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1 Introduction

The main goal of the study cconducted at the Chemical Reaction Engineering Laboratory
(CREL)} at Washington Univwersity as part of this DOE grant is to improve the basis of
scale-up and operation of slurrrry bubble column reactors (SBCR) by an increased reliance on
phenomenologically or fundammentally based hydrodynamic models which are experimentally
verified.

For the first year the envisisioned objectives were :

o Complete the improvemments in Computer Automated Radicactive Particle Tracking
and Computed Tomograaphy (CARPT/CT), and develop the Monte Carlo based cali-
bration for the CARPT ” technique.

o Complete studies with aair-water in a single diameter column and compare the results
for velocity obtained by ¢ CARPT to those obtained by other techniques such as thermal
probe and Particle Imagge velocimetry (PIV).

Improvements in CARPT " technique encompasses two tasks. The first one involves the
development of a filtering praocedure to eliminate the fluctuating effects of the statistical _
nature of the emissions from 1 the tracer particle. Although the mean quantities estimated
from the CARPT measuremesents are unaffected by the fluctuations, accurate estimation of
the turbulence and backmixinng parameters requires that the intrinsic noise caused by the
fluctuations in emissions fromn the tracer be removed by some filtering procedure.

The other improvement ina the CARPT technique is associated with the calibration pro-
cedure required for locating tlthe particle position from the intensity of radiation measured
by several detectors. In the ( current calibration procedure it is necessary to position the
tracer particle at a few hundreed known locations inside the reactor and acquire the intensity
data from several detectors strirategically positioned around the reactor. These measurements
are then used to develop an inntensity versus distance relationship for all the detectors used.
This is an extremely laborious s process and often difficult to perform in reactors with opaque
walls. Moreover, the calibraticion needs to be done in-situ. In addition, the accuracy of the
calibration and the subsequentit location of the tracer depends on the accuracy of positioning
of the tracer at a given locaticion. In order to avoid this extensive and cumbersome calibra-
tion process one of the objectitives is to develop a phenomenological approach to account for
geometry and the attenuation 1 properties of the flowing phases on the radiation measurement
process. The modeling of thee emission of radiation, the attenuation by the flowing phases
as well as the column wall amnd the subsequent detection by the scintillation detectors is
accomplished by the Monte Clarlo method. |




In this report we first prestsent a brief account of the progress made in each of the above
mentioned research areas.

2 Filtering CARIPT Data Uéing Wavelet Based Tech-
nique

Owing to the quantized naturee of the 4 photons, the intensity of radiation exhibits continu-
ous fluctuations in time. The ¢ emission of v rays follows a Gaussian distribution (with mean,
N, and standard deviation, /i/n,). This is manifested as white noise in the data and results
in the generation of “spuriousis velocities”, i.e., non-zero velocities for a physically station-
ary particle. Consequently, thhe instantaneous velocities measured have partial contribution
from the fluctuations in the ssource particle emission. Time (ensemble) averaging of the in-
stantaneous velocities in eachh compartment eliminates these source fluctuations (since the
fluctuations have a Gaussian ddistribution with zero mean). This is reflected in the negligible
mean spurious velocities calcuulated, which are in the order of 0.1 ¢ /sec (For comparison,
the actual monitored velocitiees are 10 cm/sec to 50 em/sec). However, the fluctuating veloc-
ities and root mean square fluuctuating velocities measured, are resultant of the fluctuations
due to the turbulent flow fieldd and the spurious velocities. This causes an over-estimation of
the turbulence quantities that t are measured. Therefore it is necessary to eliminate or reduce
to the best possible extent, thhe spurious fluctuations in the particle position data in order
to obtain more accurate estimnates of the turbulence parameters.

2.1 Objectives

Since the tracer particle is off finite size (~ 2mm), it follows eddies only up to a certain
frequency range correspondinpg to the length scale of the size of the particle. An estimate
of this frequency limit can be = calculated on the basis of single phase flow turbulence theory
(Hinze 1959). It is found too be in the range 10 — 35 Hz, depending on the mean flow
conditions, which vary within 1 the column.

Fourier domain filtering waas first attempted using a third order low pass Butterworth filter
with a cut-off frequency of 100 Hz. It can be observed from Figure la {(note the highlighted
regions enclosed in boxes) thaat the resulting filtered signal is unable to capture the sharp
peaks present in the original s signal. As a result, these sharp changes that characterize the
flow are removed as noise, as ccan be seen in the bottom part of Figure la. This shows strong
peaks in the filtered noise whhich are not characteristic of the white noise that is known to
cloud the data. If the cut-oftff frequency for the filter is increased, this results in residual




high frequency components of f the white noise in the signal. This problem arises due to the
inherent non-stationary nature-e of the signal obtained from CARPT measurements describing
the turbulence in the system, ; which has localized frequency characteristics. This renders a
low pass filter unsuitable for fifiltering CARPT data.

Wavelet analysis, which is s a time-frequency based method is a suitable alternative and
has the distinct advantage overer Fourier transform techniques, as it can be used to analyze
non-stationary data. This is illllustrated in Figure 1b where the filtered noise, using a wavelet
based technique resembles the e white noise present in the intensity data.

