Page Z of 3

		Plant				1				,	101	_	
		In				Partic	culate / M	1 etals	_ Ru	1 No. 🔼	1 Pha	se 2	
Date 6/	27/93	Time Start			Time Fini	ısn		Test Dura	tion		mın.		
Duct Din	nensions	x_			Diameter		ft	Initial Lea	k Rate _		cfm		
		DGMCF		NOZZLE	DIA	i	inches ·	Final Leal	k Rate		cfm		
Bar Press	3	* Hg	_										
Static Pre	:ss	* H20	7		Operator	্রেম	ru	_					
Travers	Clock	Dry gas meter	^ P	^ н	Stack	Dry gas m	eter temp.	Hot box	Probe	Last	Vacuum	K	İ
Point	Time ·	reading ft3	in H2O		Temp. F		Outlet	Temp.	Temp	Impinger		Factor	
<u> </u>				ļ		ļ		•				!	ŀ
W2-1		752.642				87	84		204	60	4		
	1054	754.1	0.03	0. 33	298	8	84		221	53	5		
3	1059	7537,7	6.04		307	88	85		243	53	6_		
4	1104	757,7	0,09		299	89	86		257	49	11	11.06	İ
_ 5	1109	760-2			302	91	87		241	47	19		
۵	132/114	763.9	0.15	1.7	J6/	94	88	_		১১	22		i.
Stop	1119	767,291	Go	od at	22 "/	Le leak	chek	160	el initio	al leak	check	D25-1/K	6
,					,								r
E7-(1148	768 450	0.03	0.33	317	89	87	_	216	65	6	41,12	10.88
	/1 5 3	770.2	0.04		322	89	87	_	240		7		
	1158		0.06	0.66	328	90	87,	_	242		8		1
4	1203	774.3	0.09		330	91	88	-	244		12	<u> </u>	
<u> </u>	1208	٥. ١٦٠ ﴿	6.18		333	93	89		242		22	-	l
	1213	780.6	0,19	1	336	95	90		249		22		l
	1218										-		
2100	1210	783,812		7000 (e	a Cour	K02	* /5 - {	0.01	7 17/	"-)			1
7-1	433.5	~~/ 047	A 03	0.30	311	92	90		222	15	5	 	
	1225	784.027	٠,	0.22									ĺ
	1230	785.6	0.04	0,45	322	92	89	_	247	60	7		Ì
	1235	787.4	0.07		321	92	90	~	248		11		
	1240	790.0	0.11	1.25	321	92	91		250		18		
	1245	392.5	0.14	1.55		96	92		251		21		
6	1250	796.6	0-15	1.4	322	97	92		245	63	22		İ
top	1255	799.342										<u> </u>	i
							<u> </u>					<u> </u>	Í
								.		\triangleright			
								 					l
													Í
			Spe				7			<u> </u>			ĺ
		111.690	0.252	5			2.732				X. (1)		l
:k'd				3828.28		339.35.48						72.74	1
		P	-ye comma	<u> </u>	13:500-030-00	100.000.000.000	1				8:1:m:18:00	Poster a retire.	5
ios.	.e #					Velocity							
ER		_				2 W W / 2 W 2 C 2 W .	•						
IEN	T TEMP.			_			DSCFM)						
						10000000000000000000000000000000000000	(%)		AMERICAN CONTRACTOR	Anna Contract Contrac			
RN	ATERIAL	,						<u> </u>			-		
٩R	KS	<u> </u>								*******	_		

Page 3 of 3

	Plant l	Name	Plant	Yates Si	tation Be	oiler No.	1					,	
	Samplin	Z Location	Inle	+		Train	Parti	culate / N	Aetals	Ru	n No. 3	3 /Pho	sa 7
	Date 6	127/3	Time Start			Time Fin	ish		Test Dur	ation	<u> </u>	——————————————————————————————————————	Je Z
	Duct Di	nensions	Time StartX			Diameter		ft	Initial Le	ak Rate		n	
	PTCF_		DGMCF		NOZZLE	DIA.		inches	Final Lea	k Rate		cfm	
	Bar Pres	s	" Hg										
			* H20)		Operator	_ ਹਾਘਾ	m					
	Toward	Clock	Dry gas meter	^ D	^ H	Charala	D		-	T		7	
	Point	l .	reading ft3	in H2O	,	Temp. F	Dry gas m		1	Probe	Last	Vacuum	
	ļ				<u></u>	<u> </u>		Outlet	Temp.			in. Hg	<u> </u>
			799.545	0.02	0.22	307	94	92	_	206	66	6	
		1304	801.1	0,03	0.33	315	94	92	-	226	65	7	
	3	1309	8027	0.05	0.55	318	95	92	_	249	65	10	
1,60	Y	1314	804.8	0.09	9 30	316	96	97		24	55	15	
V'ا	5	1319	807,7	0.11.	1.3.11	316		94	_	215		20	
į	6		810.5	0.17	43	314	99	54		242	52	22	
	540	1329	813,735	Bo	od lea	E Choo	E6 2	2"//		2,0	32	20	
į	210		<u> </u>				-	 '3) 					
ļ	E1-	12 25	814.000	0.07	0.77	306	97	94		205	58	/3	
	7_	/333 /33n/		0.09		314						/3	
46	3	1345		0.04			7	94		239		12	
276							97	93		241		11	<u> </u>
				0.03	033		98	94		260		7	
		1355	823.3			309	57	94		252		(7)	
				0.03	0.53	303	9)	74		257	57	11	
J	Stop	44es.	877,278					<u> </u>					
-													-
											-		
H													
ľ										_			
ŀ													
ŀ													
1													
∦			66 (1979) (1979) (1979)	wa 4500 W W W	.28.5.07.10	Rage Live to							
ľ	Avg.					:#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	08.000		nin yu	Sagara.			
Į.	Check'd												
	7011001	. ,,					200 2000 A100	********				··	
							. 1981 () The state of						
	FILTER A							e			86.8755		
		ENGTH	·			:	Flowrate (I	DSCFM)	2383688 - 200				
		ATERIAL					Isokinetic (96)		(UK\$\$\$)-31	<u> </u>		
1	JINEK M	AIERIAL											
T	REMARI	· c											
	~_iviAIV	-											~

Page / of

Plant N	Name	Plant	Yates St	ation Be	oiler No.	. 1					_	/
Sampling	 Location	Inle- Time Start X DGMCF	7		Train	Partie	culate / N	Metals	Rm	a No. A	ארי שינו	FB
Date 2	4 Jun 93	Time Start	1206		Time Fin	ish		Test Dura	tion	1.10. 11.	min	
Duct Din	nensions_	x_			Diameter		·ft	Initial Lea	ik Rate	0.01	7 cfm 6	1514
PTCF _		DGMCF		NOZZLE	DIA.	1.358	inches	Final Lea	k Rate	<u> </u>	cſm	
Bar Pres	s	Hg	_									
Static Pro	ess	H20)		Operator	JWI	M					
Travers	Clock	Dry gas meter	^p	^н	Stack	Dry gas m	eter temp	Hot box	P-obe	Last	Vacuum	
Point		reading ft3		1		Inlet		Temp.	Temp	Impinger	1	1
		ļ						Tomp.		mpuiger	ui. 11g	
	120	426,515	 			 	ļ					
	120	426.845	 			 						
												
			ļ			<u> </u>	ļ					
			<u> </u>			ļ						
											_	_
						,						
										-		
									•			I
, ,	*				i	İ	 					
								-		<u> </u>		
					 							
					<u> </u>							
							 					
							<u> </u>					
							<u> </u>					
							ļ					
		<u> </u>				<u> </u>	<u> </u>					
	<u> </u>	NOTE OF THE PROPERTY OF THE PR	30000 5 6 87 a 0 a 0	3.3		223033 2012		*******				
Avg.												
Check'd						0.30000						
CONSOL	E# 4	Floort 2/	916136	3		essa proporece		C200000-1000000000	*************			
	# 125					Velocity						
	T TEMP.		· · · · · ·	•		% Moistur Flowrate ()	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	ENGTH	8				Isokinetic	878338 XXX 94: 74.7	/ y 1, o 100 10000000000				
	_	. Quartz				AND THE LIE			<u> </u>	talikati ya ka ka ka ka ka ka ka ka ka ka ka ka ka	•	
REMARI	/ c											
	w		<u> </u>									

	_				
388	2062	18 N.	1 20	302.72	X.00
1 ****	1300		4 🐠	l 🏻 🛣	1
1.000	lesse	1000	4. 🦈	! /////	
1000	1200	1806	1. 😘	!	1.7.
9839			1 - X.		I 2000
1332	1 000			1000	
1000	79800	! .::::	1	1386	
1,272		t so	1 .	1 XX (6.	
1230			1	100 C	· * *
-330	1020	18.8°	1.	1.300	120
(2.3)		100	1 :	.25%.	
(Z)		1.1.2	1	123	·: .
1 Miles	-	l∵^a	4		20.0
			1	! ^22 - 1	
	∩	$-\infty c$	—	∤ ∞ :	27
		ಟ್ಟ್	لعسأة		W
. 288		;; J	1 -44		100 X
322	<i>*****</i>	.	1 3		
- XXX			1 %	- K.	***
2300 D	WW.		ب	1.4.4	****
13/2	888X		1. 60	143X	
	()	~	1	30 m	1600
W 2	33. A		1		
2.5	888.X	(A)	4	139.0	280
1 200		. W.	1	- Table 1	- W.
-300			4 : : : : : : : : : : : : : : : : : : :	/W.	<i>.</i>
	1888		4 . 83		987
1 3/1		l:::***	1	1:00	
	***		1		100 0
	3	14.	1 1	1857	100
12.		7.	1 . "	13	
1 33	نحترج		1 .	200	13.
	ાત્વ	E: ≒	1.		
34.	. J.		1	130	0.0
77			1 1	.X:	73.
-	57.		1 / '		
			1		
		: एप	1		
		\mathbf{C}	1 : : :	1.30	
,,,,,,,	ુ ⊢્		1.		
(0)		~	4,>.		النشز
		8×5	1#	7	}
	***	: XX	1 Oi	0	
	20	-	1 =	Ō	-20
\mathbf{H}					· •
	× ×			9	
ίΩ.			ا سن ا		
		F.: C	1		*
S	S	Ţ	2	Γ_1	连
\mathbf{s}	S	Ţ	2	Γ_1	匞
	S	Io	Ţ	P	Œ
	\mathbf{S}	» I c	P	P	Œ
<u>*</u> S	8) S	P	: P	E
S 1 2	\mathbf{S}) S	Ğ	P	E
S 1 72	\mathbf{S}		P	$ \mathbf{\hat{L}} \gg 1$	H
1 = 2 = 1	\mathbf{S}) S	P	$\langle \cdot \rangle \langle \cdot \rangle$	H
3, 18.6 to 1 S	\mathbf{S}		P		H
S 1 = 2 = 1 S	\mathbf{S}		P		H
Borier S	$ \mathbf{S} = 1$	J.	ď		H
Bouler T	$ \mathbf{S} $		J	P	H
A Boilee TIS	S)	Pump#:	P	H
N Boilect S	÷)	P	Ā	H
ON BOILER # 1 S	et S	5 [C	P	. O. I	
TION BOILER # 1 S	S S	• Io	P	. O. I	
ATION BOLLERE'S	. । S	45 Ic		. O. I	
TATION BOILER # 1 S	nlet 💛 S	-45 Ic		. O. I	
STATION BOILER # 1 S	inlet	3.45		. O. I	
STATION BOLLER T S	INLET	S-45	M. P.	. O. I	
SIATION BOILER ! S	nulet . S	oI	T N	. O. I	
S STATION BOILER * S	PINLET . S	oI	P	. O. I	
ES STATION BOILER TIS	DP INLET	oI	Cont.	. O. I	
TES STATION BOILER TIS	SP INLET	ol	Conc	. O. I	
ATES STATION BOILER TIS	ESP INLET	Je-25-45	T Sweet	. O. I	
MATES STATION BOILER TIS	ESP INLET Soda-Lime Trap#:	ol Io	R COML	. O. I	
MATES STATION BOILER TIS	ESP INLET	or -25-45	P P	. O. I	
F MATES STATION BOILER TIS	ESP incet	oI	Company P	. O. I	
IT WATES STATION BOLLERE S	ESP INLET	ol sp-25-40	Row P	. O. I	
MT MILES STATION BOILERT S	1: ESP INLET	ol	Coal	. O. I	
ANT MATES STATION BOILERE S	m: ESP INLET	ol <- <- <- <- <- <- <- <- <- <- <- <- <-	Con P	. O. I	
LANT MATES STATION BOILER TIS	on: ESP inlet	o[Comp.	. O. I	
PLANT MIES STATION BOILERT S	ion: ESP inlet	oI	Comp.	. O. I	
PLANT MIES STATION BOLLEREL	tion: ESP incet	ol < < < < < < < < < <-	: Company	. O. I	
PLANT YATES STATION BOILERT S	ation: ESP incet	ol spssa	e: Coal	. O. I	
* PLANT MIES STATION BOILERE S	cation: ESP inlet	ol	ne: Coal	. O. I	
IT PLANT YATES STATION BOLLERT S	ocation: ESP incet	ol sp-25-40	pe: coal P	. O. I	
OF PLANT MIES STATION BOILERT S	Ocation: ESP INLET	ol	ype: Coal P	. O. I	
SOF PLANT MILS STATION BOLLERT S	Location: ESP Neet S	ol sk-82-90	lype: coal P	. O. I	
1801 PLANT MIES STATION BOLLER S	t Location: ESP in Let	ار جه-۶۶-مې او	Type: Coal P	. O. I	
INSOR PLANT MIES STATION BOLLERT S	nt Location: ESP inlet	ol sk-82-90 ;e	l Type: Coal P	. O. I	
ONSON PLANT YATES STATION BOLLECT S	int Location: ESP indet S	ite: 64-82-49 lo	el Type: ೧৯৫೦ P	. O. I	
Ponsor: Plant Mites Station Boiler S	lant Location: ESP in Let	ate: S5-43 lo	uel Type: Coal P	. O. I	
Sponsor: Plant Mics Station Boiled I	Plant Location: ESP INLET S	Date: 06.75-45 Io	uel Type: مماد الهوزي اله	. O. I	
Sponsor: Plant YATES STATION Boyle CT S	Plant Location: ESP INLET	Date: 06.25-45 IC	Fuel Type: Coal P	. O. I	

S	start			stop		elapsed	mean	mean
1 67	ero	flow	time	zero	flow	time	zero	flow
_	(1/min)		(hh:mm)	(1/min)		(min)	(1/min)	(1/min)
=	210.012	0.500	1100	-0.005 0.213		552,347	245 0 S8000-1252 342	57880
1								
1								
					TOTALS	735	70086 11 3010	3000

Ö		\(\sigma^2\)						
100.0		•	n:	(1):				0001
integrator Volume (I):	rection (1):	Total Integrator Volume:	CO ₂ Mass Flow Correction:	Actual (dry STP) volume (1):	90 O	10,0	7.0	1500 To 2000
Integrator	Offset Correction (1):	Total Integ	CO ₂ Mass F	Actual (dry	$\%~0_2$:	% CO ₂ :	% H ₂ O:	ppm SO ₂ :

COMMENTS:
START: LEAK V @ METER -> -0.012
STOPS KEAK / 2 METER -> -0.005
HEAT SHEATHED PROBG TEMD
105 °C TO 115 °C

Vates Station Confert Sample Run #: こ		
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		wine.
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		****
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		XXX
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		336 M
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		### I
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		*****.]
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		****
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		‱
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		**************************************
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	**** !	
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	333.	880°1
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		‱.
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		***
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	880 i	****
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	88X.	****
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:		*****
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	_ 1	***
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	w	****
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	₩XI	889) H
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	ra i	880 I
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	88 I	‱;I
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	****	****
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	***	(زرو <u>ي</u>
Soda-Lime Trap#: Soda-Lime Trap#: Iodated Carbon #: Pump#:	i	
}o.(GR. [#] (₩	‱
}o.(GR. [#] (!	::::::::::::::::::::::::::::::::::::::
}o.(GR. [#] (₩	***
žo:1612.** (₩	****
žo:1612.** (!	godi
žo:1612.** (::: :	(%)\$ }
žo:1612.** (⋘	₩1
žo:1612.** (≫ !	## T
žo:1612.** (*** !	*** ***
žo:1612.** (888 i	
žo:1612.** (₩.	
žo:1612.** (⊘ :1
žo:1612.** (₩ij	
žo:1612.** (വ	**
žo:1612.** (⊼	
žo:1612.** (₩ 1	Ψ.
žo:1612.** (9	
žo:1612.** (
žo:1612.** (#3.	
žo:1612.** (20420
Ation: ESP /ALET OF: COAL	800 B	
Ation: ESP INLET OF 18-15 3: COAL	20 B	
Ation: ESP./ALET Ob. 26-15 S: Coal.	% [***
Ation: ESP INLET OF 16-75 S: COAL		‱∵+
Ation: ESP INLET OF 26-13 S: LOAL		
Ation: ESP INLET Ob. 26-13 S: Coal	::::	·**
Ation: ESP INLET Ob: 26-15 S: COAL		XX.
Ation: ESP IMET OF 26-15 S: COAL	*:	****
YATES STATION Cation:	!	***
ANTES STATION C ation: ESP INLET OF 16-13	***!	
Aftes Station ation: ESP INLE Ob. 26-13		////
### Station ation: ESP 1ALE OF:16-7	****	**** 1
ARTES STATIONATION ESP INC. Ob. 26-7	****	
YATES STATU ation: ESP./A 06:26-	₩ I	
Ation: ESP 1 OF 26	Q.	
YATES STA ation: ESP Ob-2	•	
Arres Sa ation: ESP Ob:	13.7	***
Anton: Es	-	
Yares :	****	***
Yares	₩	
Yarian:	##	****
Yan sation:		<i>~</i>
Arion:	(333,187	*****
X sation:	•	****
ation:	i	اک
ation	: 01	
atic	1011	
ati ati	ntroi:	6
G 8	ontroi:	₩
	ontroi:	
\$\rightarrow\dagger\dag	CONTROL	Si
- A O	I Control:	7.00
	n Control:	
7 H	on control:	
	ion Control:	S 400
	inon control:	300
	unon control:	=
	undon Control:	
	onnaon Control:	a III
The state of the s	ronnaon Control:	Sami

		_			_	 	 	
mean	flow	(1/min)						
mean	zero	(1/min)						
elapsed	time	(min)	±92					
	flow	(1/min)	2420					TOTALS
stop	zero	(1/min)	- 0.006 0.242					
	time	(hh:mm)	2151,726					
	flow	(1/min)	0.500					
	zero	- 1	- 0.003	•				
	time	(hh:mm)	10 45					

Integrator Volume (I):	/olume (1): / <i>00.</i> 0	COMME
Offset Correction (1):	ection (1):	STARTSLE
Total Integr	ator Volume:	Smo LE
CO ₂ Mass Fl	CO ₂ Mass Flow Correction:	
Actual (dry	Actual (dry STP) volume (l):	4
$\% 0_2$:	8,0	
% CO ₂ :	0.0	•
% H ₂ O:	7,0	
ppm SO ₂ :	1500 To 2000	

20.20		Laces.		1000	200 00
1.999	! *****		4.2	!	. 333.34
1:323	1	£ 300	1 😚	1888	1 000000
- WW	!		41.79	1000	1 0000
1.38	I‱	t 386.	1	1000	100
13.88			1 📯	! ∵‱	
188			1: :	1/8899	K
· ****	1388		1	1	1 000.
1 200		2000	1	1 ::::::::::::::::::::::::::::::::::::	
1000		1 000.	! · · · ·	! ?	
200				1/400	1000
~	r o		1 4.	! 2000	kana:
. ≪	ve	*****	1 :	: * * * * * * * * * * * * * * * * * * *	: :::::::::::::::::::::::::::::::::::
1.3				:	: :::::::::::::::::::::::::::::::::::
1/8		1000	1 3		
437		1 000	1		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		32	1 1	1.000	1 0000-1
1000	- A		عقة ا	!	! ‱·
1800	888 W		188	:	
	*****	-	1. ∌	1	
XXXX		, v	12.00	1388	
/≫	8888.	2.30	ن ا	1	
	30.00×	200 A	1 7		
l RO			l W	1.48	
100		TC - 410	1 7 1	2 *	
111/16		100	1 💮	1.000	
1 W	l‱	100	*****	: XX	1 886
120	1 333				
133			1 🔆		1
- XXX	(* * .		! .∵	.	1 000 (
1.0°	7	: ≠≠:	1	I - 388	
		•	1 🖭		1986
		: ⊏]	1 3 3 3 E	19 V 1
	i to		1	1.86	K oi ii
I ≭ #∷		. ·	ł :		***
- 1		: C	7		
	000 S.	Ľ'n.		1000	
-	O.	ec.			@0^:
1.7	, - -	1.1	1 1 1		
1.00				1999	
U	(20)°	O.	1#.	1	
		©U.		180	
بحوا	944	· ·	بد و	Ψ.,	-
.		: ক		Ω.	୍ବ ପ
	'O'	! ~~] ⊆:		-
-					
	: C).	: . . .	1 = -		
1,2	0	Ō	2	<u>, I</u>	::
S	So	0	D.	Pr	E
S	So	<u>O</u>	D.	Probe#:	Filter ID
S	So	Ĭ	Pu	Pr	Fil
Si	So.	10	Pu	Pr	Œ
S.	So	10	Pu	Pr	Fil
S 1 2	So	10	Pu	Pr	Fil
EAT S	So	10	Pu	Pr	Fil
ALCT S	So	10	Pu	Pr	Fil
ONERT SE	80	01	P.	Pr	Hi]
Sollert Se	S	01	Pu	Pr	Fil
Boile 1 S	S	01	Pu	Pr	Fil
Bollert S	0S	10	Pu	Pr	Fil
Bollert S	S S	10	Pu	Pr	Fil
A Boilert S	***	5		Pr	Fil
PON BOILERT SE	S S	q5	na	Pr	Fil
THAN BOILERT SE	NLET SO	q 5	Da		Fil
ATTOM Boile (# 1 S	INLET SO	01	Da		Fil
PATION BOILERANDS	NLET SO	1-95	nd		Fil
STATION BOILERANDS	NAME TO SO	0] \$5-t2	n. L. L.		Fil
STATE	P INLET	0]	Pu	Esp. Pr	Fil
STATE	3P INLET	0]	J. Wo		Fil
STATE	SP 10st	0] SB-#2-9	Cont		Fil
S STATION BOILEICH S	ESP INGT	0] \$5-#2-9K	Coal		I Fil
STATE	ESP INET	oj - 55-t2-90	Coat		J. I.
STATE	ESP INLET	<u>0] </u>	Coal Po		W-L
STATE	ESP INLET	OI \$5-t2-90	Non Contract Purpose		W-I
STATE	ESP INET	or 25-42-90	Contraction		W-I
STATE	ESP INCET	<u>or 25-25-60 </u>	Coat		. W.I.
STATE	SESPINLET	<u>0] </u>	Coat		t W.I
STATE	II. ESPINLET	<u>0 </u>	nd		nte W-I
STATE	m: ESP inlet	01 5b-t2-90	Pu Bu		int W-1
STATE	on: ESP inlet	<u>01 - 5 - 6 - 62 - 90 </u>	u A Con Con Con Con Con Con Con Con Con Con		oint W-1
STATE	iion: ESP 1864 So	<u>0] </u>	Pu Coate		oint W-1
STATE	ition: ESP inlet	01-24-48	: Contain Pu		Point w.l
STATE	ation: ESP 1.1/cm	<u> 0 </u>	e: Coat Pu		s Point W-1
STATE	ication: ESP incet	<u>0] </u>	oe: Coalcaire Pu		g Point W-1
STATE	ocation: ESP incer	<u>0] </u>	pe: Coac Pu		ng Pointe W-1
STATE	Location: ESP inlet	01 - Se-t2-90	ype: Coac Pu		ing Points W.1
STATE	Location: ESP inlet	<u> </u>	Type: Coat Pu		ling Point W-1 Fil
STATE	t Location: ESP 1814 So	O	Type: Coat Pu		pling Point W-1
STATE	nt Location: ESP 101x+ So	O Sb~£2~90	1 Type: Coat. Pu		apling Point W. 1
STATE	unt Location: ESP incer	ite: 06-24-95 (10	el Type: Coat: Pu		mpling Point W-1
STATE	lant Location: ESP inlet	late: 66-71-93 [10]	uel Type: Coac Pu		ampling Points W. 1
STATE	Plant Location: ESP 1.01.x 7 So	Date: 06-24-93 10	Fuel Type: Cont. Pu		Sampling Point: W-1
STATE	Plant Location: ESP 1.NLET So	Date: 06-71-95 10	Fuel Type: Coat Pu		Sampling Point W-1

start			stop		elapsed	mean	mean
zero flow time	time		zero	flow		zero	flow
(1/min)	(hh:mr	n)	(1/min)	(1/min)	(min)	(1/min)	(1/min)
	5411		0.265	592.0		0.36.00	0.38.000 0.3825
			KN W			ルゲン	
				TOTALS:			

