DETERMINATION AND CORRELATION OF HYDRODYNAMIC VARIABLES IN A THREE-PHASE FLUIDIZED BED

> MASSACHUSETTS INST. OF TECH., OAK RIDGE, TENN. SCHOOL OF CHEMICAL ENGINEERING PRACTICE

21 NOV 1975

U.S. Department of Commerce National Technical Information Service

One Source. One Search. One Solution.

Providing Permanent, Easy Access to U.S. Government Information

National Technical Information Service is the nation's largest repository and disseminator of governmentinitiated scientific, technical, engineering, and related business information. The NTIS collection includes almost 3,000,000 information products in a variety of formats: electronic download, online access, CDROM, magnetic tape, diskette, multimedia, microfiche and paper.

Search the NTIS Database from 1990 forward

NTIS has upgraded its bibliographic database system and has made all entries since 1990 searchable on www.ntis.gov. You now have access to information on more than 600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites

Because many Government agencies have their most recent reports available on their own web site, we have added links directly to these reports. When available, you will see a link on the right side of the bibliographic screen.
Download Publications (1997 - Present)
NTIS can now provides the full text of reports as downloadable PDF files. This means that when an agency stops maintaining a report on the web, NTIS will offer a downloadable version. There is a nominal fee for each download for most publications.

For more information visit our website:
WWW.ntis.gov

UniON CAMEDE COMPORATIOM
 E

ORNL/MIT-219

Date November 21, 1975 COPY no
SUEJEC: Determination ard Correlation of Hydrodynamic Variables in a Three-Phase Fluidized Bed
Authors: S.R. Bloom, J.F. Costa, J. Herranz, S.R. Roth, and G.L. Machilliam
Consultants: J.M. Begovich and J.S. Watson

Abstract

The basic hydrodynamic variables of minimum fluidization velocity and phase holdups were experimentally measured in a three-phase fluidized bed utilizing a pressure profile technique. The effect of the liquid viscosity on the hydrodynamic variables was determined with giycerine-water solutions ranging in viscosity from 0.9 to 11.5 cp . Computerized techniques for data handling and analysis are presented. Correlations for the phase holdups and minimum fluidization velocities as functions of the phase properties and operating parameters are presented for the experimental data and for data compiled from literature sources. An error analysis was performed on the experimental procedure to identify specific procedures requiring modification or control.

BLANK PAGE

Prinzed in the United Stazes of Anserica. Available from National Technical Infermation Service U.S. Department of Commerce 5285 Port Royal Road, Springtield, Virginia 22161 Price: Printed Copy 55.00 : Microfiche $\$ 2.25$

This report mis prepered as an accourr of work sporsoored by the Unized Syetex Gowerrment. Neither the Unitud Smiter nor the Energy Poswerch ind Deviloprrint

 ary werrenty. exprest or inpled, or asumes arry mell himbility or remponaibility for the accuracy, completeness or unturness of amy miformetion, apperstus, product or prosess dirclowd. or regrtsenes that its une would noc infringt priveraly anomed rights.

Contents

Page

1. Summary 4
2. Introduction 5
2.1 Background 5
2.č Previous Hork 6
2.3 Objectives and Method of Attack 6
3. Apparatus and Procedure 7
3.1 Apparatus 7
3.2 Procedure 7
4. Results and Discussion of Results 9
4.1 Fluid Effects on the Hydrodynamic Variables 9
4.1.1 Bed Pressure Drop 9
4.1.2 Minimum Fluidization Velocity 14
4.1.3 Phase Holdups 14
4.2 Error Analysis 14
4.3 Correlatiori of Hydrodynamic Variables 26
4.3.1 Approach 26
4.3.2 Solid Holdup 27
4.3.3 Gas Holdup 30
4.3.4 Liquid Hcldup 30
4.3.5 Minimum Fluidization Velocity 36
5. Conclusions 36
6. Recommendations 37
7. Acknowledgment 38
8. Appendix 39
8.1 Error Analysis Calculations 39
8.2 Computerized Data Analysis 41
8.3 Correlation Program 59
8.4 Location of Data 70
8.5 Nomenclature 70
8.6 Literature References 71

1. SUMMARY

To evaluate the effect of liquid viscosity on three-phase fluidization, $5-\mathrm{kIN}$ glass beads were fluidized with various water-glycerine solutions ranging in viscosity from 0.9 to 11.5 cp . All three phase holdups and minimum fluidization velocities were measured using a bed pressure profile technique. A computer program for the data processing required by this technique was developed, enabling rapid and consistent analysis of the experimental data.

An error analysis was performed on the experimental procedure to identify those steps requiring modification or controi. The absolute error associated with the calculation of each phase holdup was essentially constant over a wide range of operating conditions. The major sources of experimental error were in the measurenent of the solid density and the determination of the bed height and pressure drop. The absolute error resulting from these measurements was most significant for the gas and liquid holdups.

Correlations for the phase noldups and minimum fluidization veiocities were determined from both the experimental data and from data reported in the literature. Two different correlations were found for the solid phase holdup depending on whici data were correlated. For the ORNL data, which includes the experimental data from this investigation and the data obtained by Khosrowshahi et al. (8), the solic phase holdup could be represented by:

$$
\begin{equation*}
1-\varepsilon_{S}=1.03 \mathrm{Fr}_{L} 0.094+0.003 \mathrm{Ga}^{-0.026+0.001} \tag{1}
\end{equation*}
$$

On expanding the data base to include that reported in the literature by a variety of authors (1, 2, 4, 6, $9,11,12,13$), a different correlation for the solid holdup was determined:

$$
\begin{equation*}
1-\varepsilon_{S}=1.53 \operatorname{Re}_{\mathrm{L}}^{0.275+0.005 \mathrm{Ga}^{-0.171+0.003}} \tag{2}
\end{equation*}
$$

The gas holdup depended predominantly on the gas velocity and was only slightly dependent on the liquid velocity and independent of tine liquid viscosity. The correlation determin $\approx d$ for the prediction of the gas holdup was

$$
\begin{equation*}
\left.\varepsilon_{G}=0.15\left(\frac{U_{G}^{5}}{U_{L} \sigma_{L}}\right)\right)^{0.100+0.003} \tag{3}
\end{equation*}
$$

This correlation was based only on the experimental data measured in this investigation, since sufficient reliable data for gas holdup could not be found in the literature.

A dimensicnal correlation for the liquid phase holdup was ob+ained:

$$
\begin{equation*}
c_{L}=0.45 u_{I}^{0.269+0.007} v_{G}^{-0.146+0.010}\left(v_{S}-\varepsilon_{L}\right)^{-1.072+0.034} \tag{4}
\end{equation*}
$$

Sinilarly, the liquid minimum fluidization velocity was correlated as functions of the dimensional operating parameters:

$$
\begin{equation*}
U_{L_{m f}}=0.014=\frac{3.70+0.153}{}=0.473 \div 0.015 \tag{5}
\end{equation*}
$$

This correlation was based on a restricted operating range, however. A dimensionless correlation. for either the liquid holdup or minimum fluidization velocity could not be obtained.

Recommendations for the future investigation of three-phase fluidized beds were presented. Variation cf alternative operating parameters was suggested as necessary for verification of the obtained correlations and for identification of other operating dependencies. Further correlations, particularly of a non-product form, should be attempted to allow for more accurate prediction of the hydrodynamic variables. Improvements were proposed in the experimental procedure and techniques.

2. INTRODUCTION

2.1 Background

In three-phase fluidization a bed of solid particles is suspended by an upward cocurrent flow of both gas and licuid. The principal applicatio of this technique is as a contactor for catalytic reactions involving gas and liquid reactants and a solid catalyst. Current industrial processes utilizing this technique inciude catalytic hydrogenation of petroleum stocks, coal liquefaction, and biochemical conversions. A better understanding of the flow behavior in a three-phase fluidized bed is escential for the design analysis of such industrial operations. However, current theoretical models are unsuccessful in adequately describing the hydrodynamics of a three-phase fluidized bed, and empirically derived correlations are often contradictory ameng investigators. To obtain a general correlation describing the behavior of a three-phase fluidized system, it is necessary to compile and analyze data over a wide range of operating conditions.

2.2 Previous Work

The solid holdup in a three-phase fluidized bed has been measured by a number of investigators over a wide range of operating conditions and a variety of correlating parameters have been presented in describing the flow behavior of the fluidized system. Several authors (1, 5, 13 ; have attempted correlations tased on a generalized bubble wake model. Others have presented correlations, for the phase holdups in terms of both dimensional and non-dimensional groups (3, 4, $\mathbf{i}, \mathbf{8}, \underline{9}, 12$). To obtain a reliable correlation, it is necessary to cover a wide range of operating conditions. In an extensive study of three-phase fluidization, Kim et al. (9) demonstrated the importance of viscosity on the phase hoidups, an effect not considered in the predominantly air-water-solid fluidization studies of other investigators. In the most recent study on three-phase fluidization, Khowrowshahi et al. (8), recognizing the importance of considering a wide range of operating conditions, collectec and compiled information from a number of authors ($4,6,9,12$) in his study of the hydrodynamic variables in a three-phase fluidized bed.

2.3 Objectives and Method of Attack

To evaluate the effect of viscosity on three-phase fluidization, 5-mm glass particles were fluidized with air and five different waterglycerine solutions ranging from 0 to 66% glycerine by weight. The phase ho? 14 ps of this system were determined from Eqs. (6), (7), and (8).

$$
\begin{align*}
& \varepsilon_{S}=M_{S} / \rho_{S} A H_{B} \tag{6}\\
& \Delta P=\left(\varepsilon_{S} \rho_{S}+\varepsilon_{L} \rho_{L}+\varepsilon_{G} \rho_{G}\right) g H_{B} \tag{7}\\
& I=\varepsilon_{S}+\varepsilon_{L}+\varepsilon_{G} \tag{8}
\end{align*}
$$

The bed height, pressure drop across the bed, and minimum fluidization velocities were obtained by the longitudinal pressure profile technique previously employed by other investigators ($1,8,9,11$). The laborious manual piotting and graphical analysis required by this technique has been incorporated into a computer program enabling rapid and consistent analysis of the experimental data.

The experimental data were correlated both independently and in conjumction with data compiled from the literature (1, 2, 11, 13). The correlation procedure involved a step-wise multiple linear regression for dimensional, and subsequentiy, significant non-dimensional operating parameters. A product form of correlation in terms of the dimensional operating parameters
was first assumed. The variables of lesser inoortance, based on a t-test, were successively eliminated until further reduction in the nunter of variables significantly reduced the correlation coefficient. Product forms of the dimensionless groups formed from the significant dimensional variables were then correlated with the best correlation being found by a motified step-wise process. This procedure identified the significant operating varizules and eliminated conflicting interactions of the dimensionless groups.

An error analysis was performed on the experimental procedure to identify the specific procedures requiring modification or control. The error analysis for the phase holdups was performed using second power equations for single sample experiments following a technique outlined by Kline and McClintock (10). The specific set of operatirg conditions analyzed were selected based on the bounding values of the experimental operating conditions.

3. APPARATUS AND PROCEDURE

3.1 Apparatus

The experimentation was conducted in the apparatus shown in Fig. 1. Liquid was pumped from the $55-$ gal feed tanks through a series of rotameters to the bottom of a 3 -in.-diam Plexiglas column where a 50 -mesh screen acted as a liquid distributor. Similarly, air flowed from an air line through a series of gas retameters and entered the column through a cross-shaped gas distributor located directly above the liquid aistributor. The gas and liquid flowed cocurrently upwards through the column, the exit air being vented to atmosphere and the liquid recycled to the feed tanks. A series of manometers located at intervals along the column wall enabled measurement of the pressure profile up the column.

3.2 Procedure

The Plexiglas column was cinarged with 2500 gm of 0.462 - cm-diam glass beads, the beads having an average density of $2.26 \mathrm{gm} / \mathrm{cm} 3$. These particles were fluidized by both air and a water-glycerine solution, the selution ranging from $0-66 \%$ glycerine by weight ($0.9-11.5 \mathrm{cp}$). The densities of all liquid solutions were determined using a calibrated hydrometer and the viscosities measured with a Fenske tube viscometer. The viscosity was checked frequently to detect variations due to temperature and water evaporation.

Fcr each of the five water-glycerine solutions, fluidization studies were conducted at five superficial gas velocities ranging from 3.5 to 14.0 $\mathrm{cm} / \mathrm{si} \mathrm{c}$. At every gas velocity, the superficial liquid velocity was varied from 1.0 tc $8.3 \mathrm{~cm} / \mathrm{sec}$. The pressure profile up the column was measured

at each liquid velocity by the series of manometers along the colum. ine pressure drop due to flow at any cosition in the column was calculated as the difference between the height of fluid in the manometer located at that position and the height in the bottom manometer. The solids bed height and pressure drop across tine bed were determined by a plot of pressure drop against distance up the column as shown in Fig. 2. Here the point of intersection of the two straight lines represents a change in the pressure gradient up the column and the transition from the three phase region to the two-phase bubble columm region above the bed. The bed height and pressure drop obtained in this manner were substituted into EqS. (6), (7), and (8) to calculate the phase holdups. A series of such measurements were made at several different liquid flow rates for a constant gas flow rate. The minimum fluidization velocities were determined, as shown in Fig. 3, by a plot of the pressure drop against the superficial liquid velocity. All calculations, plotting, and data analyses were performed by the computer programs documented in Appendix 8.2.