(2) Fourier Tramnsform Technique (b) Wavelet Analysis Technique

2000 ] 1 2000
>1500 >1500
@ ©
< c
g s
E E
§1000 51000
k] 8
© ]
8 8

500 500

.. originaal signal & ... original sighal
0 100 200 300 400 500 0 100 200 300 400 500
samplining instant sampling instant
o 100 1o 100 ]
2 e
= g
= 0 {€ o 4
3 3 WWWW
2 e
= -100 -100 1
0 100 200 300 400 500 0 100 200 300 400 500

samplinfng instant sampling instant

Figure 1: Comparison of Fouririer Transform and Wavelet Analysis Techniques for Filtering
CARPT Data

The objective of this work t is to apply the wavelet packet algorithm for filtering CARPT
data. To demonstrate its suinitability in this regard, an experiment is conducted with a
controlled motion of the radiowactive tracer particle. This enables a priori knowledge of the
trajectory of the particle and | provides a reference against which the results from CARPT
experiments subject to wavelelet packet filtering can be compared. A quantitative estimate
of the errors involved in the ¢ estimation of the particle position, as well as the extent to
which the intrinsic noise in th&e data is removed can therefore be arrived at. Thereafter the
technique is applied to data fricom bubble column experiments.




2.2 Wavelet Analyskis

The wavelet transform of a sigignal refers to the projection of the signal onto loca.l re-scalable
functions called wavelets. Tkhese functions have prescribed smoothness, are well localized
in time and frequency and fonrm a well-behaved basis (Daubechies 1988). Wavelets, ¥, 5(t),
of constant shape are generatated by the dilation and translation of a prototype or mother
wavelet 1(t). Therefore each v wavelet has a specific time-frequency localization. Wavelets of
high frequency are narrow (weell localized) in time, while wavelets of low frequency are broad
in time. As a result wavelets aare able to capture both short lived high frequency phenomena.
as well as longlived low frequaency phenomena. This énables them to work well for filtering
non-stationary signals cloudec¢d with white noise.

In what follows we focus oion those aspects of wavelet analysis that are used in this work,
introducing with the underlyying basic concepts, discrete wavelet transforms (DWT) and
wavelet packet decompositionn (WPD). DWT involve the projection of a data set, f {t), onto
discrete wavelets to give discrerete wavelet coefficients. This is represented as :

o ) = 2772 [ F(t)p(27™t — n)dt (1)

—_00

where m and n represent thewe discretized dilation and translation parameters respectively.
DWT is a special case of wavelelet packet decomposition (WPD). In WPD, 2 library of wavelet
packets are used, from which a a variety of bases can be extracted to represent the signal. The
construction of wavelet packeets can be represented in a hierarchy as shown in Figure 2,
where two filters, H, a low-ppass filter and G, a high-pass filter, are used to generate the
entire library of wavelet packeets using a recursive scheme (Wickerhauser 1994). The nature
of the wavelet packets generxated depends on H and (. There are a variety of wavelets
available, of which Daubechiews’ (1988) orthonormal, compactly supported wavelets are most
popular.

The decomposition of the ¢ signal onto these wavelet packets constitutes WPD. As in the
case of DWT, the wavelet paacket coefficients are given by :

Asip =t {1ty g0 =271 j: F(t)s(p —27°t)dt | (2)

where A is the wavelet packet t coefficient. The resulting library of wavelet packet coefficients
contains redundant informatioion, from which a best basis is chosen by minimizing the entropy
of the coefficients (Coifman : and Wickerhauser, 1992). The more the randomness in the
signal, the greater its entropy.y, and therefore the greater the number of coefficients required
to represent the signal accuralately which means larger information cost.

White noise has very poopr time-frequency localization, or in other words is incoherent.
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Figuure 2: Hierzu'chyv of Wavelet Packets

Therefore, as mentioned abovere, a large number of wavelet packet coefficients are needed to
represent it. We are interesteed in the application of the best basis algorithm in denoising
noisy signals. The idea here is $ to extract coherent parts present in the signal (signal features
with good time-frequency locaklization), using the Matching Pursuit Algorithm {Mallat and
Zhong 1992). In the Matchingg Pursuit Algorithm the signal is decomposed into a coherent
part and an incoherent part. " The coherent part is extracted by retaining a fraction of the
signal energy in the form of a fefew large wavelet packet coefficients. The remaining incoherent
part is decomposed several timmes to extract all the coherent parts remaining in it. All the
individual coherent parts, thusis extracted, are superimposed to give the filtered signal. The
incoherent part remaining at tithe end is rejected as noise. The advantage of the algorithm is
that exact characterization of t the process is not required. In the present work, we essentially
adopt a modification of the maatching pursuit algorithm. If the signal to noise ratio is high,
l.e., the energy level of the naoise in the signal is low, a suitable threshold for the energy
is set, by which a large numbeer of coefficients with the lowest energy, which are known to
represent the randomness due ¢ to the noise, are set to zero, thereby removing the noise.

