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KINETICS TESTS

Kinetics of the Water-Gas Shift Reaction

Reaction kinetics include the rate of formation or conversion of a
specific component; the rate of deactivation; the effectiveness factor or the
effect of diffusion and particle size; and the effect of a component or
components, which do not take part in the reaction under investigation, but
cause competing reaction at certain conditions. 1In this study of the water-
gas shift reaction in coal gasification product gases, we have all the above-
mentioned conditions: the rate of formation of hydrogen or the rate of
conversion of carbon monoxide, and the rate of deactivation by ammonia and
by phenol. Although the particle size is constant, the average pore length
(as defined in the Thiele modulus) changes with time. The presence of excess
aromatics at low steam/aromatics ratios promotes carbon formation reaction

at high temperatures.

The experimental work reported here was planned on the basis of the
work reported in the previous section. A continuous-stirred-tank-reactor
(CSTR), which gives the isothermal conditions and eliminates the concentration
gradient, was used for this study. The carbon oxides were analyzed by
infrared analyzers, a gas partitioner, and a mass spectrograph. All components
except hydrogen were analyzed by gas partitioning and mass spectrography, and

hydrogen is analyzed by mass spectrography alone.

Experiments were started using a feed consisting of carbon monoxide,
carbon dioxide, hydrogen, methane, ethane, propane, mercaptan, hydrogen
sulfide, carbonyl sulfide, nitrogen, helium, and water. Three water/gas
ratios were used to determine the effect of water concentration on the reaction.
Benzene was added, and the conditions at which the first set of tests were
studied were run again. Close observations were made of the carbon balance.
The effect of benzene on the reaction and the carbon formation reactions were

studied at benzene feed concentrations of about 10 and 20 mol %.

The isolation method was used to determine the order of reaction with
respect to each component involved in the reaction. Previous studies have
shown that components such as carbon dioxide, methane, helium, nitrogen,
sulfurs, and small amounts of heavier hydrocarbons were of zero order with

respect to the water-gas shift reaction. By holding other component
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concentrations constant and varying H;0 concentration, the reaction order
with respect to H20 was determined. Similarly, the order of carbon monoxide
was estimated. Other components, such as benzene, ammonia, and phenol were
added one at a time. The experiments were repeated for the same sets of
conditions, and the deactivation effect of these components was estimated.

The temperature and pressure were then changed, and for every change, the

same set of data were takem. Once the initial effect of each component was
established, the total rate expression was formulated, and the reattlon orders

were finalized for all components with the experimental data.

The initial rate analysis is summarized in Figure 15. The reaction
orders with respect to carbon monoxide and water are positive, and that with
carbon dioxide is zero. The reaction order with respect to benzene is
negative. Deactivation by phenol is a side-by-side reaction, and will be

included in the water-gas shift rate equation by means of a separate factor.

Kinetics Test Results — G93

A total of 11C runs were made for this study. The detailed data are
presented in Appendix B, Tables B-1 and B-2. In addition to the data needed
for the development of a rate equation, we also obtained information to
estimate the effect of benzene, ammonia, and phenol on the conversion, and
on the rate of conversion,of carbon monoxide in the water-gas shift reaction.
Most of the experiments were conducted at conditions well away from equilibrium

conversions in order to obtain meaningful rate data.

The effects of temperature, pressure, and the steam/gas ratio can be
graphically represented as shown in Figures 16 (for feeds containing
approximately 10% carbon monoxide) and 17 (for feeds containing approximately
20% carbon monoxide). In general, the conversion of carbon monoxide increases
with temperature, pressure, and steam; the rate of conversion of carbon

monoxide also increases with temperature, pressure, and steam/gas ratio, as
shown in Figures 18 (for feeds containing approximately 10% carbon monoxide)

and 19 (for feeds containing approximately 20% carbon monoxide).

The effect of the presence of benzene in the feed was studied at benzene
concentrations of about 10 and 20 mole %, and is illustrated in Figure 20.