Integrator Volume (1): 100.0		CO
Offset Correction (1):		STAR
Total Integrator Volume:		STo
CO ₂ Mass Flow Correction:		
Actual (dry STP) volume (1):		
% 0 ₂ : 8, 0		
% CO ₂ : 10.0		
% H ₂ O: 7,0		
ppm SO ₂ : 1500 10 2000		

ပ	COMMENTS:
জ	STARTLEAK V P METER - 0.00K
رن	STOP LEAK NO METER 0.008
_	HEAT SHEATH PROBETIONS
	7,31101 7,501

. Section .		000000	4. 62	. 60000	200.000
					*** *********************************
- W		▓▓			
		****			**** 1

3.80					

			7		#### I
V					***

-			A. 3		**** !
×2					***
- 6					888 I
	0	· 0	1.22		
	- 7	∞ જ			- T
್ಲ				N	****
ಿ					
. 101				XX	***
2					
FIGUD BIANK] _# 20€		

			J		
	*	44		 	
100	Ω			 	
	erd.	ÿ₽			
4	1	0			
<i>***</i>	\mathbf{H}	Ω.			
-	w	-	 		
2	O.				
12Z	₩ F				
	.=				
		\sim	#	**	
	×.	1 2		O.	
1.2	110	d		0	O.
	. O	70	-	0	-
100	****				
			-	and .	
S	Š	9	Z	P	Ξ
S	S) I	Z	Probe#;	Filter ID
S	S) [Pt	Pr	Fi
S	Soda-Lime Trap#:	Ĭo	Pe	Pr	Hi
S	Sc	Io	Pu	Pr	Fi
S	Sc	Io	Bu	Pr	Hi
S	Sc	0]	Re	Pr	Fi
S	Sc	OI	PU	Pr	Fi
S	Sc	oI	3d	Pr	所
S	3 <u>S</u>	oI	3ď	Pr	Fi
S	1			Pr	Fi
S	1			Pr	Fi
S	1				
S	1				
<u>S</u>	1				
S	1				
S	1			Esp	
	1				
	1				
S	Ferra a				
	1				
	1				
	1				
	1				
	1				
	1				
	1				oint
	1				
	1				oint
	1				oint
	1				oint
	1				oint
	1				oint
	1				oint
	1				oint

	start			stop		elapsed	mean	mean
time (hh:mm)	zero (1/min)	flow (1/min)	time (hh:mm)	zero (1/min)	flow (1/min)	time (min)	zero (1/min)	flow (1/min)
0021	-0.011		0121	- 0.011	0.500			
		Щ						
-								
					TOTALS:			

*******		CONKNEWITC.
Integrator volume (i):	orume (1):	COMMENTS.
Offset Correction (1):	ction (1):	Len .
Total Integra	Total Integrator Volume:	
CO ₂ Mass Fl	CO ₂ Mass Flow Correction:	HEAT
Actual (dry §	Actual (dry STP) volume (1):	
% 0 ₂ :	0.00	
% CO ₂ :	0.0	
% H ₂ O:	7.0	
ppm SO ₂ :	0002 - 0051	

COMMENTS:
LEAK V @ METER > -0.011
HEAT SHEATHED PROBE TEMP
J ₀ \$01

Page ____ of ___

Piant l	Name	∨ Plant	Yates S	tation Bo	oiler No.	. 1				,			
Samplin	o Location	in lot	•		Train		Ánions		Run N	o. /			
Date _	75-8	Time Start / X DGMCF /	225		Time Fin	ish / 404	5	Test Dur	ation 💪		min.		
Duct Di	nensions_	864 X	45		Diameter		ft hes	Initial Le	ak Rate 1	2.000	FORM	0.014	210
PTCF_	- <u> </u>	DGMCF	005	Nozzle D	ia. <u>- 5</u>	75_inc	hes	Final Lea	k Rate	2.00	400	811	,
					_	1114	a n	,	Day L	w-3	·		
Static Pr	ess <u>- 5</u>	. <u>/S</u> " H20			Operator	MR	<u>e</u>		04	w-5			
Travers	1	Dry gas meter		^ H	Stack	Dry gas n	eter temp.	Hot box	Probe	Last	Vacuum	4	L
Point	Time	reading ft3	in H2O	in H2O	Temp. F	Inlet	Outlet	Temp.	Temp	Impinger	in. Hg	1-/5	16
UP	17.15	385,897						1					
	1245	397,46	011	1.49	280	79	78		25	Ca	3.0		
	1305	410.73	10	136	290	87	8/		163	57	3.0		
<u> </u>	1325	423,28	10	1.56	291	87	0/-		260	55	3.5		
	1345	435.99	.09	1.22	790	93	87		258	53	33		
	1805	448.71	3.10	1,36	290	93	87		200	52	5.0		
									 				
													1
									ļ				
				Ì									
						_							
			_			_							
						-							
								Ī .					
											-		
Avg.		64,816	13161	1.3580	290		85	14 61%	Mir. jyt.	li i silaid			
Check'd				সাঞ্জন	aldina (. 22.3		14 14 P.S.		44.100,00			
	# <u>123</u> T TEMP	16/40	4			Flowrate (e DSCFM)						•
	ENGTH_	5/459				Isokinetic	(%)	Tippe184	ask to a				
LINER N	IATERIAL	2000											
REMARI	KS _				· · · · · · · · · · · · · · · · · · ·								

										ESP INLE			
					J					Page /	_ of/		
Plant !	Name	Plant	Yates St	ation Bo	iler No.	1	_AN	10115			_		
Sampling	7 Location	MALAT			Train	Bulle	Particula	te-Radio	muelid e	s . I	Run No.	1	
Date 6	5-269	Time Start	1108		Time Fini	sh (2)	13:	Test Dura	tion	6006	5 min.		
Duct Dir	nensions_	<u>5.6. </u>	<u>95 5</u>	7_	Diameter		ft	Initial Lea	ik Rate <u>4</u>	2.00 4	cfee	1011	
		DGMCF _/_C		Nozzle D	ia. <u>137</u> .	sh <u>(2)</u> 5 inch	ies	Final Lea	kRate	2009	cfm		
		<i>50</i> • Hg .								at	84		
Static Pro	ess <u>5</u> 8	* H20)		Operator	MK	2	<u> </u>		,			
Travers	Clock	Dry gas meter	^ P	^ н	Stack	Dry gas m	eter temp.	Hot box	Probe	Last	Vacuum		
Point	Time	reading ft3	in H2O	in H2O			Outlet	Temp.	Temp	Impinger	in. Hg	K=13	12
NA	1708	550.082						 					
7//	1120	11110		1,38	10 mm	811	83	 	1115	11.	10		
	11/18	12000	10000	1.28	0000	190	84	 	111	61	3.0		[
	1222	100 -1		150	3000	au	07	 	100	79	310	<u> </u>	
	1240	- Q (1 72-	10	1,7	2011	BE	01	 	151	39	25	21	!
	11/2	774.361	10	1.31	189	75	07	 	158	25	32	1315	K
	vu3		 		 		<u> </u>		<u> </u>				l
				 					ļ <u> </u>			ļ	ł
		ļ	ļ	<u> </u>				 			 	 	1
	ļ			<u></u>	<u> </u>			<u> </u>					-
			<u> </u>							ļ		ļ	
			ļ									ļ	Ī
					<u> </u>			<u> </u>				<u> </u>	
												ļ	1
										<u> </u>			
											L	<u> </u>	
	<u> </u>												
												İ	Ĭ
												ŀ	
				}			j						
													1
]				1	-			1
			1						<u> </u>			1	1
								,				T	1
			<u> </u>								1	1	1
		<u> </u>				İ			<u> </u>		 	1	1
							l	-	 		 	 	1
Avg.		44,245	4.4.2	Titne		0000	Charter 1	Copy 31.58	(3,00 m)	0.201.129	237.00	20000000	1
Check'd		44.743	0.320	*#.403	\$800 NY LANGUA	88.0	28) 40 (2004)		5000 33000000 3500 555 - 8000	2:80:26:27 2:80:26:27			1
		<u> </u>	<u> 06000.17403</u>	reas seeds.	[BNTRKS]	8.500003	\$ (2), 8-23.55	P (2000)	:3.4.61.8X	₽ €CTEN SON			3
CONSO	LE# A	161.40 + 12 74	/			Velocity			75.030.00	30000	ì		
ТНІМВІ	E#	# 12	32 v	_		% Moistur					,		
AMBIEN	NT TEMP.	74.		•		Flowrate (DSCFM:				•		
PROBE	LENGTH	10		•		Isokinetie	(%)			ZWWY.	8 5		
LINER!	MATERIAI	9/48									-		
REMAR	KS										_		
		-									-		

	١	1	
Page	_	of	

Plant 1	Name _	Plant	Yates S	tation B	oiler No	. 1							
Samplin	e Location	1 1/1	PT		Train		Anions		Run N	٦, ۵			
Date 6	-27-9	3Time Start X X DGMCF (1.00)	0715		Time Fi	nish $\partial \mathcal{R}$	37	Test Du	ation	a F	- ' min		
Duct Di	mensions_	8.64 x	45		Diamete	:	ft	Initial Le	ak Rate	1 029		1/2"	,
PTCF_	14	DGMCF /.	103	Nozzle I	ia. 37	inc	hes	Final Le	ak Rate	2,00/	cfm		
Bar Pres	z = 27.4	50 , "Hg						•			at a	/	
Static Pr	ress	. H2	0		Operator	- MK	0	//a	1+ 1	<u> -5</u>	2		
Travers	Clock	Dry gas meter	- ^ P	^ H	Stack	D		1					
Point	1	1	1		Temp.		neter temp.			Last	Vacuum	1-17	0
	L			III 1120	remp.	F Inlet	Outlet	Temp.	Temp	Impinger	in. Hg	K=12.	0
1//#	0715	655.883						<u> </u>					_
<u> </u>	0735	666.72	.08	1.02	310	72	71		256	58	1.0		
	0755	678.17	.08	1.02	308	73	177		168	53	2.5		
	0819	68930	108	£ 3,	310		76		761	56	1,5		
	0835	701.02	3,07	1.89	3//	80	76		258	56	7.5		
				/ /		1127	 	+	- 50	7 -	125		
							 	 	 		 		
						 	 				 		
						 	 	 	<u> </u>		 		
	ļ					 	-	 			ļ	I	
ļ			 	 		-	 	 				ļ	
			-	 		 	 	 					
							 	 					
						ļ	ļ						
<u> </u>						ļ							
													
													
								i					
							 						
						 							
							-	 					
						 			<u> </u>				
							 	 					
						 	ļ	ļ					
 						 	 						
						<u></u>	ļ						
													
Avg.		45,140	12783	9875	310		76			7.000			
Check'd					AZA JA	发热袋 意			2300000				
		01/1/11									23000 3000 77 (00.)		
		716140				Velocity	*******						
FILTER A		111				% Moistur							
	T TEMP.	-14,				Flowrate (
	ENGTH_					Isokinetic	(%)	989 (
LINER M	IATERIAL	5/457								-			
DEMARY	70	•											
REMARK			-										
												G 100	

A controller of the controller of the control of the control of the controller of th

Page of

Plant				shinch	ft	Test Dura Initial Lea	tion k Rate	0.00	nfin. <u>Z</u> efm (5	215
" H20				inch	ft ies	Initial Lea	k Rate	0.00	Zcfm (5	215
" H20				inch	es	Cincl I not				
" H20						Filiai Lear	Rate		cfm	
	J		^ .							
						_				
Dry gas meter	^ P	^ H	Stack	Dry gas m	eter temp.	Hot box	Probe	Last	Vacuum	
reading ft3	in H2O	in H2O	Temp. F	Inlet	Outlet	Temp.	Temp	Impinger	in. Hg	
63669)									
2 637.163										
										•
					1					
	i				-					
	—				i					
	 									
	 				-					
	 									
	 		-							
 	 	 	 		ļ					
	<u> </u>	 	<u> </u>							
	ļ		ļ							
- 	 	<u> </u>				ļ				
	<u> </u>				ļ					
·	ļ <u>.</u>									
	ļ									
			1							
	<u></u>							1		
)									
								1		
								 	l	
	 	 			 			 		<u> </u>
0.386.888.88	C2004.00	2000	35.32.32	7 <u>1 74 (12)</u> (1	SERVICE OF	5250000	S. 65553		3000000	1,970
22725734453	**************************************		\$100 at 2	\$8976893W	38997: Q14,	79.30 (40.00)	\$20,8388X	<u> </u>		
	0 636690	0 63660 2 637.163	2-637.63	2-637.163	2-637.16.3	2-637.63	2-637.63	2-637.163	2-637.63	2-637.163

	Name	Plant	Yates S	tation B	oiler No	. 1							
Samplin	g Location_	SFT ES	PIA	slet	Train	Ammo	nia/Hydr	ogen Cya	anide	Run No	o. /		
Date <u>6</u>	-25-9	Time Start _/	456		Time Fin	nish <u> 466</u> 1	0	Test Dur	ation	70	min.		
Duct Di	mensions	8'64 x	45		Diameter	•	ft	Initial Le	ak Rate	0010	deino	U	
PTCF _	. 84	DGMCF (203	Nozzle D	ia 3	75 incl	hes	Final Lea			of cfm/2	<i>!</i>	
Bar Pres	ss <u>Z</u> 9-	<u>55</u> Hg			_				$\alpha \bar{i}$				
Static Pr	ess	5 <u>.8</u> " H20	0		Operator	MA	()	_	Part	u	-3		
Travers	Clock	Dry gas meter	^ P.	^ H	Stack	Dry gas m	neter temp.	Hot box	Probe	Last	Vacuum		l
Point	Time	reading ft3	in H2O	in H2O	Temp. F		Outlet	Temp.	1	Impinger	in. Hg		
0#	1451	45%, Jem			$\overline{}$								
417	1450	450,134											
19.	15115	4146	3.10	131	705	38	96	 	10	61	12	636	120
	1531	1111/18	3 / ()	1.36	291	120	0%	 	120	10	1-3	(28)	1 Mg
	-760	-		1110	1	00	06		021	102	 		
——	5700	1 ecce	quege	6.6	16 af	2/2/	-	 -			<u> </u>	 	
		1 siac	Turk	par	FICHE	BALLY T	su an		<u> </u>	<u> </u>			İ
	-	pecaus	20 7 h	MAL	on the	CW U	100 /	The same	109/1	y p	untig	late	
CAME	04	10	PRAN	teg 1	inc	1 6	The se	pie	10 6	Loko			
J		file	ofela	d/ -	the s	mo.	7						
<u></u>		0						}					
		teakle	will	0.0	09 0	12	11						
	1620	47189	0										
164	150	490 34	.09	1.47	199	39	86	 	103	61	36		
	1126	497141	10	1,36	5311	1000	de	├ ──	252	2	4.7		
	630	f k kel t !	200	11 26	011	7971	COLL	1	000	10	73	}	
						 	 				ļ	ļ	
													ļ
											<u> </u>		
ļ									<u></u>				
						1							
	-						<u> </u>	· · · · · · · · · · · · · · · · · · ·					
-												├	
			_										
						<u> </u>	ļ						
							ļ						
													
													ļ
		44.663 40											
Avg.		46.683	13122	1,3250	289		88		(1992)	XXX 2.6	3773	36:50:3	
Check'd			W. 1977		A2000	80% S	y 9003						
	· · · · · · · · · · · · · · · · · · ·		/				F				(0.000000)		1
CONSOL	.E#_ <i></i>	716140	<u>/</u>			Velocity			JAN SA	3.838			
FILTER .	#						er de la la		KW Sin				
AMBIEN	T TEMP.	80					DSCFM)						
PROBE I	LENGTH _	10/9/9:	55			Isokinetic							
LINER M	/ATERIAL	9/15					· . · · · · · · · · · · · · · · · · · ·	<u></u>					
REMARI	KS .					-				· · · · · · · · · · · · · · · · · · ·			

Page of

Plan	t N	ame	Plant	Yates St	ation Bo	iler No.	1					_		
Samp	ling	Location_	TN/QT Time Start			Train _	Ammon	ia/Hydro	gen Cya	nide	Run No	. <u>೩</u>	_	
Date	6-2	26-93	Time Start	1930		Time Finis	sh <u>/03</u> -	<u>5</u>	Test Dura	ition <u> </u>	\$ 65	min.	,,	,
Duct	Dim	ensions	B'6 x_	451		Diameter		ft	Initial Lea	k Rate _	0,009	cfm 0	110"	
PTCF	•	<u>84 </u>	DGMCF	203	Nozzle D	ia. <u>237</u>	5_inch	es	Final Lea	k Rate _ <i>U</i>	,006	cfm_	211	
Bar P	ress	29.5	" Hg				1	٠, ٨		PE	4 11	, ,,,	2 ''	
Static	Pre	ss <u>-5</u>	<u>в</u> " нд В " н20)		Operator	_ m K		_	/-	9 9	-4		
Trave	rs		Dry gas meter		^н		Dry gas m		Hot box	Probe	Last	Vacuum		
Poi		Time	reading ft3	ł .	ī	Temp. F			Temp.	Temp	Impinger	in. Hg	13.8	K
1	-							 	<u> </u>					
H		0938			. 74	100	1/	-11		4.16	11	4,5	=	
-	<u>-</u>	5950	520.62	.10	1.38	280 281	15	74	 	260	10 2	7/3		
$\vdash \vdash$	\dashv		533,67	10	/38	180	32_	7/	 	655	52	75		
			546.65	10	1.38	203	33 34 88	77		COO_{i}	27,	40		
	4	1635	541.185	.09	1.24	285	88	6/		234	54	4.5		
	_													
								<u> </u>						
								<u> </u>						
									ll					
	\neg													
-	-			 				<u> </u>	 					
-	\dashv		 								 			
-					 				 	-				
					 		l			 	 	 		
					 	 	 		 	 	 	 		
	-				ļ				<u> </u>			 	 	
<u> </u>					ļ	ļ		<u> </u>	ļ		ļ			
<u> </u>	_							ļ	<u> </u>	ļ		<u> </u>		
<u> </u>	_4						ļ	ļ	ļ			ļ		
<u></u>	_						<u> </u>	ļ	ļ		ļ	<u> </u>		
						<u> </u>		<u> </u>	<u> </u>		<u> </u>			
						<u> </u>						<u> </u>		
Avg.			41.622	13122	131	283		80						
Chec			8.500.2012.68			39337-32				<i>30</i> 000				
		.E# /	4161401	F > 2 - 25 - 25 - 25 - 25 - 25 - 25 - 25	. ₹ U est de men de	4436°C38°YX	Velocity					<u> </u>	Tanan sarahat I	
FILT					_		\$10.000 per 20	ne 1879.8				() ()		
AMB	IEN	IT TEMP.	10		=		110000000000000000000000000000000000000	DSCFM)_						
		LENGTH					70000000000	(%)				3		
		MATERIA			•							,		
REM	IAR	KS		 	•		· · · · · · · · · · · · · · · · · · ·					_		

			SOUR	CE SAM	IPLING	FIELD	DATA	SHEET		1		
						<	ore	bayo	.7	Page	_ of	
Plant l	Name	Plant	Yates S	tation B	oiler No	.1 -)ve	X K	LNI	JW.		
Samplin	g Location	MLET			Train	Ammoi	nia/Hydro	ogen Cya	ınide	Run No	s. ∂	
Date	5-26-4	Time Start	1420		Time Fir	nish <u>152</u>	0	Test Dura	ation	0	min.	- /
PTCF	mensions_9	DGMCF /	003	Nozzie D	Diameter ان	7 5 incl	ft	Initial Le	ak Rate Z	9.00	gicfm d	110
Bar Pres	s 29	45 Hg					1103		K Kale () . I	1 1 1	cim L	11
Static Pr	ess	Plant /N LET Time Start B 6 // X DGMCF // # Hg H2	0		Operator	ME)	_ /0	4	1-4	7 [[•
Haveis	Clock	Dry gas meter	^ P	^ H	Stack	Dry gas m	eter temp.	Hot box	Probe	Last	Vacuum	
Point	Time	reading ft3	in H2O	in H2O	Temp. I	Inlet	Outlet	Temp.	Temp	Impinger	in. Hg	13,5
NIT	1420	59531	1					, -				
ļ	1440	6/0/3	1//	1,40	18/	46	93	_/_	266	68	5.0	
	1500	671.00	09	6.21	207	75	92		166	63	5.5	
	50	656-74	00	1.23	256	75	72	 	165	62	5.5	
		 				 					<u> </u>	
								 				
