

EXXON CATALYTIC COAL GASIFICATION PROCESS PREDEVELOPMENT PROGRAM. FINAL PROJECT REPORT

EXXON RESEARCH AND ENGINEERING CO. BAYTOWN, TX

DEC 1978

U.S. Department of Commerce National Technical Information Service

One Source. One Search. One Solution.

Providing Permanent, Easy Access to U.S. Government Information

National Technical Information Service is the nation's largest repository and disseminator of governmentinitiated scientific, technical, engineering, and related business information. The NTIS collection includes almost 3,000,000 information products in a variety of formats: electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

Search the NTIS Database from 1990 forward

NTIS has upgraded its bibliographic database system and has made all entries since 1990 searchable on **www.ntis.gov.** You now have access to information on more than 600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites

Because many Government agencies have their most recent reports available on their own web site, we have added links directly to these reports. When available, you will see a link on the right side of the bibliographic screen.

Download Publications (1997 - Present)

NTIS can now provides the full text of reports as downloadable PDF files. This means that when an agency stops maintaining a report on the web, NTIS will offer a downloadable version. There is a nominal fee for each download for most publications.

For more information visit our website:

www.ntis.gov

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 5360-001GF COR.5KW-P.79

EXXON CATALYTIC COAL GASIFICATION PROCESS PREDEVELOPMENT PROGRAM

FINAL PROJECT REPORT

T. Kalina N. C. Nahas Project Managers

EXXON RESEARCH AND ENGINEERING COMPANY Baytown, Texas 77520

December, 1978

PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY

Contract No. E(49-18)-2369

: W

TABLE OF CONTENTS

		Page
ABST	RACT	••••••••••••••••••••••••••••••••••••••
LIST	OF T	ABLES
LIST	OF F	IGURES
INTR	ODUCT	ION AND SUMMARY
1.	FLUIC	BED GASIFIER (FBG) STUDIES 1
	1.1	FBG Recommissioning
		1.1.1Mechanical Modifications11.1.2Updating of On-Line Data Acquisition System4
	1.2	FBG Operations
		1.2.1Startup and Baseline Operations71.2.2Process Variable Studies91.2.3Catalyst Recycle Operations101.2.4Char Production Operations12
	1.3	FBG Data Analysis
		1.3.1Intial Operations161.3.2Process Variable Studies with K2CO3 Catalyst171.3.3Mixed Catalyst Operations181.3.4Catalyst Recovery Operations191.3.5Char Production Operations19
		1.3.6 Comparison of FBG Data with Reactor Model Predictions
	1.4	Catalyst Recycle Operations
		1.4.1Operations of the Catalyst Recovery Unit (CRU)221.4.2Overall Catalyst Recycle Loop Operations22
	1.5	Pilot Scale Secondary Catalyst Recovery
	1.6	FBG Scrubber Water Analysis
2.	BENC	SCALE STUDIES
	2.1	Continuous Gasification Unit (CGU) Operations
		2.1.1CGU Operating Experience312.1.2CGU Data Analysis35

Page

•

.

•

ę

	2.2	Fixed	Bed Gasification Reaction Studies	39
		2.2.1 2.2.2 2.2.3 2.2.4	Kinetic Data Interpretation	39 43 51 54
	2.3	Recove	ry of Water Soluble Catalyst	62
		2.3.1 2.3.2		62 66
	2.4	Recove	ry of Water Insoluble Catalyst	73
		2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	Experimental Procedure	75 76 76 81 83
		2.4.6		84
	2.5.	Cataly	rst Recovery via the Formate Process	85
3.	ENGI	NEERING	RESEARCH AND DEVELOPMENT	88
	3.1	Cataly	st Source/Recovery Studies	89
		3.1.1 3.1.2	"Cash Flow" Analysis of Alternative Catalyst	89
			"Cash Flow" Analysis of Alternative Catalyst Manufacturing Processes	92 95
		3.1.2 3.1.3	"Cash Flow" Analysis of Alternative Catalyst Manufacturing Processes Screening Evaluation of the Engel-Precht Process Screening Evaluation of Alternative Electrolysis Technologies "Cash Flow" Analysis of Alternative Catalyst	92 95 96
		3.1.2 3.1.3 3.1.4 3.1.5	"Cash Flow" Analysis of Alternative Catalyst Manufacturing Processes . Screening Evaluation of the Engel-Precht Process Screening Evaluation of Alternative Electrolysis Technologies	92 95
	3.2	3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	"Cash Flow" Analysis of Alternative Catalyst Manufacturing Processes Screening Evaluation of the Engel-Precht Process Screening Evaluation of Alternative Electrolysis Technologies "Cash Flow" Analysis of Alternative Catalyst Recovery Processes	92 95 96 98
	3.2	3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Gasifi 3.2.1	"Cash Flow" Analysis of Alternative Catalyst Manufacturing Processes	92 95 96 98 101
	3.2	3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Gasifi	"Cash Flow" Analysis of Alternative Catalyst Manufacturing Processes	92 95 96 98 101 104
	3.2	3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Gasifi 3.2.1	"Cash Flow" Analysis of Alternative Catalyst Manufacturing Processes	92 95 96 98 101 104
	3.2	3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Gasifi 3.2.1 3.2.2 3.2.3	"Cash Flow" Analysis of Alternative Catalyst Manufacturing Processes	92 95 96 98 101 104 104
		3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Gasifi 3.2.1 3.2.2 3.2.3 Acid G	"Cash Flow" Analysis of Alternative Catalyst Manufacturing Processes	92 95 96 98 101 104 104 104 109 114