2.3 Wavelet Packet 1Filtering of CARPT Experimental Data

The white noise present in thhe radiation intensity data, is transmitted to the estimated
position of the particle in carteiesian coordinates, P(z,y, z). It is found that the noise in each
coordinate is white noise uncowrrelated with each other. Filtering of the radiation intensity
and subsequent estimation of t the particle positions yields results similar to those generated
by direct filtering or denoisingg of the particle positions along each coordinate. The latter
approach of filtering the positioion data is more efficient in both time and computing resources.
- Therefore the filtering methodd will be applied directly to the z, y, z position data.

Wavelet packet decompositition using Daubechies’ orthonormal, nearly symmetric wavelets
is employed for this analysis. TThe a.lgdrithm for analysis and filtering of the data is explained
below. The original signal is dilivided into data sets of length N = 2% ; [ = 10 to 13. Given
a data set of length N samploled at constant frequency, the wavelet packet decomposition
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and subsequently the best bawsis representation is obtained. The wavelet packet coefficients
(wpc) in the chosen basis are @ arranged in descending order of energy (energy E,,. = wpc?),
simultaneously keeping tag of)f the position of each coefficient. The first few significant coef-
ficients correspond to the cohherent part of the signal while the remaining weak coefficients
depict the noise. The cohererent part is extracted by retaining the first few largest wavelet
packet coefficients that posses:ss an energy ( E. = ¢Es = )¢, wpc?) equivalent to a fraction
¢ of the total signal energy ((Es = T, wpce?). These coefficients are then re-ordered and
reconstructed to yield the filtltered signal. The weak coefficients (incoherent part) that re-
main are re-ordered and recoonstructed to give the noise filtered. The tuning parameter in
this algorithm is the energy t threshold e. This parameter is evaluated by conducting trial
runs for a few data sets in thhe signal. The value of ¢ essentially depends on the results of
calibration for a given expeririment. This affects the magnitude of the spurious fluctuations
in the position data, which is ¢ determined from the data for a stationary particle. Character-
istics of white noise, such as t the autocorrelation coefficient and power spectral density, are
used as a check to select a pproper threshold to ensure that no coherent part of the signal
is removed. Experiments shoow that the energy threshold is generally around 95 — 98% of
the total signal energy. It is fcfound that the results are insensitive to minor variations in the
threshold value. Filtering usiring the above algorithm ensures maximum extent of reduction
of the noise in the data, resulilting in a smoother version of the signal and retains the sharp
features arising from the natuure of the flow in the system.

The algorithm is implemeiented using the mathematical package MATLAB. The wavelet
toolbox! provides the necessa:ary subroutines for construction of wavelets, WPD and recon-
struction of the signal. 7

In order to verify the appplicability and effectiveness of the algorithm for filtering noise
from the data, we test the alglgorithm with data coliected from experiments for a controlled
motion of the tracer particle. .

2.4 Experimental Séetup

The experimental setup consisists of two motors, a screw conveyor and a plate as shown
in Figure 3. Motor I is secuured at the bottom of the structure and is geared to a screw
conveyor that is positioned vesertically. The screw conveyor supports a vertical frame on top
of which the plate is mountedd. The shaft of motor II, which is fixed to the top of the plate,
is connected to a smooth, circcular disc. The radioactive particle to be tracked is fixed to the
tip of a thin plexiglas rod att4ached to the disc. Operation of motor II causes the particle to

lwavbox is the wavelet toolbox x written by Taswell for a MATLAB environment
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move in a circular motion. Thae maximum frequency of motion is 3 Hz. The distance of the
particle from the center of thee circle varies from 7 to 8 cm. Simultaneously motor I causes
the plate held to the frame too move vertically in “up and down” motion (with frequencies
of the order of 0.1 Hz). The mnaximum vertical distance traversed by the particle is 6.4 cm.
By this arrangement the partiticle is made to move in a spiraling 3D motion, with high (3
Hz) and low (0.2 Hz) frequencicies. The two motors are driven by microprocessors, which are
interfaced with a personal conmputer. This arrangement ensures the precision with which
the particle moves. A trolley 7 system with guiding wheels provided for guiding the frame
helps in minimizing the vibrattion of the setup. The entire structure is supported on the
plenum centered between the d detector supports (not shown in figure). Sixteen strategically
positioned detectors are used f for detecting the v radiation. Calibration is first done using
various particle positions that ¢ cover the entire range of experimental runs. Subsequently the
experimental runs are performaed. In each run, the speed of the two motors is varied, thereby

varying the velocity of the partrticle. Eight such runs are performed.