			ļ									
				ļ								
					-							
				 -							-	<u> </u>
				-								
			ļ									
						 						
						ļ						
					· · · · · ·							
							-					
Avg.		41.654	2077	62U	284	-1959 J.S	94	XXX 20 (1)	XY84.83		2002200000	
Check'd					×0 /**							
aovao:		A11.11	n /	<u></u>	<u></u>				00.7018		24,5048,043,16	75 DA 88867
CONSOL FILTER /	# — <u> </u>	4/6/40	//			Velocity	*************					
	T TEMP.	70					OSCEM)					
	ENGTH_	101				Isokinetic (%) ·					
LINER M	IATERIAL		35							<u></u>		
REMARK	cs .	·										

A THE TRACT COME TO SEE THE SERVICE TRACE TO SERVE THE SERVICE OF

Page _____ of _____

Plant N	Name	Plant	Yates St	ation Bo	iler No.	1							
Sampling	Location_	PNLET Time Start C 8'6" X DGMCF 1.0.			Train_	Ammon	ia/Hydro	gen Cya	nide	Run No	. 4		
Date _	-219	Time Start	1920		Time Fini	ish <u>104</u>	0	Test Dura	tion	80	min. /_	- /′	
Duct Din	nensions	8161 X_	450		Diameter		ft	Initial Lea	ak Rate _	6.00	Cochi	12	,
PTCF_	, E4	DGMCF /10	03	Nozzle D	ia. <u>. 3<i>14</i></u>	inch	ies	Final Lea	k Rate	1004	/_cfmc/	# g / /	
					-	111			ر بس	par	<i>+</i>		
Static Pro	ss <u>– Ş</u>	<u>용</u> " H2G	-		Operator	NIK-	<u>; </u>	(<u> </u>	//	,		
Travers	Clock	Dry gas meter	^ P	^н	Stack	Dry gas m	eter temp.	Hot box	Probe	Last	Vacuum	,	
Point	Time	reading ft3	in H2O	in H2O	Temp. F	Inlet	Outlet	Temp.	Temp	Impinger	in. Hg	K=12	18
4.5	5970	70/4/	7										
	1940	7/3,02	1.08	109/	313	82	81		260	10	50		
	1200		119	1115	315	83			155	66	5.7		
	1026.	736,62	08	1.02		83 85	97	·	151	60	5.0		
	1040	748301	.08			26	01		159	61	<i>/ :</i>		
				7.02	27.92		8) <u>2-</u>		2/-	-01	} (C/		
		·											
						l							
											 		
							ļ						
											 		
							<u> </u>				<u> </u>		
 	-					<u> </u>							
 						ļ	<u> </u>						
											<u></u>		
													
											ļ	<u></u>	1
 		· · · · · · · · · · · · · · · · · · ·		-							 		
-													
						<u> </u>			ļ				
 													
 						ļ			<u> </u>				
													
]	
 													l
Avg.		46.885	2871	10850	315		83						Ī
Check'd					#assibi								
		4161401	/			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							,
CONSOL		7101201				Velocity_					} á		
FILTER		 76		•			e		2000 (100 (100 (100 (100 (100 (100 (100		3		
	T TEMP. LENGTH	10					DSCFM)_		(38845) 35.5(8884)) 8		
	_	91455				TROKIDETIC	(%)			8::35788/98/78	į		
Dit iv		·											
REMARK	KS .			· · · · · · · · · · · · · · · · · · ·							_		

Page ____ of ___

Namelie -	_	1	7		oiler No.	<u> </u>		_		_	0	D/N.
-ampung	Location	Inte	/		_Train _	Ammo	pia/Hydr	ogen Cya	nide	Run No	. <u>Kun</u>	[मु भृष्य
Date 6	124/93	Time Start	155	<u></u>	Time Fin	ish	03	Test Dura	ation		min.	•
Duct Din	nensiöns	DCMCE X			Diameter	· 	ft	Initial Le	ak Rate _		cfm	
FICE _		DUMCF		Nozzie L)ia	inc	hes	Final Lea	k Rate _		cfm	
		" Hg " H2	0		Onomton	_ Ju	م دوا					
												
Travers	Clock	Dry gas meter		•	1		neter temp.	Hot box	Probe	Last	Vacuum	
Point	Time	reading ft3	in H2O	in H2O	Temp. F	Inlet	Outlet	Temp.	Temp	Impinger	in. Hg	
	1352	633.055				-						
	r/03		ŧ		j			 		†		
		12200		 		<u> </u>	 	 		 		
		1						 		 		
			 				 	 				
+			 	 	-	 	 	<u> </u>		-		
			 		 	 	-	-				
			 	 	 		 -	 		 		
		 	 	 	 		 	 				
				 	-		 			ļ		
			ļ	 			 	ļ				
			<u> </u>				ļ	<u> </u>				
	···			ļ	ļ							
			ļ ———									
			ļ	<u> </u>	ļ		<u> </u>					
				<u> </u>	ļ		<u> </u>					
			ļ	<u> </u>								<u> </u>
	-											
							-		-			
												-
		-					 	 				
Avg.		0.6000 takeni.ee	Marian.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 . 4200	reduci	\$4/2m392	### ##################################	386780101	.gg\$4:218.cs	<	(A&)
Check'd			<u>u varkin</u> Bosko v	90 835 M	PMLESSA GAR TYNS	i Norda koja listoja. Videlija koja ir Norda	200:27:03:1 200:21:9:1		<u> ୬୧୯ ୧୭୬) :</u> ଜଣ୍ଡା ୧୯୯୯ :	50000000000000000000000000000000000000		
neck a)		ONTE STEEL		<u> 1914</u> 8036.	50-314	endage og 8		1253099	% (4(4));			
CONSOL	E#					Velesar	was a	-namynae	(8.787×18	ense va		
	'		·			% Morietur	<u> </u>					
							DSCFM)			38,228		
	-					Isokinetic	(%)	(215) (23)		33233		
KOBE L			·				٠٩٢٠		<u> </u>			

Page _____ of _____ Plant Name Plant Yates Station Boiler No. 1 Sampling Location Wolf ____ Train Bulk Particulate-Radionuclides Run No. / Date 6-1593 Time Start 0745

Diameter ft Initial Leak Rate 0.009 of my 2//

PTCF 84 DGMCF 1.009 Nozzle Dia. 2375 inches Final Leak Rate 0.006 of my

Bar Press 29165 "Hg Operator MKC Static Press - / 4 " H2O Clock Dry gas meter Hot box Probe H Stack Dry gas meter temp. Vacuum Travers K=131 in H2O in H2O Temp. F Inlet Point Time reading ft3 Temp in. Hg Outlet Temp. Impinger 300 18 61 3.0 1.35 30 84 310 -4453.605 13360 14825 301 82 Avg. RX432 8844 8343 83.72 Check'd CONSOLE # 4/6/407 Velocity 53,6 THIMBLE # % Moisture Flowrate (DSCFM) AMBIENT TEMP. 74 PROBE LENGTH __________ Isokinetic (%) LINER MATERIAL SES REMARKS C-200

ESP INLET

Plant I	Name	Plant	Yates S	tation R	oiler No.	. 1				Page			
Samplin	 Tocation	64/02			Train		Particula	ıte-Radio	muclide	× 1	Run No.	2	
Date 6	-269	Time Start X	1540	· «		$\frac{1}{1}$ ish $\frac{1}{1}$	0	Test Due	tion	" 80 "	min	<u> </u>	
Duct Dis	mensions	66 x	4009	45			ft	Initial Le	ak Rate 6	3.060		1'	
PTCF _	.84 -	DGMCF 1.0	09	Nozzle D	ia37	5 inc	hes	Test Duri Initial Les Final Lea	k Rate Z	2009	cfm		
	s 29.5						100	A 11	· · · · ·	7		0	4
Static Pr		" H20	o		Operator	NI	10	- Pal	F-	/	6-7	Pol	11
Travers	Clock	Dry gas meter	^ P	^ H	Stack	Ī.							` 1
Point	Time	reading ft3	in H2O	l .	Temp. F		Outlet	Hot box	1	Last	Vacuum		ĺ
1/4	<u> </u>		11.1120	111111111111111111111111111111111111111	Temp. 1	iniet	Outlet	Temp.	Temp	Impinger	in. Hg		,
1.///?	1540	366.050						<u> </u>	<u> </u>				K=13
	1600	87056	0//	1145	246)	100	97	<u> </u>	241	57	45	K=1	3,2
L	1620	870.74	10%	105	3.6	100	94		23/	61	415	K=13	, v
	16 45	900,74	07	89	2125	100	94		25/	6	4.5	K=(2	1.7
<u></u>	12012	91200	88	119	326	100	95	-	249	VZ	4.5	£=12	1
	8220						1.0			7	1		,
													À
						i							
													
							1	 				<u> </u>	
				 			 						
			<u>. </u>			 	 	 	! 	 			1
		·	!	 		 	 -						l
				 		 	 						
						<u> </u>	 						
			ļ <u>.</u>	_									
 							_						
							<u> </u>						À
				<u> </u>									i
ļ													1
													1
													4
													1
													1
													İ
													Ì
			<u>-</u>				 						Ì
Avg.	_1/1	45.950	2965	11	317		.97	3 4 7 6 2	100	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	قىئرىي تىنىڭ ق		i
Check'd			4, 9 m		0.,						2-15 ₀₀₀ - 0290000000000000000000000000000000000	200 300	
-				£			t	1 1	<u> </u>	1.742	New Section 1985	#W-8801	j
CONSOL	E#/	A 16140 -	Z			Velocity	.* •	1 m. 1 en 1	m n				
THIMBL	E#					% Moistur	12		Ç. 27 A				
AMBIEN	T TEMP.	78,					DSCFM)_	ા . ને ચેડ્ડ	1140,112				
PROBE I	LENGTH_	101				Isokinetie							
LINER M	IATERIAL	55											
REMARI	KS		·-··			-							

ASSESS OF THE SECOND TO SECOND TO THE PROPERTY OF THE PROPERTY

ESP INLET

.	_	D l4	T Z. 4 = 04							Page	_ of		
Plant I	vame	Plant	Yates Si	ation Bo				. D ".				9	
Sampling	Location	Time Start _/	1171				Particula	te-Kadio	nuclide	<u>s</u> .	kun No	5	
Date:	2 (-/)	. Ime sun/	470		Diameter	isn 76-9	<u>0</u>	Test Dura	ition	SO MIN	min.	01/	
PTCF	.84	DGMCF ///	43	Nozzle D	ia ——	inch	II	Final Lea	k Rate	0.00	of of the contract of the cont	£-1011	
Bar Pres	s 19,	Time Start/ 8'6" X		.1022.0	0,37	رس ر حر		I mai bou	·· ······ — <u>/</u>	1	/cmpc	1 20	
Static Pro	ss <u> </u>	- S H2C)		Operator	MK	<u>C</u>		Po	X+C	5		
Travers	Clock	Dry gas meter	^ P	^ H		Dry gas m	eter temp.	Hot box	Probe	Last	Vacuum	12-12.	-
Point	Time	reading ft3	in H2O	in H2O	Temp. F	Inlet	Outlet	Temp.	Temp	Impinger	in. Hg	12-12,	?
KIT.	1120	148.695											
2	1140	76033	.08	102	3/7	91	89	15	766	65	3.5		
	1200	778 (11)	.67	39	317	91	Cich	82.7	2.61	57	3,5		
	1721)	783.40	18	1.52	3/5,	93	90		155	56	3<-		
	1240	793791	.07	89	316	98	93		217	59	4.0		
		/	- 12	- 07		/- 	· · · ·			~ /	/		
													
						· · · · · ·	<u> </u>			<u> </u>			
			-			<u> </u>							
				i						 			
													
							 						
										; -	ļ		
-											 		
	·												
						<u> </u>	ļ		<u> </u>		-		
					<u> </u>						 		
					<u> </u>	<u> </u>				-			
										ļ	<u> </u>		
									<u> </u>		ļ		
										ļ			
								[ļ			
								<u> </u>					
											ļ		
			~		: er er um 10en	2 23 281 2			X				
Avg.		45 094	2737	.955	314	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	જ	(40)			W////		
Check'd			#ZS;G										
CONSO	= # A	14401				:45575-000000	to eventation ratios acts	937 ST PROS 84	******				
THIMBL		· 4 : [///				Velocity_ % Moistur		~#:##### ##X#####					
	T TEMP.	78.					DSCFM)_	00000000000000000000000000000000000000					
	ENGTH	10				Isolaination	(%)		. am.e9;40 23855277				
	IATERIAL	C, (A59				Hanning .	Carrier Control	Art 1.44,919.9	<u>~)\$488599</u>	< ************************************	£		
			 · · · · ·										
REMARI	KS .										•		

SOURCE SAMPLING FIELD DATA SHEET **ESP INLET** Page ____ of _____ Plant Name Plant Yates Station Boiler No. 1 Train Bulk Particulate-Ex. Metals Run No.

Time Finish 1045 Test Duration 6 min.

Diameter ft Initial Leak Rate 2,001 cfm 21/2/1 Date 6-13-97 Time Start 1945

Duct Dimensions 0 6 X 45 PTCF _ 84 DGMCF _ 1,009 Nozzle Dia. _ 375 inches Final Leak Rate _ 0.004 of 1011 Operator MKO Static Press - 5. ___ " H2O Clock Dry gas meter Travers ^ P ^ H Stack Dry gas meter temp. Hot box Probe Last Vacuum Point Time reading ft3 in H2O Temp. F Inlet in H2O Outlet Temp. Temp Impinger in Hg 3.0 H3 420 3606 675 296 85 Avg. 766 to 12 model Check'd Velocity___ FILTER # % Moisture____ AMBIENT TEMP. _ -7/8 Flowrate (DSCFM) PROBE LENGTH 10 C/155 Isokinetic (%) LINER MATERIAL <u>G/15</u>

17 1 37 W Car Ship

REMARKS

TOTAL MAN WAS THE

ESP INLET

										Page/_	_ of		
		/ Plant	Yates St	ation Bo		1							
Sampling	Location_	Culit			Train_	Bulk	Particula	te-Ex. N		_			
Date 6	-2693	Time Start	1345		Time Fini	ish <u>/50</u>	5	Test Dura	tion	<u> 60</u>	min.		
Duct Din	nensions &	67 X	42	 -	Diameter	<u> </u>	n	Initial Lea	ik Rate _	3.01	cfm		
PTCF 2	B4 2 9	DGMCF //	DOP	Nozzle D	ia. <u>~ 27.</u>	5inch	es	Final Lea	k Rate	0.007	cſm		
Static Press	ss	. Э нд Н20)		Operator	_Z	w	_					71:
Travers	Clock	Dry gas meter	^ P	^н	Stack	Dry gas m	eter temp.	Hot box	Probe	Last	Vacuum		7.0
Point	Time	reading ft3	in H2O	in H2O	Temp. F		Outlet	Temp.	Temp	Impinger	in. Hg	K=16	
E-7	1345	822565	0 .08	1.1	322	87	86		225		4.0		
		832.25		0.97		92	88		238	57	4.0		
		839.15	0.07	0.92	323	96	90		241	5 g	40		
		847.04	76.0	092	323	96	90	_~_	245	60	4:0		
	1445	855.00	0.07	0.92	323	100	94		247	60	4.0		
	1500	8L3.00	0.07	0.92	373	101	95		233	62	4.0		
STOP	1505	B65,845											
					- "						_		
													ĺ
								<u> </u>					
								<u> </u>					
										<u> </u>			
								ļ					
								 					
								 					
						-		 		<u> </u>			
													
										<u> </u>	[
								 		ļ	ļ		
		-,				-		 		<u> </u>	 	 	
					· · · · · ·		 .	 	ļ	ļ	 	 	i
A		508880 21897 2 0 0	9,989) 48 2 x		02,8880254	557922EA	\$ 1920034	y/gygro2/20%	D-00120000000		 	200223000	
Avg.		43,180	\$\$\$Y 63 A 366 A 1	\$385 cross \$355.00°	18,000,700,000	2 1 65 2 21 11111	***** *** . ** * * *				(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
Check'd			8788 SUK				PACE 4534						j
CONSOL	.E.#	A/6/44	/		-	Valor					i .		
FILTER .		(Th.,				% Moistur		7.1.1.2.3.0.000 2.1.1.1.2.3.0.000	**************************************				
	T TEMP.	78	ioic !			Flowrate (DSCFM						
	ENGTH	1.0'				Isokinetic	(%)		3223.a.				
	1ATERIAL	91055	SS				·/		******		•		
REMARI	KS					·	·	·		·	_		

ESP INLET

		1	Man	1 Wa	10 TC	D/2						C-205
REMARK	is É	5/050 pillod	50	Me !	1) W		ett/c	6147	2	al e	nd	of run
	ATERIAL	5/150			10	Isokinetie (<u></u>	./		<u>. : </u>	1	- <i>[</i> -
	Т ТЕМР.					Flowrate (I	OSCFM)_					
CONSOL FILTER A	E#_ <i>A{(</i> #1001	<i>lg [40]</i> (Thn	ble			Velocity			essanti gent. Se la estata	7,577 . x i.ass		
\\\		<u> </u>			·		<u> </u>		V(V()			
Avg. Check'd		44.194	308/	1.215	316		94		%0% &			
					-							
					-							
									-			
								!				
	71.0	67 40	11-6	1.10	300	7-7	7.2		w	78	4 7	
 	1415	831.51	9/0	1.28	7/1	76	97		263	57	4.5	
	12,41)	8/8.55	107	1.15	318	98	93		25/	53	4.0	
	1370	806.03	.09	1.15	31/3	94	92		168	66	3.5	
NA	13:10	193.42						, comp.	Comp	implinger	an. rig	4-5-1
Point,	Time	Dry gas meter reading ft3	^ P in H2O	h h	Temp. F	Dry gas in Inlet	Outlet	Hot box Temp.	Probe Temp	Last Impinger	Vacuum in. Hg	12.8
Travers				T								
Bar Pres	s 29.	(10 " Hg			0,37	5 5WM	- />			F-		. , . 0
PTCF_	. 84	DGMCF // C	003	Nozzle D	ia.	incl	nes	Final Lea	k Rate	0.007	cfm cfm	F10"
Date	mensions	Time Start X DGMCF // C	300	 -	Time Fin	ish <u> / 4//</u>	<u></u>	Test Dura	ation	70	min.	- 10" 10"
Sampling	z Location	ince t			Train	Bulk	Particula	ite-Ex. M	1etals_	_ Run i	No.3	
Plant l	Name	Plant	Yates S	tation B	oiler No	. 1				Page		
										-		

We are the controlled the controlled the controlled to the control

										ESP INLE	ा	
										Page	of	
'lant N	lame	· Plant	Yates St	ation Bo	oiler No.	1						
ampling	Location_	Time Start 6	0		Train _	Size Fra	ct. Parti	culate_	Run l	No	_	
)ate <u>6 -</u>	-2 <i>5-93</i>	Time Start	000		Time Fini	ish	20	Test Dura	ition <u>Z</u>	10	min.	0.2
uct Din	nensions_2	8 6 5 X	Y 5		Diameter		ft	Initial Le	ik Rate 🔏	1009	$\{\sf cfm} {\it lpha}$	4-13.
TCF	004	DGMCF	<u>880</u>	Nozzie D	ia. <u>کی</u>	inch	es	Final Lea	k Rate		cfm	
ar Press	1000	5 " Hg	,		0	616	_					
		, <u>4</u> " H20										
ravers	Clock	Dry gas meter	^ P	^ H	Stack	Dry gas m	eter temp.	Hot box	Probe	Last	Vacuum	1
Point	Time	reading ft3	in H2O	in H2O	Temp. F	Inlet	Outlet	Temp.	Temp	Impinger	in. Hg	F= 3.0
W/A	0800	341.86						WHO			·	
~	0521	348.23	08	.3/	7.90	76	15		1110	6.1	2.0	
	NSUD	254.58	08	21	7.86	87	7-7	 	2115	6/		
	1901	3/207	201	31	200	0%3	78		43	6/	2.0	
	0970	7171	201	27	200	237	78		790	04	20	
1	00 110	70 1.00	000	12/	285			 	46/	66	20	
	57 4-0	379.80	008	3/	460	83	78		160	04	20	<u> </u>
					790		Ez.		137	65	3.0	
	OFO	38302	,08	.3/	735	87	8/_		15f	64	3.5	ļ
			<u> </u>									
				<u> </u>								ļ
				•								
						•						
												
									· · · · · · · · · · · · · · · · · · ·			
												
										 		
-+												
												
												<u> </u>
								ļ				
												ļ
vg.		41.161	2826	37	288		21/					
heck'd				** ** ** * * * * * * * * * * * * * * * *				100.00	/(: (M)			
		111	<u></u>	<u> </u>			• • • • • • • • • • • • • • • • • • • •	<u> </u>	<u> </u>	<u> </u>	Transver study	1.00 V(Zr - 0)
		A16/40				Velocity_						
	# <u>#130</u>	8 (47)	m) This	uble		% Moistur						
MBIEN	T TEMP.	78				Flowrate (DSCFM)		77. XX (X.)			
	_	-				or viet as a 10 de		MINAL ALTER A	March 200 700 6 .	A. 100 1 1 1 2 2 1 1	,	
ROBE L	ENGTH _	/6				Isokinetic	%)	<u> </u>				
ROBE L	_	55		_		Isokinetic	%)					
ROBE L	ENGTH _ IATERIAL	55		^		Isokinetic	%)					

