EXPERIMENTAL PROCEDURE

THE FIXED-BED REACTOR SYSTEM

A laboratory-scale reactor system was assembled to determine the activity of selected catalyst-sorbent systems for their NH₃ decomposition activity and H₂S removal ability. This system includes a feed gas supply section in which the simulated coal gas components, supplied from standard high pressure cylinders equipped with pressure regulators, are mixed and metered by a bank of electronic mass flow controllers (Figure 5). Steam is added to the feedstock using an in-line stainless steel evaporator to which water is added by a precision liquid-metering pump. All lines downstream from the steam generator are heated to prevent condensation of water. NH₃ is added to the gas mixture downstream of the steam generator where the temperature is high enough to avoid the formation of (NH₄)₂CO₃. A second reactor was used for pretreating the catalysts.

The product gases from the reactor are analyzed by gas chromatography (GC). For the NH₃ analysis, the product gas, prior to the condensation of steam, first passes through an H₂S trap (copper sponge or zinc oxide kept at a temperature of about 200°C) and is then sampled by a high-temperature injection valve into a GC with a chromosorb 103 column. This column separates NH₃ from the other components of the sample stream. The effluent from the column first passes through a photoionization detector (PID) for analysis of NH₃ and then through a flame ionization detector for analysis of CH₄. Of all the components of the sampled gas stream, only NH₃ (and H₂S, if it is not removed) are detected by the photoionization detector. The calibration of the PID for NH₃ is shown in Figure 6. As expected, a linear correlation between the signal intensity and concentration of NH₃ was observed.

The concentration of H₂S in the gas stream is determined on a second sample from which steam is removed by condensation in a trap. This sample flows into a flame photometric detector (FPD) that is sensitive exclusively to sulfur compounds. A thermal conductivity detector used in series with the FPD is used to determine the concentration of the major components of the gas stream. Because NH₃ in this sample is effectively removed during steam condensation, the separation of NH₃ and H₂S is unnecessary. Hence, a Haysep Q column was used to separate the H₂S from the rest of the gases. During sorbent regeneration, the concentration of liberated SO₂ will be measured using this technique. The calibration of the FPD for H₂S is shown in Figure 7.

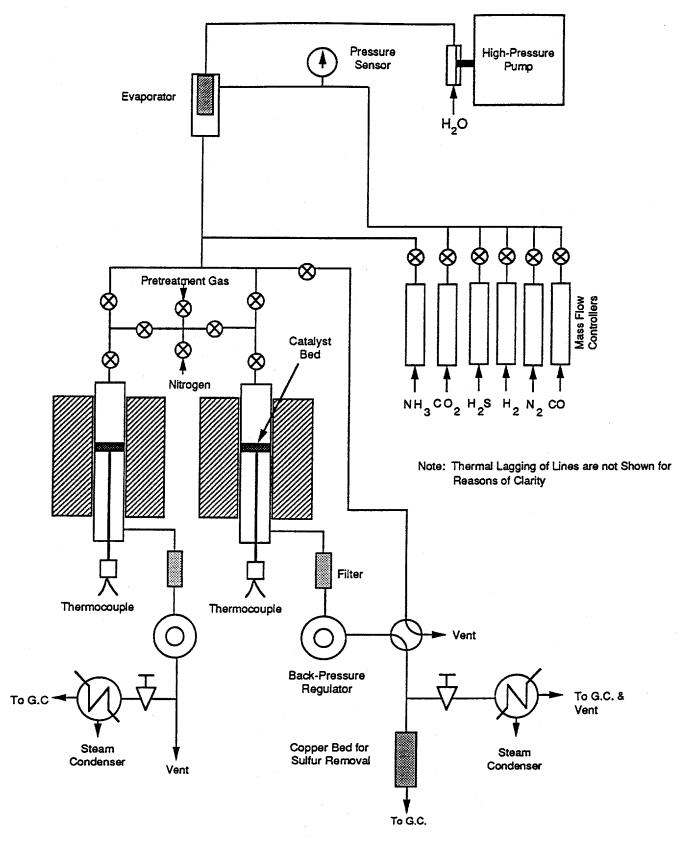


Figure 5. Schematic diagram of the fixed-bed reactor system.