			Page
4.	COMME	RCIAL PLANT STUDY DESIGN AND ECONOMICS	121
	4.1	Study Design Steps and Depth of Engineering Detail	122
		Project Basis	124
	.4.3	Process Basis	125
		 4.3.1 Coal Drying and Catalyst Addition	125 125 130 130 130 130 131 131
	4.4	Detailed Material and Energy Balances	132
	4.5	Equipment Design for Onsites	132
		 4.5.1 Section 100 Coal Drying and Catalyst Addition 4.5.2 Section 200 Reactor System	132 135 137
		4.5.4Section 400 Soul Match Scripping and Ammenda Recovery .4.5.5Section 500 Acid Gas Removal and Sulfur Recovery .4.5.6Section 600 Methane Recovery System .4.5.7Section 700 Refrigeration .4.5.8Section 800 Catalyst Recovery .	137 138 138 139 139
	4.6	Overall Plant Utilities Balances	140
	4.7	Equipment Sizing for Offsites	142
	4.8	Plant Investment	144
		4.8.1 Investment Cost Estimating Approach	144 145
	4.9	Economics	147
		4.9.1 Basis for Calculation of SNG Cost	147 149
API	PENDIX	A - FLUID BED GASIFIER YIELD PERIOD DATA	153
		A.1Yield Period 202A.2Yield Period 203A.3Yield Period 204A.4Yield Period 205A.5Yield Period 206	156 164 172 180 188

.

ų

.

Page

•

,

.

ę

A.6 A.7 A.8 A.9 A.1 A.1 A.1 A.1 A.1 A.1 A.1 A.1	Yield Yield Yield Yield Yield Yield Yield Yield Yield Yield Yield Yield	Period Period Period Period Period Period Period Period Period Period	208 209 210 211 212 213 214 215 216 217 218		• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • • •	· · · · · · · · · ·	• • • • • • • • • •	• • • • • • •	• • • • • • • •	· · · ·	•	• • • • • • • • •	• • • • • • •	• • • • •	• • • • •	• • • • •	· · · ·	• • • • •	• • • • •	• • • • •	196 204 212 220 228 236 244 252 260 268 276 284 292
APPENDIX B -	PUBLICA	TIONS .	• •	•	•	•	•	•	•			•	•	•	•	•	•	•	•	۰	•	•	•	30 0
B.1 B.2 B.3 B.4	Kineti Cataly and De Produc	tic Gas cs of P tic Coa velopme tion of cation	otas: 1 Ga nt .	siu sif fr	in ic ic	Ca at	ata :ic 	aly on lir	/Ze Pr	ed roc is	Ga ces Co	as ss Da	if Re	ica ese via	ati ear a (ior -cl Cat	n h ta	1y	ti	c	•	•	•	301 307 327 336

ABSTRACT

This report summarizes the results of work conducted on Predevelopment Research for the Exxon Catalytic Coal Gasification Process. The eighteen-month effort (July 1976-December 1977) was a coordinated program which included operation of a continuous fluidized-bed gasifier, parallel bench-scale research, and engineering studies leading to the preparation of a commercial-scale plant study design and economics for producing SNG from Illinois coal.