SOURCE SAMPLING FIELD DATA SHEET ESP INLET

										Page	_ of		
Plant I	Name _	. Plant	Yates S	tation B	oiler No.	. 1							
Sampling	g Location	relet	2 2/ V		_Train _	Size Fr	act. Parti	iculate	Run	No. 2			
Date 6	<u> 2693</u>	Time Start	3671		Time Fin	ish <u>[</u>	5	Test Dur	ation	20	 min.		
Duct Dir	mensions_	8' [11 X	451		Diameter		<u>f</u> ft	Initial Le	ak Rate _	0,017	2_cfm	t10"	
PTCF_	, 84	Time Start & DGMCF / O	07	Nozzie D	ia. <u>. 2</u>	7 <u>5</u> incl	hes	Final Lea	ik Rate _	NA_	cfm		
Bar Pres Static Pr	ess	. 56_ " Hg 5-8_ " H20	5		Operator	MKO	·)	_	10	site	-3		
		Dry gas meter					neter temp.		Probe	Last	Vacuum		ì
Point	Time		1	Į.	Temp. 'F		Outlet	Temp.	Temp		in. Hg	K= 3	86
46	5915	769.65						NA					
	0935	777.03	1/	.42	311	81	179	7	248	62	3.0		
	0955	783.87	10	238	3/1	82	180		246	61	3.0		i
	105	790,78	10	38	3/1	86	24		244	60	3,0		
·	1045	798.24	012	4/2	3/0	85	87		742	61	3,0		1
	105	805.16	012	1.46	3//	BB	84		141	60	3 /		
	1/15	813758	10	.38	3/1	99	86		152	50	3,5		i
		1272420			1		102		0,0	/-/	1		İ
			ļ ———				· · · · · · · · · · · · · · · · · · ·	 					İ
				l	 	-		 					1
			ļ	 	 -	<u> </u>	 	 		<u> </u>			
 				 	 	 		-					Ì
		 		 -		 		 	 				•
-				 -	 	 	 	 			<u> </u>		1
				ļ					ļ				
								=	ļ				l
									ļ				
		ļ <u>.</u>											4
				ļ									ĺ
							<u> </u>			-			
					1								ı
					1		 						l
				 		 		 				 	i
				<u> </u>			 		 				İ
						 	 	-			 		l
						 	 		<u> </u>			 	l
Ava		a a a a a a a a a a a a a a a a a a a				 		<u> </u>		 	10 apr 272 173		l
Avg.		43, 9330	0.3287	0.913	310.8	83,			1.00	270,300	750000		l
Check'd			<u> </u>		1771	with the	give i see	t seriesis	1000 mil				ļ
CONSOI	E# 1	111007				**************		eks Bryg ym	en e terre te	Un kramenski s			
FILTER		161467											
	T TEMP.						DSCFM)_						
	LENGTH	14				Tooking	(%)						
	ATERIAL	0/135				venerinerie:	(20)	west stades of the	<u> </u>	<u>artera R</u>			
••		-quis											
REMARI	KS												

ESP INLET Page ____ of ___ Plant Name Plant Yates Station Boiler No. 1 Train Size Fract. Particulate Run No. 3 Sampling Location ulet Date 6-27-93 Time Start 0740 Test Duration ____135 Duct Dimensions 8 6" X 45 Diameter Ne ft Initial Leak Rate 0,014 cfm at 10 Nozzle Dia. 275 inches PTCF 0.84 DGMCF 1.009 Final Leak Rate Na cfm Bar Press <u>79,50</u> "Hg Static Press 5,8 RIW __" H2O Operator **Fravers** Clock Dry gas meter ^ H Stack Dry gas meter temp. Hot box Probe Last Vacuum Point Time reading ft3 Outlet in H2O in H2O Temp. F Inlet Temp. Temp Impinger in. Hg E-8 0740 938.170 0.08 240 63 74 310 73 Z,3 0.31 0755 942,70 0.09 0.34 238 312 78 75 62 20 0810 948, 27 0.08 0.31 314 81 78 Z37 | 60 スコ 0825 952.28 209 0.34 314 82 238 61 2.0 79 0840 958.47 0.08 D. 31 314 84 247 6<u>2</u> 80 Z·D 0855 96212 0.08 0.31 86 314 82 249 2.0 63 966.85 0910 0.08 0.31 314 87 84 246 64 20 0925 971.45 0.08 0.31 315 87 241 65 84 Z, O 0940 975.93 0.08 0.31 314 89 87 Z43 65 2.0 STOP 10955 980.847 1.2871 42 677 2Wad 3200 313 2 2 Avg. Check'd CONSOLE # <u>A16/402</u> Velocity FILTER # _ (47mm) % Moisture AMBIENT TEMP. Flowrate (DSCFM) Isokinetic (%) PROBE LENGTH LINER MATERIAL REMARKS

C-208

Plant	_Plant Yates S	tation Boiler N	lo. 1		Comments _		,
Location	ESP IN						
Run No							
Date					Operator	JWM	
Sorbing Reas	gents:	(CO2)	(O2)	(CO)		
Replicate	Original	(CO2)	(CO2)	(O2)	(O2)	(CO)	(CO)
Number	Volume	Reading 2	Volume	Reading 3	Volume	Reading 4	(CO) Volume
	Reading	(ml)	(2-1)	(ml)	(3-2)	(ml)	(4-3)
		()	(ml)	()	(ml)	(III)	(ml)
,	0.0	0.8		100	(1111)		(111)
/	(018	18.0	17.2			
		Z =) K	1			
		BAD &	DAG 10	aup/E			
			, ,				
					_		
			· · · · · · · · · · · · · · · · · · ·				
Averaged Res	WAN	n (15 % co2		COz = 10 Oz = 8.		N2 = 81	
		% CO		% N2			
Dry Molecula	ar Weight, MW	/ (dry) =					
	=0.44	+0.32	+0	28			
)2) (%O:					
			,		•••	0.7	
	=	_+	_+		Y-0	97	ESP Inled
			Run	#Train_	orsa	t	ESP Outlet
							Stack
				ponent ba		1930_Smp	ole TWM
				6-21-93 on site			
			Tare	Wt. 10a	rma	1 Mr. VA	— C-209

SECTION OF THE SECTIO

Plant	_Plant Yates S	Station Boiler 1	No. 1	Comments					
Location	ESP IN	nlet							
Run No	2						14 0		
Date	6/22/9	3	<u> </u>		Operator	Tum /	TMP		
		(CO2)	~			,			
Sorbing Rea	gents:	(CO2)	(O2)_	(C())				
Replicate	Original	(CO2)	(CO2)	(O2)	(O2)	(CO)	(CO)		
Number	Volume	Reading 2	Volume	Reading 3	Volume	Reading 4	Volume		
	Reading	(ml)	(2-1)	(ml)	(3-2)	(ml)	(4-3)		
		, ,	(ml)	\	(ml)	(/	(ml)		
/	0.0	10.2	10.2	18.0	7.8		. <u> </u>		
2	0.0	10.0	10,0	18.6	816				
3	0,0	10,0	10,0	18.6	816				
		7070	1010	1016	0.00				
									
	 	 	<u> </u>	<u> </u>					
		- 							
Averaged Re	esults:	% CO2/	0.2	% O2 % N2	8.6				
		% CO		% N2_	81.2				
Dry Molecul	ar Weight, M	W (dry) =							
	0.44	. 0. 22							
	=0.44(%C		+(D2) (%(
	(700	<i>04)</i> (%(<i>12)</i> (%(.∪ ⊤ 70 IN2)					
	=	_+	_+_		Y-25	1			
			T) 1	.)	_	_	ESP		
				2 Train_	•	C	_ ESP O		
			_	onent bo					
				6-22-9			MUT		
10			Lab C	on site A	Analysis <u>(</u>	2 05			
10	•		Tare '	Wt.	Final	₩ŧ			

Plant	_Plant Yates	Station Boiler I	No. 1	_ _	Comments						
Location E	SP Inle	<u> </u>									
Run No 3	3										
Date _ 6/-	23/95				Operator	TMP					
					•						
Sorbing Rea	gents:	(CO2)	(O2)_	(C(O)						
	T 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	T									
Replicate	Original	(CO2)	(CO2).	(O2)	(O2)	(CO)	(CO)				
Number	Volume	Reading 2	Volume	Reading 3	Volume	Reading 4	Volume				
	Reading	(ml)	(2-1)	(ml)	(3-2)	(ml)	(4-3)				
 			(ml)		(ml)		(ml)				
/	0.0	10.8	10.8	19.0	8.2						
2 3	0.0	10.9	10.9	19.4	8.5						
3	0.0	10.8	10.8	19.0	8.2						
				1							
				1							
						† · · · · · · · · · · · · · · · · · · ·					
Averaged Re	sults:	% CO2	10.8	% O2 % N2	8.3 80.9						
	ar Weight, MV										
		+0.32									
	(%C	O2) (%C)2) (%C	CO + % N2)							
	=	_+	_+		Y-	256	FARTI				
			Ru	in # <u>3</u> Tra	in OSCI	$t_{}$	ESP Inlet ESP Outlet Stack				
			Co	omponent <u>b</u>	<u>a</u>						
				ate/6-23-		Sm	pir JWM				
			Do Ta	than cit	e Analysis	(G2 O2					
						nai Wt.					
			13	ше ₩ι			—— C-211				

Plant	Plant Yates S	Station Boiler N	Comments					
Location	ESP In	<u>let</u>	· · · · · · · · · · · · · · · · · · ·					
Run No	Metals	Runt	2-1					
Date <u>6/2</u>	5/93	Runt			Operator	TMP		
	•							
Sorbing Reas	gents:	(CO2)	(O2)_	(CO)			
Replicate	Original	(CO2)	(CO2)	(O2)	(O2)	(CO)	(CO)	
Number	Volume	Reading 2	Volume	Reading 3	Volume	Reading 4	Volume	
, and a	Reading	(ml)	(2-1)	(ml)	(3-2)	(ml)	(4-3)	
	Reading	(1111)	(ml)	()	(ml)		(ml)	
<i>j</i>	0.0	10,2	10.2	19.0	8.8			
<u>-</u>	1	1	1	19.0	9.0			
	0.0	10,0	10,0	1,1,0	7.0			
		-						
	ļ		ļ					
	ļ							
			<u>l</u>	<u> </u>	l			
Averaged Re	sults:	% CO2	10:[% O2	9.9			
oragod itt		,,						
		% CO		% N2				
Dry Molecul	ar Weight, M	W (dry) =						
	=0.44	+0.32_		0.28				
	(%C	O2) (%0	J2) (%)	TO + % N2)				
		ı.	+.		Y-33	7		
		T		1	A C 5-1	<u> </u>	ESP	
			K 1171 #	/ /210 /				
			Run #_		71 3CC	<u> </u>	ESP O	
			Compo	nent haq	- Pha	sol Two	ESP O	
					- Pho	200 Tux	ESP O	
			Compo Date		75Time 14:	30 Smplr	ESP O	

Plant	_Plant Yates S	Station Boiler N	<u>-</u> _	Comments					
Location	ESP In	et							
Run No	2-3								
Date	6/27/93				Operator	TMP			
			1	_					
Sorbing Rea	gents:	(CĞ2)	(O2)_	(CC))				
Replicate	Original	(CO2)	(600)	(00)	T (25)	(20)			
Number	Volume	(CO2)	(CO2)	(O2)	(02)	(CO)	(CO)		
Number		Reading 2	Volume	Reading 3	Volume	Reading 4	Volume		
	Reading	(ml)	(2-1)	(ml)	(3-2)	(ml)	(4-3)		
	0.0	1,,,,,,	(ml)		(ml)		(<u>ml)</u>		
	0.0	11.8	18.8	7.0			-		
2	0.0	11.8	18,8	7.0		<u> </u>			
						<u> </u>			
				 					
									
Averaged Re	sults:	% CO2	11.8	% O2	7.0				
		% CO		% N2	 	 			
Dry Molecul	ar Weight, M	W (dry) =							
	=0.44	+0.32_	+0	0.28					
		O2) (%C							
	=	_+	_+		Y	-454	ESP		
			Rı	ın # <u>2-3</u> Tra	in ORSA	Τ	ESP O		
			Co	omponent	ORSAT				
						1400 Sm	mir TIA/AA		
						nalysis O			
				_		_	(COS		
			Ta	re WI(g)		_Final Wt(g)			

the second of the second second of the second secon

TRAVERSE FIELD DATA SHEET

Plant Name Plant Yates Station Boiler Nol Stack Diameter 8'4" x 45' Sampling Location_ ESP INLET Sample Port Diameter__ 06-18-93 Sample Port Depth _ Operator Distance Upstream_

Traverse Point Number	Number Traverse Points On A Diameter											
	2	4	6	8	10	:2	14	16	18	20	22	24
	1								•		. ;	·
1	14.6	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.
3	1	75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.
4		93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.1
5	1		85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.
6	į		95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.
7	1			89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.
8	i i			96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.
9	1				91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.
10				!	97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.
11	1 1					93.3	85.4	78.0	70.4	61.2	39.3	32
12				,		97.9	90.1	83.1	78.4	69.4	60.7	38.
13							94.3	87.5	81.2	75.0	84.5	80.
14	1						98.2	91.5	85.4	79.6	73.8	67.
15	1							95.1	89.1	83.5	78.2	72
16	1 1							98.4	92.5	87.1	82.0	77.
17	i								95.6		_	_
18									98.6			_
19										96.1		_
20	1									98.7		
21								-			96.5	
22							-				94.9	_
23	-					-						96.
74					. '							98.

M. American Charles and

Traverse Points									
No.	Distance From Wall								
	PORT DEPTH INCUPE								
1	1172.5								
2	139.5								
3	56.5								
4	73.5								
5	90.5								
6	107.5								
7									
8									
9									
10									
11									
12									
13									
15	1								
16									
17									
18									
19									
20									
21	1								
22									
23									
24									
	<u> </u>								

14"

Distance downstream

	•			
				-
				•
				•
				•
			,	
		•		
	•			
		•		
	•			

					rile rield			_	
Plant Nai	me <u>Ir</u>	nlet F	relimi	navy u	relacit	, trav	erse (75 M	W Producti
Sampling	Location _	Inl	et_	<u> </u>	Samplé	ldent			
Date 6	/19/43 (MMDDYY)	Time St	art	<u>о(</u> НН	MM) Time	e Finish	_123C	2(HHMM) tt.
Duct Dim	nensions	8.5	د <u> </u>	x4	5 '	_ft. or Dia	ameter		ft.
PTCF	0.84				% H ₂ O _	₹ 7.0	_		
Bar Press	نـــــــــــــــــــــــــــــــــــــ	29.58		" Hg	% co _		- % N	,	
Static Pre	ss	-6.5		″ H ₂ O	% CO, _	9.0	_ % н	· ———	
Operator	Initials	<u> </u>	DIV, JWI	<u>m</u>	%0, _	7.4	% Ci	- H _A	
					•			•	
1 all fc	e very i			.					
_		Stack Temp. of	= 		ocity Pressure	² H ₂ O		Other ()
	#1	#2	Ave.	#1	#2	Ave.	#1	#2	Ave.
E1-1				0,053	0.06				
2	205	285		0,06	0.06				
3	285	287		0,01	0035				
4	284	285		0.025	0.02				
5	283	283		0025	003				
	269	269		0.00	0.03				
E2-1	F	282		0.02					
2	282	283		0,02	0,015				
3	284	284		0,61					
4	282	282		0.03	0.02				
5	274	275		0,04	0.03				
<u> </u>	261	263		0,04	0.05		 		
F3-1				0.02			· · · · · · · · · · · · · · · · · · ·		
<u> 2</u> 3	295			0.02			· · · · · · · · · · · · · · · · · · ·		-
<u> </u>	256			0.04					
	294			0.09			- 		
6				0.13					
	270	<u> </u>		0.75					
Weather		ve Vap							
		tack Temp					-		
Remarks		<u>/el</u>	= 17.13	•					
 _		ACFM	= 392,	904					
		DSCFM							

VELOCITY PROFILE FIELD DATA

Date					Sample Ident							
	(1V				rt(HHMM) Time Finish(HHM							
					ft. or Diameter							
Bar Press.				_ " Hg	% co _		_ % N	. ———				
Static Pres	s		•	_ " H,O	% CO,		% н	2 				
	nitials											
					4							
	St	ack Temp. °	=	Velo	city Pressure	″ H ₂ O		Other ()			
Pt.	#1	#2	Ave.	#1	#2	Ave.	#1	#2	Ave.			
Fc/-1	290		0,00	0.02								
2	293	005	0,05	0.05								
3.	298			0.06								
4	299			0.14								
5	299			0.16								
6	290			0.19								
F5-1	250			0,03								
2	292			0.03								
3	295			200								
4	299			0.12								
5	300			0.15								
6	296			0.20								
E6-1	295			0.03	· · · · · · · · · · · · · · · · · · ·							
2	296			0,04								
3,	302			0.07								
4	305			8,14								
5	367			0.77								
6	308	·····		0.18								
Weather												

VELOCITY PROFILE FIELD DATA

Plant Nar	ne								
Sampling	Location _		····		Samp	le Ident			
						HMM) Tim			
						ft. or Di			
PTCF					% H,O		_		
Bar Press				" Hg	% င်္ဝ		_ % N	اء	
Static Pre	ss 	to 6	, 4	" H ₂ O	% CO2		%н	2	
Operator I	nitials			٠	% O, 1		% C	2 H	
-	s	tack Temp. °F	•	Ve	locity Pressu			Other ()
Pt.	#1	#2	Ave.	#1	#2	Ave.	#1	#2	Ave.
E7-1	309		-	0.03					
~	309			10 mel			<u> </u>	 	+

0.09 0.12 0.19 0.20 304 0.07 305 0,1 307 0.08 308 0,11 0.14 0.22 0.06 274 275 0.07 28/ 0,09 282 0.06 277 262 0.13

Remarks _____

and the state of t

2 EX-1 3 9

W1-1

VELOCITY PROFILE FIELD DATA

Plant Nar	пе					·······			
Sampling	Location _				_ Sample	ldent			
Date	(N	(YYGOMN	Time S	tart	(HH	IMM) Time	e Finish		(HHMM)
Duct Dim	ensions _			x		_ft. or Dia	ameter _		ft.
PTCF					% H,O _		-		
Bar Press		-		" Hg " H ₂ O	% CO _		- % N	·	
Static Pre	ss			" H ₂ O	% CO,		_ % н	- 2	
Operator I	Initials		·		% ໐ຸ ້ _		%C	H ₄	· · · · · · · · · · · · · · · · · · ·
					-			·	
	St	ack Temp. °	F	Velo	city Pressur	o ″ H ₂ O		Other ()
Pt.	#1	#2	Ave.	#1	#2	Ave.	#1	#2	Ave.
WZ-1	273			0.04					
2_	277			0.03					
3.	277			0.05					
4	279			0.07					
5	286			0.16					
6.				0.15					
$\omega 3-1$	278			0,02					
2	202			0.04					
3,	284			6,06					
4	284			0.13					
<u> </u>	28/			0,17					
6	279			0,19					
W4-1	284			0.03					
	270			0.05					
	282,			0.08					
4	284			0.13					
5	280			0.0	· · · · · · · · · · · · · · · · · · ·				
6	272			0,3					
Weather									
Remarks						· · · · · · · · · · · · · · · · · · ·		•	

VELOCITY PROFILE FIELD DATA

Sampling	Location _				Sample	ident			
Date	(^	MMDDYY)	Time S	itart	(HH	(MM) Time	e Finish		(HHAAA
Duct Dim	ensions _			х		ft. or Dia	ameter _		#)
PTCF					% H ₂ O _		_		
Bar Press				″ Hg	% CO _		- - % N		
Static Pre	s s	······································		" H ₂ O	% CO.		%н	2	_
Operator I	nitials		<u></u>	_	% O ₂ -	•	% C	H ₄	
-	6	ack Temp. °I							
Pt.	#1	#2	Ave.		ocity Pressure		***	Other ()
	275	76	AVE.	#1	#2	Ave.	#1	#2	Ave.
2	275		<u>. </u>	0.04					
7	274			0,10					
4	277			0.11					
5	273			0.13					<u> </u>
6.		-		0.15					
W6-1				0.03					
2				0,03					
3	272			0.05					
4	271			0,00					
	265			0,0%					
6	261			0.16					
W7-1	260			0,02					
こ	263			20.0					
3, 4	263			0.02					
	258			0.02					
5	260			0.24					
9	293	l		0.04					
Veather	***	- "	,	· · · · · · · · · · · · · · · · · · ·					
Remarks			-			- · · · · · · · · · · · · · · · · · · ·			·

VELOCITY PROFILE FIELD DATA

		ne Location _				Same!	. Idoat			
										(HHMM)
	PTCE	داراناداره ک. ۵	.ч	<i>ل</i> ــــــــــــــــــــــــــــــــــــ	<u> </u>	06 4 0	_n. or Di	ameter		ft.
	PTCF Bar Press. Static Pres Operator I	2	9.58		 " Wa	% n ₂ O _		- 06 N		
	Static Pres	59	G.4		 	% CO _		_ %H	2 ——	
	Operator I	nitials	JWW		20	% O	7.4		2 H	
	•								4	
		S	tack Temp. °I	=	Veid	ocity Pressur	" H ₂ O	·	Other ()
	Pt.	#1	#2	Ave.	#1 /	#2	Ave.	#1	#2	Ave.
	W8-/	254			0.04,					
	2	262			0.09					
	3,	267,			0.02					
1++	+	264			0.01					
WMM,	5	250			0.02					
, , ,	6	255			0.08					
(6).	,									
MWLT+										
Finish										
•										
		-								
							,			
		282.9		,	0.7554					
								· · · · · · · · · · · · · · · · · · ·		
	Weather						= 17.11 3			
						ACEM	= 191,966			

Facing Ports
(East) E1 _ E8 w1 _ W8 (west

C- 222

APPENDIX D: QUALITY ASSURANCE/QUALITY CONTROL

Appendix D presents a summary of analytical results for QC samples, estimates of measurement precision and accuracy based on analysis of QC samples, and potential limitations in the use of the data.

Overall, QA/QC data associated with this program indicate that measurement data are acceptable and defensible. The QA/QC data indicate that the quality control mechanisms were effective in ensuring measurement data reliability within the expected limits of sampling and analytical error.

Quality control data provide information for identifying and defining qualitative limitations associated with measurement data. The following key types of QC procedures provide the primary basis for quantitatively evaluating data quality:

- Field and laboratory blank samples;
- Duplicate field samples;
- Matrix and surrogate spiked samples;
- Laboratory control samples; and
- Performance evaluation (audit) samples.

Additional details of the project QA/QC program are documented in the DOE Quality Assurance Project Plan.