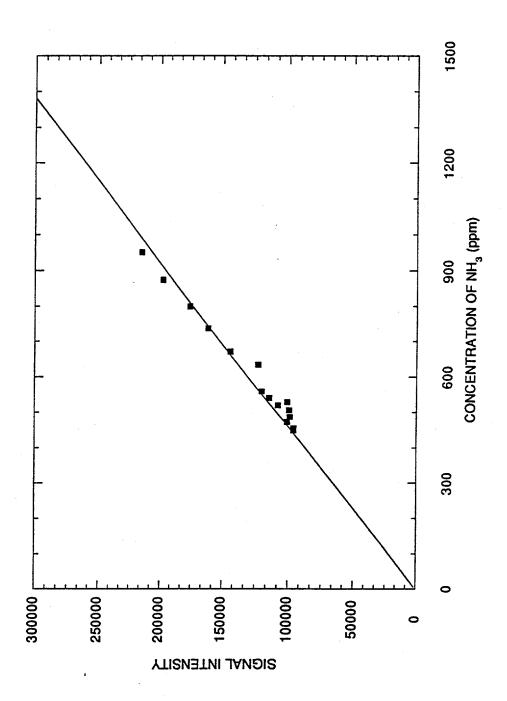


Figure 6. Calibration of photoionization detector for NH₃ gas.

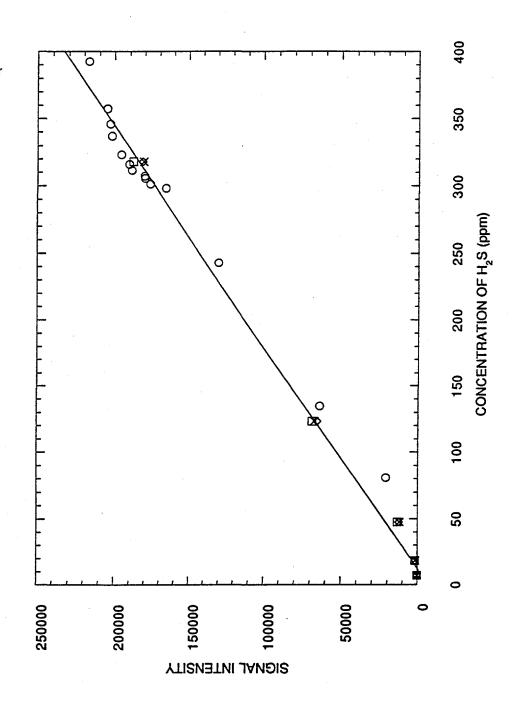


Figure 7. Calibration of flame photometric detector for H₂S gas

A bypass line from the feed gas manifold and a selector valve permits injection of feed gas samples into the chromatographs. Thus the fractional reduction of NH₃ and changes in other components of the simulated coal gas during passage through the reactor can be measured directly. The rate of the ammonia decomposition reaction is calculated from the measured fractional conversion and the space velocity of the gas in the reactor.

PREPARATION OF CATALYSTS

A Ni-supported on a ceramic support (HTSR-1) and a MoS₂ stabilized with zirconia were designated as the baseline catalysts. These two catalysts were tested extensively by SRI in a previous program for NH₃ decomposition. HTSR-1, manufactured by Haldor-Topsoe AG, Copenhagen, Denmark, was found to be an excellent catalyst for decomposing NH₃. The MoS₂ catalysts (CRC-653 and CRC-530) were prepared by Catalyst Research Corporation, Palisades Park, NJ. CRC-653, which had ZrO₂ as a stabilizing agent, showed a significant catalytic activity for the decomposition of NH₃ in the presence of 0.3% H₂S. CRC-530 did not contain any stabilizing agent.

The HTSR-1 catalyst contains alumina and other oxides that could be converted to sulfates readily when exposed to SO₂-containing gas streams such as the one expected during oxidative regeneration of the spent catalyst. Titania and zirconia are less prone to sulfate formation than alumina. Hence, several formulations using titania or zirconia as support materials and nickel, cobalt, or molybdenum, and tungsten as active components were prepared.

Catalysts containing Ni as the active component were prepared using a high surface area (>250 m²/g) titania obtained from Rhone-Poulenc. To a slurry of this titania in isoproponal, a solution of zirconyl propoxide (in isoproponal) was added. Zirconium oxide was precipitated by adding water to this mixture resulting in an intimate contact between titania and zirconia. Nickel was incorporated in this substrate by adding a solution of nickel nitrate and precipitating it with ammonium hydroxide. The resulting solid mixture was dried and calcined. The estimated composition of the catalyst (Ni/TiO₂) is 20 wt% NiO, 20 wt% ZrO₂, and 60 wt% TiO₂.