LIST OF TABLES

Table		Page
1.2-1	FBG Operating Summary	8
1.3-1	Summary of FBG Material Balance Data for December, 1976, Through August, 1977	13
1.5-1	Recovery of Potassium Catalyst by Digestion with $Ca(OH)_2$	27
1.6-1	Fluid Bed Gasifier Scrubber Water Analyses	29
2.1-1	Material Balances for CGU Continuous Yield Periods	36
2.1-2	Material Balances for CGU Captive Bed Yield Periods	37
3.1-1	Principal Sources of Potassium and Sodium Salts	90
3.1-2	Alternative Processes for Production of Potassium Carbonate	91
3.1-3	Catalyst Manufacture Cash Flow Studies - Economic Summary	94
3.1-4	Engel-Precht Process Screening Evaluation - Breakdown of Relative Product Catalyst Cost	97
3.1-5	Catalyst Recovery Cash Flow Studies - Economic Summary	100
3.1-6	Screening Study of Catalyst Recovery Using Ca(OH) ₂ Digestion - Breakdown of Incremental Costs With Respect to Water Wash Only	105
3.2-1	Incentive for Secondary Gasification - Summary of Process Basis and Heat and Material Balance	108
3.2-2	Incentive for Secondary Gasification - Investment Breakdown	110
3.2-3	Incentive for Secondary Gasification - Summary of Relative Gas Costs	111
3.2-4	Impacts of Catalytic Gasifier Operating Conditions - Summary of Cases and Economics	115
3.2-5	Impact of Catalytic Gasifier Operating Conditions on Gasifier Volume Requirement	117

4

٠

Table

.

Þ

1

.

•

4.1-1	Catalytic Coal Gasification Commercial Plant Study Design - Depth of Engineering Detail	123
4.2-1	Catalytic Coal Gasification Commercial Plant Study Design - Project Basis	126
4.3-1	Catalytic Coal Gasification Commercial Plant Study Design - Key Process Bases for Onsites Sections	127
4.6-1	Catalytic Coal Gasification Commercial Plant Study Design - Utilities Requirements	141
4.7-1	Catalytic Coal Gasification Commercial Plant Study Design - Offsite Facilities Summary	143
4.8-1	Catalytic Coal Gasification Commercial Plant Study Design - Investment for Pioneer Plant	146
4.9-1	Catalytic Coal Gasification Commercial Plant Study Design - Economic Basis for SNG Cost	148
4.9.2	Catalytic Coal Gasification Commercial Plant Study Design - Cost of SNG from Pioneer Plant with 100% Equity Financing	150
4.9-3	Catalytic Coal Gasification Commercial Plant Study Design - Cost of SNG from Pioneer Plant with 70% Debt/30% Equity Financing	151
A-1	Constraints Used in Reconciling FBG Operations Data	155

LIST OF FIGURES

Figure		Page
0.1-1	Exxon Catalytic Coal Gasification Process	xi
1.1-1	Original Fluid Bed Gasifier (FBG) Flow Plan	2
1.1-2	Revised Fluid Bed Gasifier (FBG) Flow Plan	3
1.1-3	FBG On-Line Data Acquisition	5
1.3-1	Comparison of FBG Data with Reactor Model Predictions	21
1.4-1	Catalyst Recovery Operations; Period 1 - Operation With Lime and Unblanketed Char	23
1.4-2	Catalyst Recovery Operations; Period 2 - Operation With Lime and Blanketed Char	24
1.4-3	Catalyst Recovery Operations; Period 3 - Operation Without Lime and Blanketed Char	25
2.1-1	Continuous Gasification Unit (CGU) Flow Plan	32
2.1-2	CGU Filter Vessel Flange End	34
2.1-3	Comparison of CGU and Previous Fixed Bed Data - Extent of Steam-Carbon Reaction Vs. Residence Time	38
2.1-4	Comparison of CGU and Previous Fixed Bed Data - Approach to Equilibrium vs. Residence Time	40
2.2-1	Schematic Diagram of Bench Scale Fixed Bed Gasification	41
2.2-2	Extent of Carbon-Steam Reaction as a Function of Residence Time	44
2.2-3	Simplified Model for Fixed Bed Reactor in Potassium Catalyzed Steam Gasification	45
2.2-4	Comparison of Experimental and Predicted Holding Time, θ , to Attain a Given Conversion for Model "B"	49
2.2-5	Comparison of Fixed Bed Data With Model Prediction for Steam Feed	52
2.2-6	Comparison of Fixed Bed Data With Model Prediction for Steam/Syngas Feed	55
2.2-7	Gasification Rates in Fixed Bed Tests	56

٠

.