The results of these experiments can be summarized as follows:
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Figure 15. EFFECT OF PARTIAL PRESSURES OF FEED COMPONENTS
AND CARBON DIOXIDE ON THE RATE OF CARBON MONOXIDE CONVERSION
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Figure 20, EFFECT OF BENZENE ON CONVERSION OF CARBON MONOXIDE
(at 1000 psig, 650°F, and CSTR Space Velocity of 0.2755 SCF/hr-g)

46

I M e T 1T 1T E N F G A S T ECHNOLOGYY



4/79 1U-4-9

. No carbon formation was detected at temperatures up to 750°F, 1000 psig,
with a feed benzene concentration of 10% for the steam/gas ratios studied
here.

® Carbon formation was detected at temperature of 802°F, 1000 psig, 10%

benzene, and a steam/gas ratio of 0.5.

. No carbon formation was detected at temperatures up to 650°F, 1000 psig,
20% benzene, and a steam/gas ratio of 1.3.

v Slight carbon formation was detected at 650°F, 1000 psig, 20% benzene,
and a steam/gas ratio of 1.0.

. Definite carbon formation was detected at 650°F, 1000 psig, 20% benzene,
and a steam/gas ratio of 0.5.

. Definite carbon formation was detected at 750°F, 1000 psig, 20% benzene,

and all steam/gas ratios studied here.

As shown in Figure 21, th: presence of up to 0.36 mole % ammonia in the
feed had no effect on the water-gas shift reaction when this improved shift
catalyst was used, (Ammonia deactivated other catalysts tested in this
program.) Phenol deactivates all catalysts tested so far, but the rate of

deactivation is slow, as illustrated in Figure 22.
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Figure 21. EFFECT OF AMMONIA ON CONVERSION OF CARBON MONOXIDE
(Data Obtained at 660°F and 1000 psig)
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Kinetics Test Results — UC-1870-46~1

The results of the experimental study of the kinetics of the water—gas
shifﬁ reaction using the UC-1870-46-1 catalyst are presented in Table B-3.
The feed gas used had a composition similar to the feed gas used in the
previous study with the G-93 catalyst. This study, anticipating the low-
pressure operation of some coal gasification plants, included pressures of
50 and 100 psig, in addition to the higher pressures of 200, 500, and 1000 psig.
The results (Figure 23) show a sharp decrease in both the carbon monoxide
conversion and the rate of carbon monoxide conversion at pressures lower than
200 psig. It appears that diffusion plays an important role at higher
pressures. This finding is useful in the final rate analysis because our
rate equation is a function of partial pressures, and there are two different
ways to obtain the partial pressure of any componment. One is to maintain
constant pressure and change the feed composition; the other is to maintain
constant composition and change the total pressure. The results from these
two methods were not the same in ocur case, indicating an effect of pressure
over and above the partical pressure-concentration effect. This finding points
out the danger of doing experimental work only at low pressures and extra-
polating it to high pressures, and shows that it is insufficient to study the

thermodynamics of these reactions alone.

We evaluated this catalyst at temperatures of 550°, 650°, and 750°F.
This is well within the temperature limitations of the catalyst; however, it
is limited by ocur feed compositions. The dew point of steam at 1000 psia is
about 545°F, which atuomatically dictates the lower temperature limit because
liquid water destroys the catalyst. With about 10 mole % of benzene or oil
in the feed, carbon formation was detected at about £00°F, and with about
20 mole % (dry basis), carbon formation was detected at 750°F. Therefore,
the upper temperature limit is determined by the reactants. The effect of
temperature on this reaction is small within the above-mentioned range. (See

Figures 24 and 25.)
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Figure 23. EFFECT OF PRESSURE ON THE CONVERSION OF
CARBON MONOXIDE (UC-1870-46-1 Catalyst at a
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The steam/gas ratio in the feed does not seem to have a great influence
on the percent conversion on carbon monoxide as shown in Figure 25 for steam/
gas ratios of 0.5, 1.0, and 1.3, but the effect on the rate of carbon monoxide
conversion is quite pronounced, as can be seen in Figure 18.* However, the
more important hidden fact is that the steam/benzene ratio is crucial for
carbon formation reactions. The chance for carbon to form increases greatly

at steam/benzene ratios of less than 6.

