243 243 24
PRESSURE PAXAME DIL FUEL EXHAUST BA TURB FILTER RESTRICT BOOST AF INNERC EXHAUST STACK	TERS (kpa) (kpa) CO (kpa) TON (pa) OPLER(kpa) (kpa)	257.8 158.4 3.3 99.5 1.4 .3	313.3 87.3 55.6 373.3 107.5 2.8	314.8 180.5 28.8 224.0 34.2 1.\$	316.0 125.4 9.2 197.1 12.3 .7	317.2 134.0 6.1 174.2 5.3 .7	345.3 77.1 186.8 746.5 127.5 4.1	346.6 87.4 52.4 497.7 58.9 1.7	348.1 93.9 31.9 398.1 30.1 1.3	348.8 97.8 21.8 348.4 15.5 1.8
ENISSION PARAKE BSHC BSCD SSHDI CU2 D2 D2	TERS (g/ku-hr) (g/ku-hr) (g/ku-hr) (Z) (I)	11.485 13.497 62.468 2.1 17.1	.8088 9.4148 10.118 11.1 5.4	1.8789 2.9843 12.746 8.8 9.3	1.7926 2.9163 16.259 5.6 13.3	5.6519 8.5789 23.382 2.5 16.9	1.1278 2.1323 9.4581 7.5 16.7	1.4241 2.7661 8.2390 5.6 13.2	2.9288 4.9179 9.4283 4.2 15.1	13.825 14.698 16.7 2.3 17.4
AMBIENT PARANET BARO.PRESSURE ABSCLUTE HUNIDI RELATIVE HUMIDI	ERS (run-11 0) TY (gn/16) TY (Z)	748.1 46.4 51.7	748.8 46.4 51.7	748.1 46.4 51.7	748.1 46.4 51.7	746.5 77.3 58.5	746.5 77.3 .58.5	746.5 77.3 58.5	746.5 77.3 58.5	746.5 77.3 58.5
INDICATED PARAM IKU ISFC (INEP ITE,actual ITE,thearetical RATIO, actual/t	ETERS (bar) (Dar) (Z) (Z) heoretical	18.4 168.1 1.9 53.7 63.8 .852	151.4 200.9 17.8 42.8 56.2 .761	82.1 188.8 9.2 45.5 58.1 .784	48.5 172.9 5.4 49.7 60.3 ,824	23.9 147.9 2.7 58.5 62.7 .933	187.2 188.1 13.4 45.7 58.5 .782	108.2 176.9 7.7 48.6 60.0	70.1 136.1 51.8 61.3 .845	42.5 148.5 57.6 .925

**** SYNFUEL PROJECT CJ-8538 TEST RESULTS ****

.

.

.

۰.

.