High frequency (3-5 Hz) motion
,vdisc

particle
é i Stepper motor 11

“ L low frequetcey motion
(0.1-0.2Hz)

L puiding wheels

| « tame

-

|_J+stpper motor 1

Figure 3: Expeririniental Setup for Controlled Motion of Particle

2.5 Results and Disccussion

The details of the experimentaal runs carried out are shown in Table 1. Motor I moves the
particle in a linear vertical mootion, i.e. along the z axis in cartesian coordinates. Motor II
moves the particle in a horizonntal two dimensional circular trajectory, i.e. in a z — y plane.
A parametric representation obf the trajectory of the tracer particle is given as:

)Hrpsin(2rwst); 2z, = zo+wnt

3)

zy = z.+rpcos(by 180)+rpcos(¢(27rw2t) Yy = y,_.+r,sm(00180 5
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where z. and y. are biasess in position due to experimental constraints. rp is the radius
of curvature which the particicle traverses. 8, is the initial angular position of the particle.
w; is the frequency of rotationn of motor I. w, gives the displacement of the particle per unit
time and is related to the rppm of motor I. Motor I is programmed to move 800 steps in
the clockwise direction (125 ststeps in the clockwise direction is equivalent to 1 cm ) and 800
steps in the counterclockwise e direction, repeating this periodic motion several times. This
induces a frequency of about ( 0.1 Hz in the 2z direction of motion. Based on the trajectories,
the existing Lagrangian velocicities v,,, vy, and v,, are calculated.

Tabble 1. Details of Experimental Runs

Run No. | rr, | 6, deg wy Zg z5 W

com cm/sec | cm cn | 1/sec
Run1l [6.9964 | 315 2.0 11221 [ 11861 | 2.75
Run 2 {6.9964 | 315 2.0 111221 {118.61 | 1.75
Run3 |7.1280| 315 2.0 11221 |118.61 | 1.00
Run 4 | 7.1180 | 315 2.0 11221 |118.61 | 2.00
Run5 |7.1180| 315 2.0 112.21 | 118.61 | 2.75
Run 6 | 7.9989 | 315 2.0 11221 | 118.61 | 2.75
Run 7 | 7.9089 | 315 2.0 11221 | 11861 | 1.50
Run 8 |7.9089 | 270 2.0 1112.81 | 119.41 | 0.00

The instantaneous positioon data &, y, and z, resulting from CARPT experiments for
the controlled motion of the 1 particle are subject to wavelet packet filtering as discussed in
the previous section, yielding g filtered results zy, y; and z;. Thereby the particle velocities
from CARPT measurements ( (sampling frequency is 506 Hz) before filtering, vy, vy, and v,,,
and after filtering, Uz, Uy, Vi, are obtained.

The results are analysed bby comparing the magnitude of the error in positions and ve-
locities in each direction. For r this purpose the root mean square (rms) error in position and
velocity are used. Figure 4a sshows the actual trajectory y, for a period of 10 secs, for Run
5 reported in Table 1. Figuree 4b is a comparison of the error in estimating the successive
y positions of the particle. Fitigure 5 show the velocity of the particle along the y axis with
the errors before and after fifiltering. A summary of the results for the entire set of runs
1s presented in Table 2 whichh reports the errors in position z, ¥ and z, and spurious rms
velocities, before and after fifiltering. It is evident by examining the results, that there is
significant improvement in thae accuracy of estimation of both the positions and velocities of
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the moving particle. The resisidual error (spurious rms velocities) after filtering the data is
2-5 cm/sec. There is an averaage of 75% reduction in the level of noise in the data. With
regard to the magnitude of tithe rms fluctuating velocities of the liquid in bubble columns,
which are an order of magnituude higher, the reduction in error is considered substantial.

Table 2. Errors in Estinimation of Particle Position (cm) and Velocity (cm/sec)

error in position, cm

error in velocity, cm/sec

Beforere Filtering | After Filtering | Before filtering | After Filtering
Run No. | Direction | rms | min/max | rms | min/max rms | rms
Run 1 x 0.32| -117,1.12 | 0.19 | -0.7.0.6 20.5 4.16
y 0.36 | -.15,1.2 | 0.26 | -0.75, 0.8 20.01 4.66
z 049 | -17,14 | 025 | -0.7,0.74 30.36 1.68
Run 2 X 0.30 {--1.23,1.25| 0.2 |-0.76, 0.64 21.0 5.6
y 0.33 | --1.43,1.34 | 0.22 |-0.79, 0.86 19.4 5.7
z 049 | -1616 | 0.2 | -0.67,08 29.6 1.6
Run 3 X 0.32 | -1.16,1.13 | 0.21 | -0.7,0.9 19.3 3.2
y 0.31 ] -1.2,1.2 | 0.21 | -0.85,0.8 18.0 3.6
z 0.47 | -1.5,1.75 | 0.17 | -0.9, 0.6 28.9 1.34
Run 4 x 0.32 i-1.08,1.12 0.22 | -0.75,0.86 19.5 4.8
y 0.32 | -1.51.25 | 0.23 | -0.7,0.75 19.0 4.5
z 0.46 | -1.4,14 | 021 | -0.65,0.61 29.0 1.38
Run 5 x 0.3 | -1.13,1.32 | 0.19 | -0.9,0.66 20.2 5.4
y 0.29 | -0.89,09 | 0.16 | -0.61,0.65 18.7 3.8
z 047 -1614 | 022 |-0.87,0.72 29.2 1.56
Run 6 x 0.32 |  -1.36,1.08 | 0.19 | -0.55,0.52 20.9 5.3
y 029 | -1.4,1.0 | 0.17 | -0.68,0.7 19.11 3.4
z 0.39 |:-1.42,1.45| 0.14 | -0.64,0.32 26.1 1.01
Run 7 X 0.31 || -1.16,1.08 | 0.21 | -0.8,1.0 19.78 4.18
y 0.28 | | -1.14,1.11 | 0.14 |-0.84, 0.82 18.69 3.51
z 0.37 | | -1.09,1.21 | 0.20 |-0.86, 0.72 25.73 1.48
Run 8 x 0.31 || -0.97,1.03 | 0.03 | -0.04,0.03 16.99 0.07
y 0.28 | | -1.10,1.15 | 0.007 | -0.01, 0.02 17.94 0.04
z 0.40 | | -1.3,1.03 | 0.25 | -0.79, 0.5 24.29 1.05
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Figure 4: Results for RUN 5 : Trajectory y of Particle
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Figure 5: Results for RUN 5 5 : Velocity v, and Error in Estimation of Velocity of Particle