Sample Collection

Several factors are evaluated to determine acceptable sample collection. Key components of the sampling equipment including the Pitot tubes, thermocouples, orifice meters, dry gas meters, and sampling nozzles were calibrated in the Radian Source Sampling Laboratory before use in the field. These calibrations were also checked after the equipment was returned to the laboratory after the field activities. The presampling calibrations were reviewed by the Radian QA Coordinator as part of the on-site Technical Systems audit.

These calibrations as well as the post sampling calibrations are on file at Radian Corporation. Standard EPA methods or other acceptable sampling methods were used to collect the organic, metal, and anion samples. The sampling runs were well documented, and all gas samples were collected at rates of between 90 and 110% of the isokinetic rates. Sufficient data were collected to ensure acceptable data completeness and comparability of the measurements.

Gas samples were collected from the ESP inlet, ESP outlet, and stack as integrated samples for most analyses over a specified time period. Solid samples of coal, limestone, bottom ash, ESP fly ash, and FGD slurry were collected at hourly intervals over each of the test runs. These individual grabs were combined to provide a single composite sample of each stream for each of the three test runs. Liquid streams were also collected as hourly grabs which were combined to provide a single composite for analysis for each test run. Liquid streams include the ash pond, gypsum recycle water, ash sluice filtrates, FGD slurry filtrate, limestone slurry filtrate, and the inlet and outlet to the condenser. All sampling was conducted while the plant was operating at 85 to 100% of full load and should be representative of typical operation for Plant Yates.

Analytical Quality Control Results

Generally, the type of quality control information obtained pertains to measurement precision, accuracy (which includes precision and bias), and blank effects that are determined using various types of replicate, spiked and blank samples. The specific characteristics evaluated depend on the type of quality control checks performed. For example, blanks may be prepared at different stages in the sampling and analysis process to isolate the source of the blank effect. Similarly, replicate samples may be generated at different stages to isolate and measure sources of variability. The QA/QC measures used as part of this program data evaluation protocol and the characteristic information obtained are summarized in Table D-1. The absence of any of these types of quality control checks from the data for a particular analytical technique does not necessarily reflect poorly on the quality of the data but does limit the ability to estimate the magnitude of the measurement error and hence, prevents placing an estimate of confidence in the results.

As shown in Table D-1, different QC checks provide different types of information, particularly pertaining to the sources of inaccuracy, imprecision, and blank effects. As part of this program, measurement precision and accuracy are typically being estimated from QC indicators that cover as much of the total sampling and analytical process as feasible. Precision and accuracy measurements are based primarily on the actual sample matrix. The precision and accuracy estimates obtained experimentally during the test program are compared to the data quality objectives (DQOs) established for the program as listed in the project QAPP.

These DQOs were not intended to be used as validation criteria but as empirical estimates of the precision and accuracy that would be expected from existing reference measurement methods and that would be considered acceptable. The precision and accuracy objectives are not necessarily derived from analyses of the same types of samples being investigated.

Table D-1 Types of Quality Control Samples

QC Activity

Characteristic Measured

-	•	•	
Pre	010	"11	m
110	U 10	u	11

Replicate samples collected over time under the same conditions Total variability, including process or temporal, sampling, and analytical, but

not bias.

Duplicate field samples collected

simultaneously

Sampling plus analytical variability at the actual sample concentrations.

Duplicate Analyses of a Single Sample

Analytical variability at the actual sam-

ple concentrations.

Matrix- or Media-Spiked Duplicates

Sampling plus analytical variability at an

established concentration.

Laboratory Control Sample Duplicates

Analytical variability in the absence of

sample matrix effects.

Surrogate-Spiked Sample Sets

Analytical variability in the sample matrix but at an established concentra-

tion.

Accuracy (Including Bias and Precision)

Matrix-Spiked Samples

Analyte recovery in the sample matrix, indicating possible matrix interferences and other effects. In a single sample indicates both random error (imprecision) and systematic error (bias).

Media-Spiked Samples

Same as matrix-spiked samples. Used where a matrix-spiked sample is not feasible, such as the stack sampling

methods.

Surrogate-Spiked Samples

Analyte recovery in the sample matrix,

to the extent that the surrogate

compounds are chemically similar to the compounds of interest. Primarily used as indicator of analytical efficacy.

Laboratory Control Samples (LCS)

Analyte recovery in the absence of actual sample matrix effects. Used as an indi-

cator of analytical control.

Table D-1 (Continued)

QC Activity	Characteristic Measured
Standard Reference Material	Analyte recovery in a matrix similar to the actual samples.
Blank Effects	
Field Blank	Total sampling plus analytical blank effect, including sampling equipment and reagents, sample transport and storage, and analytical reagents and equipment.
Trip Blank	Blank effects arising from sample transport and storage. Typically only used for volatile organic compound analyses.
Method Blank	Blank effects inherent in analytical method, including reagents and equipment.
Reagent Blank	Blank effects from reagents used.

Although analytical precision and accuracy are relatively easy to quantify and control, sampling precision and accuracy are unique to each sample matrix. Data that do not meet these objectives are not necessarily unacceptable. Rather, the intent is to document the precision and accuracy obtained, and the objectives serve as benchmarks for comparison. The effects of not meeting the objectives should be considered in light of the intended use of the data.

Table D-2 presents the types of quality control data reported for the program and a summary of precision and accuracy estimates. Almost all of the quality control results met the project objectives.

The following potential problems were identified by the quality control data.

- Chloromethane, methylene chloride, and tetrachloroethene were found in one or more of the field blanks analyzed for VOST. In many cases, the same concentrations were also found in the field samples.
- A standard limestone sample (NIST 1C) was submitted blind as a performance audit sample. Aluminum, silicon, and sodium recoveries in this sample were below 50%, and the recovery of potassium was greater than 200 percent. This may indicate a similar low bias for these elements in the limestone process streams.
- Selenium showed no spike recovery in the impinger solutions analyzed by GFAAS. However, selenium recoveries in the audit samples submitted by RTI showed recoveries of 104 and 113 percent.

A discussion of the overall measurement precision, accuracy and blank effects is presented below for each measurement type.

Precision is a measure of the reproducibility of measurements under a given set of conditions. It is expressed in terms of the distribution, or scatter, of the data, calculated as the standard deviation or coefficient of variation (CV, standard deviation divided by the mean). For duplicates, precision is expressed as the relative percent difference (RPD).

Accuracy is a measure of the degree of conformity of a value generated by a specific procedure to be assumed or accepted true value, and includes both precision and bias. Bias is the persistent positive or negative deviation of the method average value from the assumed or accepted true value.

The efficiency of the analytical procedure for a given sample matrix is quantified by the analysis of spiked samples containing target or indicator analytes or other quality assurance measures, as necessary. However, all spikes, unless made to the flowing stream ahead of the sampling, produce only estimates of the recovery of the analyte through all of the measurement steps occurring after the addition of the spike. A good spike recovery tells little about the true value of the sample before spiking.

Table D-2 Summary of Precision and Accuracy Estimates

		Ob	jectives	Measured	
Measurement Parameter	How Measured	Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)	Accuracy (% Recovery)
Semivolatile Organics in Gas Solid Phase -	Precision- Matrix-Spiked Duplicates				
SW8270	Accuracy - Matrix Spikes				
Acenaphthene		54	47-145	4.1	86
4-Chloro-3-methylphenol		69	22-147	5.0	84
2-Chlorophenol		62	23-134	3.0	82
1,4-Dichlorobenzene		58	20-124	3.2	80
2,4-Dinitrotoluene		55	39-139	3.2	78
n-Nitrosodipropylamine		130	0.1-230	6.3	60
4-Nitrophenol		78	0.1-132	7.0	89
Pentachlorophenoi		84	14-176	9.0	45
Phenol		43	5-112	3.4	58
Pyrene		36	52-115	4.1	86 .
1,2,4-Trichlorobenzene		55	44-142	4.0	90
Semivolatile Organics in Fly Ash - SW8270	Precision- Matrix-Spiked Duplicates Accuracy - Matrix Spikes	33			
Acenaphthene	municipality opinion	54	47-145	1.3	82
4-Chloro-3-methylphenol		69	22-147	5.6	84
2-Chlorophenol		62	23-134	1.8	84
1,4-Dichlorobenzene		58	20-124	2.5	81
		55		2.3 2.7	76
2,4-Dinitrotoluene			39-139		
n-Nitrosodipropylamine		130	0.1-230	7.8	60
4-Nitrophenol		78	0.1-132	37	49
Pentachlorophenol		84	14-176	5.3	64
Phenol		43	5-112	2.7	76
Pyrene		36	52-115	17.7	48Q
1,2,4-Trichlorobenzene		55	44-142	1.2	89
Semivolatile Organics in FGD Solids - SW8270	Precision- Matrix-Spiked Duplicates Accuracy - Matrix Spikes			•	
Acenaphthene		54	47-145	7.3	82
4-Chloro-3-methylphenol		69	22-147	9.3	76
2-Chlorophenol		62	23-134	7.1	84
1,4-Dichlorobenzene		58	20-124	8.7	80
2,4-Dinitrotoluene		. 55	39-139	4.0	74
n-Nitrosodipropylamine		130	0.1-230	14	52
4-Nitrophenol		78	0.1-132	14	92
Pentachlorophenol		84	14-176	4.1	74
Phenol		43	5-112	5.5	73
Pyrene		36	52-115	4.4	90
1,2,4-Trichlorobenzene		55	44-142	9.8	92
Semivolatile Organics in Aqueous Streams - SW8270	Precision- Matrix-Spiked Duplicates Accuracy - Matrix Spikes	55			,-
Acenaphthene		54	47-145	11	79
4-Chloro-3-methylphenol		69	22-147	10	83
2-Chlorophenol		62	23-134	10	80
1,4-Dichlorobenzene		58	20-124	6.8	72
2,4-Dinitrotoluene	•	55	39-139	7.4	82
n-Nitrosodipropylamine		130	0.1-230	12	75
4-Nitrophenol		78	0.1-132	8.6	47
Pentachlorophenol		84	14-176	11	72
Phenol		43	5-112	12	40
Pyrene		36	52-115	7.6	78
1,2,4-Trichlorobenzene		55	44-142	9.7	· 82
1,2,—1 nemotouchzene		33	74-146	7.1	υL

Table D-2 (Continued)

		Objectives		Measured	
Measurement Parameter	How Measured	Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)	Accuracy (% Recovery)
Dioxins and Furans in Stack Gas Solid	Precision: NA				
Phase	Accuracy: Internal Standard Recovery				
¹⁵ C ₁₂ -2,3,7,8-TCDF		50	40-120		60
¹³ C ₁₂ -2,3,7,8-TCDD		50	40-120		61
¹³ C ₁₂ -1,2,3,7,8-PeCDF		50	40-120		56
¹³ C ₁₂ -1,2,3,7,8-PeCDD		50	40-120		63
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF		50	40-120		69
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD		50	40-120		69
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF		50	40-120		57
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD		50	40-120		64
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD		50	40-120		50
PCDD/PCDF	Precision - NA				
	Accuracy - Internal Standard Recovery,				
	average for all samples analyzed.				
¹³ C ₁₂ 2,3,7,8-TCDF			40-120		57.2
¹³ C ₁₂ -2,3,7,8-TCDD			40-120		54.7
¹³ C ₁₂ -1,2,3,7,8-PeCDF			40-120		55.7
¹³ C ₁₂ -1,2,3,7,8-PeCDD			40-120		63.3
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF			40-120		69.2
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD			40-120		69.0
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF			40-120		57.1
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD			40-120		63.6
¹³ C ₁₂ -1,2,3,4,6,7,8,9-OCDD			40-120		50.0
PCDD/PCDF in Stack Gas	Precision - NA				
	Accuracy - Surrogate Spike Recovery,				
	average for all samples analyzed.				
⁵⁷ Cl ₄ -2,3,7,8-TCDD	. ,		70-130		118.4
¹⁵ C _{1,} -2,3,4,7,8-PeCDF			70-130		113.2
¹⁵ C ₁₂ -1,2,3,4,7,8-HxCDF			70-130		120.8
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD			70-130		141.6
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF			70-130		104.7
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF			70-130		75.4
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF			70-130		84.3
Volatile Organics in Vapor Phase -	Precision - NA				
SW8240	Accuracy - Surrogate Spike Recovery				
1,2-Dichloroethane-d4	involuty buildgub bpige Receivery	50	70-130		114
Toluene-d8		50	70-130 70-130		101
4-Bromofluorobenzene		50	70-130		108
Aldehydes in Vapor Phase	Precision - Duplicate Analyses Accuracy - Matrix Spiked Samples		70 150		100
Acetaldehyde	Trooping - Manix object patibles	50	50-150	10	94
Formaldehyde		50	50-150 50-150	36	94 90
Aldehydes in Aqueous Streams	Precision - Duplicate Analyses Accuracy - Matrix Spiked Samples	- •	•••	- •	
Acetaldehyde	print opino oumpros	50	50-150	14	101
Formaldehyde		50	50-150	18	94
,			100		~7

Appendix D: Quality Assurance/Quality Control

Table D-2 (Continued)

		Ob	jectives	Measured	
Measurement Parameter	How Measured	Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)	Accuracy (% Recovery)
Metals in Gas Solid Phase - ICP-AES	Precision - Matrix-spiked pairs				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Aluminum	Accuracy - Matrix-spiked Sample				
Antimony		20	75-125	62Q	62Q
Barium		20	75-125	20	84
Beryllium		20	75-125	30Q	75
Chromium		20	75-125	<1	89
Cobalt		20	75-125	2.9	88
		20	75-125	1	91
Copper		20	75-125	<1	93
Manganese		20	75-125	2.2	91
Molybdenum	•	20	75-125	3.7	94
Nickel		20	75-125	5	89
Vanadium		20	75-125	2.2	94
Metals in Gas Solid Phase - ICP-AES	Precision - NA				
	Accuracy - Standard reference material				
	(NIST 1633a Fly Ash)				
Aluminum	(1,121,10001,13,1201)	20	75 105		
Antimony		20	75-125		94
Barium	•		75-125		NC
Beryllium		20	75-125		82
Calcium		20	75-125		147Q
Chromium		20	75-125		99
Cobalt		20	75-125		96
Copper		20	75-125		88
Iron		20	75-125		95
Magnesium		20	75-125		93
_		20	75-125		95
Manganese Potassium		20	75-125		94
		20	75-125		109
Nickel	•	20	75-125		94
Silicon		20	75-125		98
Sodium		20	75-125		96
Strontium		20	75-125		92
Titanium		20	75-125		97
Vanadium		20	75-125		95
Zine		20	75-125		97
Metals in Gas Vapor Phase - ICP-AES	Precision - Matrix-spiked Duplicates				,,
	Accuracy - Matrix-spiked Sample				
Aluminum	recuracy - Matrix-spiket Sample	20	75 105		
Antimony		20	75-125	<1	104
Barium		20	75-125	4	101
Bervllium		20	75-125	0	106
Boron		20	75-125	0	108
Chromium		20	75-125	2.9	104
Cobait		20	75-125	0	105
		20	75-125	0	102
Copper		20	75-125	0	105
Manganese		20	75-125	<1	104
Molybdenum		20	75-125	2.0	100
Nickel		20	75-125	0	102
Vanadium		20	75-125	Ŏ	107

Table D-2 (Continued)

		Objectives		Measured	
Measurement Parameter	How Measured	Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)	Accuracy (% Recovery)
Metals in Gas Vapor Phase - ICP-AES	Precision - NA				
(HNO ₃ /H ₂ O ₂ Impinger Solution)	Accuracy - Standard reference material (EPA ICP-19)				
Antimony		20	75-125		93
Beryllium		20	75-125		101
Calcium		20	75-125		109
Chromium		20	75-125		99
Cobalt		20	75-125		100
Copper		20	75-125		119
Iron		20	75-125		93
Manganese		20	75-125		97
Molybdenum		20	75-125		108
Nickel		20	75-125		102
Vanadium		20	75-125		103
Metals in Coal - INAAS	Precision - NA				
Metals in Coal - INAAS	Accuracy - Standard Reference Material				
	(NIST 1632b coal)				•
Antimony		20	80-120		94
Barium		20	80-120		99
Beryllium		20	80-120		109
Boron		20	80-120		99
Chromium		20	80-120		99
Cobalt		20	80-120	•	NC
Copper		20	80-120		99
Manganese		20	80-120		103
Molybdenum		20	80-120		102
Nickel		20	80-120		99
Vanadium		20	80-120		97
Metals in Limestone - ICP-AES	Precision - NA Accuracy- Standard reference material (NIST Limestone 1c)				
Aluminum	(1715) Emicsione 10)	20	75-125		14Q
Calcium		20	75-125		101
Iron		20	75-125 75-125		70Q
Magnesium		20	75-125		69Q
Manganese		20	75-125		74Q
Potassium		20	75-125		224Q
Silicon		20	75-125 75-125		1.5Q
Sodium		20	75-125 75-125		47Q
Strontium		20	75-125 75-125		97
Metals in FGD Solids - ICP-AES	Precision - Matrix-spiked Duplicates	20	75-125		<i>"</i>
	Accuracy - Matrix-spiked Samples	••	75 105	0.7	0.4
Aluminum		20	75-125	8.7	94
Antimony		20	75-125	4.7	83
Barium		20	75-125 75-126	6.0	84
Beryllium		20	75-125	4.6	81
Boron		20	75-125	28Q	91
Chromium		20	75-125	5.7	82
Cobalt		20	75-125	5.6	78 87
Copper		20	75-125	5.1	87
Manganese		20	75-125	15	79 70
Molybdenum		20	75-125	5.1	79
Nickel		20	75-125	5.0	79
Vanadium		20	75-125	5.6	84

Table D-2 (Continued)

		Objectives		Measured	
Measurement Parameter	How Measured	Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)	Accuracy (% Recovery)
Metals in ESP Fly Ash - ICP-AES	Precision - Matrix-spiked Duplicates Accuracy - Matrix-spiked Samples				
Aluminum		20	75-125	16	78
Antimony		20	75-125	8.4	91
Barium		20	75-125	10.2	85
Beryllium		20	75-125	1.8	92
Chromium	•	20	75-125	1.7	94
Cobalt		20	75-125	1.8	93
Copper		20	75-125	2.4	95
Manganese		20	75-125	2.5	92
Molybdenum		20	75-125	4.5	84
Nickel		20	75-125	5.2	96
Vanadium	B W	20	75-125	2.8	94
Metals in Aqueous Process Streams - ICP-AES	Precision - Matrix-spiked Duplicates Accuracy - Matrix-spiked Samples				
Aluminum	•	20	75-125	4.4	96
Antimony		20	75-125	16	. 87
Barium		20	75-125	7.6	× 99
Beryllium		20	75-125	4.4	92
Boron		20	75-125	1.0	96
Chromium		20	75-125	4.9	92
Cobalt		20	75-125	4.6	89
Copper		20	75-125	4.0	96
Manganese		20	75-125	4.5	92
Molybdenum	•	20	75-125	4.8	89
Nickel		20	75-125	7.3	90
Vanadium		20	75-125	3.6	95
Metals in Aqueous Process Streams - ICP-AES	Precision - NA Accuracy - Performance Audit Samples (2 concentrations)				
Antimony	(2 concentations)	20	75-125		127Q/82
Beryllium		20	75-125		99/93
Calcium	,	20	75-125		169Q
Chromium		20	75-125		94/97
Cobalt		20	75-125		100/87
Copper		20	75-125		96/110
Iron		20	75-125		103/139Q
Magnesium		20	75-125		131Q
Manganese		20	75-125		96/95
Molybdenum		20	75-125		98/114
Nickel		20	75-125		104/111
Titanium		20	75-125		98
Vanadium		20	75-125		96/104
Zinc		20	75-125		99
Metals in Gas Vapor Phase - GFAAS and CVAAS	Precision - Matrix spiked Duplicates Accuracy - Matrix Spiked Samples				
Arsenic	· · · · · · · · · · · · · · · · · · ·	20	75-125	4.0	100
Cadmium		20	75-125	<1	114
Lead		20	75-125	45Q	84
Mercury		20	75-125	1.3	98
Selenium	·	20	75-125	94Q	0
Metals in Gas Solid Phase - CVAAS	Precision - Matrix spiked Duplicates Accuracy - Matrix Spiked Samples			-	
Mercury		20	75-125	1.0	128Q
Metals in Gas Vapor Phase - CVAAS	Precision - NA			•••	
Mercury (KMnO ₄ Impinger Solution)	Accuracy - Performance Audit Samples	20	75-125		33Q

Table D-2 (Continued)

		Objectives		Measured	
Measurement Parameter	How Measured	Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)	Accuracy (% Recovery)
Metals in Process Solid Streams - GFAAS and CVAAS	Precision - Matrix spiked Duplicates Accuracy - Matrix Spiked Samples				
Arsenic		20	75-125	<1	104
Cadmium		20	75-125	8.8	110
Lead		20	75-125	1.2	86
Mercury		20	75-125	2.6	107
Selenium		20	75-125	25.3Q	103
Metals in Solid Phase - GFAAS and	Precision - NA				
CVAAS	Accuracy - Standard reference material (NIST 1633a Fly Ash)				
Arsenic		20	75-125		NA
Cadmium		20	75-125		NA
Lead		20	75-125		NA
Mercury		20	75-125		119
Selenium		20	75-125		NA
Metals in Aqueous Process Streams -	Precision - Matrix Spiked Duplicates				
GFAAS and CVAAS	Accuracy - Matrix Spiked Samples				
Arsenic		20	75-125	4.2	99
Cadmium		20	75-125	2.2	108
Lead		20	75-125	12	76
Mercury		20	75-125	24.6Q	35Q
Selenium		20	75-125	41.2Q	76.4
Metals in Aqueous Process Streams -	Precision - NA				
GFAAS and CVAAS	Accuracy - Performance Audit Samples (2 concentrations)				
Arsenic	·	20	75-125		94/100
Cadmium		20	75-125		93/100
Lead		20	75-125		99/96
Selenium		20	75-125		96/50
Metals in Gas Vapor - ICP/MS	Precision - NA				
(HNO ₃ /H ₂ O ₂ Impinger Solution)	Accuracy - Performance Audit Samples				
Antimony		NA	NA		89
Arsenic		NA	NA		109
Beryllium		NA	NA		98
Cadmium		NA	NA		97
Chromium		NA	NA		97
Cobalt		NA	NA		88
Copper		NA	NA		83
Lead		NA	NA		87
Manganese		NA	NA		97
Molybdenum		NA	NA		94
Nickel		NA	NA		90
Selenium		NA	NA		106
Vanadium		NA	NA		93

TO SECURE OF A SECURE OF SECURE OF SECURE OF SECURITIES OF

Table D-2 (Continued)