The rate of deactivation due to phenol was also studied at phenol concen-
trations of 0, 0.1%, 0.4%, and 0.9% (Runs 67 through 100, and 103 through 143),
and the results are presented in Figures 26 through 28. The deactivation
appears to be both by poisoning and, at high phenol concentrations, by pro-
meting carbon deposition, as was observed in Runs 67 through 69, 74 and 75,

78, 80 aad 81, 86 through 90, 94 through 96, 111 through 118, 120 through 126,
130 through 133, 135 through 138, 140, and 141.

Kinetics Test Results -- Shell 0il 538 and Comparison of Three Catalysts

The detailed experimental results of our study of the kinetics of the
water—-gas shift reaction using the Shell 0il 538 catalyst are presented in
Table B-4. This study was started without any special pretreatment of the
catalyst. The catalyst was activated with the standard 16-component sulfur-
containing feed mixture, but without benzene, ammonia, or phencl (Runs 1 to 32).
Ammonia and benzene were added (Runs 33 to 65) and then discontinued (Runs 66
to 71). The carbon monoxide concentration was changed (Runs 72 to 80).

Ammonia and benzene were added again (Runs 81 to 95), and phenol was added
at three different concentrations for the remainder of this program (Runs 96

to 145). The experimental program is outlined in Table 5.
In this study, we observed that —

. The general behavior of this catalyst is similar to that of G-93; both
catalysts are cobalt-molybdenum on an alumina-carrier type.

(] Its dependence on pressure is gradual (Figures 29 and 30) by comparison,
and it is not as active as the UC-1870-46-1 or the G-93, but the
difference is small (Figure 31).

. The presence of benzene retards the conversion (Figure 32), but benzene
is not a poison. Excess benzene will cause carbon formation, which in
turn will cause deactivation.

See page 44.
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Figure 26, EFFECT OF PHENOL ON THE CONVERSION AND
RATE OF CONVERSION OF CARBON MONOXIDE (UC-1870-46-1
Catalyst at a Space Velocity of 0.2230 SCF/hr-g; Pressure = 1000 psig)
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Figure 27. EFVECT OF PHENOL ON THE CONVERSION AND _
RATE OF CONVERSION OF' CARBON MONOXIDE (UC-1870-46-1
Catalyst at a Space Velocity of 0.2230 SCF/hr-g; Pressure = 500 psig)
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Figure 28. EFFECT OF PHENOL ON THE CONVERSION AND
RATE OF CONVERSION OF CARBON MONOXIDE (UC-1870-46-1
Catalyst at a Space Velocity of 0.2230 SCF/hr-g; Pressure = 200 psig)
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Figure 29. EFFECT OF PRESSURE ON THE CONVERSION OF CARBON MONOXIDE
(Shell 0il 538 Catalyst at a CSTR Space Velocity of
0.2230 SCF/hr-g)
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Figure 30. EFFECT OF PRESSURE ON THE CONVERSION OF
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Figure 31. COMPARISON OF CATALYST PERFORMANCE
AS A FUNCTION OF PRESSURE AT 750°F {(CSTR
Space Velocity of 0.2230 SCF/hr-g)
60 .