The experiment for the conntrolled motion of the tracer particle thus provides a firm basis
with which the effectiveness of f the wavelet analysis technique for filtering the intrinsic noise
in the instantaneous position ddata is substantiated.
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2.6 Results for a Buubble Column Experiment

We now show results for filteriring of the data from a bubble column experiment. The exper-
imental conditions for the runn considered are : column diameter 19.05 cm, superficial gas
velocity 4.0 cm/sec and superfificial liquid velocity 0 cm/sec. The results presented in Figures
6 and 7 are one dimensional pprofiles generated by averaging over the middle section of the
column, where the flow is fulllly developed. As expected there is no appreciable difference
between the filtered and origininal mean axial velocity profiles shown in Figure 6. This is be-
cause time averaging of the insistantaneous velocities, averages all the fluctuations in the data,
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Figure 6: One Dimensional MMean Axial Liquid Velocity for an 8" Column, U 4.0 cm/sec

including the inherent noise ddue to statistical fluctuations of the radiation. Figure 7 shows
the turbulent kinetic energy. EHere it can be seen that filtering has reduced the magnitude of
these parameters. The results:s from filtering experimental data are validated by comparing
the Reynolds shear stress profifiles obtained in a column of diameter 14 cm with results from
Menzel et al. (1990) who usedd a hot wire anemometer to measure the instantaneous liquid
velocities in a bubble column. .. The results shown in Figure 8 suggest a good comparison for
the Reynolds shear stress usinng the two techniques.

2.7 Conclusions

A wavelet packet based algonrithm reduces the level of noise in the CARPT data. The
algorithm is validated by desiggning and conducting a CARPT experiment with the controlled
motion of the particle, whereleby an a priori knowledge of the trajectory of the particle is
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possible. When applied to dalata for a bubble column experiment, substantial reduction in

the noise is seen. This yields nmore accurate results for the turbulence parameters estimated
which is of importance in the 2 modeling of bubble columns and other multiphase reactors.
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3

Mohte Carlo SSimulation of the Radiation Measure-

ment Process

The specific objectives for thisis part of the research is as follows :

1.

To develop an efficient NMonte Carlo simulation program for calculating the efficiency
of a cylindrical Nal detdector receiving radiation emitted from a point source located
at an arbitrary positionn inside the reactor with or without internals. This would
basically eliminate the t time-consuming in-situ calibration procedure in utilizing the
Computer Automated RRadioactive Particle Tracking (CARPT) facility to study the
flow pattern/mixing meechanism in multiphase reactors.

To determine the dynammic location of a radioactive particle by using the 3-D position-
counts maps for all detetectors obtained by using the Monte Carlo simulation. This
would improve the accuriracy for locating the particle position from count data received
by each detector, since ¢ 3-D mapping is used instead of 1-D mapping adopted by the
in-situ calibration processs.

Verify the Monte Carloo simulation by comparing the calculated counts with those
measured at a number o.of known locations inside the reactor. Optimize the dead-time
constant of detectors anad the linear attenuation coefficient of reactor media to best fit
the experimental and thheoretical data.

- Write a program to detersrmine the particle location from the count data on all detectors

and the position-counts ; maps obtained from the Monte Carlo simulation.

Verify the accuracy of tlthe program by comparing the predicted particle position and
its actual position by plalacing the radioactive particle into several known location.

Progress has been made inn developing a Monte Carlo simulation program for calculating

the detector solid angle, totalil efficiency and photo-peak efficiency. The tracer particle and

detector can be at any positioon (particle inside reactor, and detector outside reactor). The

distances travelled by the photstons from the tracer inside the reactor and through reactor wall

are calculated exactly. The akbsorption of 4-ray by the reactor media and reactor wall are

also considered. The simulateied results by this program are compared with other simulated

results reported in literature aand the comparisons are good.