PERFORMANCE TEST 57 Z EDS									
RLW NUMBER TEST CODE DAY TIME (julian) TIME (military) PHASE TYPE FUEL EMELME HARS	1233 16 1 2 6939 2141 6 1 572EDS 166.6	1234 16 2 2 6839 223419 1 572EDS 167.5	1235 16 3 2 6031 11 227 1 57ZEDS 167.9	1236 16 4 2 6031 112852 1 572EDS 168.4	1237 16 5 2 6031 121648 571EDS 169.1	1238 16 6 2 6831 125849 1 572EDS 167.7	1239 16 7 2 6031 131514 1 577EDS 178.1	1249 16 8 2 6031 1336 3 1 572EDS 179.5	1241 16 9 2 6031 135258 1 577EDS 170.8
ENCINE PARAMETERS ENCINE SPEED (PDR) TORGIE (N+N) POWER (LW) BSEC (g/ku-hn) BMEP (bar) BTE (2)	841 37.5 3.3 464. .6 18.5	1399 948.8 137.7 222. 15.5 38.7	1399 459.8 67.3 228. 7.6 37.7	1403 232.2 34.1 258. 3.8 34.4	1379 64.1 9.4 385 1.1 22,3	2198 662.1 152.4 226. 10.9 38.0	2194 335.2 77.1 248. 5.5 34.7	2191 168.9 38.7 301. 2.8 28.6	2202 45.4 10.5 612. .7 14.1
ENGINE FLON PARAMETERS FUEL FLON (kg/hr) AIR FLON (kg/hr) AIR FUEL RATIO CHEMICAL AIR FUEL RATIO SMOKE OPACITY (Z)	1.5 196.1 127.8 96.3 1.∎	30.5 699.5 29.8 19.5 18.8	15.4 418.1 26.7 20.3 8.5	8.5 348.9 41.0 37.8 1.8	3.6 338.7 91.4 79.3 1.4	34.5 995.7 28.9 29.2 7.9	19.1 741.8 38.8 37.9 5.4	11.7 615.3 52.8 50.2 3.2	6.4 553.5 86.4 81.1 1.5
TENPERATURE PARAMETERS (de COOLANT IN COOLANT OUT OIL SUMP OIL SUMP OIL GALLERY INTAKE AIR CELL ANBIENT BOOST B4 INMER COOLER BOOST AF INMER COOLER FUEL IN EXMAUST 81 EXMAUST 81 EXMAUST 82 EXMAUST 83 EXMAUST 84 EXMAUST 85 EXMAUST 85 EXMAUST 86 EXMAUST 86 EXMAUST 86 EXMAUST 86 EXMAUST 86 EXMAUST 86 EXMAUST 86 EXMAUST 86	g.c) 87 87 88 19 221 45 31 155 157 144 145	8492944225555 14983366225545632654664658 1498336625512235	88921511233133813344753844559 19511233138813344753844559 1947	99 97 100 120 262 262 27 31 27 31 27 464 31 23 31 27 464 31 23 31 23 31 23 31 23 31 23 31 23 31 23 31 23 31 23 31 24 25 26 26 26 27 31 20 20 31 20 20 20 20 20 20 20 20 20 20 20 20 20	92388 92388 92488 743313 1914 2022 1981 1984 1986	8873 1114 11252 1519 1519 1507 1512 1519 1512 1519 1512 1512 1512 1512	99374453308987744444451199374444445	91 93 1042 25 31 331 332 333 331 332 331 3312	
PRESSURE PARAMETERS OIL (hpa) FUEL (hpa) EXHAUST B4 TURBO (hpa) FILTER RESTRICTION (pa) BOGST AF INMERCOLER(hpa) EXHAUST STACK (kpa)	274.8 156.7 2.1 99.5 2.1 .3	313.1 82.9 51.3 348.4 109.8 2.8	314.7 112.3 17.3 224.8 35.1 1.3	316.4 125.9 8.1 199.1 13.4 1.8	317.8 133.7 4.7 199.1 6.1 1.9	344.6 77.3 103.5 771.4 126.3 4.4	346.2 86.7 51.3 522.6 60.2 2.4	347.7 94,8 30.5 423.8 38.8 1.7	349.7 99.6 21.2 373.3 16.8 1.7
EMISSION PACAMETERS BSHC (q/tw-br) BSCO (q/tw-br) BSHOx (q/tw-hr) COE (Z) OZ (Z)	9.4128 11.289 47.665 2.2 17.7	.6792 9.6325 9.2281 11.1 3.6	. 8778 3. 1361 11.316 8.6 9.3	1.1722 2.9912 14.189 5.7 13.2	5.8064 8.4939 24.122 2.6 15.8	.9993 1.9226 9.1593 7.4 18.7	1.3684 2.7698 7.8283 5.7 13.2	2.9898 4.9823 9.1373 4.2 15.1	9.5982 15.264 16.456 2.6 17.3
ANDIENT PARAMETERS BARD, PRESSURE (MM-Hg) ABSOLUTE HUNIDITY (gn/16) SELATIVE HUNIDITY (Z)	744.7 78.5 75.1	744.7 78.5 75.1	744.7 78.5 75.1	744.7 70.5 75.1	745.8 68.8 47.8	745.8 60.0 47.8	745.8 69.0 47.8	745.9 60.0 47.1	745.8 68.0 47.8
INDICATED PARAMETERS IKW ISFC (ky/ikw-hr) IMEP (bar) ITE,actual (Z) ITE,theoretical (Z) RATIO, actual/theoretical	18.4 146.9 1.9 58.5 63.2 .926	152.2 299.7 17.8 42.8 56.2 .762	82.1 187.1 9.2 45.9 58.1 .79	49.2 172,9 5.4 49.7 40.3 .824	23.9 151.6 56.7 62.7 .915	184.3 187,1 13,1 46.8 58.6 .785	108.9 175.4 7.8 49.0 60.1 .816	70.1 166.3 5.0 51.7 61.3 .844	42.5 158.7 3.8 57.1 62.5 .912