4. RESULTS AND OISCUSSION OF PESULTS

4.1 Fluid Effects on the Hydrodynamic Variables

4.1.1 Bed Pressure Drop

The reduced pressure jrop through the solid bed as a function of the superficial liquid velocity is shown in Fig. 4 for three gas velocities at a constant iiquid viscosity. This pressure drop is based on the buoyant weight of the solid bed:

$$
\begin{equation*}
W_{\text {buoy }}=M_{s}\left(\frac{\rho_{s}-o_{f}}{\nu_{S}}\right) g \tag{9}
\end{equation*}
$$

The pressure drop increased with increasing liquid velocities prior to fluidization. The minimum liquid fluidization velocity was determined at the point at which the pressure drop became independent of further increases in liquid velocity. For the water-air fluidization system depicted in Fig. 4, the maximum bed pressure drop and the minimum liquid fluidization velocity decreased with increases in the gas superficial velocity.

In Fig. 5 the reduced pressure drop through the bed as a function of the superficial liquid velocity is shown for three different liquid viscosities at a constant gas velocity. Again, the pressure drop increased with increasing liquid velocity below minimum fluidization. With increasing liquid viscosity, the maximum bed pressure drop and the minimum l quid fluidization velocity were lowered. This is the result of the larger upward drag force exerted on the solid particles by the higher viscosity solutions.

4.1.2 Minimum Fluidization Yelocity

The effect of liquid viscosity on the minimum fluidization velocities is iilustrated in Fig. 6. The points on the ordinate correspond to the theoretical values for the liquid minimm fluidization velocity in a twophase fluidized bed. These values were calculated from the correiation derived by Wen and Y_{u} (15):

$$
\begin{equation*}
\operatorname{Re}_{\text {drf }}=\left[\{33.7)^{2}+0.0408 \mathrm{Ar}\right]^{1 / 2}-33.7 \tag{10}
\end{equation*}
$$

It is apparent from Fig. 6 that fur a given superficial gas velocity, the minimum liquid fluidization velocity decreases as the liquid viscosity is increased. For the range of operating conditions studied, the minimum liquid fluidization velocity was independent of the gas velocity for the more viscous solutions. The extrapolation of the minimum fluidization velocities to the two-phase region does indicate some dependence on the gas velocity. However, the form of this dependence cannot be evaluated due ω the restricted range of operations.

4.1.3 Phase Holdups

The effect of the iiquid and gas superficial velocities on the solid, liquid, and gas holdups are shown ir. Figs. 7 through 10. The larger drag forces applied to the solid particles by an increase in the liquid velocity. causes the solid bed to expand. This results in a significant decrease in the solid holdup and a counterbalancing increase in the liquid holdup with only a slight effect on the gas holdup as shown in Fig. 7.

A variation in the gas velocity affects primarily the gas and liquid holdup with little change in the solid holdup. The result of changing the superficial gas velocity on the phase holdups is illustrated in Figs. 8 through 10.

The effect of the liquid viscosity on the different phase holdups is shown in Figs. 11 through 14. A higher solution viscosity yields higher drag forces on the solid particles at constant fluid valocities. The result of increasing the liquid viscosity is similar to increasing the liquid velocity. The solid holdup decreases with a compensating increase in the liquid holdup as shown in Figs. 11 and 12. The Tiquid viscosity does not affect the gas holdup as shown on Fig. 13. The affect of the viscosity on the ted porosity shown in Fig. 14 is comparable to the effect demonstrated by Kim et al. (9).

4.2 Error Analysis

In most engineering experiments it is not practical to estimate all of the uncertainties of observations by repetition; a single observation

Viscosity (cp).
(${ }^{\text {n. }}$
3.1

MASSACHUSETIS INSTITUIE Of TECHNOLOCY sehool of chemical encinel ring piascticl oak hidge naliónal lagoratory		
frics or viscosify (9: Minimim riumoliation VLlocitr		
(0,7t	${ }^{\text {DNADNAM }}$	

MASSACHUSETTS IMSTITUTE OF TECMMOLOCY SCHOOL OF CHEMCAL ENGINE EMUG DRACTICE OAK RIDGE MATIONTAL LABORATORY		
EFFECT OF SUPERF!CIAL GAS VELOCITY ON GAS HOLDUP		
$\begin{aligned} & \text { IATE } \\ & 11-16-75 \end{aligned}$	$\begin{gathered} \text { ORAMN at } \\ \mathrm{JH} \end{gathered}$	$\begin{aligned} & \text { FILE MO. } \\ & \text { CEPS-X- } 219 \\ & \text { FF. } \end{aligned}$

$\Delta \quad 11.5$
$0 \quad 3.8$
[0.9

MASSACHUSETTS MSTITUTI OF TECHNOLOOY school or chemical engine emino pactict oak ride ma hional labohatory			
effect of viscosity on ded porosity			
-	DRANATH		14

at any one set of operating conditions must suffice. Kline and McClintock (10) have derived an expression for evaluating the uncertainty interval associated with such single sample experiments. If Q is a function of n independent variables,

$$
\begin{equation*}
Q=f\left(q_{1}, q_{2}, \ldots, q_{n}\right) \tag{11}
\end{equation*}
$$

The uncertainty associated with Q is given by:

$$
\begin{equation*}
\Delta Q=\left[\sum_{i=1}^{n}\left(\frac{\partial f}{\partial q_{i}} \Delta q_{i}\right)^{2}\right]^{1 / 2} \tag{12}
\end{equation*}
$$

where Δq_{i} is the uncertainty associated with each of cine independent variables.

This method was applied in determining the uncertainty associated with each of the calculated phase holdups. The phase holdups were functions of the independent variables presented in Eqs. (6), (7), and (8). The uncertainties intrinsic to each of these independent terms could be estimated statistically or from the observed limitatations of the measuring apparatus. The particular equations from which the uncertainties associated with the phase holdups were calculated are presented in Appendix 8.1.

Error analyses were not performed for all calculated values of the phase holdups. Instead, the holdups selected for analysis were based on a factored design of the experimentation. The holdups analyzed represented those at the maximum and minimum bounds of the experimental operating conditions. The error analysis was also extended to inc?ude the data obtained by Khosrowshahi et al. (8) with 8×12 and 4×8 mesh alumina-water-air fiuidized systems.

The absolute value of the error for each of the phase holdups was found to be essentially constant over a wide range of operating conditions, as shown in Fig. 15. The average absolute error was 0.018 for the solid holdup, 0.056 for the gas holdups, and 0.058 for the liquid holdup. This corresponds to an average relative error of 4% for the solid holdup, 14% for the liquid holdup, and 54\% for the gas holdup. The major sources of these experimental errors were identified. For the solid holdup, over 50\% of the error was attributed to the error in measuring the solid density and oypr 40\% to the error in calculating the bed height. The errors associated with the mass of solid in the bed and the column area were negligible. Furthermore, the error in the solid density accounted for over 40% of the error associated with the gas holdup, the remainder resulting from the uncertainty associated with the calculation of the bed pressure gradient. The error in the liquid holdup is directly related to the errors in the other two phase holdups (see Appendix 8.1).

4.3 Correlation of Hydrodynamic Variables

4.3.1 Approach

The phase holdups and liquid minimum fluidization velccity were correlated with the operacing parameters of the fluidized bed. The operating
 D_{C}, and $U_{L m f}$. A step-wise multi-variable correlation procedure was followed using froduct forms of both dimensional and non-dimensional variables. This step-wise process consisted of determining a correlation for the phase holdups or minimum fluidization velocity utilizing initially all the available parameters. The least significant, of these variables based on the correlation t-values was eliminated, and the correlation repeated. The number of dimensional variables was reduced by this technique, allowing for a reductior in the number of non-dimensiona? groups conceivably formed and establishing the functional dependencies of the remaining significant variabies. Dimensionless groups which reflected the relationships of these remaining dimensional variables were formed and the process repeated.

In the multi-step method it was necessary to define or select the best correlation. The corre!ation coefficient indicated the agreement between the calculated and experimental values of the phase holdups and minimum fluidization velocity. However, this coefficient is maximized by increasing the number of adjustable parameters, i.e., the number of variables used in the correlation. it was desirous to represent the hydrodynamic variables only in terms of the significant operating parameters, eliminating those contributing marginally to the correlation. Therefore, the selection criteria for the correlation of the hydrodynamic variables kere to choose the correlation having the highest correlation coefficient and consisting of not more than tio non-dimensional terms. A third term would be included only if it significantly improved the correlation coefficient, thereby representing an actual operating dependency. Furthemore, if the transition from the dimensional to the dimensionless variables could not be accomplished without a significant reduction in the correlation coefficient, then the correiation was presented in terms of the dimensiona? variab?es to indicate the basic relationships of the operating conditions to the hydrodynamic variables.

Correlations were derived for three different sets of data. The first set consisted of 229 specific sets of experimental data obtained in this investigation covering a wide range of liquid velocities and phase properties. The second set included the 105 sets of operating conditions reported by Khosrowshahi et al. (8). This combined set, a total of 334 points, represents the data taken at ORNL using the same experimental apparatus and techniques. The third set of data corresponds to the 1223 points extracted from literature sources ($1, \frac{2}{2}, 4, \frac{6}{2}, \frac{9}{2}, 11,12,13$). The data reported in the literature sources do not, however, include all three phase holdups at each set of operating conditions, nor the minimum fluidization velocities. The data, a total of 1557 sets of operating conditions, do cever a wide range of operatire conditions and phase properties in three-phase fluidized beds.
i multiple linear regression program, CORRLT, was written to perform product-form zorrelations of both the dimensional and non-dimensional variables important in a three-phase fluidized bed. This program is descrited in detail in Appendix 8.3.

4.3.2 Solid Holdup

The porosity of the fluidized bed was correlated by the multi-step procedure. This process demonstrated that the major dimensional variables affecting the solids holdud were the liquid velocity and viscosity, and the solid density and particle diameter. The functional relationship between these variables could be approximated by the foliowing equation:

$$
1-\varepsilon_{S} a \frac{U_{L} L_{L}^{0.5}}{d_{p} \rho_{S}^{0.5}}
$$

On the basis of this functionality, several non-dimensional groups were formed. Correlations for the bed porosity were pe:formed with each of the tiree data bases: the experimental data, all ORNL iata, and all available data. From the experimental data only, the test correlation, based on the selection criteria previously established, was:

$$
\begin{equation*}
1-\varepsilon_{S}=1.02 \mathrm{Fr}_{\mathrm{L}}^{0.094+0.003} \mathrm{Ga}^{-0.026+0.001} \tag{1}
\end{equation*}
$$

The correlation coefficient for this equation was 0.931 , and the F-value was 7.37. The agreement betweer the calculated and experimental porositie is shown in Fig. 16.

On combining the experimental data with that of Khosrowshahi et al. (8), a similar correlation for the bed porosity was determined:

$$
1-\varepsilon_{S}=1.01 \mathrm{Fr}_{\mathrm{L}}^{0.094 \pm 0.003 \mathrm{Ga}^{-0.024 \pm 0.002}{ }^{0.02}}
$$

The correlation coefficient, 0.886 , is somewhat less than that obtained without including Khosrowshahi's data. The resulting scatter in the data, as shown in Fig. 17, may demonstrate restrictions on the general applicability of the correlation. However, Khosrowshahi et al. (8) may have experienced some difficulty in accurately quantifying the solids attrition which occurred during his experimentation and this may account for some of the scatter in his porosity data. Considering the experimental difficulti the agreement between the two sets of data is quite good.

The data frem above were included with data extracted from the litera ture (1, 2, 4, 6, $9,11,12,13$) to cover a wider range of operating

conditions, and correiated as before. However, the best correlation for these data is of a different form than that previously determined:

$$
\begin{equation*}
i-\varepsilon_{S}=1.53 R e_{L}^{0.275+0.005} \mathrm{Ga}^{-0.171+0.003} \tag{2}
\end{equation*}
$$

This correlation is somewhat worse than the previous ones as indicated by the correlation coefficient of 0.842 and inspection of Fig. 18. The scatter in these data may be attributed to the wide range and different regimes of operation, the different measurement techniques used by various authors in their experimentation, and to an improper correlation form. Furthermore, it appears that the derived correlation does not adequately describe the effect of the gas velocity on the porosity. This is illustrated by the vertiral strings of data apparent in Fig. 18 representing sets of operating conditions varying only in gas velocity.

The differences between the correlating groups in the experimental data may be explained by examining the dimensional form of Eqs. (1) and (2). Equation (2) which incorporated the literature data is more dependent on the liquid velocity and particle diameter. This was expected considering the limited velocity ranges obtainable in the experimental apparatus, and the absence of any variation in the solid properties in this investigation.