The approach adopted for t the Monte Carlo simulation is described in the paper by Beam
et al. (1978). Some modificications and additions were made to account for the photons
absorbed by the flowing phaseses in the reactor and by the reactor wall. Randomly chosen




7-rays emitted within the deetector solid angle (£2) was employed by Beam et al. (1978)
and Larachi (1994) to calculilate the detector efficiencies. In order to obtain an accurate
simulation, a large number cof y-rays (more than 4000) within the solid angle has to be
calculated. To increase the aciccuracy and simulation speed, Gaussian quadrature, instead of
randomly picked v-ray withinin the solid angle, is applied to perform the multi-dimensional
integration. It is shown that : the results from the Monte Carlo simulation is accurate with
30 Gaussian points in one anggular direction, i.e. total of 900 points for the surface integral.

3.1 Approach for M/onte Carlo Simulation

In the following we briefly ssummarize the steps involved in computing the detector effi-
ciencies. To calculate the deletector efficiencies by the Monte carlo method, the following
parameters need to be determmined.

1. The solid angle {2 subteended by the detector surface as seen from the tracer particle
position;

2. The probability of non-irinteraction f, of y-rays emitted within Q with the reactor media
(gas-solid mixture) and 1 reactor wall, which is calculated by:

o) = exp |- 3 ) (@

i=1
where p; is the total linaear attenuation coefficient of the material ¢ in the ~-ray path,
and d; is the distance itit travels in the direction of (a, ), o is the angle with the line
normal to the detector : axis, § is the angle with the detector axis. The geometry is
illustrated in Fig. 9. TFhe detector axis is normal to the detector front face, with the
origin at the center of ddetector face.

3. The probability of interaaction f; of ~-ray with the detector crystal. For total efficiency

Jo{a,6) =1 — exp[~pad(e, 8)] (5)

where g4 is the total attitenuation coefficient of detector crystal and d is the distance of
¥-ray travelled in the deletector by an undisturbed y-ray along the direction of (a, 8).

4. For photo-peak efficienacy, the calculation is more complicated since the Compton in-
teraction has to be conmsidered, the probability of photo-peak interaction f, can be
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Figure 9: Angless and Distances Used in Monte Carlo Simulation

written as:

v

T Ty
o= w2 w2 [ w
281 P"V =2 p’j—l

wj = 1—exp[—p;desy]

Lo g |

(6)

where w; is equal to fy irin eq.(2), d.s; is the effective distance of 4-ray travelled, Tiy O;
and g; is the photoelectriric, Compton and total attenuation coefficients (u; = 7;+0+7),
respectively. It should bee mentioned that 7;, o; and p; are a function of 7-ray energy.
After each Compton inteweraction, the 4-ray (photon) energy and direction changes. The
distance travelled in the e new direction is randomly distributed between zero and the
maximum distance it maay travel inside detector crystal in the new direction.

The total efficiency ¢ and pphoto-peak efficiency P, can be calculated by:

¢ = [ 22 f(e0)fule, 0)ds ")
Q

o= ([ e 0)f e 0)ds Q
Q




where 7 is the vector from poirint source to a variable point p on the exposed detector surface,
7i is an external unit vector loocally normal to the surface at p, and ds is the area around p.

According to Beam et al. ({(1978) an appropriate statistical weight w(a, #) can be assigned
to each sample direction (a, ¢ §). If N randomly chosen y-rays are sampled in the tracer-
detector solid angle €2, the soiolid angle, total and photo-peak efficiencies can be evaluated
by:

4z X

Q D= -ﬁgw(a;,ﬂg) (9)
N

€ = '117Z:w(ai,oi)fa(ai,ei)fd(aivei) (10)
N

P = ‘-;v-Zw(ai,ﬂi)fa(ai,9i)fp(a£,9£) (11)

=1

The angle ; and 6; is determirined by the tracer position and the point where 4-ray i entered
the detector. In order to obtaiain accuracy values of € and P, a large number of N (5000 to
10000} is required since they s are randomly selected. However, we can apply the Gaussian
quadrature to efficiently perfdorm the surface integration. It will be shown later that with
n = 30 Gaussian points in opne angular direction (total number of y-rays sampled equals
to 900 in two angular directicions), the simulation results are comparable with those from
randomly selected 5000 pointits. Actually, if one only wants to calculate the solid angle
and total efficiency, 15 (n = 115) Gaussian points in one angular direction are sufficient to
obtain accurate values. The eequations for calculating the solid angle, total and photo-peak
efficiencies using Gaussian quaadrature become:

Q = rzjééwg(i)wg(j)w(a;,ej) ()

€ = Z2;;wg(i)wg(j)w(as,ﬂj)fu(aia9i)fd(aia9i) (13)
1 L) n

Po = 2223 wilihwy(s)wlos, 0;) fule, 65) fo(i, 65) (14)
t=1=l j=1
where w, (i) and wy(j) is the GGaussian weight corresponding to the Gaussian point z; and z;
(corresponding to «; and 6;). . The constant 1/4 in front of the equations is due to the fact
that the integral limit (0, 1) oof the dimensionless angle for eqs (6)—(8) is changed to (-1, 1)
for the Gaussian quadrature.
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3.2 Siniulation Resunlts