102

.
103/104

APPENDIX E COAL LIQUID BLEND SCREENING TEST DATA

105/106

**** SYNFUEL PROJECT 03-8538			TEST RESULTS ****						
DS SCREENING TEST									
RUN NUMBER TEST CODE DAY (julian) TIME (military) PHASE TYPE FUEL ENGINE HOURS	743 14 1 1 6017 1915 9 1 402EDS 149.9	744 14 3 1 6017 105957 1 402ED5 149.7	745 14 6 1 6017 11 546 1 402EDS 149.9	746 15 1 1 6017 142022 1 50%EDS 151.4	747 15 3 1 6017 143523 1 502EDS 151.7	748 15 6 1 6017 144739 1 502EDS 151.9	749 16 [1 6021 131635 1 572EDS 153.8	750 16 3 1 6821 153814 572ED5 154.2	751 16 5 1 6021 154636 572ED5 154.3
ENGINE PARAMETERS ENGINE SPEED (rpm) TURGUE (N-H) POWER (KW) BSFC (g/2→h) BMEP (bor) BTE (2)	828 38.0 313 513 16.7	1391 459.9 67.0 231. 7.6 37.0	2198 673.9 155.1 221. 11.1 39.8	833 37.2 3.2 515. .6 16.6	1391 458.9 66.9 231, 7.5 37.1	2199 672.9 154.9 229. 11.1 37.4	833 38.7 3.4 446. 18.4	1385 458.4 66.5 234. 7.5 36.8	2197 679.2 156.3 1129.1 117.5
ENGINE FLOW FARAMETERS FUEL FLOW (kg/hr) AIR FLOW (kg/hr) AIR FUEL RATIO CHEMICAL AIR FUEL RATIO SHORE OFACITY (2)	1.7 188.7 111.9 6.0 2.2	15.5 409.3 26.4 9.0 10.7	34.1 1013.5 29.0 0.8 8.0	1.7 191.2 114.3 0.0 J.1	15.5 409.1 26.5 8.0 10.6	35.5 1011.6 28.5 0.6 8.2	1.6 188.1 119.7 8.0 1.1	15.5 397.5 25.6 9.1	35.8 972.6 27.7 8.0 9.1
TEMPERATURE PARAMETERS (CODLANT IN CODLANT OUT OIL SUMP OIL CALLERY INTAKE AIR CELL ANBIENT BOOST B4 INNER COOLER FUEL IN EXHAUST 41 EXHAUST 42 EXHAUST 43 EXHAUST 44 EXHAUST 44	ieg. c) 22 35 59 4 18 22 51 3 17 22 51 3 17 22 51 3 17 22 51 3 17 22 51 3 17 22 51 59 59 4 18 22 51 59 59 59 59 59 59 59 59 59 59 59 59 59	90 945 1822 197 278 823 333 4634 4593 45593 45593 4559 4554 4554	89 94 1106 199 343 1199 5106 5126 5126 5126 5126 5126 5126 5126 512	91 93 93 21 24 51 74 31 64 74 164 164 157 171	8935 1001 229882224457 445744890 44573	88 93 1117 232 35 155 153 153 153 153 153 153 153 153	91 92 94 26 39 161 161 163 177 177	893365225387832558 101225387832558 1952258774454 1952274454	873848778331887783348977238334897723833489772383348977238334897723473555477
PRESSURE PARAMATERS DIL (kpa FUEL (kpa EXHAUST B4 TURBO (kpa FILTER RESTRICTION (pa BOOST AF INHERCODLER(kpa EXHAUST STACK (kpa) 254.3) 166.9) 3.5) 74.7) 1.4) 0.4	312.7 98.9 22.9 199.1 36.5 .7	344.1 81.1 114.5 696.8 133.9 4.4	262.1 169.0 3.5 74.7 1.5 .3	313.2 98.7 22.5 174.2 35.7 .7	343.3 81.8 113.7 721.6 131.8 4.7	261.2 168.6 3.5 74.7 1.4 .3	313.4 124.5 21.9 199.1 34.4 1.0	345.0 82.8 112,8 721.6 130.3 4.4
ENISSION PARAMETERS BSHC (q/kw-hr BSCO (g/kw-hr BSHON (g/kw-hr CU2 (2 O2 (2) 0.0000) 0.0000) 0.0000) 0.0000) 1)	0.0000 0.0009 0.0000 .1 .2	0.0000 8.0000 0.0000 .1 .1	0.0000 0.0000 0.0050 .1 .1	8.8609 0.0300 0.3069 .1 -,1	0.0060 0.0800 0.0000 1.1 .2	0.0300 0.4000 0.8000 0.8000 .4	0.0000 0.0300 0.9000 0.9000 .0	0.0408 0.0000 0.0080 0.0 0.0 0.0
ANDIENT PARAMETERS BARD.PRESSURE (mm-Ho ABSOLUTE HUNIDITY (gn/10 RELATIVE HUMIDITY (1) 744.5) 84.4 () 81.7	744.5 84.4 80.7	744.5 84.4 B0.7	748.5 85.5 76.7	74B.5 65.5 76.7	748.5 85.5 76.7	74:.2 81.4 65.3	741.2 81.4 65.3	741.2 81.4 65.3
INDICATED PARAMETERS IKU ISFC (ig/iku-hr IMEP (bar ITE,actmal (i ITE,theoretical (i PATTO Jerna)/ingenetical	9.7 173.9 1.8 1.9 49.2 1.0 63.8 1.1 791	81.3 190.6 9.2 44.9 58.1	187.2 181.9 13.4 47.0 58.7	9.7 172.5 1.0 49.7 63.0	81.3 199.1 9.2 45.1 58.1	186.5 198.5 13.3 45.1 58,5	10.4 151.5 1.9 57.1 43.1	B1.2225	188.0 198.4 13.4 45.2 58.3