The dried catalyst had a surface area of 193 m²/g. After calcination in air at 550°C, the surface area was reduced to 115 m²/g. Reduction in hydrogen at this temperature did not change the surface area (118 m²/g) significantly. However, calcination in air at 725°C for 2.5 h resulted in a further reduction in surface area to 22 m²/g. The measured surface area is less than the manufacturer-specified value of 48 m²/g after calcination in air at 750°C for 2 h.

Catalysts containing either cobalt or cobalt and molybdenum on high surface area titania were prepared. Cobalt (~20 wt%) was deposited on the TiO₂ support by slow precipitation by adding ammonium carbonate to a dilute solution of cobalt nitrate containing the support. The final pH was kept below the isoelectric point for cobalt hydroxide (~11.5) so that the cobalt compound is adsorbed on the TiO₂ support. The catalyst (Co/TiO₂) was then dried and calcined in hydrogen at 500°C for 4 h. The surface area of the calcined catalyst was 63 m²/g.

A batch of Co-Mo supported on TiO₂ was prepared by impregnating the Co-TiO₂ catalyst (prepared as described above) with a solution of ammonium molybdate under incipient wet conditions. The impregnation was performed three times to bring the total amount of Mo to 6.4 wt%. The catalyst (Co-Mo/TiO₂) was calcined in hydrogen at 550°C until all the molybdate was decomposed.

Two Mo-supported on TiO₂ catalysts (Mo-TiO₂) were made by impregnating high surface area TiO₂ powders with an ammonium molybdate solutions. Two W-supported on TiO₂ (W-TiO₂) catalysts were synthesized by impregnating TiO₂ powders with an ammonium tungstate solutions. The impregnated powders were dried overnight at 100°C, reduced in H₂ at 550°C.

Another catalyst containing 5 wt% Co and 15 wt% W on TiO₂ was prepared by impregnating the TiO₂ powder with ammonium tungstate solution three times. The catalyst was dried at 110°C between impregnation. After heating in H₂ at 550°C, cobalt was incorporated into the catalyst with wet impregnation with a cobalt nitrate solution. Finally, the catalyst (W-Co/TiO₂) was treated in H₂ at 550°C until all the nitrate was removed.

At the elevated temperature of 725°C, the TiO₂ support may sinter. The decrease in the surface area of the support due to sintering may contribute to the decline in the catalytic activity with time. To determine the sintering rate of the support, the TiO₂ powder was exposed to a mixture of 80% air-20% steam at 725°C for periods up to 72 h and the change in surface area was measured (Figure 8). These measurements indicated that the surface area of TiO₂ powder decreased from an initial value of about 280 m²/g to about 15 m²/g after 72 h.

To stabilize the surface area of TiO₂, 25 mole% ZrO₂ was added by precipitating the ZrO₂ from a zirconium propoxide solution. This procedure allows intimate contact between the TiO₂ and ZrO₂. The mixture of TiO₂-ZrO₂ was calcined at 350°C for 2h and then exposed to air-steam (25%) mixture at 725°C for periods up to 24 h. Surface area determination of the exposed samples indicated that ZrO₂ addition is beneficial in stabilizing the surface area. The samples containing ZrO₂ have nearly twice the surface area as those which do not contain ZrO₂ (Table 6).

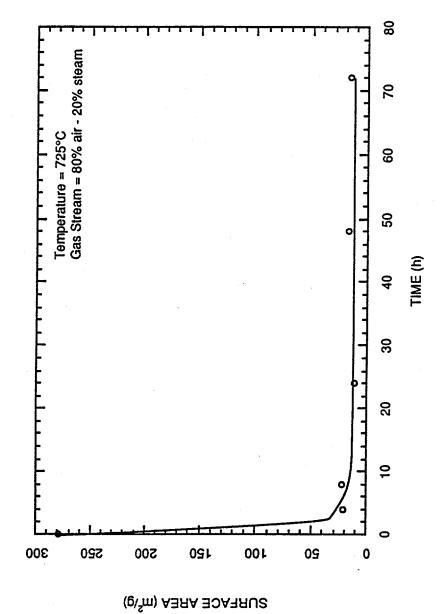


Figure 8. Change in surface area of a titania support as a function of time at 725°C.