Gratric fluid leachate Accuracy - Matrix-spiked samples 20			Objectives		Measured	
Nitrio seid digestate) Accuracy - Matrix-Spiked Samples Ansimony Ansenic 20 75-125 434Q 118 Baryllium 20 75-125 5.8 94 Baryllium 20 75-125 5.8 94 Chromium 20 75-125 0 94 Chromium 20 75-125 0 94 Chromium 20 75-125 0 94 Chromium 20 75-125 7.7 100 Copper 20 75-125 7.7 100 Copper 20 75-125 1.6 83 Manganese 40 75-125 1.6	Measurement Parameter	How Measured				•
Antimony Anseaic Barium Barium Barium Description Desc		Precision - Duplicate Analysis				
Arsenic		Accuracy - Matrix-Spiked Samples				
Arsenie Barium Barium 20 75-125 434Q 1118 Beryllium 20 75-125 11 108 Cadmium 20 75-125 11 108 Cadmium 20 75-125 11 108 Cadmium 20 75-125 9, 4 98 Chronium 20 75-125 9, 4 98 Cobalt 20 75-125 17, 7 100 Copper 20 75-125 1, 6 83 Manganese 40 75-125 1, 6 83 Manganese 40 75-125 1, 6 83 Manganese 40 75-125 NC 852Q Molybdenum 40 20 75-125 1, 6 83 Margunese 40 75-125 NC 852Q Molybdenum 40 20 75-125 1, 6 83 Margunese 40 75-125 NC 852Q Molybdenum 40 20 75-125 1, 6 83 Margunese 40 75-125 1, 6 83 Margunese 40 75-125 NC 852Q Molybdenum 40 20 75-125 1, 6 83 Margunese 40 75-125 1, 7 83 Margunese 40 7			20	NA	400	NA
Beryllium			20	75-125	•	
Cadmium			20	75-125	-	94
Chromitum	-		20	75-125	11	108
Cobalt			20	75-125	0	94
Copper			20	75-125	9.4	98
Laed			20	75-125	7.7	100
Manganase			20	75-125	19	100
Marganese			20	75-125	1.6	83
Molybdenum	_		20	75-125	9.6	
Molyodealum	•		20	75-125	NC	
Nickel 20	-		20	NA	12	•
Selenium			20	75-125	13	
Vanadium			20	75-125		
Extractable Metals - ICP/MS (Gastric fluid leachate) Accuracy - Matrix-spiked samples 20 NA 6.5 NA Arsenic 20 75-125 NC 0Q Barlium 20 75-125 NC 12 79 Cadmium 20 75-125 12 79 Cadmium 20 75-125 12 79 Cadmium 20 75-125 12 79 Cadmium 20 75-125 12 79 Cadmium 20 75-125 12 79 Cadmium 20 75-125 12 79 Cadmium 20 75-125 12 79 Cadmium 20 75-125 12 79 Chromium 20 75-125 12 79 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 107 Chromium 20 75-125 12 70 12 70 Chromium 20 75-125 12 70 12 70 Chromium 20 75-125 12 70 12 70 Chromium 20 75-125 12 70 Chro	Vanadium		20	75-125	-	-
Gastrie fluid leschate Accuracy - Matrix-spiked samples	Extractable Metals - ICP/MS	Precision - Duplicate analysis				•••
Antimony Antimony Antimony Antinony Ant	(Gastric fluid leachate)	Accuracy - Matrix-sniked samples				
Arsenic 20 75-125 NC 0Q Barbins 20 75-125 NC 0Q Barbins 20 75-125 1.5 85 NC 10Q Seryllium 20 75-125 1.5 85 NC 10Q Seryllium 20 75-125 1.5 85 NC 10Q Seryllium 20 75-125 1.5 85 NC 10Q Seryllium 20 75-125 1.7 9 Cadmium 20 75-125 2.7 Q 107 Chromium 20 75-125 2.7 Q 107 Chromium 20 75-125 3.4 92 Copper 20 75-125 3.4 92 Copper 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Manganese 20 75-125 MA 10 NA NA NA NA NA NA NA NA NA NA NA NA NA	Antimony	y include opinou bumpios	20	NI A		** *
Barlum	Arsenic					
Beryllium	Barium					
Cadmium	Beryllium					
Chromium	Cadmium					
Cobalt 20 75-125 3.4 92 Copper 20 75-125 14 92 Lead 20 75-125 3.2 97 Manganese 20 75-125 3.2 97 Mercury 20 75-125 3.2 71Q Mercury 20 75-125 3.2 71Q Molybdenum 20 75-125 3.7 81 Nickel 20 75-125 3.7 81 Selenium 20 75-125 NC 0Q Metals in Gas Solid Phase - GDMS Precision - NA Accuracy - Standard Reference Material NA NA NA NA NC 0Q Metals in Gas Solid Phase - GDMS Precision - NA Accuracy - Standard Reference Material NA NA NA NC NA NA NA NC NC NA NA NA NA NC NC NC NC NA NA NA NA NA NA	Chromium				•	
Copper	Cobalt					
Lead	Copper					
Manganese						
Mercury						
Molybdenum 20						-
Nickel Selenium Selenium Vanadium Metals in Gas Solid Phase - GDMS Precision - NA Accuracy - Standard Reference Material Aluminum (NIST 1633a Fly Ash) Reryllium Selenium Resyllium Calcium NA NA NA NA NA NA NA NA NA NA NA NA NA	•				-	
Selenium	Nickel					
Vanadium	· · · · · · · · · · · · · · · · · · ·	•				
Metals in Gas Solid Phase - GDMS						
Accuracy - Standard Reference Material Antimony Antimony Antimony Barium NA NA NA NA NC Beryllium Calcium NA NA NA NA NC Calcium NA NA NA NA NC Calcium NA NA NA NA NC Cobalt NA NA NA NA TOQ Cobper NA NA NA NA NA NC Corper NA NA NA NA NC Corper NA NA NA NA NC Corper NA NA NA NA NC Corper NA NA NA NA NA NC Corper NA NA NA NA NA NC Corper NA NA NA NA NA NA NC Corper NA NA NA NA NA NA NA NA NA NA NA NA NA N			20	75-125	NC	0Q
Antimony Antimony Antimony Barium Bar	Aluminum	Accuracy - Standard Reference Material				
Barium NA NA NC Beryllium NA NA NA 357Q Calcium NA NA NA NC Chromium NA NA NA NA 70Q Cobalt NA NA NA 140Q Copper NA NA NA NC ron NA NA NA NA Magnesium NA NA NA 79 Manganese NA NA NA 120 Potassium NA NA NA 119 Silicon NA NA NA 111 Sodium NA NA NA 111 Stronium	Antimony	(**************************************	NIA	NT A		1000
Seryllium	Barium					•
Calcium NA NA NC Chromium NA NA NA 70Q Cobalt NA NA NA 140Q Copper NA NA NA NC ron NA NA NA 203Q Magnesium NA NA NA 79 Manganese NA NA NA 120 Potassium NA NA NA 119 Silicon NA NA NA 115 Sodium NA NA NA 111 Strontium NA NA NA 39Q Titanium NA NA NA 131Q Janadium NA NA NA 141Q	Beryllium					
NA NA NA 140Q	Calcium					
Cobalt NA NA 140Q Copper NA NA NA ron NA NA NA Magnesium NA NA NA Manganese NA NA 120 Potassium NA NA 120 Votassium NA NA 119 Silicon NA NA 115 Sidioum NA NA 111 Strontium NA NA 131Q Vanadium NA NA NA 131Q Line NA NA NA 141Q	Chromium					
NA NA NA NA NA NA NA NA NA NA NA NA NA	Cobalt					
NA	Copper					
Magnesium NA NA 203Q Manganese NA NA NA 79 Manganese NA NA NA 120 Potassium NA NA NA 119 Sickel NA NA NA 115 Godium NA NA NA 111 Strontium NA NA NA 39Q Sitanium NA NA NA 131Q Janadium NA NA NA 141Q	Iron					
Manganese Potassium NA NA 120 Potassium NA NA NA 58Q Nickel NA NA NA 119 Silicon NA NA NA 115 Sodium NA NA NA 111 Strontium NA NA NA 39Q Vanadium NA NA NA 320Q Vanadium NA NA NA 131Q Cinc NA NA NA 141Q						
NA						
NA NA 58Q NICKEI NA NA 119 Silicon NA NA 115 Sodium NA NA 111 Strontium NA NA 39Q Sitanium NA NA NA 320Q Vanadium NA NA NA 131Q Linc NA NA NA 141Q	_					
Silicon NA NA 119 Sodium NA NA 115 Strontium NA NA 111 Strontium NA NA 39Q Stanium NA NA NA 320Q Vanadium NA NA NA 131Q Line NA NA NA 141Q	Nickel					
Sodium NA NA 115 Strontium NA NA 111 Strontium NA NA 39Q Sitanium NA NA NA 320Q Vanadium NA NA NA 131Q Sinc NA NA NA 141Q						
Strontium NA NA 111 Strontium NA NA 39Q Sitanium NA NA 320Q Vanadium NA NA NA 131Q Line NA NA NA 141Q	Sodium					
Sitanium NA NA 39Q Vanadium NA NA NA 131Q Sinc NA NA NA 141Q						
Vanadium NA NA 320Q Vanadium NA NA 131Q Vinc NA NA NA 141Q						
Zine NA NA 131Q NA NA 141Q						320Q
NA NA 141Q						131Q
						
NA NA 129Q			NA	NA		129Q

Table D-2 (Continued)

		Objectives		Measured	
Measurement Parameter	How Measured	Precision (% RPD)	Accuracy (% Recovery)	Precision (% RPD)	Accuracy (% Recovery)
Anions in Aqueous Process Streams -	Precision - NA				
	Accuracy - Performance Audit Samples				
Chloride		20	80-120		0Q
Fluoride		20	80-120		39Q
Sulfate		20	75-125		350Q
Anions in Gas Vapor Phase -	Precision - Matrix spiked Duplicates				
	Accuracy - Matrix Spiked Samples				
Chloride		20	80-120	9.7	100
Fluoride	•	20	80-120	1.9	107
Anions in Process Solid Streams	Precision - Matrix spiked Duplicates				
	Accuracy - Matrix Spiked Samples				
Chloride		20	80-120	<1	95
Fluoride		20	80-120	3.5	70
Anions in Aqueous Process Streams	Precision - Matrix spiked Duplicates Accuracy - Matrix Spiked Samples				
Chloride		20	80-120	3.6	111
Fluoride		20	80-120	1.6	101
Sulfate		20	75-125	1.5	97
Ammonia in Gas Vapor Phase by 350.2	Precision - Matrix spiked Duplicates Accuracy - Performance Audit Standard				
Ammonia		20	80-120	390	63Q
Ammonia in Aqueous Streams by 350.1	Precision - Matrix spiked Duplicates Accuracy - Performance Audit Standard				
Ammonia	•	20	80-120	60Q	88
Cyanide in Gas Vapor Phase by 335.2	Precision - Matrix spiked Duplicates Accuracy - Performance Audit Standard				
Cyanide	,	20	75-125	16	50
Cyanide in Aqueous Streams by 335.2	Precision - Matrix spiked Duplicates Accuracy - Performance Audit Standard				
Cyanide		20	75-125	13	80
Phosphate in Aqueous Streams by 365.2	Precision - Matrix spiked Duplicates Accuracy - Performance Audit Standard				•
Phosphate	-	20	75-125	6.1	97

医原性 医环状 人

NA = Not applicable.

NC = Not calculated.

Q = Outside project QC objectives.

Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. The representativeness criterion is based on making certain that the sampling locations are properly selected and that a sufficient number of samples are collected.

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another. Sampling data should be comparable with other measurement data for similar samples under similar conditions. This goal is achieved using standard techniques to collect and analyze representative samples and by reporting results in appropriate units. Data sets can be compared with confidence when the precision and accuracy is known.

Completeness is an expression of the number of valid measurements obtained compared with the number planned for a given study. The goal is to generate a sufficient amount of valid data.

Semivolatile Organics

Precision. The precision of the semivolatile organic analyses was estimated using matrix spiked duplicate pairs. The precision was met for all of the gas-phase solid samples, the gas vapor-phase samples, the solid stream samples, and aqueous-phase sample streams. The precision estimates are summarized for each stream in Table D-2.

Accuracy. The accuracy of the semivolatile analyses was estimated using matrix spiked duplicate samples. All of the spiked compounds analyzed in the gas solid-phase samples and the aqueous process streams were within the accuracy objectives. Matrix spikes into the solid process streams were all within the recovery objects for all analytes in the FGD solid stream and all the except pyrene in the ESP ash solids. Recovery for pyrene was 51% and 56% (project objective--52-115%) for the ESP ash sample and 48% and 37% for the ESP ash field duplicate.

Blank Effects. Acetophenone and benzoic acid were found in one or more of the field blanks associated with the gas-phase solids analyses. The concentrations of these compounds in the blanks, however, were not significant in comparison to the concentrations found in the samples. Several phthalates were also found in the field blanks. The concentrations found in the samples were about the same level as found in the blanks and are therefore considered an artifact of the sampling and handling process.

Volatile Organics

Precision. Precision for volatile organic analysis of the aqueous process streams was estimated using matrix spiked duplicate samples. The 50% precision objectives were met for each of the volatile analytes used for the matrix spikes.

Accuracy. Accuracy for the volatile organic analyses in the aqueous process streams was estimated using matrix spiked samples and accuracy for the gas vapor-phase streams was estimated using surrogates spiked into each sample prior to analysis. The accuracy objectives for recoveries ranging from 0.1% to 234% were met for all analytes of interest (actual recoveries ranged from 70-136%) for the aqueous streams. Accuracy objectives for surrogate recoveries of 70 to 130% for the gas-phase streams were met for all samples except for toluene-d8 in one stack sample. Accuracy based on the analysis of two laboratory method spikes met the recovery objectives for all analytes of interest except for one acetone, chloromethane, chloroethane, and methylene chloride spike.

Blank Effects. Chloromethane, methylene chloride, and tetrachloroethene were found in one or more of the field gas vapor-phase blank samples. In most cases these compounds were found in the investigative field samples at about the same level as in the field blank or at lower concentrations. The sampling, handling, and transport from the field may have contributed this observed contamination. Chloromethane and methylene chloride were also found in one laboratory blank.

Aldehydes

Precision. Precision for the aldehyde analyses was estimated using duplicate sample analyses. The precision objectives of 50% were met for both formaldehyde and acetaldehyde in the gas vapor-phase samples and the aqueous process stream sample analyses.

Accuracy. Accuracy for the aldehydes was estimated using matrix spiked samples. The project accuracy objectives of recoveries of 50-150% were met for the gas vapor-phase and aqueous stream sample spikes for both formaldehyde and acetaldehyde.

Blank Effects. Formaldehyde and acetaldehyde were found in concentrations (3.8-8.2 μ g, formaldehyde; 2.7-8.6 μ g, acetaldehyde) above the reporting limits in the field blanks to the gas vapor-phase sampling train. Low levels (within 3 times the detection limit) of these analytes were also found in two of the four laboratory (method) blanks but were not found in the trip blanks.

Metals

Precision. The precision of metals analyses by ICP-AES, GFAAS, and CVAAS was estimated for samples using matrix-spiked duplicate samples. The precision objectives (RPD <20%) were met for all target analytes analyzed by ICP-AES except aluminum and barium in the gas solid-phase spiked samples and boron in the process solid-spiked samples. The precision objectives for the GFAAS analyses were met except for lead in the gas vapor-phase matrix-spiked samples, selenium in the process solid matrix-spiked samples, and mercury and selenium in the aqueous process stream matrix spikes. In most of these cases, the concentrations of the analytes of interest were within 10 times the detection limit where the precision would not be expected as good or the spiked amount was low (<4 times) the amount found in the original sample.

Accuracy. The accuracy of metals analyses was estimated for the gas solid-phase samples using standard reference material (NIST 1633a fly ash) submitted blind to the laboratory as a performance audit sample. All of the metals analyzed by ICP-AES were within the 75-125% accuracy objectives except for beryllium (147%) which was recovered above the objectives. The fly ash (NIST 1633a) reference standard was also submitted for GDMS analysis. The results for this analysis are shown in Table D-2. Accuracy objectives were not assigned to the GDMS analyses since this technique has not been validated or widely used for these types of samples at the present time. However, the recoveries have been compared to the accuracy objectives for ICP-AES and flagged with a Q when outside the QC objectives.

The accuracy of the metals analyses was estimated for coal samples using a standard reference coal sample (NIST 1632b) submitted blind to the laboratory. All of the metals analyzed by INAA in the reference sample were within the 75-125% accuracy objective.

The accuracy of the metals analyses was estimated for the limestone samples using a standard reference limestone (NIST Limestone 1C) submitted blind to the laboratory. The results show that the recoveries for most of the metals were outside the 75-125% accuracy objectives. Aluminum, silicon, and sodium recoveries were 50%, and the recovery for potassium was greater than 200 percent. The recoveries of these analytes may show a similar bias in the limestone process streams.

The accuracy of the metals analyses for the gas vapor-phase samples and the aqueous process streams were estimated using performance audit samples prepared from EPA reference standards. The gas-phase audit sample was prepared in the solutions used for the impingers (multi-metals train) and the two aqueous-phase samples were prepared in HPLC grade water. The results show that the recoveries of all the metals analyzed by ICP-AES and GFAAS were within the 75-125% accuracy objectives except Sb (127%), Ca (169%), Fe (139%), and Mg (131%) by ICP-AES and Se (50%) and Hg (33%) by GFAAS. The concentrations of these elements in the samples were at or near the detection limit and are not expected to be as accurate as concentrations at higher levels (at least 10 times the detection limit). The gas-phase audit sample prepared in the HNO₃/H₂O₂ impinger solution was also analyzed by ICP/MS. The results for this analysis showed recoveries ranging from 83 to 109%, all within the accuracy objectives for ICP-AES (accuracy objectives were not assigned for ICP/MS).

Matrix-spiked samples were also used to determine the accuracy of the metals analyses in the gas, process solids, and aqueous process matrices. Recoveries for the target analytes were within the 75-125% accuracy objectives except for selenium (0% recovery) in the gas vaporphase matrix mercury (35% recovery) in the aqueous process stream matrix.

Blank Effects. Aluminum, iron, manganese, and nickel were found at concentrations above the reporting limits in the field blanks to the gas vapor-phase sampling train. These elements were also found to a lesser extent in the impinger reagent blank solutions. Field blank filters combined with probe/nozzle rinses were also analyzed to determine the contribution of the filter media to the gas solid-phase components. Background or blank correction was

performed for the gas-phase samples using the results of the analysis of the impinger reagent blanks and the blank filter media.

Anions

Precision. Precision for the anions analyses was estimated for the gas vapor-phase samples, process solid streams, and aqueous process streams by the analysis of matrix spiked samples. The precision objectives of 20% were met for chloride, fluoride, and sulfate except for chloride and sulfate in one matrix spike pair from the stack with RPDs of 22% and 24%, respectively.

Accuracy. Accuracy for the anions analyses was estimated using matrix spiked duplicate samples. The accuracy objectives of 80-120% recovery were met for all analytes and all sample matrices except for the fluoride spikes into the ESP ash solid samples with recoveries of 56% and 60 percent. A performance audit sample was submitted for analysis of the target anions in an aqueous matrix. The recoveries for this sample were outside the accuracy objectives for all three analytes. This sample was prepared with each analyte concentration at the MDL; therefore, no corrective action was initiated.

Cyanide, Ammonia, and Phosphate

Precision. Precision for the cyanide, ammonia, and phosphate analyses was estimated using matrix spiked duplicate sample analyses. The precision objectives of 20% were met for each of the analytes for both the gas vapor-phase and aqueous process streams except for ammonia spikes into the JBR process liquids. The spike concentration was too low in comparison to the level found in the native process sample.

Accuracy. Accuracy for ammonia, cyanide and phosphate was estimated using both matrix spiked duplicate samples and "double blind" performance audit samples. The accuracy objectives (cyanide, 75-125%; ammonia, 80-120%; phosphate, 75-125%) were met for all matrix spiked samples except for the ammonia spikes into the JBR process liquids with recoveries at 60 and 273 percent. Recoveries for the performance audit samples met the accuracy objectives for all analytes with recoveries of 88% for ammonia, 80% for cyanide, and 97% for phosphate. Recoveries for performance audit samples spiked into the gas vapor-phase impinger solutions were not as good as the aqueous spiked audit samples. The recovery for ammonia in the impinger solutions was 63% and the recovery for cyanide was 50 percent. The aqueous spikes and impinger spikes were performed using the same spiking solutions and were spiked at the same concentration levels.

Performance Evaluation Audit Samples

Performance audit samples are samples of known composition which provide a point-in-time assessment of analytical performance. Audit samples were prepared for this study by spiking known concentrations of target analytes from EPA Quality Control Check material, vendor-certified standard material, or standards obtained from NIST (formerly NBS). Audit samples are similar to QCCS except that they are submitted "double blind" to the analytical laboratory. That is, the laboratory does not know the identity or composition of the audit samples.

Audit samples were prepared at concentration levels simulating the expected range of the analytes in the field samples when possible. Organic audit samples were not prepared because the laboratories performing organic analyses have consistently shown acceptable performance on surrogate recoveries and internal quality control samples. Results for these samples are shown in Table D-2.

Quality Assurance Audits

The purpose of a quality assurance audit is to provide an objective, independent assessment of a sampling or measurement effort. It ensures that the sampling procedures, data generating, data gathering, and measurement activities produce reliable and useful results. Sometimes inadequacies are identified in the sampling/measurement system and/or the quality control program. In such cases, audits provide the mechanism for implementing corrective action.

A technical systems audit (TSA) is an on-site, qualitative review of the various aspects of a total sampling and/or analytical system. It is an assessment of overall effectiveness and represents a subjective evaluation of a set of interactive systems with respect to strengths, deficiencies, and potential areas of concern. The audit consists of observations and documentation of all aspects of the measurement effort. Checklists that delineate the critical aspects of each methodology are used by the Radian auditor during the audit to document all observations. In addition to evaluating sampling and analytical procedures and techniques, the systems audit emphasizes review of all recordkeeping and data handling systems including:

- Calibration documentation for analytical instrumentation and sampling apparatus;
- Documentation of quality control data (control charts, etc.);
- Completeness of data forms and notebooks;
- Data review and validation procedures;
- Sample logging procedures;
- Chain-of-custody procedures;

- Documentation of maintenance; and
- Review of malfunction reporting procedures.