4.3.3 Gas Holdue

The gas holdup was correlated using only the experimental data. A correlation was derived which reflects the relative independence of the gas holdup with liquid velocity and viscosity and the dominant effect of the gas velocity:

$$
\begin{equation*}
\varepsilon_{G}=0.150\left(\frac{U_{G}^{5} \rho_{L}}{U_{L} \sigma_{L} g}\right)^{0.100 \pm 0.003} \tag{3}
\end{equation*}
$$

The correlation coefficient for Eq. (3) is 0.934 . This correlation is similar in form to one proposed by Ferguson (7) describing the gas holdup. There is an excellent fit between the experimental data and the holdups predicted by this correlation as shown in Fig. 19. No correlation could be obtained for the gas holdup when the data base was expanded to include that of Khosrowshahi et al. (8). Furthermore, no reliable information on the gas holdup was present in the literature data compiled.

4.3.4 Liquid Holdup

Correlations for the liquid phese holdup were developed in a manner similar to those for the solid phase. The correlations were developed only for the experimental data and for the ORNL data. Little data for the liquid holdup were available in the literature, due possibly to the relative complexity of the experimental techniques involved.

Reproduced from best available copy

Reproduced from best available copy

For the liquid holdup the following dimensional correlation was obtaim from the experimental data:

$$
\begin{equation*}
\varepsilon_{L}=0.45 U_{L}^{0.269+0.007} U_{G}^{-0.146+0.010}\left(o_{S}-o_{L}\right)^{-1.072+C .034} \tag{4}
\end{equation*}
$$

This equation has a correlation coefficient of 0.944 , and as can be seen in Fig. 20, there exists excellent agreement betwen the experimental and calculated values for the liquid holdup.

Using all the ORNL data, the following dimensional correlation for the liquic holdep was derived:

$$
\varepsilon_{L}=4.28 U_{L}^{0.374+0.036} U_{G}^{-0.221+0.032} \mathcal{O}_{L}^{\left.1.64 \pm 0.22_{D_{C}}^{-1.25+0.11}\right]}
$$

Even with the additional number of parameters, this correlation is signifirantly worse than that obtained with only the experimental data. This can be seen by comparison of Figs. 20 and 21 and the correlation coefficients of 0.944 and 0.782 . The inability to correlate the OPWL data together may signify that the liquid holdup may not be represented by a product form correlation. However, it may be due in part to errors inherent in the liquid holdup calculation technique used by Khosrowshahi et al. (8). The liquid holdup was calculated in Eq. (7) using the bed pressure drop as determined by the intersection of the two lines in Fig. 2. However, as can be seen in this figure, there is some curvature in the points near the apex which is a result of a non-uniform soiid holdup throughout the bed. In thi investigation, this effect was considered to be an end effect only, caused by solid entrainment rear the top of the bed, and therefore not applicable in the determination of a general liquid holdup value. The geometric effects of the bed height were not considered in the caiculation of the liquid holdup. Khosrowshahi et al. (8), however, included this end effect in the determination of the bed pressure drop, with the result that the liquid holdups reported were greater than was representative of the actual physical situation. The correlation for the liqu:d holdup derived from the orthl data was a function of the column diameter. This diameter depandance may illustrate a bubble flow effect. However, the sign on the exponen of the diameter term indicates that it is a result of this end effect calculation. Solids entrainment is less pronounced at the lower superficial fluid velocities obtained ill Khosrowshahi's larger diameter colum. This results in less curvature in Fig. 2, a higher measured pressure drop, and a smaller liquid holdup; thus, calculated liquid holdup varies inversely with colum diameter in Eq. (15).

Several non-dimensional correlations for the liquid holdup were attemy However, due to the fore of the dimensional correlations, notably in the de sity exponent, no dimensionless correlation could be obtained without sign icant reduction in the correlation coefficient. Furthermore, no correlati reflecting the viscosity effect on the liquid holdup, as show in Sect. 4.1.3, could be determined.

4.3.5 Minimum Fluidization Velocity

In a three-phase fluidized bed, the minimum fluidization velocity is a combination of both a gas and liquid yelocity. In both this investigation and that of Khosrowshahi et al. (8), a minimum liquid fluidization velocity was calculated based on data where the liquid velocity was varied while the gas velocity was held constant. This liquid velocity was calculated in a manner described in Appendix 8.2.3 and shown on Fig. 3. Because of the limited amount of data available, correlations could be atterpted on?y for the complete ORNL data. The dimensional correlation obtained for the liguid minimum fluidization velocity:

$$
\begin{equation*}
U_{L_{m f}}=0.040 \mathrm{o}_{\mathrm{S}}^{3.75+0.14} U_{\mathrm{E}}^{-0.140+0 . ن 20} \mu^{-0.497 \pm 0.013} D_{\mathrm{C}}^{-0.423 \pm 0.067} \tag{16}
\end{equation*}
$$

had a correlation coefficient of 0.917. Further application of the multistep process results in the following correlation:

$$
\begin{equation*}
U_{L_{m f}}=0.014 \rho_{S} 3.70+0.153{ }_{H}-0.473+0.015 \tag{5}
\end{equation*}
$$

The correlation coefficient for Eq. (5) is 0.877. No dimensionless groups attempted had a comparable fit to the data. It should be noted that in the operating range studied, the minimum fluidization point is independent of the gas velocity. However, the restricted range of the experimentation, in terms of ooth operating parameters and phase properties, should be considered prior to application of the minimum fluidization correlation to any cther fluidized system or operating regime.

5. CONCLUSIONS

1. The solid holdup, εs, is a function of the liquid velocity and viscosity. However, over the operating ranges examined, the solid holdup is independent of the gas flow rate. Correlations for the solid holdup were obtained. The best correlation for the ORNL data was:

The best correlation for all data coillected and compied was:

$$
\begin{equation*}
1-\varepsilon_{S}=1.53 R e_{L}^{0.275+0.005} \mathrm{Ga}^{-0.171 \pm 0.003} \tag{2}
\end{equation*}
$$

The difference in the two solid hcidup correlations is a result of different operating regimes and a lack of variatiors of the solid pnase in the ORNL data.
2. The liquid holdup, E_{L}, is a function of both the gas and liquid velocities. The best correlation for the liquid holdup was:

$$
\varepsilon_{L}=0.45 u_{L}^{0.26 u ̄-0.007} u_{G}^{-0.146+0.010}\left(\varepsilon_{S}-c_{L}\right)^{-1.072+0.034}
$$

This holdup is a strong function of the calculation technique or the assumptions involved in calculating the pressure drop across the bed.
3. The gas holdup, $E G$, is a predominantly a function of the superficia gas velocity:

$$
\begin{equation*}
\varepsilon_{G}=0.15\left(\frac{U_{G}{ }^{5}{ }_{U_{L}}{ }_{L}{ }_{L} g}{}\right)^{0.100+0.003} \tag{3}
\end{equation*}
$$

4. The minimum liquid fluidization velocity is a function of the viscosity. For the range of experimental gas velocities studied, the minimum fluidization point is independent of gas velocity. The best correlation fo the minimum liquid fluidization velocity was:

$$
\begin{equation*}
U_{L_{m f}}=0.014=_{5}^{3.701 \pm 0.153} L^{-0.473+0.015} \tag{5}
\end{equation*}
$$

6. RECOMMENDATIONS

1. A more comprehensive study would involve the variation of altemetive operating parameters indicated as potentially significant by this study. In the experimentation conducted at ORNL, there has been little variation of the solid density or particle size. This omission may be a cause of the difference between the two solid holdup correlations obtained [Eqs. (1) and (2)]. Furthermore, liquid density and surface tension have been held effectively constant for all studies of three-phase fluidized beds, even though the importance of these factors was demonstrated in the correlations for the liquid and gas phase holdups. Variation of these parameters is necessary for verification of the current correlations and for identification of other cperating dependencies.
2. Further studies at lower superficial gas velocities should be con. ducted to verify the extrapolation of the minimum fluidization line to two-phase flow.
3. Further correlations, particulariy of a non-product form, should be attempted. These other correlation forms may allow consideration of th limiting holdup values at the extremes of the operating conditions. Furtin more, non-product correlation forms may be required to accurately describe the liquid holdup and the gas velocity effect on the solid holdup.
4. A thorough investigation of the effect of bed geometry on the hydrodynamic variables is required to substantiate scaleup procedures and even to permit comparisons between bench-scale operation. There was some exidence in the correlation for minimum fluidization velocity which indicated that the column diameter may be an important operating parameter. Furthermore, the bed height may be important, particularly for short bed heights. For these heights, entrainment end effects at the top of the bed may be significant when using low density solids or high fluid flow rates. There is also an entrance effect due to poor distribution of the fluids at the base of the column, an effect which may not be negligible for short beds.

Preiiminary work with different bed heights at otherwise constant operating conditions indicates that this variable may be a factor causing the measured pressure gradient within the bed.
5. More care should be taken in determining the solis density in future work, as this term was shown to be the major source of error in the experimental results.
6. Alternative holdup measurement techniques may be employed to validate or facilitate the current experimental procedures. Possible techniques include conductivity or tracer studies for determining the liquid holdup and volumetric techniques for the gas halurup.

7. ACKNOWLEDGFENT

The authors would like to express their appreciation to J.M. Begovich and J.S. Watson for their assistance throughout the project.

8. APPENDI

8.1 Error Analysis Calculations

An error analysis was performed for the phase holdups which nere caiculated by the following set of equations:

$$
\begin{align*}
\varepsilon_{S} & =\frac{M_{S}}{\varepsilon_{S} A H_{B}} \\
\varepsilon_{G} & =\frac{\left(\frac{K_{3}+\Delta h_{B}}{H_{B}}\right)_{\rho_{L}}-\varepsilon_{S} o_{S}-o_{L}+\varepsilon_{S} \rho_{L}}{\rho_{G}-o_{L}} \tag{17}\\
\varepsilon_{L} & =1-\varepsilon_{S}-\varepsilon_{G}
\end{align*}
$$

A derivation of these equations is given by Khosrowshahi et al. (으).
For the error analvsis calculations, since $\rho_{G} \ll o_{L}$, the zas hoidup zan be rewritten as:

$$
\begin{equation*}
\varepsilon_{G} \cong \varepsilon_{S}\left(\frac{2 S}{\rho_{L}}-1\right)-\frac{\Delta h_{B}}{H_{B}} \tag{19}
\end{equation*}
$$

The term $\Delta h_{B} / H_{B}$, representing the calculated pressure gradient through the fluidized bed, is denoted by the term S.

The error associated with each of the holdups was caliniated by the general error expression [$\overline{\text { İq. (12)] as suggested by Kline and McClintock }}$ (10). If Eq. (12) is applied to the different hoidup expressions, the errors in the holdup may be expressed in terms of the uncertainties in the experimentally measured quantities:

$$
\Delta \varepsilon_{S}=\varepsilon_{S}\left[\left(\frac{\Delta M_{S}}{M_{S}}\right)^{2}+\left(\frac{\Delta \rho_{S}}{\rho_{S}}\right)^{2}+\left(\frac{\Delta A}{A}\right)^{2}+\left(\frac{\Delta H_{B}}{H_{B}}\right)^{2}\right]^{1 / 2}
$$

$$
\begin{align*}
& \Delta \varepsilon_{G}=\left[\left(\frac{\rho}{\rho_{L}}-1\right)^{2}\left(\Delta \varepsilon_{S}\right)^{2}+\left(\frac{\varepsilon_{S}}{\rho_{L}}\right)^{2}\left(\Delta \rho_{S}\right)^{2}+\left(\frac{\varepsilon_{S} S_{S}}{\rho_{L}^{2}}\right)^{2}\left(\Delta \rho_{L}\right)^{2}+(\Delta S)^{2}\right]^{1 / 2} \tag{21}\\
& \Delta \varepsilon_{L}=\left[\left(\Delta \varepsilon_{S}\right)^{2}+\left(\Delta \varepsilon_{G}\right)^{2}\right]^{1 / 2} \tag{22}
\end{align*}
$$

The uncertainties in the measurable parameters were determined by the observed limitations on the experimental apparatus and by the deviation of repeated measurements. The values of these errors are:

$$
\begin{aligned}
& \Delta M_{S}=0.1 \mathrm{gm} \\
& \Delta A=0.36 \mathrm{~cm}^{2} \\
& \Delta 0_{S}=0.07 \mathrm{gm} / \mathrm{cm}^{3} \\
& \Delta \rho_{L}=0.002 \mathrm{gm} / \mathrm{cm}^{3}
\end{aligned}
$$

The uncertainties on the bed height and pressure gradient, ΔH_{B} and ΔS, were evaluated for each chesen experimental case by a linear least squares regression for a 95\% confidence limit T-value. For experimental Run 25, the values for these terms were:

$$
\begin{aligned}
& \Delta S=0.036 \mathrm{~cm} \text { fluid } / \mathrm{cm} \text { bed height } \\
& \Delta \mathrm{H}_{B}=1.29 \mathrm{~cm}
\end{aligned}
$$

For Run 25 the operating conditions fixed or calculated were:

$$
\begin{aligned}
& M_{S}=2500 \mathrm{gm} \\
& A=45.6 \mathrm{~cm}^{2} \\
& D_{S}=2.26 \mathrm{gm} / \mathrm{cm}^{3} \\
& Q_{L}=1.736 \mathrm{gm} / \mathrm{cm}^{3} \\
& H_{B}=47.7 \mathrm{~cm} \\
& \varepsilon_{S}=0.508 \\
& \varepsilon_{G}=0.086 \\
& \varepsilon_{L}=0.406
\end{aligned}
$$

By substituting these corresponding values into Eqs. (20), (21), and (22), the errors in the holdups for this particular case were calculated:

$$
\begin{aligned}
& \Delta \varepsilon_{S}=0.021 \\
& \Delta \varepsilon_{G}=0.052 \\
& \Delta \varepsilon_{L}=0.056
\end{aligned}
$$

Similar calculations were performed for the other cases selected for ana

8.2 Computerized Data Analysis

8.2.1 Explanation of FLBD

Computer program FLBD accepts experimental data and calculates the fluidized bed height, pressure drop, phase holdups, and minimum liquid fluidization velocity for a set of operating conditions and stores these quantities in three data files. These data files form a portion of the data base for the program CORRLT which forms correlations among these variables. FLBD is an imorovement over the previous data analysis progr developed by Khosrowshahi et al. (8). FLBD has automated the determinat of the bed height and pressure drops by fitting least squares straight to experimental manometer readings. The program plots the experimental and fitted lines for visual inspection. Provisions for eliminating thos experimental runs for which insufficient data points are available to co struct these lines are outlined in Sect. 8.2.3. Figure 22 illustrates t order of significant operations in FLBD.