TABLE 6
SURFACE AREA CHANGES IN TIO₂ and TiO₂-ZrO₂ POWDERS
DURING EXPOSURE TO STEAM AT 725°C¹

Time (h)	Area of TiO2 Powder	Area of TiO2-ZrO2_Powder2
	<u>(</u> m²/g)	<u>(</u> m²/g)
0	279	157
4	21	37
8	22	33
24	11	29
48	17	•
72	16	•

¹ The powders were exposed to a gas stream containing 80% air and 20% steam.

²The initial ZrO₂-TiO₂ sample was calcined at 350°C for 2 h.

RESULTS AND DISCUSSION

BASELINE CATALYSTS

The HTSR-1 catalyst decomposed about 80% of the feedgas NH₃ at 725°C under steady state conditions in the absence of H₂S (Figure 9). Although CH₄ was not added to the feedgas, the reactor effluent contained about 3.5% of CH₄ due to methane formation from CO and H₂ in the feedgas. However, when 0.5% H₂S was added to the feedgas, both the decomposition of NH₃ and the formation of CH₄ were inhibited. The concentration of H₂S in the reactor effluent was initially low, but a breakthrough was observed after about 100 minutes. The concentration of H₂S reached the feedgas value after about 200 minutes of exposure. After this period, the formation of CH₄ and decomposition of NH₃ were negligibly small.

The activity of the poisoned catalyst was not restored even when the catalyst was kept overnight at 725°C in pure H₂, indicating that the H₂S is irreversibly adsorbed at this temperature. However, when the temperature of the poisoned catalyst was increased to 800°C, the NH₃ decomposition activity was restored (Figure 10). Initially, the concentration of H₂S in the reactor effluent was higher than feedgas level indicating a desorption of adsorbed sulfur on the catalyst. As the catalyst became free of adsorbed sulfur, its activity for the decomposition of NH₃ also increased. At this high temperature and low pressure, the concentration of CH₄ in the reactor effluent was negligibly small.

The effectiveness of HTSR-1 to catalyze the decomposition of NH₃ at low levels of H₂S was also determined by placing the catalyst downstream of a zinc titanate bed and exposing them to a simulated Texaco coal gas containing 0.5% H₂S and 0.18% NH₃. Under these conditions, when H₂S level was about 10 ppm, nearly 90% of the feed NH₃ was decomposed (Figure 11). These set of experiments demonstrated that HTSR-1 is an effective catalyst for the decomposition of NH₃ at about 725°C when H₂S level is not very high.

An experiment was also performed by mixing both the zinc titanate sorbent and HTSR-1 catalyst in equal proportions and exposing them to the simulated Texaco coal gas at 725°C. When the concentration of H₂S in the reactor effluent was below 10 ppm, nearly 80% conversion of the feed NH₃ was observed. As the quantity of H₂S removed by the sorbent-catalyst bed decreased

CONCENTRATION OF CH4 IN EXIT GAS (%) ~ 0 က S. 400 E 모 된 350 H2S 300 0.5% H2S 250 TIME (min) CH4 200 Feedgas levels: NH3 = 0.2%; H2S = 0.5%; CH4 = 0% 150 Space Velocity = 3,000 h-1 100 No H2S — 20

Figure 9. The conversion of NH3 on HTSR-1 catalyst at 725°C in simulated Texaco gasitier stream.

S.0

2.0

Þ.0

€.0

RESIDUAL CONCENTRATION OF NH3 AND H2S (%)