F	i	ą	u	r	e
	<u> </u>		•	_	

ł

*

Page

2.2-8	Fixed Bed Gasification Runs	58
2.2-9	Catalyst Recovery in 20 Wt% Mixed Catalyst System	59
2.2-10	Catalyst Recovery in 15 Wt% Mixed Catalyst System	60
2.2-11	Catalyst Recovery in 10 Wt% Mixed Catalyst System	61
2.2-12	Catalytic Gasification of Illinois Coal	63
2.2-13	Catalytic Gasification of Wyodak Coal	64
2.3-1	Potassium Recovery by Cross-Current Water Washing at Low Water/Char Ratios	67
2.3-2	Effect of Air Exposure on Potassium Recovery by Water Washing	69
2.3-3	Potassium Recovery by Cross-Current Water Washing at High Water/Char Ratio	70
2.3-4	Effect of Limewater Washing on Potassium Recovery	72
2.3-5	Effect of Contact Time on Potassium Recovery with Low Water/Char Ratio	74
2.4-1	Bench Scale Tubing Bomb Reactor	77
2.4-2	Effect of Slurry Concentration on Potassium Recovery	79
2.4-3	Simulation of Digestion with Downstream Solution	80
3.1-1	Catalytic Coal Gasification Catalyst Recovery System - "Water Wash Only" Case	102
3.1-2	Catalytic Coal Gasification Catalyst Recovery System - "Ca(OH) ₂ Digestion with Water Wash" Case	103
3.2-1	Exxon Catalytic Coal Gasification Process with Secondary Gasification	107
4.4-1	Catalytic Coal Gasification Commercial Plant Study Design - Schematic Flow Plan and Overall Material Balance	133
4.5-1	Coordination Flow Plan - Catalytic Coal Gasification Commercial Plant Study Design - Onsite Facilities	134

INTRODUCTION AND SUMMARY

This report covers the Predevelopment Program activities for the Exxon Catalytic Coal Gasification Process. The focus of the program was on the production of substitute natural gas (SNG) from bituminous coal. This work was performed by the Exxon Research and Engineering Company (ER&E) and supported by the United States Department of Energy under Contract No. E(49-18)-2369. The Predevelopment Program extended from July 1, 1976, through December 31, 1977.

The technical program during this predevelopment phase supports the transition to larger scale, more integrated testing in a development phase program. This section of the report first reviews the process description and results obtained prior to the predevelopment program. The objectives and results of the predevelopment program itself are then summarized.

Process Description

The Exxon Catalytic Coal Gasification Process combines the use of alkali metal salts as a gasification catalyst with a novel processing sequence which maximizes the benefits which can be derived from use of such a catalyst. The principal benefits from using an alkali metal gasification catalyst are that it increases the rate of steam gasification, reduces agglomeration of caking coals, and promotes the achievement of gas compositions closely approaching gas phase methanation equilibrium.

The process combines a relatively low gasifier temperature of about 1300°F with separation of synthesis gas $(CO + H_2)$ from the product methane and recycle of the synthesis gas to the gasifier. Thus the only net products from gasification are CH₄, CO₂, and small quantities of H₂S and NH₃. The resulting overall gasification reaction can be represented as follows:

 $Coal + H_2O + CH_4 + CO_2$

Since this reaction is essentially thermoneutral, major heat input to the gasifier is not required.

A simplified flow plan for the Exxon Catalytic Coal Gasification Process is shown in Figure 0.1-1. Crushed coal is impregnated with catalyst, dried and fed via a lockhopper system to a fluidized bed gasifier which operates at about 1300°F and 500 psia. The coal is gasified with steam mixed with recycled synthesis gas, and the major gasifier product components are CH_4 , CO_2 , recycled CO and H₂, and unconverted steam. The catalyst reduces agglomeration of caking coals and no significant tars or oils are produced. Following heat recovery and water scrubbing, the product gas is treated in a series of separation steps including acid gas scrubbing to remove CO_2 and