A technical systems audit of the Radian sampling and on-site analytical efforts was conducted on June 23 - 25, 1993 at Plant Yates by Barbara Hayes, a member of Radian's Quality Assurance Section. No critical or major concerns were observed during the audit; therefore, no Recommendations for Corrective Action (RCAs) were made. The sampling team was led by Dave Virbick and the analytical team was led by David Maxwell. The sampling team appeared well versed in the sampling methodology and requirements of the program. The equipment and instrumentation were generally in good working condition. All sampling and measurement procedures conformed to those described in the site Management Plan. Sampling information and any problems encountered were recorded onto preformatted data sheets or into bound laboratory notebooks. Duplicate samples were collected for the solid and aqueous streams at a rate of ten percent or one duplicate set per sample type (bottom ash, fly ash, etc.).

Sample collection procedures used by the sampling team followed those outlined in the site test plan. A detailed sampling schedule was used by the team to guide the collection of the samples for each analytical species at each sampling point.

No problems were identified with the sample custody procedures or documentation. A detailed master logbook was prepared prior to the field effort for all samples to be collected during each sampling period. This log was updated as the various samples were collected with the actual dates and times of sample collection. Samples were labelled with preformatted sample labels and stored at ambient temperature or cooled as required by the analytical species. Chain-of-custody forms were filled out and the samples were prepared for shipment to the laboratories for analysis.

Calibration of all on-site equipment was checked and found to be up-to-date. The analytical balance and top loading balance in the on-site laboratory trailer had been calibrated and certified within the past year. In addition, certified weights were available for daily balance checkout. All dry gas meters, consoles, Pitot tubes, and nozzles had been calibrated in the Radian Source Sampling Laboratory prior to being transported to the field location. Documentation for each of the observed instruments and equipment in use could be found in the records maintained by the sampling crew chief in the on-site laboratory. Sufficient replacement units were on hand to allow for breakage or equipment malfunction.

Recordkeeping practices by the project team were observed to be sound. Entries were made onto preformatted data sheets in ink, without erasures, signed and the time noted as each sample was collected.

Coal Round Robin

An interlaboratory study consisting of a coal round robin analysis was conducted by CONSOL, Inc. The objective of this round robin study was to estimate the analytical

Appendix D: Quality Assurance/Quality Control

variability one can expect on trace element analyses when comparing results from the same laboratory or results from two or more laboratories. The results of CONSOL's study is contained in the document entitled "Interlaboratory Variability and Accuracy of Coal Analyses in the U.S. Department of Energy Utility Air Toxics Assessment Program," which follows this section. The results from Radian's laboratory are designated as "Lab III" in the above referenced document. Radian's objectives in assessing this data are (1) to compare Radian's round robin results with the overall results of the study, and (2) based on this assessment, determine if a change in any of the analytical methods for Phase II should be made.

The analytical accuracy for each laboratory involved in the round robin study was measured by a comparative analysis of a standard reference material (SRM) coal sample (NIST 1632b). Each laboratory's analytical results for the standard reference material were compared to the certified or informational (non-certified) values. The round robin criteria for accurate results was 90-110% recovery of the SRM's certified value. (This is more stringent than the 80-120% recovery objective established for the program at Plant Yates). The following discussion addresses the performance of Radian's subcontracted coal laboratories with respect to the accuracy and precision assessments conducted by CONSOL on the NIST SRM.

Discussion of Results

The results of Radian's analysis of the SRM and the SRM-certified values are shown in Table D-3. Accuracy and precision objectives for the SRM coal in the round robin study were met by Radian for all ultimate and proximate parameters (% ash, C, H, N, S, and HHV) with the exception of one sulfur analysis which was reported outside the objective range for accuracy and precision. The methods used for ultimate, proximate, and HHV analyses are current ASTM protocols and are consistent with the methods used by most of the other laboratories. No change in the analytical approach for Phase II of this project is warranted.

Major ash minerals were primarily determined by instrumental neutron activation analysis (INAA). Silicon dioxide (SiO₂) and sulfur trioxide (SO₃) were not reported for the Plant Yates or the round robin study. The accuracy and precision objectives were met for all major ash minerals reported except calcium, magnesium and potassium. For future work, other ASTM methods (ASTM D-4326 or alternate) should be used to improve analytical bias and precision for these elements. This is especially important where these major elements are considered key factors in assessing mass flow rates in material balance closures.

Radian analyzed most of the trace elements in coal by INAA. Other methods of analysis using different preparation techniques were performed for As, B, Be, Cd, F, Hg, Pb, and Se. Of the target trace elements, 82% were detected. Cadmium, copper, and nickel were not detected. The results for copper and nickel are surprising, since this same SRM (1632b) was used as an internal audit sample during the Plant Yates study, and recovery by the same method (INAA) was 99% for both elements. Cadmium was determined by ICP-AES and this technique does not have the sensitivity to detect cadmium at the levels present in the SRM. Analysis of cadmium by graphite furnace-AA will be specified in Phase II of this project.

The accuracy objectives of the round robin study were met for 50% of the detected trace elements. Elements meeting accuracy objectives were barium, chromium, cobalt, and vanadium. Certified values for boron, beryllium, fluorine, and mercury are not available for this SRM, so no accuracy measurements were performed for these elements in the round robin report. However, the results for these noncertified elements appear consistent with those from the other laboratories. Elements that did not meet the 90-110% recovery range were arsenic, cobalt (1 result), manganese, molybdenum, lead, antimony, and selenium. (Antimony, manganese and molybdenum SRM recovery values obtained during the Plant Yates study were well within the 90-110% objective of the round robin study. See Table D-2.)

One of the requirements of the round robin study was to report analytical results for the target analytes that were determined by the same methods used to report plant coal sample results. For the Yates project (and the coal round robin study), Radian performed multiple techniques for some elements (i.e., INAA vs. GFAA or ICP-AES) to provide comparative results, especially where questionable results by any one technique had been previously encountered. Performance evaluation (PE) audit samples (SRMs) were submitted for analysis by each method and the accuracy and precision were assessed before selecting the best qualified data for reporting and for use in material balance calculations.

Comments

One of the conclusions evident from the round robin study is that there is a high degree of variability and repeatability between methods, laboratories, and duplicate results for trace elements. Evidence of the variability in trace element analyses can be shown, for example, with neutron activation analysis where unacceptable results were reported for the analysis of the NIST SRM in the round robin study, but the same technique produced 90-110% recovery for the same elements in the NIST 1632b standard reference coal submitted as an audit sample during this project. This suggests that the performance of some techniques, like INAA, may vary substantially between repeated analysis and analytical batches. Neutron activation appears to be a cost effective analytical technique; however, as with all analytical techniques, the results must be evaluated on a case-by-case basis.

Although the round robin analysis is useful for indicating problematic methods and poor quality control, the project-specific quality control activities should be used for assessing the accuracy and precision of the coal analyses performed at each site.

Table D-3 Radian Lab analysis of Standard Reference Coal, 1632b

Parameter	Certified Value	Analytical Method	Average % Recovery	Run 1	Run 2
Ulitmate/Proxin	nate (% Dry Basis)				
Ash	6.80	D 3174	99.6	6.78	6.77
Carbon	78.11	D 5373	99.4	77.74	77.52
Hydrogen	5.07	D 5373	101.2	5.14	5.12
Nitrogen	1.56	D 5373	97.1	1.54	1.49
Sulfur	1.89	D 4239	140.7	1.93	3.39ª
Chlorine	0.126	D 4208	84.5	0.107	0.106
ВТИ/Љ	13,890	D 2015	99.2	13,767	13,797
Major Ash Mine	erals				
SiO ₂	44.03				
Al_2O_3	23.75	INAA	98.5	24.37	22.43
TiO ₂	1.11	INÀA	92.8	0.97	1.09
Fe ₂ O ₃	15.96	INAA	91.7	14.24	15.04
CaO.	4.2	INAA	53.5	2.3ª	2.19ª
MgO	0.93	INAA	80.1	0.77	0.72 ^a
Na ₂ O	1.02	INAA	85.3	0.87	0.87
K ₂ O	1.33	INAA	74.1	1.07ª	0.9ª
P_2O_5		ICP-AES		0.36	0.39
SO ₃				~~	

Table D-3 (Continued)

Parameter	Certified Value	Analytical Method	Average % Recovery	Run 1	Run 2
_					
Trace Elements					
As	3.72	GF/AA	53.8	2 ^b	2 ^b
В		ICP-AES		61	60
Ba	67.5	INAA	106.6	71.2	72.7
Ве		ICP-AES		0.6	0.6
Cd	0.0573	ICP-AES		<0.2	<0.2
Cr	11 ^d	INAA	96.4	11	10.2
Co	2.29	INAA	89.5	2.09	2.01°
Cu	6.28	INAA		<35.3	<35.7
F		D 3761		40	40
Hg		DGA/CVAA		0.05	0.05
Mn	12.4	INAA	86.3	10.8°	10.6°
Мо	0.9 ^d	INAA	191.7	1.55 ^b	1.9 ^b
Ni	6.1	INAA	145.1	<8.8	< 8.9
Pb	3.67	ICP-AES	81.7	3°	3°
Sb	0.24 ^d	INAA	81.3	0.196°	0.194°
Se	1.29	GF/AA	77.5	1°	1°
v	14ª	INAA	101.1	14.2	14.1
					- ··· -

^{*} Results exceed ASTM reproducibility limits.

^b Results exceed certified values by more than 25 percent.

e Results exceed certified values by more than 10 percent.

^d Informational value (not certified).

的复数数量的影響				to and in the section	مرادد مستداريك
			•		
•					
		•			
	•				
	•				

Interlaboratory Variability and Accuracy of Coal Analyses in the U.S. Department of Energy Utility Air Toxics Assessment Program

Lawrence W. Rosendale
Matthew S. DeVito
CONSOL Inc.
Research and Development
4000 Brownsville Road
Library, PA 15129

INTRODUCTION

The 1990 Clean Air Act Amendments (CAAA) empower the Environmental Protection Agency to set emission standards for a variety of potentially hazardous air pollutants from combustion sources. In order to define emissions from coal combustion sources, the U.S. Department of Energy (DOE) is coordinating an air toxics assessment program to characterize stack emissions from coal-fired utility boilers of volatile and semi-volatile organics, metals and anions specified in Title III of the Clean Air Act Amendments of 1990. The information from the DOE study will enable the Environmental Protection Agency to properly classify coal-fired utility boilers with regard to the CAAA and evaluate the potential risk to human health posed by these types of emission sources.

The first phase of DOE study consisted of sampling eight power plants. These plants represented a diverse range of boiler configurations, emission controls, and coal feeds. Part of the sampling protocol at each of the sites was to collect representative samples of the feed coal to the boiler. By analyzing the feed coal as well as all gas, solid, and water effluent streams, a material balance around each site could be established. A material balance closure near 100% would indicate that sampling and analyses of all streams was handled properly, and reliable emission estimates could be calculated.

Five laboratories participated in analyzing samples that were collected at the eight test sites. As part of the DOE program, CONSOL R&D conducted a coal analysis round robin among these laboratories. The primary purpose of this study was to estimate the analytical variability one can expect on trace element analyses when comparing results from the same laboratory or results from two or more laboratories.

Trace elements in coal generally are defined as those elements that occur at concentrations of 100 parts per million (ppm) or less. Seventeen trace elements were included in this study. Thirteen of these elements are listed in the 1990 CAAA as hazardous air pollutants. Earlier studies have shown the interlaboratory variability of trace element analyses can be quite large. This analytical variability should be considered when determining the potential emissions from coal combustion sources.

The variability of other commonly measured coal quality parameters also was evaluated.

COAL SAMPLES

The coal samples used in the round robin study were supplied to CONSOL R&D by the prime contractor at each of the eight test sites. These were the same coals that were being fed to the boilers during the testing period at each site. The coals were geologically diverse and ranged from lignite to bituminous in rank. Once received, all sample reduction and preparation was according to ASTM D 2013 "Standard Method of Preparing Coal Samples for Analyses". A spinning riffle was used to divide the gross sample prepared from each coal into homogenous splits. This is the preferred method in the coal industry to divide a sample of coal into several samples having the same composition and is widely used in commercially sponsored coal analyses round robin programs.

ROUND ROBIN DESIGN

Each participating laboratory was provided duplicate samples of each of the eight coals, along with a sample of a National Institute for Standard and Technology (NIST) certified reference coal. The samples were randomized and were identified only by code letters. Each laboratory was requested to analyze the samples in duplicate using the same procedures used to analyze the samples from the DOE Air Toxics Assessment programs. By using this round robin design, intralaboratory repeatability and interlaboratory reproducibility, as well as individual laboratory precision, could be established. The suite of analyses included in this study is shown below:

Proximate-Ultimate	Proximate-Ultimate Major Ash Elements		Trace Elements		
Moisture	SiO ₂	As	Hg		
Ash	$Al_2 ilde{O}_3$	В	Mn		
Carbon	TiÕ ₂	Ba	Mo		
Hydrogen	Fe $_2$ Õ $_3$	Be	Ni		
Nitrogen	·CaO	Cd	Pb		
Sulfur	MgO	Cr	Sb		
Chlorine	Na ₂ O	Co	Se		
Heating Value (Btu/lb)	K₂Õ	Cu	V		
_	$P_2^{-}O_5$	F			
	K ₂ Õ P ₂ O ₅ SO ₃				

The average interlaboratory results for this suite of analyses for all eight samples are shown in Table 1. Individual laboratory results for all samples are presented in Appendix A. Samples identified as A&J and B&K are Illinois basin bituminous coals. Samples C&L, F&O, and H&Q are mid-sulfur bituminous coals. Sample D&M is a subbituminous coal from the Powder River basin. Sample G&P is also a subbituminous coal. Sample E&N is ranked as a lignite.

ANALYTICAL TECHNIQUES

The analytical techniques used by the participating laboratories to complete the suite of analysis in this study are shown in Table 2. No one parameter was measured by all laboratories by the same analytical technique. All of the labs used ASTM standard methods for the Proximate and Ultimate analyses. However, numerous techniques were used for the major ash and trace element analyses. The techniques included graphite furnace atomic absorption (GF/AA), inductively coupled plasma emission spectroscopy (ICP/ES), inductively coupled plasma mass spectroscopy (ICP/MS), instrumental neutron activation analyses (INAA), ion chromatography (IC), cold vapor atomic fluorescence (CV/AF), and X-ray fluorescence (XRF). Mercury was measured by gold amalgam cold vapor atomic absorption (GA/CVAA), double gold amalgam cold vapor atomic absorption (DGA/CVAA), and cold vapor atomic fluorescence (CV/AF). The techniques of AA, GF/AA, ICP/ES, ICP/MS, IC, and CVAA require that the analysis sample first be put into solution before being introduced into the instrument. INAA, XRF, GA/CVAA, and DGA/CVAA analyses can be performed on the whole coal or an ash sample of the coal.

ACCURACY

The accuracy of analyses performed by each laboratory was evaluated using the NIST Standard Reference Coal 1632b. This Pittsburgh seam coal is the most characterized standard reference material available from NIST. Certified or informational values are listed for all of the parameters included in this study except for boron, barium, fluorine, phosphorus, and mercury. For trace elements, all definitive results ("<" values ignored) that fell within 10% of the certified or informational value arbitrarily were considered accurate values. Values outside this range were considered to be inaccurate. ASTM interlaboratory reproducibility limits were the criteria for accuracy on all other analyses. Table 3 shows the results reported by the each laboratory for NIST SRM 1632b. Using the previously described criteria for accuracy, the percentage of accurate results (accurate results/total definitive results) was calculated. Parameters without a certified or informational value were not included.

The table below shows the percentage of accurate results reported by each lab for the suite of trace elements, the percentage of accurate results for all analyses, and the percentage of trace element results that were reported as definitive. Although lab IV showed the highest percentage of accurate results (75%), that figure is based on only the 80% of definitive results reported by that laboratory.

As shown in the table below, the percentage of accurate trace element analyses ranged from 38% to 75%. Non-definitive results reported for antimony, cadmium, copper, fluorine, molybdenum, nickel, and selenium. Only one laboratory reported definitive results for the entire suite of trace elements. The most troublesome elements, with respect to accuracy, were arsenic, cadmium, molybdenum, antimony, and selenium. Only one lab reported accurate results for cadmium, molybdenum or antimony.

The Proximate and Ultimate analyses reported by labs II, III, IV, and V were all within ASTM reproducibility limits except for a single sulfur analysis. Lab I reported results that exceeded ASTM reproducibility limits for hydrogen, nitrogen, sulfur chlorine and heating value. Two labs reported all major ash elements within ASTM limits. Lab I exceeded limits for silicon, iron, calcium, magnesium, and potassium. Lab III exceeded limits for calcium, magnesium, and potassium. Lab IV performed only a limited number of major ash element analyses, but reported results for aluminum and potassium that were outside established ASTM reproducibility limits.

% ACCURATE RESULTS ON NIST 1632b

Lab	Definitive Trace Element Results	Trace Elements	All Analyses
I	88	38	43
II	100	73	88
III	82	50	63
IV	80	75	80
V	100	48	78

REPRODUCIBILITY

The percent relative standard deviation (PRSD) of the analytical results was chosen to represent interlaboratory reproducibility in this study. Table 4 shows the average PRSD for all labs, on all samples, for the entire suite of analyses. Reproducibility for trace elements ranged from 11.0 PRSD for vanadium to 60.7 PRSD for molybdenum. The average PRSD for all of the trace elements (all coals, all labs) was 27.9%. In most cases the PRSDs for cadmium, copper and antimony are based on results from only three laboratories. These elements were either below detection limits at laboratories II and III or were not determined.

Excluding Lab I's results, Proximate and Ultimate analyses were generally within ASTM limits. Aside from the determination of percent ash this particular laboratory reported only a single sulfur analyses on the standard reference material that was within established ASTM limits. Chlorine, although not generally considered a trace element in coal, is listed in the 1990 CAAA as a hazardous air pollutant. It showed an average PRSD for all labs of 37.2 %. Three of the coals sampled in the study are ranked subbituminous or lignites. Chlorine on these samples (D&M, E&N, G&P) was reported as below detection limits (0.01 and 0.02%) by two laboratories and not determined by another laboratory. Therefore, the PRSD for these three samples was calculated with data from only two labs. The reproducibility estimates for chlorine may have been larger if more labs had reported data.

Major ash elements were determined with an average PRSD of 21.7%. This is only slightly better than the average PRSD of 27.9% for trace elements. Phosphorous, calcium, and magnesium had PRSDs greater than 35%. Including only labs II and V, the overall average PRSD for the major ash elements drops to 7%. These were the only labs that did not exceed ASTM limits on the certified reference material. Labs I and III showed a consistent low bias for calcium and magnesium on most samples as well as on the certified reference material. Lab I showed poor intralaboratory repeatability for most major ash elements.

Figure 1 shows the interlaboratory reproducibility as PRSD for the suite of trace elements on all samples. The overall average PRSDs for V, F, Be, Mn, B, Hg, Cu, Sb, and Cr, and Ba are between 9.6 and 22.9%. PRSDs for Ba, Co, Ni, and Se were somewhat poorer, averaging nearly 30%. Ni, As, Cd, Pb and Mo showed the most variability with PRSDs from 36.2 to 60.7%.

Figure 2 shows the average interlaboratory reproducibility for the suite of trace elements, as well as the range of PRSDs, for each element on each sample. Although the average PRSD for many elements is reasonably good (~20%), on any given sample the range of reported values can be quite large. The average minimum PRSD for interlaboratory trace element analyses was 13.6%. The average maximum was 48.1%. Ba, Cd, Cu, Hg, Mo, Ni, Pb and Sb all had a PRSD range over 30%. The range of reported values for Mo, Ni, and Cd on some samples was 52%, 76%, and 110% respectively. This shows that outliers are to be expected when comparing trace element analyses between laboratories.

REPEATABILITY

Figure 3 shows the average intralaboratory repeatability for each trace element for all coals. Intralaboratory repeatability was calculated as the average percent difference in a given

5

laboratory's results on the eight paired samples. The data show that the overall laboratory repeatability on trace elements ranged from a low of 7.8% for chromium to a high of 32.5% for cadmium. The average repeatability for all trace elements was 14.6%. Overall intralaboratory repeatability for all elements by all labs was less than 10% on half of the analyses, less than 20% on 68%, and less than 30% on 75% of all trace element results. In general, elements with lower between-lab reproducibility also had lower same-lab repeatability. Similarly, elements like cadmium, that showed reproducibilities with a high PRSD, had higher average repeatabilities, with the exception of molybdenum. This element had a relatively low repeatability (16.8%), but showed the highest reproducibility (60.7%). This may suggest bias in the various methods used for its determination. Data showing the complete list of individual laboratory repeatability for all samples is presented in Appendix B.

VARIABILITY vs COAL RANK

Figure 4 shows the variability in interlaboratory trace element analyses as PRSD plotted as a function of the as-determined heating value for the eight coals. The as-determined heating value of a coal is one way to roughly establish coal rank. The data clearly show that trace element analytical variability is a function of coal rank, increasing as the coal rank decreases. This is not unusual; many ASTM coal standards have precision statements that are rank-dependant. In the case of the eight coals studied here, as the heating value of the coal (Btu/lb) decreases, the analytical variability of trace elements increases. Sample pairs A&J, C&L, H&Q, F&O, and B&K are bituminous coals. Samples G&P and D&M are subbituminous and samples E&N are classified as lignites. A regression analyses of the data is shown in Figure 5 and has an r² value of 0.95. Average trace element intralaboratory repeatability showed a similar trend. The overall trace element repeatability for the bituminous coals was slightly better (14.8%) than that for the subbituminous and lignite samples (20.2%).

MERCURY

Of the potential hazardous air pollutants mentioned in the CAAA, mercury is receiving the most attention regarding possible emissions from coal combustion sources. As mentioned earlier, four of the five laboratories in this study used some form of gold amalgamation followed by cold vapor atomic absorption for mercury analyses, the other used cold vapor atomic fluorescence. The table below summarizes intralaboratory repeatability and interlaboratory reproducibility for mercury analyses. Repeatability is shown as the percent difference in a laboratory's results on the eight paired samples, and reproducibility is shown as PRSDs.