1.0

0

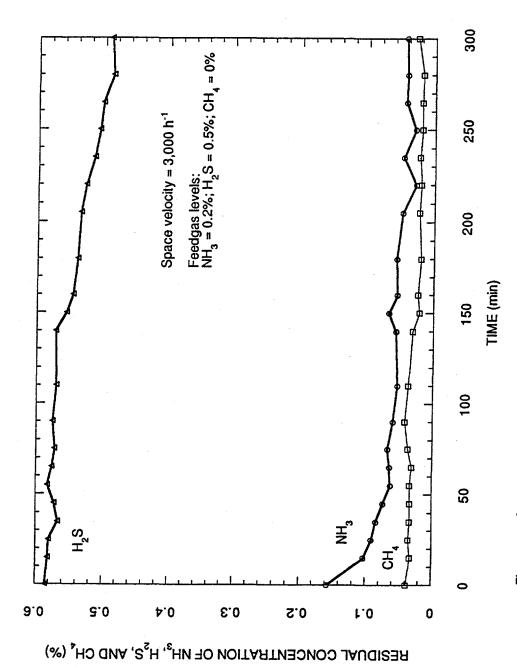
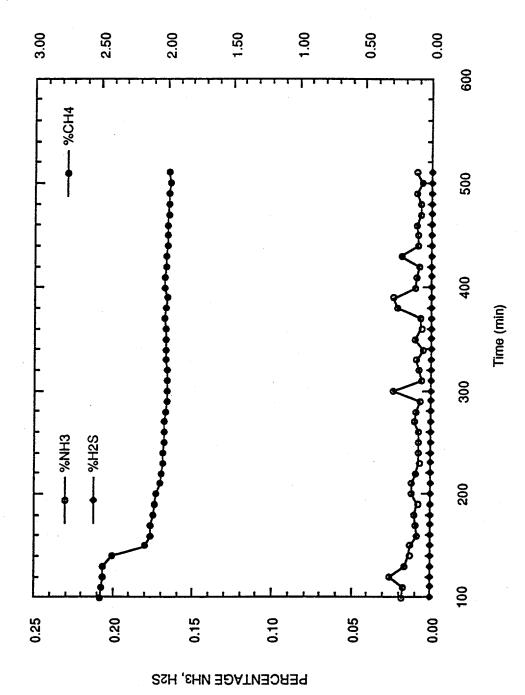



Figure 10. Conversion of NH₃ on HTSR-1 catalyst at 800°C in simulated Texaco gasilier stream.

PERCENTAGE CH4

Figure 11. The Conversion of NH3 on HTSR-1 placed downstream of a zinc titanate bed.

(or the residual H₂S level is increased), the extent of NH₃ decomposition also decreased (Figure 12).

The effect of regeneration on the performance of HTSR-1 catalyst was also determined by exposing the sulfided zinc titanate and HTSR-1 bed to a gas stream of 2% O₂ and balance N₂ at 725°C. The regeneration was terminated when O₂ breakthrough was observed in the effluent gas stream. The regenerated bed was then exposed to the simulated Texaco coal gas stream at the same temperature. During the initial 50 minutes, about 50% of the feed NH₃ decomposed (Figure 13). Subsequently, the conversion of NH₃ decreased with time.

The HTSR-1 catalyst was also tested at a pressure of 200 psig and a temperature of 725°C in the absence of H₂S in the feedgas stream. As shown in Figure 14, the catalyst had decomposed more than 95% of NH₃ in the feedgas. The concentration of CH₄ in the effluent gas was high, about 6.5% (v/v). Thus, the HTSR catalyst promotes both NH₃ decomposition and methanation reactions effectively in the absence of H₂S at 725°C.

MoS₂-based catalysts were also shown to exhibit activity for decomposition of NH₃ in hot coal gas streams. One of this formulations (CRC-653) in which MoS₂ was stabilized with ZrO₂ decomposed nearly 80% of the feedgas NH₃ initially. However, its activity declined with time (Figure 15). However, a second formulation (CRC-530) that did not contain any ZrO₂ did not decompose any measurable quantity of NH₃. These results indicate that although MoS₂ is capable of decomposing NH₃, it could sinter at 725°C unless effective stabilizing agents area added.

Surface area measurements indicated that the initial MoS_2 catalyst had a surface area of about 74.2 m²/g. After exposure to the simulated coal gas stream for about 8 h, the surface area decreased to about 11.7 m²/g. Oxidation of the MoS_2 with 2% O_2 also decreased the surface area, even further, to 6.8 m²/g. But exposure of the oxidized catalyst to a simulated coal gas stream containing H_2S increased the surface area to 19.5 m²/g.

The following conclusions can be derived from the tests with the baseline catalysts:

- HTSR-1, a Ni-based catalyst has a high activity for NH₃ decomposition at 725°C in simulated coal gas streams under low H₂S levels. The tolerance of the catalysts for H₂S increases as the temperature is increased.
- HTSR-1 when mixed with a desulfurization sorbent such as zinc titanate could decompose NH₃ effectively until the removal of H₂S by zinc titanate decreases.
- HTSR-1 continues to exhibit an activity for NH₃ decomposition even after exposure to zinc titanate regeneration conditions.