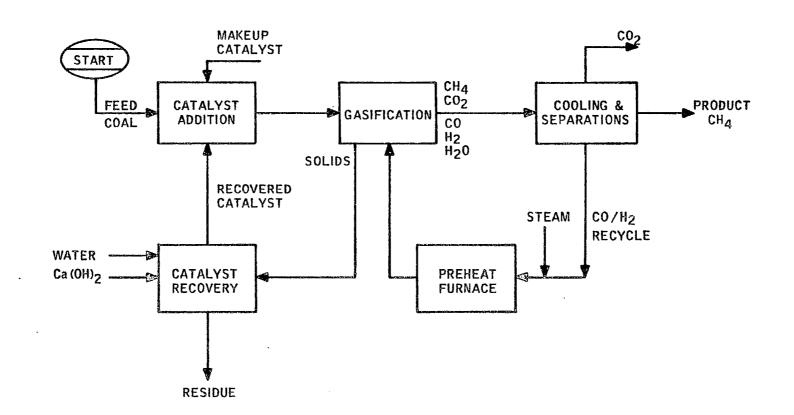


FIGURE 0.1-1 EXXON CATALYTIC COAL GASIFICATION PROCESS

٠

.

.

¥.

 H_2S , and cryogenic fractionation to separate product methane from synthesis gas (H_2 and CO). The synthesis gas is combined with feed steam, preheated to approximately 250°F above the gasification temperature, and recycled to the gasifier. Although there is no net heat required for the gasification reaction, some heat input is required to heat up the feed coal, vaporize residual water, and provide for gasifier heat losses.

.

Solid residue from the gasification step contains about 10% of the coal carbon and all of the ash and catalyst. It is sent to a catalyst recovery step in which a large fraction of the catalyst is recovered from the residue using a calcium hydroxide digestion followed by countercurrent water washing. The recovered catalyst, along with some makeup catalyst, is added to fresh coal to complete the catalyst recovery loop.

Summary of Previous Research Results

Previous Exxon-sponsored research on catalytic coal gasification was performed in bench-scale units which have the capability of operating at pressures up to 1000 psig as well as in a small pilot-scale Fluid Bed Gasifier (FBG) unit with a coal feed capacity of up to 25 lbs/hr and a maximum operating pressure of 100 psig. This pressure limitation is present because the FBG was originally built for thermal gasification work. During 1975, the FBG Pilot Plant was operated with K_2CO_3 catalyzed Illinois coal for continuous periods of up to two weeks. Good quality data were obtained for yield periods covering a wide range of operating conditions. For many yield periods, the FBG operated with synthesis gas makeup (simulated recycled) such that inlet and outlet synthesis gas rates were in approximate balance.

Close approaches to gas methanation equilibrium were demonstrated with K_2CO_3 catalyst in both bench-scale units and the FBG pilot plant. Bench-scale rate data were obtained for Illinois coal with both K_2CO_3 and Na_2CO_3/K_2CO_3 catalysts. These data were combined with analytical descriptions of fluid bed contacting to deve a first-pass computer model of a fluid bed catalytic gasification reactor.

In the area of catalyst recovery, the effectiveness of water wash for recovering about two-thirds of the catalyst was demonstrated. The forms of this recovered catalyst were identified and work was initiated on the recovery of water-insoluble catalyst. Also during this phase, engineering screening studies were carried out for commercial plants to establish preferred configurations for process flow and equipment sequencing, and to determine investments and operating costs.

Predevelopment Program Objectives

The Predevelopment Program work was divided into three major tasks. The key research objectives for each task are listed below.

Task I - Fluid Bed Gasifier (FBG) Studies With Illinois Coal

- Operate with mixed K₂CO₃/Na₂CO₃ catalyst
- Operate with recycled catalyst

Task II - Bench-Scale Studies

- Broaden data base to other coals
- Test reactivity of recovered catalyst
- Study critical factors in catalyst recovery
- Operate the small fluidized bed Continuous Gasification Unit (CGU) and fixed-bed units to obtain additional kinetic data

Task III - Engineering Research and Development

- Continue engineering screening studies
- Prepare an updated commercial plant study design

Summary of Predevelopment Program Results

The <u>bench-scale research</u> activities generated several significant results:

- A model of the rate controlling reaction kinetics was developed. It describes gasification rate as a function of temperature, catalyst loading, and gas composition. Pressure is important only because it influences gas composition.
- (2) Early testing of mixed sodium-potassium catalyst indicated that this system would be ineffective for reducing catalyst cost.
- (3) Effort was redirected toward increasing the recovery level of the more effective potassium. This led to a preferred chemistry sequence capable of recovering more than 90% of the potassium catalyst.
- (4) Exposure of char to air was found to oxidize sulfides to sulfates and to inhibit the effectiveness of the water wash. Calcium digestion in the presence of CO was observed to convert some of the potassium sulfate to potassium formate.
- (5) Potassium sulfide was found to be catalytically active but less effective than the hydroxide and carbonate forms when the gasifying medium is pure steam. The carbonate and hydroxide forms are equal in effectiveness.
- (6) Wyoming subbituminous coal was found to be kinetically equivalent to Illinois bituminous coal in the presence of potassium catalyst.