8.2.2 FLBD Input and Output

The program FLBD requires input data from one experimental run at a constant gas velocity and up to 20 liquid velocities. These data must b stored in file FORIO.DAT prior to the execution of FLBD. The program EXPINP is available to fecilitate acceptance and storage of the data in file FORIO.DAT. The experimental data are input into EXPINP according to the following format:

First Line:
RUNQTY the number of lines of manometer readings on the data sheet
DATSHT an identifying data sheet number
DC diameter of the column, in.
PACWT weight of the solid packing in the colum, gm

PATM atmospheric pressure, mm Hg
TLIQ \quad emperature of the liquid, ${ }^{\circ} C$
VISCOS viscosity of the liguid, cp
RHOG density of the gas, $\mathrm{gm} / \mathrm{cm}^{3}$
RHOL density of the liquid, $\mathrm{gm} / \mathrm{cm}^{3}$
RHOS density of the solid, $\mathrm{gm} / \mathrm{cm}^{3}$
SIGMA liquid surface tension, dynes/cm
DP diameter of the solid particle, am
GASROT identifying number of the gas rotameter
GASFLO gas rotameter reading, \%
PTCALI calibration constaint of liquid rotameter 1 for a particular viscosity

RTCAL2 calibration constant for liquid rotameter 2
RTCAL5 calibration constant for liquid rotameter 5
For each of the RUNQTY lines, the following are then input for the 1 th 1 i
LIQROT(I) lic̣uid rotameter identification number
LIQFLO(I) iịquid rotameter reading, \%
DELHG(I) pressure drop through valve as measured by mercury manometer, mai Hg

RHANi(I, J$) \quad \mathrm{J}^{\text {th }}$ manometer reading, cm fluid

FLBD is executed after the input information from each data sheet has bee accepted. The output of FLBD consists of the rata sheet number ${ }_{3}$ the colu diameter (in.), the packing weight (gm), packing density ($\mathrm{gm} / \mathrm{cm}^{3}$), minim: liquid fluidization velocity ($\mathrm{cm} / \mathrm{sec}$), minimum gas fluidization velocity ($\mathrm{cm} / \mathrm{sec}$), solid particle diameter (cm), liquid viscosity (poise), surface tension (dyne/cm), and for each liquid velocity the bed height (cm), pres drop (cm fluid), gas velocity ($\mathrm{cm} / \mathrm{sec}$), liquid velocity ($\mathrm{cm} / \mathrm{sec}$), and sol liquid, and gas holdups. The operating parameters are stored in three da files, FOR48.DAT, FOR57.DAT, and FOR54.DAT, for later use in the correlati program. Plots showing the determination of the bed height, pressure dre and minimum fluidization velocities are output for visual inspection of 1 fit. Sample computer plots are shown as Figs. 23 and 24 in Sect. 8.2.5.

8.2.3 Computerized Determination of Bed Height, Bed Pressure Drop, and Minimum Fluidization Velocities

The pressure drop in a three-phase fluidized bed increases linearly with distance up the bed. However, in the two-phase bubble colum region above the bed, the pressure drop due to flow decreases. The fluidized bed height and pressure drop across the bed can be detenmined from the intersection of the pressure gradients on a plot of pressure drop as a function of distance up the column. These pressure gradient lines are determined from the experimental data by locating and temporarily eliminating the input point of maximum pressure corop. Least squares lines are then fitted to the data points on either side of the maximum. The temporarily excluded point is then checked against each of the two fitted lines to determine if it lies either above the fitted line or within one standard deviation below the line. If so, the point is included in the appropriate set or sets of data for a recalculation of the least squares line. The bed height and pressure drop across the bed are then read at the point of intersection of the two lines.

A non-fluidized bed will exhibit linearly increasing bed pressure drop with an increase in the liquid velocity. However, once the minimum fluidization velocity is attained, there is no further increase in pressure drop across the bed. The liquid minimum fluidization velocity at a constant gas velocity is determined in the computer program, FLBD, from the calculated bed pressure drops and measured iiquid velocities. The pressure drops, order in terms of increasing liquid velocity, are checked to determine the first local maximum pressure drop point. A least squares line is con-. structed through the pressure drops at liquid velocities less than and including the velocity corresponding to this first local maximum. A horizontal line is fitted to the pressure drop points at the velocities higher than this maximum. The minimum liquid fluidization velocity is then determined at the intersection of these two lines.

8.2.4 iisting of Data Aralysis Programs

8.2.4.1 FLBD.

```
    SEAL LINPOT,LI SFLO,MANHT 3,MANETG
    DIMENSION FMAN(20,10),MANHT3(1D),MANHT6(3), PDAAX(35),
!LIGPCT(E0),LISFLC(20), DELHG(20), DEITAH(19,10),DELTH6(19,3).
*, FTG(20), EPSS(20), EPST; (20), EFSL(20), EXDATA(20,18),VEL(20)
    ENTII`ALENCE(DELTAH(1, 12,DE工TH5(1,1)),(MANHT3(1),MANHTG(1)
!,(LISFLO(2),"EL(1))
    TEAD (10,99) MINNGT, DATSHT, DC, PACUT, PATM, TLIG, 'IISCOS,
!PHOG, PHOL, DHOS, SIGHA, DF,GASMOT,SASFLO
    VI CCOS=VI SCOS/100.
    FOPMAT (7E10.3)
    PEAD (I0,98) RTCAL 1, PTCAL2,FTCAL5
    FDTMAT (3E10.3)
```

```
        NRUN= PONOTY+0.OCI
        PEAL (10.100) [LIGRCT(I).LIGFLO(:).DELHG(I).
        :(FE{ANJ(I,J),J=1,10),I=1,NRUN)
        FOPGAT (7E10.3..?6E10.3;
        CXAPEA=((DC*1.2T)**2.0)*3.14157
        O}209 K=2.NM'N
        Sxイ-:
        If (LIGMOT(X)-5.) 71.70.71
        IF (LICPCT(%)-2..) 7J.72.73
        IF (LI OFOT(<)-1.2 75.74.75
        "El(N)=(GTCAL5*L; GFLO(%))/CXA!EA
        93 Tn 200
72 TEL\\)=<OTEAL2*L|GFLO(%)?/CNAREA
        GO TO 200
        VE[(J)=(RTCAL1*LIGFLD(K))/CXAPEA
        5O TO 200
75 TYPE 5E, LIQTOT(K)
56 FOMMAT: * ROTAMETEP. NTMBEP L'&IL, DDOES NOT EXIST-J
    50 %O 10000
200 CONTINITE
    15 (DC.EO.6.) MANNO=8
    IF (DC.EG.3.) YARNO= 10
    DN 2 J=\, YavNO
    \0 2 I=2, % \
    IM1=1-1
    OE-TAH(I:{1,J)=PEAN(1,1)-(TEAAN(I,J)+?AAN(1,1)-PMAN(1,J))
    NPrPM1 = NPMm-1
    IF (DC.EC.3.) TO TO 3
    MAMrHT6(1)=0.
    MA.HIT5(2)=7.3
    YAPH? }5(3)=16.
    MANHT6(4)=25.7
    MANHTS(5) = 34.7
    YANHT6(6)=43.5
    MANHT6(7)=52.5
    4ARRT6(3)=59.5
```



```
    GO TM 1000
    9ANHT3(1)=1.3
    4ANIT3(2)=12.4
    MANHT 3( 3)=21.4
    Yанлт T3(4) = 30.4
    YANHTJ(5)=43.1
    :4ARHMT3(6)=52.1
    MANHT3(7)=61.1
    TANHT3(5)=70.1
    MANHT3(9)=79.1
    MANHT3(10)=33.1
    GALL POLP\Gamma(DEETAK,NDUNM1, 10,:1ANHT3, DATSHT, PMYAX, ULMINO VE.)
    I D1N=2
```

```
    IF (GASNOT-2.) 31,32,31
    IF (GASROT-6.) 33,34,33
    IF (GASROT-7.) 35,36,35
    TYPE 67. GASRCT
    FORHATS - MOTAHETER NUNBER G*II1. -DOES NOT EXIST"g
    60 T0 1000!
    TGCAL=C.53333*GASFLOS/CXAREA
    GO TO 55
    UGCAL-(8.5526*GASFLO)/CXAREA
    GO TO 55
    UGCAL=(93.3330GASFLO)/CXAREA
    DELHGT=0.0
    NHUNONRUNE 1-1
    DO }69\mathrm{ Km2, NPTNN
    UG(K)=UGCAL* (?49.8/&PATM+DELHG(K)) )**.S
    J=%-1
    EPSS(K) = PACYT/( RHOS* CXAREA* PMMAK(J) )
```



```
    !/PDMAX(J)))&EPSS(5)* PNOS)/(FHOL- FHOG)
    EPSL(K)=1-0-EPSS(K)-EPSG(K)
    IFCULGIN.TST-VEl(J))I RUN=HS+1
    DELRGT=DELHGT+ DELMG(K)
    CONTINUE
    DELHGAMDELHGT/NRUTEH1
    TGAIG= UG CAL* (749.8/(FATM+DELHGA) )**.5
    IDATST= DATSHT+0.00:
    TYFE 101,IDATST, DC, PACHT, RHOS, ULYIN, UGAVG, DP,VI SCOS, SIGMA
    FOPAAT (IgX, 'DATA GREET ", 13, /, 10X, 'CO&MR DIAHETER =0,
    !F4.2." INCHES*,/& 10X, "PACKING vEIGHT =0,FF&|,. GPAYS*, fo
    110X, "PACKING DENSITY =",FE.2.0 GRAMSAEC.&/1 10X..
    !TL MINIMUM E", F7-2," CM/SEC"./,IOX, "IG MINIAUM =",
    :F7.2.-CM/SEC%/P10X, PARTIGE DIAMETER =.,F7.3.
```



```
    :-SITRFACE TENSION = &FS.1." DYNESICMP'
    TYPE 2050
2050
    FDGQATE BED HT DE PRES UG UL EPS SOLDO.
    1* EPS LIO EPS GAS*)
    DO 2030 K=20NRUN
    J=K-1
2080 TYPE 2075, PDASAX(J), PDYAX(J+NRHNN1), UG(K),
    lVEL(J),EPSS(K),EPSL(K), EPSE(K)
2075 FORHAT(7E{0.3)
    DO 156 K=1RUNsFJRINN
    J=K-1
    ERDATA(K, I )=UG(K)
    EXDATA(K, 2)=VEL(J)
    EXDATASK, 3)= DP
    EXDATA(K, 4)= PHOS
    EXDATA(K, 5)= FHOL
    EXDATA(K, 6)=PHOG
    EXDATA(K,7)=SIG:%A
```

```
    EXDATA(K,B)=UI SCOS
    EXDATA(:K,0)=EPSS(K)
    EXDATA(K,10)=1,-EPSS(K)
    EXDATA(K,11)=EPSG(K)
    EXDATA(K,12)=EPSL(K)
    E\DATA(K,13)=DC*2.54
    E:DATA(K, 14)=PD(AX(J)
    EXDATA(K, 15)= PIMAX(J+NPUNN1)
    EYDATA(K, 16)=THGAYG
    EXCATA(K,17)=ULYIN
    EXDATA(K, 13)= DATSKT
156 CONTINHE
    TYPE 102
102 FORHATC//. IX, PIF YOU JANT TMIS INFORHATION
    !STORED ON FILES 48, 51 & 54 TYPE Y,<CR>*)
        ACCEPT 103. ISTR
103 FOPEATSASS
    IF (ISTR.NE, Y -) 5OTO 10000
    OPEN(UNIT-48, ACCESS= APPEND*)
    HPITE(4B, 104)( (EXDATA(1,N), J=1,6), I= I RUN,NRTN)
    OPENCUNIT=51. ACCESS= (APPEID')
    HMITE(S1, 104)( (EXDATA(1,J),J=7,12),I=I RUN, NRUN)
    OPEN(TNSIT=54, ACCESS= -APPEND")
    WG!TE(54, 104)( (EXDATA(I,J),J=13,18),I=IRUN,NRTN)
100 FOTGAT(6E10.3)
10000 CALL ENIT
    grob
```