CONCENTRATION OF CH4 IN EXIT GAS (%) 0.5 1.5 0 350 300 250 Time (min) 200 150 — %H2S — %NH3 100

N

- %CH4

0.15

0.1

RESIDUAL CONCENTRATION OF NH3 AND H2S (%)

0.5

Figure 12. The conversion of ammonia on ZT-4T sorbent and HTSR-1 catalyst mixed together.

22

0.05

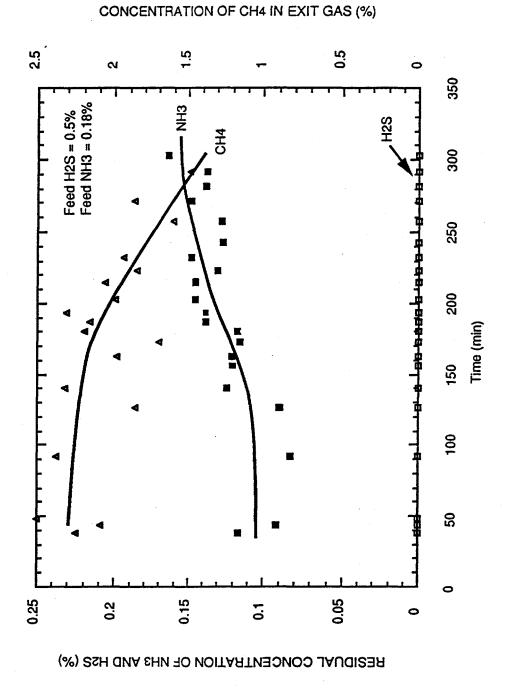


Figure 13. The conversion of NH3 on a regenerated HTSR-1 catalyst mixed with ZT-4 sorbent in a simulated Texaco gasifier stream.

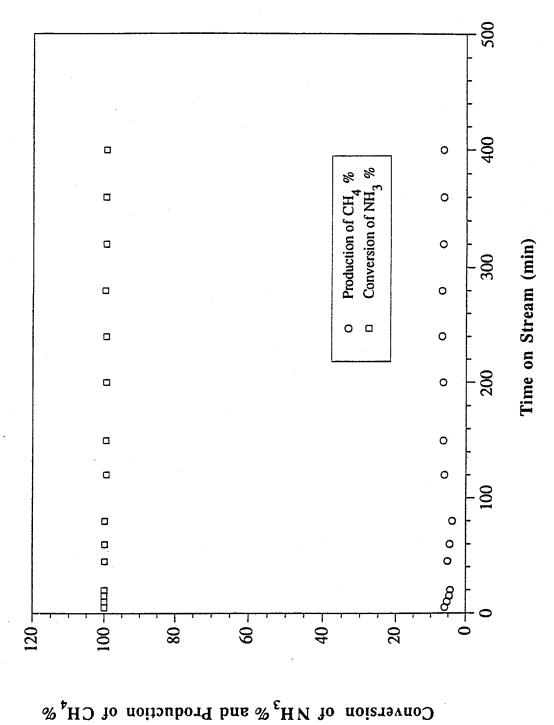


Figure 14. Decomposition of NH3 over HTSR-1 catalyst at 725°C and 200 psig pressure in a simulated coal gas stream.

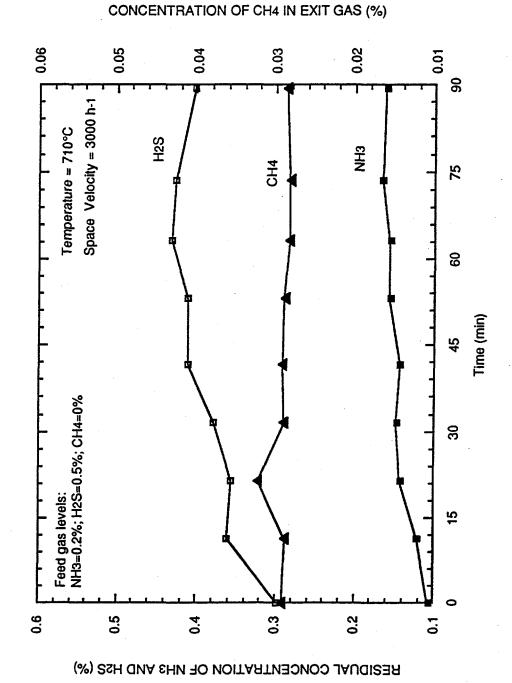


Figure 15. The conversion of NH3 and H2S on CRC-653 catalyst in simulated Texaco gasfier stream.