The continuous <u>fluid bed gasifier (FBG)</u> was operated to simulate all commercial gasifier parameters except pressure, its effect on recycle gas rate, and the resulting effect on reaction kinetics. These parameters which were representative of expected commercial conditions include type of coal, coal size distribution, catalyst loading, reaction temperature, steam conversion, carbon conversion, fluidizing velocity, residue composition, bed density, and fluidization properties of the gasified solids. Results from FBG operations are summarized below:

- (1) The unit was used to develop fifty material balanced periods. Of these, eighteen were selected to represent a variety of process variables for detailed work-up. Unit operations were of high quality. The service factor during the last six months of operation averaged more than 70% of real time, with a one-month maximum of 96%.
- (2) FBG operations confirmed the ineffectiveness of mixed sodium and potassium catalyst.
- (3) Operations using recycled water soluble catalyst reached a recovery level of 94% of water soluble potassium (64% of total potassium). After approximately ten cycles of operation with recovered catalyst, no loss of activity nor any significant build-up of other constituents was observed. Pilot scale calcium digestion experiments demonstrated recovery of more than 90% of the total potassium from FBG residue. Recycle of catalyst at this recovery level will be a part of the development phase.

The engineering screening studies led to the following major conclusions:

- (1) The preferred form of makeup catalyst for catalytic gasification is potassium hydroxide (KOH) manufactured by electrolysis of potassium chloride (KCl). Reserves of KCl in North America are very large relative to the amounts needed. Because KOH for catalytic gasification would be produced in relatively large quantities and low purities over a long term, the cost could be significantly below the current market price.
- (2) With KOH at the current market price, calcium hydroxide digestion to recover water insoluble catalyst from spent gasifier solids is justified in addition to water washing to recover water soluble catalyst.
- (3) The addition of a secondary gasification step to raise carbon conversion to 95% from the base level of 90% provides only a marginal economic incentive.

.

.

(4) Selective heavy glycol scrubbing for acid gas removal is somewhat lower in cost than scrubbing with non-selective hot potassium carbonate or selective refrigerated methanol.

The engineering research and development efforts culminated with the preparation of a new <u>Catalytic Coal Gasification Commercial Plant Study</u> <u>Design</u>. The process bases for the Study Design were set based on the results of the laboratory and engineering studies carried out during the Predevelopment Program. The key findings of the Study Design are:

 The estimated total investment for a pioneer commercial plant feeding Illinois No. 6 coal and producing 257 billion Btu per stream day of substitute natural gas (SNG) is 1,640 million dollars (M\$). This is for a January, 1978, cost level, at an Eastern Illinois location. A "process development allowance" and a "project contingency" are included in this estimate, consistent with standard Exxon practices.

- (2) The estimated cost of SNG produced from this pioneer gasification plant is \$6.40 per million Btu (\$/MBtu). This gas cost is an initial selling price based on 100% equity financing, a 15% DCF return, and escalation rates of 6% per year for SNG revenues and 5% per year for net operating costs. On an alternative financing basis of 70% debt/30% equity with 9% interest on debt, the comparable initial gas cost is \$4.80 per MBtu.
- (3) Several factors could reduce the SNG cost below the Study Design range of \$4.80-6.40/MBtu. These include larger plant capacities, surface-mined coals, increased government financial incentives, and future savings based on the learning experience gained from the pioneer plant and from further research and development.

The Study Design economics are believed to be a realistic prediction of the costs (in 1978 dollars) for a pioneer commercial plant. Caution must be used when comparing these economics with published estimates for other coal gasification processes. Such estimates can vary widely depending on the process, offsites, and economic bases, the investment estimate approach, and the maturity of the technology. It is expected that a consistent comparison with state-of-the-art gasification technology, which is currently in progress, will show a significant incentive for further development of the Catalytic Coal Gasification Process.