Figure 10 and Figure 11 illustrirates the error analysis in computing the total and photo-peak
efficiencies with different numhbers of Gaussian points in one angular direction, respectively.
The true total efficiency and pbhoto-peak efficiency is assumed to be one calculated with 200
Gaussian points in one angulanr direction (total of 40000 points). The results are calculated
for a 27x2” cylindrical Nal deteiector with the y-ray energy of 1 MeV. The tracer particle is 15
cm from the detector face and 1 15 cm from detector axis. For calculating the total efficiency
(as well as solid angle), 10 Gauussian points (total 100 v-rays) can yield a very good efficiency
value with relative error less tlthan 0.1%. However, for computing the photo-peak efficiency,
large number of Gaussian poirints in one direction (n > 30) is required in order to obtain 2
good approximation to the truae efficiency value. As mentioned earlier, this is due to the fact
that after y-rays interact with t the detector crystal by Compton interaction, its new direction
and travelled distance changes s randomly. In order to get a good statistical value, a relatively
large number of Gaussian poinnts are needed.

Figures 12 and 13 show the e comparison of the present Monte Carlo simulation with other
Monte Carlo simulation and eexperimental measurements (Beam et al. 1978) of the total
and photo-peak efficiencies. Thhe experimental data were obtained by placing a Cs-137 point
source at various locations froom the detector face and axis, and measuring the total and
photo-peak counts.

The total source intrinsic ¢ efficiency and photo-peak efficiency are normalized with the
efficiency for the particle locatating on the detector axis, respectively. When the angle with
the detector axis increases, booth the source intrinsic efficiency and photo-peak efficiency
increases as seen in Figs. 12 amnd 13. The results from the present Monte Carlo simulation
are very close to those from BBeam et al.’s (1978) Monte Carlo simulation. However, some
differences between the Montee Carlo simulation and experimental data exist. The reasons
are provided by Beam et al. ( (1978). When the distance between the detector and tracer
particle increases, the differencices between the experimental data and the simulation decrease
as illustrated in Fig. 14 (45 crrm from the center of detector face).

Attempts to reproduce thee results of Beam et al. (1978) have been made. The plots of
the total intrinsic efficiency annd peak to total ratio as a function of y-ray energy as shown
in Figs. 15 and 16. These arwe computed with the same parameters as used by Beam et
al. (1978). The symbols in Figigs. 15 and 16 are the calculated efficiencies corresponding to
different energy levels, and the ¢ solid lines are curve fits to the simulated data. The simulation
results shown in Figs. 15 and 1116 are very close to the results obtained by Beam et al. (1978).

The results of the Monte CCarlo simulation have also been compared with those of other
Monte Carlo simulations (In aaddition to Beam et al.’s (1978) work). They all show good
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Figure 12: Compani.on of Pres:sent Monte Carlo Simulation with Other Simulation and Ex-
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agreement, and the present Mlonte Carlo code is more efficient than the others (much less

CPU time).
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Figure 16: Photo-Peak Efficielency to Total Efficiency Ratio as a Function of 4-ray Energy,
27x2” Nal, 15 cm from Detectetor Face

4 Verification of{f CARPT Velocity Data by Indepen-
dent Methods

The second objective for the fifirst year of the project is to conduct studies in a single diame-
ter column with the air-water r system and compare the results obtained at CREL using the
CARPT-CT experimental commbination with the results obtained at OSU using Particle Im-
- age Velocimetry {PIV). The verelocity measurements using CARPT were also to be compared
with the results from heat pulslse anemometry.

PIV tests at identical conaditions as those performed at CREL by CARPT are now in
progress. Preliminary resultss for the comparison between the velocity measurements by
CARPT and those obtained uusing heat pulse anemometry at CREL are summarized here.

The Heat Pulse Anemometeter (HPA) uses a time-of-flow measurement technique to mea-
sure the mean liquid velocity bbetween two points in the fow field. It essentially measures the
distribution of passage time of f the particles that start at one point in the fiow and happen to
meet at another second point ddownstream. Heat is used as tracer to tag the fluid particles. A
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small heating element, the emnitter, is used to label the passing fluid elements. Downstream
of this emitter a fast and sensisitive detector (hot film anemometer probe) registers the pas-
sage of the heated elements obf liquid. An impulse of heat tracer introduced at the emitter
is therefore detected by the serensor probe similar to the case of a residence time distribution
measurement.

In order to obtain sufficieently large signal-to-noise ratios, tracer inputs in the form of
pseudo-random sequences of sisingle pulses are used. The measured responses at the sensor
which by themselves are meanningless, when cross correlated with the pseudo-random input
pulse, yield an impulse responnse at the point of detection, called a time-of-flow distribution
(see Figure 17). This responsse is interpreted by the following model which describes the
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Figure 17: Schematic of HPA

mean flow of fluid particles beetween the emitter and the sensor by a Gaussian distribution
function:

R R e )

where 7 is the mean time-of-f-flow, 0¢ is the intemsity of mixing and B denotes the type
of mixing. Calculating 7 froom experimental measurements and knowing the distance of
separation of the emitter fronm the detector, the mean velocity of the liquid between the
emitter and sensor can be caldculated.