8.2.4.2 POLRG

STBPPITTINE POL RG ©DELTAH, NRUNE I, N,YANHT, DATSHT, PMAAK ULMI NO JEI,
REAL MANRTEII
DIMENSION DEITAK (1), PDMAX(38),Y(20),X(96)
C TARHT= POSI TIONS UP COLUMN, NRUNHI=NUI。OF RUNS ON DATA SHT
C N=NTMBER OF MANS.. DELTAHEPRESS DROP VALUFS
C OITPPTT: POMAX (NTUND 1+1: 2NRUNH 1) =MAX FRESS DROP PER RUS
PDHAXR1:NRUNT1)=HT UP COLTMN AT PDMAXC.2;-5
DIMENSION B(7), E(7), SE(7),T(7),DI(49),D(35)
DIGENSION XBAR(8), STD(8), COE(8), SUMSO(8), ISAUE(8)
DI:YENSION ANS(10),A(5000), VEL(1)
CALL PLOTS(AS SOOO)
LOOP $=0$
600 LOOP=LOOP+ 1
630 CALL PLOTC1.5,1.5,3)
CALL PLOTC1.5,7.5,2)
CALL PLOT(9.6.7.5,1)
CALL PLOT(9.6.1.5.1)
CALL PLOTC1.5.1.5.1)

```
        X8. -5
        YI=1.S
        DO 50 J=2.8
        XI=X1+0.9
    50 CALL SYMBOLCX1,Y1,0.125,13,0.D,-1)
        CALL PLOT(1-5,1.5,3)
        x1=1.5
        DO 70 J=1,5
        Y1=Yi+1-0
    70 CALL SYMBOL (XI,Y1,0.125,15,0.0.-1)
        M=1
        MM=2
        L=N*M
        DO 110 I#&&N
        j=L+!
C X(I) IS INDEPENDEN: UARIAELEX(J) I5 DEPENDENT. FRRM FLBEDI
        X(I)=MANTHT(I)
    110 X(J)=DETAH(19*(I-1)+LOOP)
    xH1GH=90.0
    xLOH=0.0
    THIGH=25.0
    MLOH=-5.0
    I PEAK=L+1
    DO 300 I =1.N
    J=L+I
    IF(K(J)-GT.XCIPEAK)SIPEAK=S
    300 CONTINUS
    I PEAK=I PEAK-L
    DEIXmXHIGH-0.0
    IF(IPEAK-LJ.3)GO TO 610
    IF <IPEAK-GT.N゙-3)GO T0 610
    92 FORMATC1X,2E10.3)
    IPASS=0
    IFLAG=0
    LIMEIPEAK+I
    LIMIT=IPEAK-1
960 00700 I=1-LIMIT
    Y(I)=X(I)
    J=LIMIT+I
700 Y(J)=X(L+1)
705 CALL CORRECLIMET,MM, L,Y,XBAR STD, COE D, SUMSO, B, T)
    NT=LIMIT-1
    I SAVE(1)=1
    CALL ORDERCMM, DPMM,M, I SAVE,DI,E
    CALL MINUCDI,M,DET,B&T)
    CALL MULTRCLIMITAM,XBAR STD, SUMSO, DI, EO I SAVE E, SE, T, ANSS
    NI=ANS(8)
    COE(1)=ANS(1)
    COE(2)=B(1)
    5urg P=0.0
    LA=1
```

```
    IFCIFLAG EGT.03GO TO 953
950 LIMIT=LIMIT+I
    IFLAG=1
    G0 T0 960
610 DO 650 I=LOOPsNRUNMI
    VELI)=VE(I+I)
    DELTAK(I)=DELTAH(I+1)
650 PDMAX(I)=PDNAX(I-1)
    MHEU=(NFUNM1-1)*2
    DO 660 I=NRUIMI. NNEd
    PDMAX (I) = PLMPXC % + I]
660 IFCI-GE-LOOPS PDMAXCI)=PDMAXSI*I)
    NRUNMI=NPTHNE 1-1
    TYPE 670. DATSHT
67D FORMAT S" ONE LINE DELETED FPGH DATA SHEET E*FA.U#
    IF CLOCP-GT.NFTNIII)GO TO 680
    60 70 620
953 CONTINUE
    IF(IPASS.GT,D)GO TO 990
    FINTER=COEC 1)
    FSLOPE=COE(2)
715 1FLAG=1
9505=0
    DO 710 I=LIM.N
    J=.T+1
    Y(J)=X(I)
    JJJ=N-LI%-1+J
710 Y(JJJ)=X(L+I)
    IPASS=1
    LIMIT=N-LIM+1
    CALL COPPECLIMIT,NH, I,Y,XBAR, STD. COE, D.SUMSO,B,T)
    NT=LIMIT-1
    ISAVE(1)=1
    CALL DPDEPCMEH, D,MM,M, I SAVE DI, E)
    CALR MIMNCDI,M,DET,B,T)
```



```
    NI=ANS(B)
    COE(1)=ANS(1)
    COE(2)=8(1)
    SMMIP=0.0
    LA=1
    IFC&FLAG GTT-0)GO TD 953
    IF(X(L-IPEAK) LT-X(IPEAK)*COE(2)*COE(I)>EO TO 105&
    970 LIM=LIM-1
    8FLAG=!
    L{HIT=LI#IT*1
    IPASS=0
    60 T0 980
```



```
    GO TO 970
```

C HAUE SOLVED FUR EUTH SLOPES AND INTERCEPTS
C SOLVE FOR INTERSECTIOM
990 XINTLRW (CDE(1)-FINTER) (TSSLOPE-COE(2))
YIMTERMFINTER FSLCOPEXINTER
IFCYINTER-GT.2SJEU TO 800
DEIY: J0.
YCUROW (FISTTER-YLOW) RDELY*G.O-1.5
CALL PLOT (1.5 , YCURV, 3)
C PLOT LIMES
XCUKUE (XIMTER-XLOU) DELXe9. $1+1.5$
YCURUE CYINTER-YLOUS /DEYY 6 - 0 - 1.5
GALL PLOTCXCURV, YCUPV, 23
xCuRUME. $8+1.5$

CALL PLOTCXCURU, YCURU, 22
$\mathrm{DO} 90 \mathrm{I}=\mathrm{I}, \mathrm{N}$
$\operatorname{anc}+1$
XPOINT $=(x(1)-x$ OW) /DEIXe8. $1+1.5$ YPOLNT $=(X(J)-Y$ (0U) /DELY* $6 \cdot D+1.5$
90 CALL SMBOL $X P O I N T, Y P O I N T, 0.2,2,0.0,-13$
B00 FDMAK 2 LOOPJ $=X I N T E R$
 PHMAK (I DUMHY)=YINTER

C ADNANSE TO NEH GRAPH
CALL PLCTE14., O-0,-3)
IF (LOOPALTANPUNHI)GO TO 600
CALL LFMIN (NRUMM I, PDYAX, UEL, UKNI R, PDPWIIN, DATSKTS RETUPN
END
-

8.2.4.3 LFAIN.

SUBCOUTINF: LFMINTN, X, UE, XIKT, YINT, DATSHT,

- $81(8)$, STDI(8),YBARI(B), T1(7), R1(36),E(7), B(7), SB(7), T(7)

C NWHURER OF OBSERVATIONS
C VEL HAS LIO YEDOCITIES. X HAS HTS.OPRESS DROPS
C THIS FOUTINE CALLS GOATA ORDER MINUAHUKTR CORRE
C XỉMTMMIN. 110. FLUIDIZATION VELEYIMT=PRESS DFIOP
DE $1001=20 \mathrm{~N}$
JSAVET I-1
100 TF(XCN+I)-LT-X(N+NSAUE) $\operatorname{sGOTO} 200$
C LAST X IS LAFLEEST IN ALWAYS INERESING PATTERN
TYPE 101
102 FOMAATC no STOP IN RISE, EATA NEUER FLUEDITEED o
XINT=VE(K)*1.1
YスNT=X(K) 1.t
RETUPR

```
C X(JSAVE) iS LOCAL PEAK
    200 MUMBEP=N-JSAYE
        IF(MUMBER-LE-2) rO TO 300
        DO 20! I=1.NLMEEP
        J=g*JSA!E&I
    201 Y(\)=>(J)
```



```
        D083 %=1.NTMBEP
        MM=NTMEER+1
        Y(I)=*巳(J5A"E+\)
    203 Y(NTM)=X(N+SSA\E+I)
        CAL& GDATAC:JUABER, &,Y,YBAYO, STD2,D.SUMSO)
        1SAYE\ 1)=1
        CALL OPDERC 2, E, 2, 1,ISAVE,DL,E)
        CAV& Y\MTMCDS, I,DET,B,T)
```



```
        FSLDPE=B(1)
        FINTEP=ANSO 12
C NOR FPOCESS PDINTS MHICH UERE NOT USED
    1FS3SAUE-%E.23G0 G0 302
    00210 %=1.JSAYE
    J=JSA`!E*I
    Y(I)=0日(I)
    210Y(J)=X(N-I)
    CALL GDATAGJSAYE, 1,Y,Y日AR2, STD2, D, SURSOS
    ISAVE(I)m!
    CALL OPDERC2.D,2,1,ISAYE,DI,EJ
    CALL MIM'&DK,1,DET.B.TZ
    CARL MELTPCJ:AYE, I YBAR2, STD2, SUNSO, DI, E I SAYE, E, SB, T, ANS:
    ANSKER= AHS\ IS
    GO TO 403
    300 TYPE 301,NUMEER
    30& FOMGATS* ONLFO-\4,* POZNTS FOR CONRE* STDP*)
    RETUPA
    302 TPPE 303,JSAYE
    303 FOPMATS* GRLY*.IA." POINTS FOR UNDER FL. L&NE*)
        #ETIEPN
    AOD XINT=(YBAPI(1)-ANS(I) )/B(|)
    YZNT=YEARICIS
    CALL ITPLOTCXINT,YINT, ANSTER, B, FINTER FSLOPEN, X, VEL, DATSKT)
    qETGYN
    ENO
```


8.2.4.4 UPLOT.

C PLOTTING FOR SUBROUTINE ULMIN
DIMENSION X(1), VEL (1),Y(100)
DEXX=10.0/8.
DELYx 30. 16 .
CALL PLOTC 1 -5, 1.5,33
CALL PLOT(1.5.7.5.2)
CALL PLOT(9.5,7.5.1)
CALL PLOT(9.5.1.5,1)
CALL PLOT(1.5.1.5.1)
XI=1.5
Yi=1.5
DO $500 \mathrm{~J}=1.9$
$x 1=x 1+0.8$

CALL PLOT 1 -5, 1.5,3)
X1=1. 5
DO $501 J=1,5$
$Y\{=Y 1+1.0$
501 CALL SYABCL (X1,Y1, 0.125,15,0.0,-1)
CALL PLOTC 1.5.7.5,3)
Y $1=7.5$
DO $502 \mathrm{~J}=1: 9$
$\mathrm{x}_{1}=\mathrm{x} 1+0.8$
502 CALL SYMBOL (X1,Y1, 0.125, 13, 180.0,-1) CALL PLOTC9.5, 1.5,3)
XI=E-S
Y1 $1=1.5$
DO $503 \mathrm{~J}=1.5$
$Y I=Y I+1-0$
503 CALL SYMBCL (X1,Y1,0.125,15,180.0,-1)
C PLOTS LINE
IF(YINT.LE.D.) GO TO 600
XPT=XINT/DEXX+1.5
YPT=YINT/DEIT +1.5
TYPE 8ロCR, XPT,YPT
8002 FORHATC HORIZ LINE= - 2E10.3)
CALEL FLOT(XPT,YPT, 3)
CALL PIOTC9.5,YPT, 2)
TYPE 80ロ3YPT
8003 FOREIATC: TO $9.5 \quad \bullet$ E1D. 3)
C PLOT ST. IINE FOR UNDER FLUIDIZATION FPT=ANSIER/DELT+1-5
CALL PLOTC1-5,FPT,3)
TYPE 8005,XPT,YPT
BE 95 FORMATC INTERSECT=0,2E10.3)
CALL FLOT (XPT,YPT, 2)
C PLOT ACTUAL LINE OF BEST FIT QF RaH.S.

```
        XPT=(FINTER-ANSNER:/(B-FSLOPE)
        YPT=(B*XPT+ANSUER)/DEEY+ I.S
        XPT=XPT/DELX+1.5
        CALL PLOTCXPT,YPT,3)
        XPT=10.
        YPT*(FSLOPE=XPT+FINTER)/DELY+1.5
        XPT=10./DETX+1-5
        CALL PLOTKXPT,YPT,2)
C NOW PLOT EXP POINTS
C POINTS ARE IN[Y(II,Y(N+I)] PAIRS
    DO 510 1=1&N
    J=N+I
    Y(I)=`口\(I)
    510 Y(J)=X(J)
    DO SII I=1,N
    J=N+I
    XPT=Y(I)/DEIX+1.5
    YPT=Y(J)/DEY+1.5
51: CALL SYMBOL (XPT,YPT,0.2,2,0.0,-1)
    CALL NUMBERCD.5,0.5,0.4,DATSHT, 0.0, '(FA.0)0, 4)
600 CALL PLOTC14.=0.0,-3)
    RETURN
    END
    8.2.4.5 EXPINP.
        REAL LIOPOT,LIOFLO
        DII!ENSION RMAN(20,10),LIOROT(2Э),LIORO(20).DELHG(20)
        ACCEPT 1OD, RUNQTY, DATSHT,DC, PACHT, PATM, TLIO,VISCOS, RHOG,
        IPHOL, FHOS, 5IGMA-DP,GASROT, GASMLO, RTCAL 1, RTCAL 2 RTCAL 5
        FORMAT (17G)
        NP!JN= RUNOTY'
        DO ! 1=1,NRUN
        ACCEPT 101,LIGROT(I),L!OFiOO(I), LENHG(1).(FOMAN(I,J),J=1,10)
        FOREMAT (13G)
    101
    1 CONTINYE
        GPEN (INIT=10.ACCESSR-APPEND")
        #RITE (10,103) RUN'ITY, DATSHT, DC, PACWT, PATM, TLII QO VI SCOS,
        IFHOG, RHOL, RHOS, SI GMA, DP, GASROT, GASRLO
        FORMAT 67E10.3)
        WRITE (10,107) RTCNL1, RTCAL2, RTCAL5
    107 FORMAT (3E10.3)
        URITE (10,104) (LIOROT(1).
        :LIOFLO(I),DELHG(I), (RYAN(1,,J),J=1,10),I=1, NRUN)
    104 FOPMAT (7E10.3./,6E\0.3)
        TYPE 10G: RUNQTY, DATSHT, DC, PACWT, PATM, TLIO, UISCOS,
        ! PHOG, RHOL, FHOS, SIGMA, DP,GASROT, GASFLO
            FOPMAT (///,(7EIO.3);
        TYPE 108, RTCAL1,RTTAL2.RTCALS
        FORMAT (/f,3EIO.3)
```

