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SUMMARY

During coal gasification, nitrogen compounds in the coal are primarily converted to NH3
and when the coal gas is burnt in a gas turbine to produce electricity NH3 is converted to nitrogen
oxides. To minimize the formation of these toxic pollutants, removal of NH3 from coal gas stream
is desirable. Development of sorbents for the removal of H3S at high temperatures is being
actively pursued. Combining removal of both HS and NHj3 in one process unit will reduce the
capital and operating costs of coal gas generation.

Catalytic decomposition of NH3 into its elements Ny and H» is desirable and thermo-
dynamic calculations indicate that decomposition can reduce the level of NH3 at temperatures above
900 K. Conventional ammonia decomposition catalysts cannot be used under hot coal gas
conditions because H»S and steam present in the hot coal gas stream act as poisons for these
catalysts. Hence, novel catalysts must be developéd that can function in steam concentrations
greater than 10% and HjS levels greater than 0.5%. Combining both desulfurization sorbent and
NH3 decomposition catalyst in the same unit requires that the catalyst not only function in the
presence of HS but also should survive the oxidative regeneration of the desulfurization sorbent.

In this program, SRI tested several metal-supported catalysts in combination with a zinc
titanate sorbent for removing both NH3 and H3S from simulated coal gas streams. Thermo-
dynamic equilibrium calculations were made to determine the stability of the active metal phases in
hot coal gas environments and under oxidative regeneration conditions. These calculations
indicated that metals like Mo and W will be converted to their corresponding sulfides when
exposed to typical coal gas streams. The calculations also showed that only molybdenum oxides
have significantly high vapor pressures (>1 x 104 atm) at temperatures above 725°C to be of a
concern. Other oxides such as CoQ, CuO, ZnO, NiO, and W70Og have very low vapor pressures
(<1 x 10-12 atm). Loss of active components by vaporization will not be a problem except in the
case of molybdenum. |

Alumina, a commonly used catalyst support, could be converted to aluminum sulfate when
exposed to SO; and O3 present during oxidative regeneration of the spent sorbent. Aluminum .
sulfate is easily more sinterable than alumina. Thus, it could be expected that the surface area of an




alumina-based catalyst could decrease during cyclic sulfidation-regeneration steps. Oxides such as
titania and zirconia are less prone to sulfation than alumina.

~ Experiments showed that a high surface area (>250 m?/g) TiOp powder obtained from
Rhone-Poulenc sintered when exposed to a gas stream containing 20% steam at 725°C. The
surface area decreased from about 280 m?/g to about 15 m?/g in 24 h. When the titania was
intimately mixed with zirconia, the reduction in surface area was much less severe; after 24 h in
20% steam, the surface area was about 30 m?%/g.

SRI identified in a previous program that HTSR-1, a supported Ni catalyst proprietary to
Haldor-Topsge A/S, Copenhagen, Denmark, exhibited excellent activity for NH3 decomposition at
a temperature of 800°C even in the presence of 2,000 ppm of H3S. It also had a superior high
temperature stability. Experiments conducted in this program confirmed these observations. At
temperatures lower than 800°C, the steady-state NH3 decomposition activity was a function of HS
concentration. At 725°C, the catalyst was severely poisoned when exposed to 0.5% HS. Mixing
the catalyst with a zinc titanate sorbent allowed the catalysts to function for an extended period of
time. As the sorbent gets loaded with H3S, the residual H5S level increases thereby decreasing the
activity of the catalyst for NH3 decomposition. The HTSR-1 catalyst could be regenerated by
oxidizing in a gas stream containing 2% O2. However, the activity of the regenerated catalyst was
less than the original catalyst.

_ About ten catalytic formulations were synthesized using either Ni, Co, Mo, and W as active
components and titania or titania stabilized with zirconia as supports. Both single and dual active
component mixtures were prepared. These catalysts were tested at 725°C in a simulated coal gas
mixture representative of a Texaco oxygen-blown gasifier. Although the initial activity of some of
these catalysts was high, it declined with time. Under steady-state conditions, less than 20% the
feed NH3 (~1800 ppm) decomposed at 725°C.

The following recommendations are made for further investigation into the removal of fuel-
bound nitrogen from hot coal gas streams.

. The HTSR-1 should be tested using hot coal gas streams from an operating
coal gasifier. The effects of trace components of the hot coal gas stream that
could not be simulated in the laboratory must be determined.

. Alternative catalysts that have a high NH3 decomposition activity ata
' temperature of about 550°C in the presence of H,S must be developed.




»  The regeneration of sulfur-poisoned HTSR-1 must be investigated. Although
this catalyst can tolerate significant levels of HS at 800°C, it is slowly
poisoned at low temperatures. Regeneration of the catalyst will allow
continued use of this catalyst in a hot coal gas cleanup process.
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