INSTITUTE O F G A S TECHNOLOG Y



I0-4-9

4/79

(3-14/40S 0£22'0 30 312078 adedg 4Is) B pue ‘4,069 ‘S1sd pogoT
3® ‘saaeydg ysay 9 x 4 ‘31s4T®IB) gEC 170 TT2US) JAIXONOW
NO®HVD 40 NOISYHANOD HHL NO ANAZNAY J0 1DF4dd  °z¢ 2In81y

% 10W ‘NOISHIANOD 0D

00001 vioL
92 wdd's3Qi13NSIa 0620b0L 1Y
9t  wdd'HSiHED-|
'l wdd'nyginEy-u
€ wdd ‘HS SH?) % I0W ‘0334 NI 3INIZN3g
v00 S09 2 8 9 H A o 8 9 H z g
° v [T T T T T T T T T T%
0 HO H%)
0 EHN
100 oK
080 N
060 2
800 s94 %5
020 ey
040 42
PSP2 YHO
€L€ee °H
061 %00
002 02
%, |OW 1ININOJIWOD
s$I1SDq Aup
‘NOILISOdWO) Sv9 Q334
S0 o
ol \Y;
¢l O

SVO/WV3LS

~

L = B V|

61

I T &

T

13



4/79

1U-4-9

At an H,0/C¢H¢ ratio of less than 6 in the feed, carbon formation occurs,
especially at temperatures higher than 750°F. This behavior was also -
detected with the other two catalysts. A comparison of the effect of

benzene on the conversion of carbon monoxide is presented in Figure 33. _

The effect of temperature from 550° to 750°F on the percent and the rate
of conversion is small (Figures 34 and 35), which means that the -
activation energy is also small.

The effect of steam on the conversion is small (Figures 36 and 37), but
the effect on the rate of conversion is not.

Carbon monoxide does not inhibit the rate of the water-gas shift reaction
as long as the steam/gas ratio is higher tham 0.5. I1f the steam/gas
ratio were less than 0.5, carbon formation reactions would make operation
of the process difficult, so lower steam/gas ratios are not of practical
significance.

The reaction orders with respect to methane, carbon dioxide, and ammonia
are zero, as shown in Figures 38 through 40.

The reaction orders with respect to carbon monoxide and water are close
to those obtained with the G-93 catalyst (Figures 41 and 42).

The rate of deactivation by phenol is exemplified in Figures 43 through
48. The rate decreases with increasing phenol concentration (Figures 43
through 45), and it is also a function of total pressure (Figures 46
through 48).
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Figure 34. EFFECT OF TEMPERATURE ON THE CONVERSION OF CARBON MONOXIDE

(Shell 0il 538 Catalyst at a CSTR Space Velocity of 0.2230 SCF/hr-g)
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Flgure 35. EFFECT OF TEMPERATURE ON THE RATE OF CONVERSION OF CARBON MONOXIDE

(Shell 0il 538 Catalyst at a CSTR Space Velocity of 0.2230 SCF/hr-g)
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Figure 36. EFFECT OF THE -STEAM/GAS RATIO ON THE CONVERSION OF CARBON
MONOXIDE (Shell 0il 538 Catalyst at a CSTR Space Velocity of 0.2230 SCF/hr-g)
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Figure 37. EFFECT OF THE STEAM/GAS RATIO ON THE CONVERSION OF CARBON

MONOXIDE (Shell 0il 538 Catalyst at a CSTR Space Velocity of 0.2230 SCF/hr-g)

i N ST

' T U T F

67

T EC HNOL DG Y



4/79

a0 > @O0

®O 44

TEMP= 753°-76C°FF O O e
-0 o H HE 4
06—

¢ o4 N R I
o
x-
v
>
S
Q
Q
=
E
~
Y
o
E o
o TEMP = 650°-662°F Ap PY
T ° 3 2G4
5 | ®
S os
4 R
Z 04 I
0
(&)
Q
o
[T
o
-
«
v
04}—
TEMP= 550°- 560°F O e
[ ]
® A NV A
o2 I A I
10 20 30 40 506070 100
PCH4.psig

Figure 38.