TYPE 105, (LIOROT(I),

FOREMAT C//,TEID.3./,6E10.33
CALI EXIT
END
8.2.5 Sampie Output

0.53AE+01	0	0.279E* 01				
0.590E+01	9.000E-00	C.700E+02	0.476E+02	0.477E+02	0.477E+12	0
$0.476 \mathrm{E}+02$	0.474E+02	0.477E+02	$0.476 \mathrm{E}+02$	0-477E+02	$0 \cdot 478 \mathrm{E}+02$	
$0.500 \mathrm{E}+61$	0.1205+02	$0.106 E+03$	0.425E+02	0.411E+02	$0.385 E+12$	
U.340E+ 02	8.354E+02	0.373E+02	0.395E+02	0.415	D.436E+02	
			$0.430 \mathrm{E}+02$	0.444E+62	0.407E+02	
		$0.377 \mathrm{E}+02$	$0.393 E+02$	0.417E-02	$0.443 \mathrm{E}+\mathrm{C2}$	
$0.500 \mathrm{E}+01$	0.240E+02	0.105E+03	0.554E+02	$0.4865+02$	0.440E+ 82	$1 \cdot 39$
$0.351 E \div 02$	0.361E+02	$0.384 E+02$	0.4C2E+02	$0.421 E+02$	02	
0.500E+01	0.320E-02	$0.105 E+03$	0.569E+ 02	$0.498 E+02$	0.448E+ 02	
$0.351 \mathrm{E}+12$	$0.360 \mathrm{E}+02$	$0.382 E+02$	B.404E+02	0.42		
500E+ 01	. 4	$0.105 E+03$. $579 \mathrm{E}+02$	$0.504 E+0$	0.458E+02	
12	0.3E5E+02	0.386E-03	0.407E 02	0.429E-02	C.45CE 02	
0.5EこE+01	0-430E-02	0.105E+03	0.590E-02	0.5i3E+ 02	02	
0.373E-02	0.3715402	$0.390 \mathrm{E}+0.2$	0.467E+02	426E+02	02	
0.500 E -01	$0.560 E+02$	0.107E+03	S90E+02	0-525E+02	$0.472 E+62$	
$0.350 \mathrm{E}+02$	0.366E+ 02	$389 E+02$	$0.409 E+02$	$0.428 E+12$	2	
$0.100 \mathrm{E}+02$	$0.360 E+02$	3	C.595E+02	$0.534 \mathrm{E}+12$	02	
$0.384 \mathrm{E}+02$	0.372E-02	0. 390 E-02	0.411E+02	0.42	0.451E+02	
	$0 \cdot 359 \mathrm{E}+02$	0. $208 \mathrm{E}+03$	0.604E+02	$0.544 \mathrm{E}+32$	02	
	$0.379 \mathrm{E}+02$	- $396 \mathrm{E}+02$	4!6E+02	0.434E+ 02		
0.1	0.400E+02	0.155E+ 33	$612 \mathrm{E}+02$	c5	2	
0.401E+02	$0.384 \mathrm{E}+02$	0.398E+02	$0.415 \mathrm{E}+02$	$0.436 \mathrm{E}+02$	0.457E+02	
$\begin{aligned} & 0.100 E+01 \\ & 0.416 E+02 \end{aligned}$	0-450E+02	0.109E+03	0.622E+02	$0.560 E+02$	$0.512 \mathrm{E}+02$	
0.100 E - 01	2	0.403E+02				
	$0.401 E+02$	0.509E+02	0.424E+02	$0.444 E+102$	55E+02	
$0.100 \mathrm{E}+01$	9.600E+02	0.110E+03	0.635E+02	$0.580 \mathrm{E}+12$	36E+02	0.510E+9
0.448E-02	0.4!9E+02	0.415E+02	0. $032 \mathrm{E}+02$	0.450E+02		
0.100E+02	0.700E+02	0.110E+03	0.	0.590E+02	0.552E+02	
0.478E+02	0	0	0.440E+02	-	$0.476 E+02$	

-EX FLBD,LIBARY, SYS: PLOT/SEA

```
LNN: LOACING
ELNKXCT FLBD EXECUTIONJ
!SAVE THIS PLOTY Y FOP YES
Y
!SAVED PLOT 1
!SAVE THIS PLOTT Y FOR YES
Y
:SAYED PLOT 2
!SAYE THIS PLOTT Y FOR YES
Y
ISAVED PLCT 3
!SAVE THIE PLOTY Y FOR YES
Y
!SAVEL FLOT 4
!SAVE THIS PLOTT Y FOR YES
Y
ISAVED PLOT 5
!SATE THIS PLOT? Y FOR YES
Y
SSAITED PLOT 6
!SAVE THIS PLOTY Y FOR YES
Y
:SAVED PLOT 7
!SAYE THIS PLOTT Y FQR YES
Y
!SAVED PLOT 5
:SAUE THIS PLOTT Y FOR YES
Y
ISAUED PLOT 9
SSAYE THIS PLOT? Y FOR YES
Y
ISAVED PI.OT 10
!SATE THIS PLOTT Y FOR YES
Y
:SAVED FLOT II
ISAVE TIIS PLOTG Y FOR YES
```

```
Y
    :SAUED PLOT 12
    SSAVE THIS PLOTT Y FOR YES
Y
    :SAUED FLOT 13
    :SAUE THIS PLOTT Y FOR YES
Y
    :SAVED PLOT 14
HORIZ LINE= 0.297E+01 0.60AE+BI
TO 9.5 0.604E+01
INTERSECT= 0.297E+01 0.604E+01
!SAUE THIS PLOTT Y FOR YES
Y
ISAUED PLOT 15
    DATA SHEET * 9
    COLTHNS DIAMETER =3.00'INCHES
    PACKING YEIGHT = 2500. GPAMS
    PACKING DENSITY = 2.26 GRAMS/CC
    UL MINIMEM = 1.8A CM/SEC
    UG MINIMUM = 14.106 CM/SEC
    PARTICLE DIAMETER = 0.462 CM
    VISCOSITY = 0.0090 POISE
    SURFAFE TENSION = 71.2 DYNES/CA
    BED HT DEL PRES UG UL EPS SQLID EPSLIQ EPS GAS
0.430E+02 0.877E+01 0.141E+02 0.734E+00 0.564E+00-0.769E-01 0.513E+00
0.42AE+02 0.142E+02 0.141E+02 0.979E+00 0.572E+00 0.363E-01 0.391E+00
0.419E+02 0.269E+02 0.141E+02 0.147E+01 0.579E+00 0.185E+000 0.236E+00
0.428E+02 0.224E+02 D.141E+02 0.196E+01 J.567E+00 0.236E+00 0.197E+00
0.432E+02 0.224E+02 0.141E+02 0.245E+01 0.562E+00 0.243E+00 0.195E+00
0.485E+02 0.226E+02 0.141E+02 0. 294E+01 0.500E+E0 0.332E+00 0.168E+00
0.494E+02 0.228E+02 0.141E+02 0.343E+01 0.491E+00 0.348E+00 0.161E+00
0.496E+02 0.228E+02 0.141E+02 0.358E+01 0.489E+00 0.349E+00 0.161E+090
0.498E+02 0.230E+02 0.141E+52 0.418E+01 0.487E+00 0.357E+00 0.156E+00
0.502E+02 0.233E+C2 0.141E+02 0.477E+01 0.483E+00 0.367E+00 0.150E+00
0.E10E+02 0.233E-L2 C.140E+02 0.537E+01 0.476E+00 0.378E+0J 0.146E+03
0.510E+02 0.234E+02 0.14JE+02 0.596E+J1 0. 076E+00 0.378E+00 0.146E+000
0.574E+02 0.225E+02 0.140E+02 0.716E+01 0.422E+00 0.434E+00 0.144E+00
0.594E+02 0.211E+02 0.140E+62 0.835E+01 0.408E+00 S.42BE+00 0.164E+00
IF YIIG UANF THIS INFORMATION STORED ON FILES Ag, 51 \& 54 TYPE Y,<CR> \(N\)
END QF EXECUTEON
```


8.3 Correlation Program

8.3.1 Explanation of CORRLT

This correlation program performs correlations of the form:

$$
\begin{equation*}
Z=e^{K_{A} a_{B} b_{c}^{c}} \ldots \tag{23}
\end{equation*}
$$

for up to thirteen independent variables and two thousand data points. Th user selects the variables desired for correlation from a list of twentyeight available, ircluding both dimensional and dimensionless operating parameters. The program reads the appropriate literature and experimenta) dimensional, and dimensionless data files designated by the user. Any lines of data containing zero or negative data intended for the correlatio are deleted. Natural logs of all remaining data are calculated and the resulting array is sent to the IBM Scientific Subroutines of CORRE, ORDER, MINU, and MULTR for linear regression analysis.

3.3.2 CORRLT Input and Output

Prior to execution of CORRLT, data files FOR48.DAT, FOR51.DAT, and FOR54. DAT, containing the experimental operating parameters, must be in th disk space. If correlations are to be performed using literature points, files FOR30.DAT and FOR32.DAT must de present. If dimensionless groups are to be correlated, files FOR33. DAT and FOR45.DAT, as calculated by computer DIMLES, are required. In the execution of CORRLT, the desired varia bles, up to a maximum of fourteen, are selected by assigning sequential item numbers to the variables as requested by the program. A definition of each of these variables is found in the program DIMLES. Other input includes the total number of the variables correlated, the designation of the dependent variable by its item number, and the number of lines of experimental and iiterature data available for correlation.

CORRLT performs a linear regression on the variables selected. The output includes the regression coefficients, or the exponents in Eq. (23), the intercept K, in Eq. (23), and the statistical parameters characterizin the significance of these values and of the obtained correlation. The out put also includes a list comparing the experimental and calculated values of the dependent variable from the correlation. A plot of this comparison may be obtained from subroutine DECWAR if desired.