The variables during a mezasurement are the time of sweep, t,, which is the time for one
sweep during which several datata points are sampled, and the time of measurement, ¢,,, which
is the total time for a given exxperimental measurement over which #,, /¢, number of sweeps
are taken.




Table 3 Preliminary Resesults for Model Parameters from T.0.F. Measurements

UG ts tm T 00 ﬁ
cm/fs| s s s $

5 |3.01/ 300 [0.211 | 0.485 | 0.827
20| ™ |0.2340.493 | 0.762
25| ” |0.218|0.460 | 0.744
2.5 | 2500 | 0.207 | 0.369 | 0.680
2.5 | 3600 | 0.207 | 0.444 | 0.763
2.5 | 5000 | 0.206 | 0.387 | 0.720

12 1 2.0 | 3500 | 0.124 { 0.218 | 0.496
2.0 1 5000 | 0.126 { 0.349 | 0.651

Table 4: Comparison of Loca:al Time Averaged Axial Velocities Using CARPT and HPA

Us | CARPT| HPA

(d/7)
cm/s{ cm/s cm/s
5 16.5 14.5

12 46.5 |24.2,23.8

Preliminary results have beeen obtained for experiments conducted in an 8” columnn with
the probes placed along the axixis of the column at a distance of 3 cm apart. The axial position
of the emitter is 47 cm. The 1 results for measurements at two gas velocities are presented.
Table 3 shows the model parioameters at different values of ¢, and ¢, for each condition.
The comparison of the calculilated mean axial liquid velocities with those from CARPT
measurements are shown in Ta'able 4. The comparison of the results at the lower gas velocity
is reasonably good. However atat superficial gas velocity of 12 cm/s, the velocity obtained from
HPA is quite lower than the CCARPT measurements. At this high velocity it is possible that
under the existing churn-turbuulent flow conditions, the variables of measurement mentioned
above, along with the distancice between the emitter and sensor, may affect the measured
signal and derived velocities 1 from the heat pulse probe. Additional data collection and
interpretation from HPA, and 1 comparison with CARPT results are currently underway.
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PIV is a technique based oon recording the images of particles used to seed the fluid for
tracing the motion. The algoririthm essentially consists of image enhancement, identification
of particle images, computatition of particle centroids, and computation of displacements
between particle image pairs t to obtain the velocity and phase distribution. The gas-liquid
flow in air-water bubble columnn of 10.54 cm (4”) in diameter is considered for the comparison
of the results from PIV and CCARPT. This column dimension is chosen due to the fact that
PIV measurements for the lidquid phase velocity are more difficult to obtain in a larger
diameter column. The time : averaged liquid phase velocities along a diametral plane of
the column are to be obtaineed at superficial gas velocities of 2.0, 4.0 and 8.0 cm/s. The
operating conditions chosen anmre identical to the data available at CREL. The plane of the
flow illuminated by the laser ¢ sheet is 4in. x 8in. and approximately 3 mm thick. The
comparison between the resultsts between PIV and CARPT will be provided in the next report.
However, Figs. 18 and 19 demaonstrate the results obtainable using PIV. Figure 18 shows the
instantaneous velocity field of f the gas and liquid phase in a two dimensional bubble column
15 cm wide at a superficial gasis velocity of 1 cm/s. The time averaged velocity and Reynolds
stress profiles for the same connditions are shown ir Fig. 19.

5 Preparations ffor CARPT Runs on a High Pressure
Bubble Columin at Exxon

One of the key goals for this praoject is to conduct CARPT experiments in a high pressure air-
water bubble column at Exxona. In addition to CARPT, a number of related experiments such
as pressure drop measurementsts, local holdup measurements as well as velocity measurements
by heat pulse anemometry aree also being planned. The experiments are to be conducted in-
a 14.0 cm (6”) diameter colummn approximately 240 cm (8 ft high). The flow behavior is to
be studied over a range of presssures from 1 to 7 atmospheres.

A research team from CREEL has spent one week on Exxon campus in Florham Park, NJ,
to plan on the CARPT experiniments for the study of a high pressure bubble column. Prelimi-
nary design for the hardware cccomponents required for setting up the CARPT systemn around
the existing reactor setup at EExxon, and planning for the execution of the experiments were
made during the visit. The deletector support structures have been designed to make use of
the available column support : structure. Since it is for the first time that CARPT exper-
iments are being conducted inn an opaque reactor, calibration of the system is anticipated
to be a more tedious process s than usual. A positioning device that is capable of moving
the tracer particle to various | positions in the reactor, and such that its hardware does not
hinder the radiation measurerrment process, is being designed. Conceptually, the sysfem 18
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planned on being completely aautomated so that the manual part of the calibration process
is minimized. The isotopes too be used as tracers are Scandium-46 and Cobalt-60, each of
approximately 350 to 450 micr:rocuries activity for gas-liquid and slurry bubble columns, re-
spectively. The experiments irin the high pressure bubble column at Exxon are planned on
being accomplished in the summmer of 1997, somewhat earlier than originally suggested since
this will provide more time to » analyze the data during this grant.
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