Catalyst, 4 x 6 Mesh Spheres)
68
I NS TI TUT E 0 F A

T

1U-4-9

LEGEND

H20/GAS > 10
H20/ GAS < | O

Hy0/ CeHg > 6.0
HZO /C6H6< 60

H,0/CgHg> 6C (0 1% - OH)
H,0/CgHg< 6.0 (0 1%gp-OH)

Hi0/CeHg > 60 (0 4% ¢-0H)
HL0/CeHg< 6 0 (04 % ¢ -OH)

H,0/C Hg > 6.0 ( 1% ¢-OH)

AT7040810

REACTION ORDER OF METHANE (Shell 0il 538

ECHNDOLUGOGY



B0 P> @O

*C 4«

4/79
1.0 |-TEMP =753°-760°F o o
OB © % ® v a
' ® v A
06—
04 —
<
1
=
ko3
v
2
8
2
o
]
£ 10
> TEMP=650°-662°F o e
2 o8- o e & 4
i ij A <
2 06 -
-
o
N
i d |
ui
>
g
o
o
o
O
&
s
<1
[
09 [—TEMP=550°-560° F o o
08 - A *
© ® %—" A. ov 4
06 —
05 |
[
10 100
Pcoz:PSig
Figure 39.
Catalyst, 4 x 6§ Mesh Spheres)
69
FN ST I TUTE O F G

1U-4-9

LEGEND

H20/GAS > 10
Hx0/ GAS < 10

H,0/CgHg> 6.0
H,0/CeHg< 60

H,0/CeHg > 60 {0.1% - OH)
H,0/CgHe< 6.0 (0.1 %gp-OH)

Hy0/CeHy > 60 (0.4% ¢-0H)
H,0/CeHe < 6.0(0.4% ¢ - OH)

H,0/CoHg> 6.0 ( 1% ¢- OH)
H,0/Cg Hg< 6.0 { 1%~ OH)

A77040812

REACTION ORPER OF CARBON DIOXIDE (Shell 0il 538

T ECHNOLOG Y



4/79 1U-4-9

1.00 0)
.98 3 A
< 96—
>0
QX 94 |— TEMR,°F
ny —_
&2 O 750
%'g 92 |— A 650
S o o 550
Qe 90—
ts.; STEAM/GAS = |3
S PRESS. = 1000 psig
w2 883 0
& T
x o
86 —
FEED GAS COMPOSITION,
8 | | l dry basis
84
COMPONENT mol %
co 20.0
CO2 19.0
a2 Hz 33.73
O CHgy 24.22
80 CoHe 0.70
CaHe 020
CaHioS Q08
78 a4 o
& i A He S 0.90
[ N 0.80
E 76 (— 2
= He Q.01
= NH; As indicated
l'_
4 CeHyOH
lg T2 Ces 0.04
§ C;HsSH, ppm 473
o L n-CsH,SH,ppm 1.4
o 700 —0 i-C3H;SH,ppm 4.6
68 DISULFIDES,ppm 26
TOTAL 100.00
ce l | l
Q. 02 03 04
NH3CONCN, mol %
ATTOA0T63

Figure 40. EFFECT OF AMMONIA ON THE CONVERSION AND RATEL OF CONVERSION
OF CARBON MONOXIDE (Shell 011 538 Catalyst, 4 x 6 Mesn Spheres)
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Catalyst, 4 x 6 Mesh Spheres)
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Figure 43. EFFECT OF PHENOL ON THE CONVERSION AND RATE OF CONVERSION OF

CARBON MONOXIDE (Shell 0il 538 Catalyst at a CSTR Space Velocity of

0.2230 SCF/hr-g)
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Figure 44. EFFECT OF PHENOL ON THE CONVERSION AND RATE OF CONVERSION OF
CARBON MONOXIDE (Shell 0il 538 Catalyst at a CSTR Space Velocity
of 0.2230 SCF/hr-g)
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.Figure 45. EFFECT OF PHENOL ON THE CONVERSION OF CARBON MONOXIDE
(Shell 0il 538 Catalyst at a CSTR Space Velocity of 0.2230.+86F/hr-g)
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