8.3.3 Listing of Correlation Proarams

```
8.3.3.1 CORRLT.
INTESER ENDEXP, BGNHLIT, ENDLIT, ENDALLL DEPEN
DIMENSION DIMEN(2000,153, AUTH(20003,X<280003, XBaR(15),
1SB(14).ANS(10), STD(15), FX(225), FTC 14%, B(15),D(153-T(15),
1FINAL(2000, 2)& I SAVEC 15), R(225)
    EOUI UAL, ENCE (DIMEN(1,15), AUTH(1)), (DIMDN(1, 1), X(1) )
```



```
IK1,K2_K3,K4&K5_K6_K7,KB,K9,K1O.K11,K12_K13.K14/28*15/
TYPE 300
300 FOPMAT & IF YOU UANT A LIST OF CORRDLATION OPTIONS, ;
IOTYPE 1 <CR>. ELSE TYPE 2 <CR>0)
    ACCEPPT *: LO
    TYPE 305
ACCEPT t, LI
GO TO (10,14). LO
GO TO (11.12.11), L1
TYPE 140
TYPE 101
ACCEPT ** J.l
TYPE }10
ACCEPT *, J2
TPPE 103
ACEEPT*, J3
TYPE 104
ACCEPT *, J4
TMPE 185
ACCEPT *. J5
TYPE 106
ACCEPT *. S6
TYPE 107
ACCEPT *, JT
TYPE 108
ACCEPT F. J8
TYPE 113
ACCETT *, J!3
TYPE 114
ACCEPT * J14
TYPE }10
ACCEPT *, J9
TYPE 110
ACCEPT *, J13
TMPE 111
ACCEPT *. Jll
TYPE 1:2
ACCEPT *, Jl2
G0 T0 (18.13.13). 21
```

15	TTPE 211 ACCEPT -, K1 TYPE 202 ACCEPT *. K2 TYPE 203 ACCEPT *. K3 TYPE 204 ACCEPT *. KA TYPE 205 ACCEPT -. KS TYPE 206 ACCEPT F. K6 TYPE 207 ACCEPT *, KT TYPE 208 ACCEPT ©, K8 TYPE 209 ACCEPT - K9 TYPE 210 aCCEPT *, KII TYPE 211 ACCEPT * K11 TYPE 212 ACCEPT *. K12 TYPE 213 ACCEPT *. K13 TYPE 214 ACCEPT ©, K14 GO TO 18
14	GO T0 (15, 16, 15) = L1
15	ACCEPT \#, JI
	ACCEPT * 52
	ACCEPT \% 34
	ACCEPT \% J5
	ACCEPT \% J6
	ACCEPT *, JT
	ACCEPT \%, J8
	ACCEPT * 113
	ACCEPT \% J14
16	ACCEPT E. J9
	ACCEPT \% J10
	ACCEPT * J11
	```ACCEPT * J12 G0 TO (18.17.17). L1```
17	ACCEPT \% K1
	ACCEPT = K 2
	ACCEPP \%, K 3
	ACCEPT E. KA
	ACCEPT \%, K5

```
 ACCEPT *. KG
 ACCEPT %, K7
 ACCEPT *. KS
 ACCEPT * K9
 ACCEPT *. K10
 ACCEPT *, K11
 ACCEPT %, K12
 ACCEPT % K13
 ACCEPT *, K14
 TYPE 301
 ACCEPT *. NOVAR
 TYPE 302
 ACCEPT E, DEPEN
 TYPE 303
 GCCEPT *, ENDEXP
 TYPE 304
 ACCEPT *, ENDLIT
 FORGATK,f, - YOU HAUE A GHOICE GF CORRRLATING 14 OR LESS *.
!. -VARI aELES.*,/>
 FORHATS" TO CORRELATE UG : TYPE ITEHF.EDSE 15<CR> *)
 FORMATC: TO CORRELATE U. : TYPE ITEM&. ELSE 15 <CR> NS
 FORAATC* TO CORRELATE DP : TYPE ITEMM.EDSE 15<CR> *)
 FOFMATC: TO CORREATE FFOS : TYPE ITEME. ELSE IS <CRD ",
 FORMATC" TO CORRELATE RHOL : TYPE ITEAF. ELSE 15 <CR> ""
 FORMATC* TO CORRELATE FHOG : TYPE ITEM*. ESSE 15 <CR> ")
 FOFMATC* TO CORRELATE SIGMAI TYPE ITEMA. ELSE 15 <CR> *")
 FORMATC. TO CORRELATE UISCOS: TYPE &TEM&. EDSE 15 <CR> *O)
 FORMATC* TO CORRELATE DC = TYPE ITEMA.EDSE 15<CR> **)
 FORMATS" TO CORRELATE ULMIN: TYPE ITEMF. ELSE IS <CR> **)
 FOFMATC: TD CORAELATE EPSS: FXPE ITEMA. ELSE 15 <CR> *)
 FORPATC* TO CORRELATE 1-EPSS: TYPE ITEM&. ELSE IS <CR> NO
 FORAMAT\: TD CORREATE EPSG = TYPE ITEM&-ELSE 15<CR> |")
 FORMATK: TO CORRELATE EPSL = TYPE ITEMA. ELSE 15<CR> &)
 FORMATC" TO CORREIATE WEL : TYPE ITEMA. EESE 15<CR> US
 FOMAATS* TO CORRELATE WEG = TYPE ITEM|. ELSE 1S <CR, "O
 FORMATC* TO CORRELATE FRG : TYPE ITEM** ESE 15 <CR> "0)
 FORMATC: TO CORRELATE FRL = TYPE ITEX&* ELSE 15 <CR> ")
 FORMATC* TD CORRELATE REL = TYPE ITEM%. ELSE 15 <CR> "#
 FORMATS* TO CORRELATE REK = TYPE ITEMF. ELSE 15 <CR> OS
 FOFMATS* TO CORRELATE UG/UL : TYPE ITEMP. ELSE 15 <GR> "0)
 FORYATC* TO CORRELATE DCRDP & TYPE ITEMG. ELSE 15 <CRP &OS
 FORMATC* TO CORRELGTE GA : TYPE ITEMA. EISE IS <GR> *")
 FORMATC* TO CORRELATE ORNL : TYPE ITEM& ELSE 1S <CR> ")
 FORMATC* TO CORFELATE BO = TYPE ITEMA. ELSE 15 <CR> &")
 FORMATC- TO CORRELATE AR : TYPE ITEMP. ELSE IS <CR> P-)
 FORYAT&* TO CORRELATE CA = TYPE ITEMA. ELSE 15 <CRS *)
 FORMATC* TO CORREIATE CD = TYPE ITEM&.ESE 15 <CRP *OS
 FOROMAT (* THE NUMBER OF VARIAELES CHOSEN = ")
 FDHAAT &* THE ITEM NTREER OF THE DEPENNDENT VARIABLEE = ")
 FORMAT &* THE MUMBER OF LINES OF EXPERIMENTAL INPUT = ") .
```

FORMAT 6 : THE MUMBER OF LINES GF LITERATURE 1 NPUT * *)


1. TYPE 2 <CR P FDR DLMDNSICNESS GRJUPS ORY../S 1 - TTPE 3 <CR> FOR BOTH DIMENSIONAL AND MOHDIMENSICNAL ${ }^{\prime}$ ?

 IDEPEN, ENDEXP, ENDLIT
coperat (2413.1.815.f)
DO 22 I=1. ENDEXP
IF (Li.EQ.1) GO TO 21
FGEAD (33-4(2) DIMEN(1,K1), DIMEM(1sK2), DKI(EM(1,K3).

IDIMEN(I,K8), DIMEN(I,K9), DIMEA(I,K10)=DIHEN(1,K11).
1DIMEN(I,K12). DIMEN(I,K13), DI:4EN(I.K14)
FORMAT (14E10.3)
READ (48.401) (DIMDN(I, J1), DIMEN(I., J2), DIMEN(I, J3).
: DIMEN(1, J4), CIMEN(1.J5), DIMEN(I.J6))
READ (51.401) (DIMEN(In.J7). DIMEN(I., (8). DIMENCI.J9).
IDIMEN(1,JI0), DIMEN(1,J11),DIMEN(1,J12;)
READ (SA,4B1) (DIMEN(I,J13), DTMP, DDHP, DUAP, DIMEN(1,J14),
|AUTHCI)?
FORAAT (6EIO.3)
CONTINUE
IF (J14.EQ.15) GO TO 1
ENDALL = ENDEXP
GO 702
BGNL IT E ENDEXP+ 1
ENDALS ENDEXP + ENDLIT
DO 26 I=BGNLIT, ENDALL
IF (LI-EQ.1) GO TO 25
READ (45, AD2) DIMEN(1,K1), DIMEN(I,K2), DIMEN(I,K3),
(DIMEN(I,K4), OIMEN(I,K5), DIMEN(I,K6), DIMEN(I,K7).
IDIMEN(I, if 8 ), DIMEN(I,K9), DIMEN(I,K10\%.DIMEN(I,K11).
IDIHEN(I.K12), DIMEN(I,K13).DIMEN(1,K14)
READ (30,403) CDIMEN(I, J1), DIMEN(I,J2), DIMEN(1, J3), DIMENC
(I, J4), DIMEN(1, JS), DIMEN(1,J6), DIMEN(1, J7))
READ (32.403) (DIMEN(I, J8), DIMEN(1,J9), DIMEI(I.JIO), DIMEN
:(I,S11), DIMEN(IfS12), DIMEN(If, 13), AUTH(1))
FORMAT (TEID. 3 )
26 CONTINUE
DO 5 1=1. ENDALS
PROD=1.
DO $3 \mathrm{~J}=1$, NOVAR
PROD $=$ PROD DIMEN(I, J)
1F (PROD.LE.O.) GO TO A
$11=11+1$
AUTH(11)=AUTH(1)
GO TO 5
DO $5 \mathrm{~J}=1 \mathrm{~N}$ NUAT
DIMEN(Iっs) $=0$.
```
S CONTINUE
 J 0=0
 11=0
 DO 7 J=I/NOUAR
 IF <J.EC-DEPES\ GO TO 6
 JO=\sqrt{VO+1}{0}
 I SAUE(J0)=J
 DO }7\mathrm{ I=1. ENDALL
 IF CDI:AENCI,JJEEO.D.O GO TO 7
 12=II*I
 K(I1)=ALOG(DIMEN(I&J))
 CONTINUE
 N=$1/NOVAR
 CRLL CORRE\N,NO.AR, IsX,XEAR STD, RX, R, D, B, T%
 NOVARI = EVOVAR-1
 CALL OROERKNOVAR, R, DEPEN, NGUARI, I SAUE RX, RY,
 CALL NINUCFR,NOUARL,DET, E,T)
```



```
 TYPE 9OS. NOVARN
905 FOFRATK MULTIPIE LINEAR RESRESSIONT *I2. GARIAELES **
 144* DBSERTJATIONS**)
 TYPE 906
 FORMATC/R" REXRESSION COEFFICIENTSz")
 T\PE 907,(ISAUECI3,B(I),I=1,NOVAR1)
 FOFMATK1X,I10,G15.5)
 TTPE 9#S
90B FOFMATR/f* STANDARD DEUIATION OF REGRESSION COEFFICIENTS: *)
 TYPE 909.(ISAUE(I), SB(I), Imi=NOUARI)
909 FOR&ATC1X,I10,G15.5)
 TYPE 910
910 FORMATC//* T VALUES:*)
 TYPE 7I1:(ISAVE(I),T(I),I=1,NOUARI)
 FOFMAT(1X,IIG.G15.53
 TYPE 912,CANS(IS,I=1,10)
 FOFMATK//% INTERCEPT:*,G12.5.
```



```
 1/1' STANDARD ERROR DF ESTIMATE; "GI2.5.
 1/10 STM OF SOUARES ATTRIBUTED TD REGRESSIGN, SSAR: *,G12.5,
 1/1" DEGREES OF FREEDOY OF S5AP: *,G12.5.
 1/7* NEAN SOUARE DF SSAR: *GI2.S.
 1/70 SUM DF SOTYARES OF DEUIATION FROY REGRESSION,SSDRI*,G12.5.
 1/10 DEGREES GF FREEDOM OF SSDR:*,G12.5
 1/7* MEAN SOUARE OF SSDR:*,G12.5.
 1//" F TALUE: *G12.5)
 DO }9\mathrm{ I=I,N
 FINAL(1, 1)=EXP(ANS(1))
 DO 8 KM I, NOUAR:
 KC=(ISAごE(K)-12ERK+1
```



TMPE 913

FORHAT Cr/Caz8. 1AX. ${ }^{\text {CALCTLATE ETPERIMENT }}$ Vard AERE०/ //. yex, "CALCLLATE EXPERIMENT•, "
TYPE 914 (FINAL (1, 1). FINAL ( 1,2$), 1=1,27 \%$
FORHAT (4X, 2E10.3. Ax, 2E10.3, 4x;2E13.3)
PAUSE -IF A PLOT OF THESE RESULTS IS DESIRED, TYPE G<CRD. IAND PLOT ©SCR>. ELSE TYPE X<CPO.
CANL DECUAPCFINAL= M)
CALL EXIT
END

### 8.3.3.2 DECMAR.

SUBROTTINE DECWARCFINAL.N) DIMENSI ON FYNAL(1), A(8000) ACCEPT ©. JK
CALL PLOTS(AN 5000)
CALL NUMBER(0.125,0.125,0.25, JK, 0.0.0. (13) 0. 3)
CALL PLOTC: 5 . $1.5,3$ 3)
CALL PLOTC 1.5,9.5, 2)
CaLL PLOT(9.5.9.5,1)
CALL PLOT(9.5, 1.5,1)
CALL PLOT(1.5.1.5, i)
Call POT(9.5.9.5.1)
CALL PLOTCIEE, 1.5.3)
X1=1.5
Y1=1.5
DO $50 \mathrm{~J}=1,9$
X1-x1-. 8
CALL SYHBCR (X1, Y1, -125, 13, 0,0,-1)
CALL PLOTi $1.5,1.5,3)$
X1=1.5
DO $70 \mathrm{~J}=1,9$
Yi=Y1+. 8
CALL SMBEC(X1,Y1,-125, 15,0.0.-1)
DO 90 1=1,N
FIMAL (1) =1.5*8.0@FINAL (I)
$48=2080+1$



METUFN
END

### 8.3.3.3 DIMES.


TYE 50
FOPMATCIX, FOPM DIMENSICELESS GROMPS*, IAK, PNTEP
!f OF Data polnts-)
ACCEPT * NLINES
TPE 60

:"48, $51=54,33$ FOR EXPERIHENTAK DATA". /IX,
:-30, 32, 0, A5 FOR LITERATURE DATA's
ACCEPT ${ }^{\circ}$, TNITI, IRITR, INIT T3, UNIT
OPEN (TNIT=INIT,ACCESS: *APPEND-)
DO $4 \mathrm{I}=1$, NLINES
IF (TNIT3.EQ.D) GO TO 2
DEAD (INITI, IOU) IM, IL, DP, DHOS, RHOL, RHOG
TEAD (INITR,100) SIGYA, VI SCOS, EPSS, EPSSYI, EPSG.EPSL
PEAD (INIT3.igo) DC
FOPMAT (6E10.3)
60 TO 3
FEAD (INITL, 1013 1TS, TL, DP, FHOS, FHCL, RHOG. SIGMA
READ (INIT2,101) TISCDS, EPSS, EPSSM1, EPSG, EPSL, DC
FDMAAT (TE10.3)

PET= DPEIJG FHOS ノVI SCOS
$\Psi E L=D H L+D P E I \Omega+2 / S I G: 4 A$
$7 E G=0.10 G$ DP*TG* 2 SSI SMA
FTLIN+*2/(980.*DP)
F?G=113**2/(980.*DP)


CA=-II SCOS*I几/SIGMA

GA=950**PROS*2*DP* 3rviscosta
1!
DCDP=DC/DP
ONNL = PHO FUC**a. ((980.*SIGMA)

IGA, ORNL, $Q O, A P, C A, C D$
FORMAT (14EID.z)
4 CONTINTE
CALL EXIT
END

### 8.3.4 Sample Program Execution

```
-EX CORFLT,LI BAPY, DECFAR,SYS: PLOT/SEA
FORTRAN: CDPRLT
YAIN.
LNNK: LOADING
[LNOKCCT CORFLT EXEGUTION]
IF YOU UANT A LIST OF CORRMATION OPTIONS, TYPE 1 <CR>. ELSE TYPE 2 <CR>
I
TYPE 1 <CR> FOR DIMENSIONAL GROUPS ONLY
TPPE 2 <CR> FOR DIMENSIONLESS GROUPS ONLY
TPPE 3 <CR> FOP. BOTH DIMENSIONAL AND NONDIMENSIONAL
2
TO CORREATE EPSS: TYPE ITEMC. ELSE 15 <CR> *
1 5
TM CORPEMTE 1-EPSS: TYPE ITEMC. ELSE 15 <CRD.
1
TO CORPELATE EPSG = TYPE ITEMA. ELSE 15 <CR> (
15
TO CORRELATE EPSL : TYPE ITEMA. ELSE 15 <CR> %
15
TD CORRELATE UEL : TYPE ITEM&. ELSE 15 <CP, |
1 5
ID CORRELATE WEG : TYPE ITEM*. ELSE 15 <CRP *
15
TO
15
15
15
T
TO CORRELATE REG = TYPE ITEMA. ELSE 15 <CR>*
1 5
TO CORRELATE UG/UL : TYPE ITEMA. EISE 15 <CR> *
15
TO CORRELATE DCJDP : TYPE ITEMA. ELSE 15 <CR> *
1 5
TO CORRELATE GA = TYPE ITEMA. ELSE 15 <CR>0
TO CORREIATE ORNL = TYPE ITEM|. ELSE 15 <CR> *
15
TO CORREATE BO = TYPE ITEMA.ELSE 15 <CR>*
:5
TO CORRELATE AR : TYPE ITEM&. ELSE 15 <CR>
1 5
```

```
*. FRETATE CA : THPEITEM|. EESE 15 <CR>
 NYRELATE CD & TYPE ITEY#4 ELSE }15\mathrm{ &CR>
LS
DME: NTFIBER OF UARIABLES CHESEN =
3
THE ITSY NUKBER OF THE DEPENDENT UARIAELE =
HHE NTMBER OF LINES OF EXPERIMENTAL INPET
334
HE NIMBER OF LINES OF LITERATURE INPUT =
1223
```



```
THLTIDEE LINEAR REGPESSION: 3 YARIAELES 1475 UBSEFYATIONS.
qEOPESSION COEFFICI ENTS:
 2 0.27533
 3-0.17103
SPANDARD DEYIATION OF PEWRESSION COEFFICIENTS:
 2 0.52558E-02
 3 0.28738E-02
T MAL"?ES=
 2 52.387
 3-59.512
INTEP.CEPT: 0.42730
MTLTIPLE COPRELATION COEFFICIENT: 0.BA239
STANDARD ERRDP GF ESTIMATE: 0.11048
SMM OF SMIJARES ATTRIGITED TO RDGRESSIONI,SSARE G3.910
DEGPEES OF FGEEDOM OF SSAR: 2.0D00
MEAN SATIARE UF SSAR: 21.95S
SUM OF SQUARES OF DEJIATION FROY REGRESSIDRSSSDRE 17.968
DEGREES OF FREEDOM OF 5SDR: 1472.0
MEAN SOUARE OF SSDR: 0.1220GE-01
F TALTIE: 1798.7
```


## DEPENDENT TARIABCE

CALCTILATE EXPERIMENT
$0.393 E+00 \quad 0.404 E+00$
$0.459 \mathrm{E}-00 \mathrm{D} 0.466 \mathrm{E}+00$
$0.506 E-90 \quad 0.525 E+G 0$
$0.440 E+000.455 E+00$
0.492E+00 0.516E+00
$0.393 E-00 \quad 0.423 E-00$
$0.459 E+000.5 C 7 E+00$
$0.365 \mathrm{E}+00 \quad 0.39 \mathrm{DE}+00$
$0.440 E+00$ 0.466E+00
$0.492 E+00 \quad 0.487 E+00$
$0.477 E+000.475 E+00$

CALCULATE EXPERIMENT

$$
\begin{aligned}
& 0.318 E+000.417 E+00 \\
& 0.476 \mathrm{E}-00 \text { 0.466E+0C } \\
& 0.393 E+00 \quad 0.355 E+00 \\
& 0.459 E+900.477 E+0 \\
& 0.506 E+00 \text { 0.534E } 80 \\
& 0.415 E+00 \text { B.404E+00 } \\
& 0.476 E+000.497 E+08 \\
& 0.393 E+00 \quad 0.404 E+00 \\
& 0.459 E-00 \quad 0.466 E+00 \\
& 0.506 E+000.507 E+00 \\
& 0.502 E+000.488 E=00
\end{aligned}
$$

CALCILATE EXPEAIMENT
$0.440 E+00$ 0.455E-60 $0.492 \mathrm{E}+00$ 0.516E+00 $0.418 E+00$ 0.443E-00 $0.476 \mathrm{E}+00$ 0.516E+00 $0.355 E-00 \quad 0.359 E+00$ $0.440 \mathrm{E}+00 \mathrm{0} .466 \mathrm{E}+00$ $0.492 E-100$ 0.516E +00 $0.418 E+00$ 0.443E 00 $0.476 E=00$ 0.507E -00 $0.449 E+00 \quad 0.447 E+00$ $0.524 E+000.486 E+00$

IF A PLOT OF THESE RESULTS IS DESIPED. TYPE G\&CR>,AND PLOT <<CR\%. ELS E TYPE X $<$ CPR.
TYPE G TO CONTINTE $X$ TD EXiT, $T$ TO TRACE.
${ }_{-G}$
56
ISAVE THIS PLOTT Y FOR YES
$Y$
!SAYED PLOT 1
END OF EXECUTION
CPI TIME: 1:47.08 ELAPSED TIME: 11:8.80
EXIT
-O PLT: $=$-TOP29 - DAT/ODI SP: RENAME
TOTAL OF 212 ELOCKS IN PLT REOUEST

### 8.4 Location of Data

The original data are iocated ir. ORNL Databooks A-7550-G, pp. 1-100, and $A-63: j-G, p p .80-88$. The datijooks and calculations are on file at the MIT School of Chemical Engireering Practice, Bldg. 3003, ONNL.

### 8.5 Nomenclature

A cross-sectional area of the column, $\mathrm{cm}^{2}$
Ar Archimedes number, $d_{p}^{3} g\left(p_{S}-\rho_{L}\right) D_{L} / r_{L}^{2}$
a correlation coefficient
b correlation coefficient
c correlation coefficient
$D_{c}$ diameter of the column, cm
$d_{p}$ diameter of the solid particles, cm
Fr Froude number, $\mathrm{u}_{\mathrm{f}}^{2} / \mathrm{gd}$
Ga Galileo number, $d_{p}^{3} \rho_{S}^{2} g / i_{L}^{2}$
$g$ gravitational constant, $\mathrm{cm} / \mathrm{sec}^{2}$
H distance up the column, cm
$\mathrm{H}_{\mathrm{B}}$ height of fluidized bed, cm
$h$ height of liquid in manometer, cm of fluid
$M$ mass, gm
n number of independent experimental variables
p pressure, dynes/cm²
q general experimental variable
$\Delta q$ error involved in measurement of variable $q$
Re Reynolds number, $\rho_{f} U_{f} d_{p} / \|_{f}$
$S$ bed pressure gradient, cm fluid/cm
U superficial fluid velocity, $\mathrm{cm} / \mathrm{sec}$

H weight, dynes
Greek Symbols
E holdup, i.e., volume fraction of specific phase
D density, gm/cm²
$\sigma$ surface tension, dyne/om
u viscosity, poise

## Subscripts

B bed
buoy buoyant
G gas phase
$f$ fluid
i ith phase or ith variable
L liquid phase
mf minimum fluidization
p particie
S solid phase

### 8.6 Literature References

1. Bhatia, Y.K., and N. Epstein, "Three-Phase Fluidization: A Genera ized Wake Model," Proc. of Intern. Symp. on Fluidization and Its Applicati Toulouse, October, 1973, Cepadues Editions.
2. Bruce, P.N., and L. Revel-Chion, "Bed Porosity in Three-Phase Flu dization," Powder Tech., 10, 243 (1974).
3. Burck, G.M., K. Kodama, R.G. Markeloff, and S.R. Wilson, "Cocurre Three-Phase Fluidized Bed (Part 2)," ORNL/MIT-213 (May 1975).
4. Dakshinamurty, P., V. Subrahmanyam, and J.N. Rao, "Bed Poresities in Gas-Liquid Fluidization," I8EC Proc. Ces. Dev., 10, 322 (1971).
5. Darton, R.C., ant D. Harrison, "Gas and Liquid Holdup in ThreePhase Fluidization," Chem. Eng. Sci., 30,581 (1975).
6. Efremov, G.I., and I.A. Vakhrushev, "A Study of the Hydrodynamics of Three-Phase Fiuidized Beds," Intern. Chem. Eng., 10(1), 37 (1970).
7. Fergusen, D.E., ed., "Chemical Technology Division Annual Progress Report for the Period Ending March 31, 1974," ORNL-4966.
8. Khosrowshahi, S., S.R. Bloxom, C. Guzman, and R.M. Schlapfer, "Determination and Correlation of Hydrodynamic Variables in a Three-Phase Fiuidized Beã," ©RNL/MIT-216 (Sept. 1975).
9. Kim, S.D., C.G.J. Baker, and M.A. Bergougnou, "Phase Holdup Characteristics of Three-Phase Fluidized Beds," Can. J. Chem. Eng., 53, 134 (1975).
10. Kline, S., and F.A. McClintock, "Describing Uncertainties in Single-Sample Experiments," Mech. Eng., 75, 3 (1953).
11. Mukherjee, R.N., P. Bhattacharya, and D.K. Taraphdar, "Studies on the Dynamics of Three-Phase Fluidization," Proc. of the Intern. Symp. on Fluidization and Its Applications, Toulouse, Cctober 1973, Cepadues Editions.
12. Istergaard, K., and M.L. Michelson, "Holdup and Axial Dispersion in Gas-Liquid Fluidized Beds, "' Preprint 31D, Symp. on Fundamental and Applied Fluidization, Tampa, May 1968.
13. Østergaard, K., and P.I. Theisen, "The Effect of Particle Size and Bed Height on the Expansion of Mixed Phase (Gas-Liquid) Fluidized Beds," Chem. Eng. Sci_, 21, 413 (1966).
14. Rigby, G.R., and C.E. Capes, "Bed Expansion and Bubble Wakes in Three-Phase Fluidization," Can. J. Chem. Eng., 48, 343 (1970).
15. Wen, C.Y., and Y.H. Yu, "Mechanics of Fluidization," Chem. Eng. Progr. Symp. Series, 62, 100 (1966).
SATISFACTION GUARANTEED

# Reproduced by NTLS 

National Technical Information Service Springfield, VA 22161

## This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are custom reproduced for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available. Occasionally, older master materials may reproduce portions of documents that are not fully legible. If you have questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.


#### Abstract

About NTIS NTIS collects scientific, technical, engineering, and related business information - then organizes, maintains, and disseminates that information in a variety of formats - including electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper. The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia training products; computer software and electronic databases developed by federal agencies; and technical reports prepared by research organizations worldwide.


For more information about NTIS, visit our Web site at http://www.ntis.gov.

U.S. DEPARTMENT OF COMMERCE

Technology Administration
National Technical Information Service
Springfield, VA 22161 (703) 605-6000