REPEATABILITY AND REPRODUCIBILITY OF MERCURY RESULTS

	A&J_	B&K	C&L	D&M	E&N	F&O	G&P	H&Q	Avg.
Repeatability, as % difference	11.3	46.3	19.1	19.1	25.8	11.7	8.6	21.2	17.6
Reproducibility, as PRSD	10.4	40.6	24.8	16.7	16.9	20.4	9.1	26.1	20.6

A recent, more extensive round robin on mercury analyses³ estimated interlaboratory reproducibility and intralaboratory repeatability at 25 and 50%, respectively. That particular round robin

involved three coal samples and 12 laboratories. Although the majority of laboratories in that study also used cold vapor atomic absorption for mercury analyses, some data were provided by labs using neutron activation and cold vapor atomic fluorescence.

SUMMARY AND CONCLUSIONS

Based on the analyses of the certified reference coal, even the best laboratory in this study reported trace element levels to within 10% of their certified value only about 80% of the time. On average, only 57% of the reported data from all labs met this 10% level of accuracy.

The techniques used in many laboratories for trace element analyses produced a significant number of non-definitive ("<") results. If certain detection limits are required, analytical techniques must be specified.

Although the overall interlaboratory trace element reproducibility is 28%, it may be very poor, approaching 60% for some elements.

Interlaboratory reproducibility for trace element analyses is dependent on coal rank. As coal rank decreases, analytical variability increases.

The variability of coal trace element analyses makes accurate estimates of emissions from combustion sources difficult, especially if the estimates are based solely on feed coal analyses.

RECOMMENDATIONS FOR CONDUCTING FUTURE COAL ANALYSES ROUND ROBIN PROGRAM

- 1. Follow ASTM standard method E 691. This standard lists specific guidelines for conducting an interlaboratory coal analysis round robin program. The standard also specifies software for the statistical interpretation of results. Both the method and the software are available from ASTM for a nominal fee. One of the guidelines violated in this round robin was the number of participating laboratories. E 691 states that a minimum of six laboratories is necessary to generate ASTM precision statements. For that reason we were unable to use the software from this standard that would have generated ASTM limits for repeatability and reproducibility.
- 2. Laboratories that are candidates for the round robin should be evaluated. Based on the data reported on the standard reference coal in this study, it is obvious that Lab I was not proficient with coal analyses. Laboratories that are candidates for round robins should be audited by someone familiar with the guidelines set forth in ASTM D 4182, "Evaluation of Laboratories Using ASTM Procedures in the Sampling and Analysis of Coal and Coke". These labs also should be able to demonstrate their ability to conform with ASTM D 4621, "Accountability and Quality Control in the Coal Analysis Laboratory". A lab not in compliance with either of the standards should not be included in the study. As a minimum, candidate labs should be able to demonstrate proficiency by analyzing a certified reference material within specified precision limits prior to conducting the actual round robin.
- 3. Specify the minimum detection limits that are required for each element. Based on the large number of non-definitive results reported for several of the trace elements it is apparent that

most laboratories are not using techniques that can accurately assess the levels of some of the trace elements found in coal. Using half the detection limit, which is the common practice for treating this type of result, would lead to a considerable overestimation of some trace element levels. Examples of this overestimation based on half the detection limit are found in Table 3. For instance, Lab III reported an average detection limit for Cu as 35.5 ppm. Using one half of this value, or 17.8 ppm, would overstate the certified value for Cu on this sample by nearly three fold.

REFERENCES

- 1. Lengyel, John Jr. and Obermiller, Edward L. "Interlaboratory Variability and Accuracy In Trace Element Analyses of Coal". Proceedings, Fourth Annual Pittsburgh Coal Conference, Pittsburgh, PA, 1987, pp. 148-159.
- 2. "ASTM Volume 05.05 Gaseous Fuels; Coal and Coke", American Society for Testing and Materials, Philadelphia, PA, 1993.
- 3. Lengyel, John Jr., Devito, M. S., and Bilonick, R. A. "Interlaboratory and Intralaboratory Variability in The Analyses of Mercury In Coal". Paper to be presented at the Air Waste Management Association Annual Meeting, Cincinnati, OH, 6/19-24/94.

Table 1. Average of Interlaboratory Results for All Samples.

	A&J I <u>L BASIN</u>	B&K IL BASIN	C&L BIT.	D&M PRB	E&N ND LIG.	F&O <u>BIT.</u>	G&P SUB. BIT.	H&Q <u>BIT.</u>	
Trace Elements	ppm Dry Coal								
As	2.39	2.74	9.43	1.24	7.64	26.0	1.70	3.45	
В	227	212	72.3	83.4	126	70.7	76.5	169	
Ba	47.3	48.9	31.1	370	568	76.1	312	48.6	
Be	1.33	1.61	1.33	0.42	0.72	2.37	1.29	1.41	
Cd	0.580	1.013	0.112	0.058	0.079	0.085	0.560	0.508	
Cr	28.3	34.7	16.3	4.40	8.05	20.0	9.61	21.4	
Co	3.87	3.57	5.50	0.86	2.10	6.95	4.14	4.42	
Cu	10.7	11.3	8.47	9.52	9.28	21.2	14.5	13.1	
F	97.1	112	58.0	44.3	56.9	81.3	80.3	79.5	
Hg	0.101	0.109	0.126	0.084	0.145	0.260	0.080	0.085	
Mn Mo	41.3 8.34	34.3	18.4	145	123	26.5	76.6	29.0	
Ni	17.6	7.91 18.5	1.87	7.93	3.98	4.54	2.11	5.80	
Pb	9.12	13.1	14.1 6.00	5.09 5.22	7.26 3.31	28.2	6.84	18.3	
Sb	0.49	0.79	0.64	0.47	0.75	13.6	8.86	8.47	
Se	2.94	3.16	1.92	0.47	0.75	2.10 2.56	1.74	0.62	
V	36.6	46.3	31.0	9.36	16.8	34.0	1.18 26.1	2.21 38.5	
·	00.0	40.0	31.0	3.50	10.8	34.0	20.1	30.5	
Proximate & Ultimate			%	Dry Basis					
Ash	11.99	12.54	11.56	11.7	16.71	13.35	20.57	10.59	
Carbon	69.58	69.80	72.08	67.6	58.80	70.26	61.27	71.03	
Hydrogen	4.87	4.78	4.96	4.80	4.53	4.86	4.78	5.14	
Nitrogen	1.33	1.33	1.39	1.01	0.89	1.37	1.05	1.42	
Sulfur	3.42	3.53	3.26	1.15	1.12	3.01	0.65	2.89	
Chlorine	0.064	0.074	0.085	0.03	0.040	0.140	0.039	0.115	
Heating Valu	12214	12189	12888	11350	9601	12452	10636	12587	
Major Ash Elements			%	Dry Ash					
SiO,	44.58	49.7	44.98	42.12	39.48	45.67	59.26	51.55	
Al ₂ O ₃	16.78	18.6	21.41	16.48	10.58	22.54	20.62	21.74	
TiŌ,	0.89	0.99	0.99	0.88	0.47	1.22	1.00	1.03	
Fe,Ō,	15.95	15.1	24.75	6.07	6.14	21.33	4.45	16.39	
CaO	4.11	2.69	1.04	7.79	10.54	1.50	3.29	2.46	
MgO	0.77	0.82	0.60	2.55	2.97	0.73	0.93	0.79	
Na ₂ O ₃	0.91	0.75	0.43	0.29	0.84	0.30	0.23	0.84	
K ₂ O 1	1.95	2.20	1.84	0.51	1.35	2.17	1.26	2.50	
P ₂ O ₅	0.29	0.36	0.16	0.37	0.17	0.58	0.04	0.26	
so,	4.57	2.61	1.39	11.41	15.08	1.71	3.68	2.56	

Table 2. Analytical Methods Used on DOE Air Toxics Assessment Coal Samples.

Parameter	_Lab I	Lab II	Lab III	Lab_IV	Lab V
Moisture	D3173	D 5142	D 3173	D 3173	D 3173
Ash	D3174	D 5142	D 3174	D 3174	D 3174
Carbon	D3178	D 5373	D 5373	D 3178	D 5373
Hydrogen	D3178	D 5373	D 5373	D 3178	D 5373
Nitrogen	D3179	D 5373	D 5373	D 3179	D 5373
Sulfur	D3177	D 4239	D 4239	D 4239	D 4239
Chlorine	D4208	·LECO	D 4208	***!C	D 4208
Btu/lb	D2015	D 1989	D 2015	D 2015	D 2015
Major Ash Elements					
SiO ₂	ICP/ES	ICP/ES	ND	D 4326 XRF	ICP/ES
Al ₂ O ₃	#	•	INAA		
TiÔ ₂	11	u	•	H	u
Fe ₂ O ₃	•	w.	• '	ND	
CaO	*	ц		ND	
MgO	•		*	ND	•
NaO		t t	•	D 4326 XRF	
K₂O₃	•	u		#	*
P ₂ O ₅	a	e e	ICP/ES	ND	
SO ₃	*	u	ND	ND	
Trace Elements					
	GF/AA	ICP/MS	GF/AA	GF/AA	CV/AF
В	ICP/ES	• #	ICP/ES	ICP/ES	ICP/ES
Ba		ICP/ES	INAA		
Be		ICP/MS	ICP/ES		•
Cd	AA	H.	•	•	GF/AA
Cr	ICP/ES	ä	INAA	u	ICP/ES
Co		u	4	H	
Cu	•	tt.	`#	M	a
Cu	ı,	ıt	4	M	*
F	D3761	*IC	D 3761	***IC	•
Hg	CVAA	DGA/CVAA	DGA/CVAA	GA/CVAA	CV/AF
Mn	ICP/ES	ICP/MS	INAA	ICP/ES	ICP/ES
Mo	я	п	*	H	10.720
Ni		n	ч	м	•
Pb	AA	:	ICP/ES	GF/AA	GF/AA
Sb	GF/AA		INAA	u, ///	CV/AF
Se	GF/AA	**#ICP/MS	GF/AA		•
V	ICP/ES	ICP/MS	. INAA	ICP/ES	ICP/ES
-	,	10. /1810		10.720	101/20

^{*}IC Hydropyrolysis with IC Finish

AA CVAA CV/AF DGA/CVAA	Atomic Absorption Cold Vapor Atomic Absorption Cold Vapor Atomic Fluorescence Double Gold Amalgam Cold Vapor Atomic Absorption	ICP/ES ICP/MS INAA ND	Inductively Coupled Plasma Emission Spectroscopy Inductively Coupled Plasma Mass Spectroscopy Instrumental Neutron Activation Analyses Not Determined
GF/AA	Graphite Furnace Atomic Absorption	XRF	X-ray Fluorescence
IC	ion Chromatography		•

^{**#}ICP/MS Hydropyrolysis with ICP/MS Finish
***IC-Soluble Species Only

Table 3. Individual Laboratory Analyses of National Institute of Standard and Technology, Standard Reference Coal 1632b.

				<u>.</u> ^		 - ·		. .	_			,															_		
V Run 2		6. E	67.0	89.0 Z	1,8	142	4	0 062	Z	9		0.751	14.8			6.83	2.7.8	4.	9.	0 12 13778			438	242	-	4.2	0.97	- 6	0 23 4.54
LAB V Run 1		4.1	67.2	0.028	7.0	2.18	14	0 057	2	2	장 작	2 6	15.3			6.78	5.05	1.40	1.92	0.12 13774			44.4	24.3	16.4	4.2	0.05	- 6	0.23 4.68
IV Run 2		ON SS	2 2	0.0 <0.2	Ξ	CVI 60	S	0 07	2 %	7	4 ,	, <u>S</u>	5			6.79	4.94	1.58	1.95	ND 13783			Q	22	2	S	29	2 2	2 2
LAB IV Run 1 Run		ભાદુ	ខេះ	0.5 <0.2	O91∗	NI 60	8	0 05	. °	9	₹ (, -	-i <u>4</u>			6.78	0.04 0.04	- -	1.96	ND 13760			44 62	75.57	2	Q	2 5	2.05	22
i III Run 2	, Dry Coal	041 €	72.7	0.0 <0.2	10.2	2.01 435.7	40	0.05		<8.9	ر داره	- - -	14.1	-	E CO	6.77	5.12	4.	9.30 6.50	0.106		Ash	Q.	22.43	15.04	2.19	275	0.0	0 0 0 0 0 0
LAB III Run 1 Run 2	Parts Per Million, Dry Co	α ξ	71.2	0.0 <0.2	= ;	2.09	40	0.05		< 8.8	ر ده ا		142	ć	wf %, Ury Coal	6.78	5.14	1.54	1.93	0.107 13767		wt %, Dry Ash	Q	24.37	14.24	64. 64.	0.77	1.07	8 Q Q
LAB <u>1</u> Run <u>2</u>	Part	3.67	66.4	0.080	90	2.08 2.86	35.9	0.095	0.0	6.23	4.03	1.50	12.7			6.91	4.99	9.	1.92	0.109 13809			45.41	25.06	17.03	4.63	- 0. 5	76.1	0.18 4.15
Run 1		3.71	66.0	0,040	7.0	5.6 5.4	43.0	0.099	0.85	5.65	3.81	1.48	11			6.91	50.0	45.	1.89	0.112			45.27	24.90	16.88	40.4	.03	1.30	0.17 4.14
1 1 Run 2		3.54	40 80 80 80 80 80	0.00	<u>=</u> ;	5.87	<100	0.15	2.63	2.30	9. A	0.75	18.2	. %		6.91	6.14	9,48	1.98	0.040 13022			47.08	23.79	16.75	1.72	(전 이 -	12.5	0.24 ND
LAB I Run.1 R		3.04	8 8	0.83	12.2	6.07	<100	0.17	98	6	3.44 4.0 8	1.42	10.2	nore than 10% more than 259		6.92	6.78	0.47	2.27	0500 15791			50,15	1.37	17.99	1,72	416		0.20 ND
CERTIFIED VALUE		3.72	67.5	0.0573	*11	6.28		40.	6.0	61	3.6/	1.29	*14	results exceed certified values by more than 10% results exceed certified values by more than 25% e		6.80	5.07	1.56	1.89	0.126 13890	Underlined results exceed ASTM reproducibility limits		44.03	23.75	15.96	2.4	0.63 0.00 0.00	1.33	
PAHAWETER		As B	B B B	88	ర ర	8 8	ш . З	D W	Wo	Z á	දි නි	S	>	Single – underlined results exceed cert Double – underlined results exceed cer * Informational Value ND≕Not Determined		Ash Carbon	Hydrogen	Nitrogen	Sulfur	Cniorina Btu/lb	Underlined results e		SiO,	Ž, Č	, Ç	O C	W CO	K,Ó	ဝ်ဝိဒ ဝင် ဝင်

D-35

Underlined results exceed ASTM reproducibility limits

Table 4. Percent Relative Standard Deviation for All Samples.

티	24.3	<u>ب</u>	<u> </u>	Ŧ (<u>ء</u> :	4	4.	ı,	7	ဗ	Ξ.	5.3	3.9	5.6	86	0.5	.07	,	16.1																					
Minimum	8	<u>.</u> :	<u> </u>	5		4	.	÷.		œ.	¥	₹	¥	ò.	เก๋	ฉ	œ́	•	-																					٠
Maximum	43.7	35.0	3, 1	B. / I	142	20.9	45.5	49.2	16.8	40.6	24.4	97	89.8	63.6	44.0	37.6	13.9	•	49.1																					
Average M PRSD	36.2	21.3	31.7	15.0	58,3	14.3	32.9	22.9	12.9	20.6	16.1	60.7	33.1	36.8	21.4	28.7	11.0		27.9		1.14	-	9.49	6.58	11.9	37.9	4.32	}	10.4	5.81	13.8	17.5	12.9	41.6	44.7	4.9	12.4	35.3	2	21.7
₹"																													AVG.											AVG.
H&Q	29.3	21.6	14.4	21.7	57.9	14.3	40.3	14.8	9,83	26.1	13.0	47.5	25.0	38.5	25.0	26.1	15.3		25.9		0.72	2.78	11.4	4.11	4 75	2 8 6	2 6.00 5.30 5.30	3		10.7	7.23	30.0	10.8	30.6	38.1	9.64	12.2	31.0	12.0	
ର ଫ୍ରା-	39.3	16.7	45.0	8.40	142	14.1	25.4	49.2	16.8	9.05	20.1	6	17.5	22.6	44.0	33.8	6.07		35.7		99'0	1.87	7.65	4.93	9 9	2 5	7 30.1	5		3.25	11.4	16.3	7.40	37.9	47.5	26.3	8.38	37.8	4.18	
O.																																								
080	38.5	18.3	26.6	1.8	39.0	20.9	27.8	12.5	15.4	20.4	11.3	46.3	38.0	33.7	118	240	13.9		24.1		99.0	2.07	4.50	9.04	2 6	4.4	0.00	0.00		3.09	4.72	32.0	3.43	21.5	28.8	26.0	8.94	33.5	8.01	
E&N	3.7	5,0	4.7	7.0	8.6	3.0	5,5	7.6	7.7	6.9	7.1	. c	20	33.6	9 8	0 0	8.73		34.1		2.66	2.15	93.9	10.5	5.5	0.0	25.0	0.33		3.18	34.9	5.67	16.1	63.9	66.2	7.84	23.2	39.3	3.37	
ш	4	ത	eo	_	(7)	_	· v	W				•					-																							
D&M	40.4	33.8	53.4	17.9	62.9	19.2	43.1	22.1	14.4	18.7	9	, r.	5 6	0.00	100	0 00	9.31		32.8		1.68	101	14	9	0 0	5.50 5.00 5.00	46.0	Q./3		3.07	28.0	± 5.00	15.2	62.2	60.2	12.2	18.3	38.7	29.1	
	_		~		_				. 10			- 0	. .	+ a		. מ	o		7		œ	ي د	1 (2) <u>,</u>		= .	4. 6	20		ĕ	2 0	i ä	3 2		! !-	7.	8	37.2	ω.	
S	36.2	16.0	20.6	15.7	32.0	19(30	19.	7.7	24	-	. ĕ	5 4		7 1	. c	13.7		22.7		0.5	2	9 4	, ,	9	2.6	25.4	-		÷	•	ū	מ ל	. 6	i 8	=======================================	7	3	=	
8 X X	7.	: _:	ιū	6.0	4.6	34	. 4	7.7	. 0	9	9 6	2 4	0 0	n c	ם ה		9.7.0 9.4	:	25.9		99			5 6	2 !	.45	31.0	3.44		96	5 6	3 1		2 2	42.4	14.1	7.38	30.2	32.4	
8	6.	; ~	20	÷	ິນ	4	٥	ı -	-	- ₹	ř	÷ û	Ď.	÷¢	ų c	י כי	9		01		Ç	, с	4 5			4		.,		•		. `	•							
A&J	6 70	14.6	37.7	11.4	35.1	6	000	47.7		2 5	2 5	1 t	0.10	15.5	0, t	0.0 0	11.5	!	21.8		1 48	- 0	, c	9 6	5.45	6.78	23.1	4.89		7	17.7	5.5	7.7	50.7	43.7	9.35	13.1	34.9	36.6	
																			ιń	imate								Btu/lb		ents										
																			AVG.	& UII				_				/alne/		h Elen										
Trace Elements																				Proximate & Ultimate			Carpon	Hyarogen	Nitrogen	Sulfur	Chlorine	Heating Value, Btu/lb		Major Ash Elements	ر م	ວ <u>ິ</u> ,	ວິ,	<u> </u>	ې چ) C	ر میر	0.0	ີດີ	
Trace Eleme	٤	2 c	ä	8	3 8	3 8	3 6	3 8	3 .	ا ـ	₽:	<u>ج</u> :	ŝ	Z i	£	င္သ	% >	•		집	4	₹ (ຮື :	È	Ħ	รู	ပ်	£		žΙ	ī	₹`i	ن ≝	ב כ	3 2	Ž	ž¥	<u>``</u> a`	Ø	

Figure 1. Average Variability for All Coals.

Figure 2. Interlaboratory Variability by Element

Figure 3. Average Interlaboratory Repeatability.

15 D-39

Figure 4. Comparison of Interlaboratory Variability vs. Heating Value.

Figure 5. Correlation of Variability vs. Heating Value.

APPENDIX A

INDIVIDUAL LABORATORY ANALYSIS OF ROUND ROBIN SAMPLES

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE A

PPM DRY WHOLE COAL BASIS

LAB V RUN 2		217	49.8	1.35	0.545	25.5	3.79	13.1	67	0.109	41.7	r.	17.6	6.6	S	2.9	38.1		11.95	69.14	4 7 1	1 28	2.5	600	12402			46 B	17.8	9 0	17.3	. r.		26.0	2	0.26	5.97
RUN 1	96	276	49.4	1.49	0.373	24.6	2.71	13.2	72	0,123	42.8	6.5	18	6.7	2	1,3	40.1		11.86	69.2	4.76	1.25	3.43	5 -	12427			45.9	47.9	6	17	in in	7	0.99	2.1	0.24	6.18
N IV RUN 2	Ą	230	55	1.3	<0.4	34	S	12	2	0.1	55	9>	21	12	٧	Q	41		11.75	69.25	4.6	1.34	3.4	Ş	12455			Q	S	S	2	2	S	Q	2	2	Q N
LAB IV RUN 1 RU	N	230	58	4.1	<0.4	35	ល	12	S	0.1	53	9	23	13	₹	თ	45		11.83	69.2	4.67	1,35	3.41	Q	12453			47.03	18.21	0.89	Q	S	Q	0.97	2.01	2	<u>Q</u>
LAB III RUN 2	a	230	72	1.3	<0.3	28	3.44	<38.3	100	0.09	31.2	14.6	4	80	0.512	N	35.8	3ASIS	12.26	70.15	4.92	4.	3.42	0.072	12477	ASH		9	17.74	0.7	15.17	2.21	0.72	0.78	1.85	0.24	Q
LAE RUN 1	8	250	76.7	1.3	<0'3	25.2	3.28	<37.3	100	0.09	29.3	15.1	12.8	80	0.466	၈	34.3	% DRY BASIS	12.18	70.32	4.89	1.48	3,46	0.075	12425	% DRY ASH		2	16.37	0.72	15.21	2.36	0.59	0.78	1.68	0.2	2
LAB II RUN 2	3.46	182.77	63.3	1.09	0.59	24.44	3.35	8.54	107.67	0.095	51.8	6.78	15.28	10.71	0.53	3.61	28.9		12.13	70.22	4.79	1.41	3.48	0.064	12462			48.87	18.84	0.95	17.35	6.43	1.06	0.95	2.18	0.25	3.29
RUN 1		179.81																	12.08	70.09	4.83	1.37	3.44	0.077	12478			48.71	18.5	0.95	17.27	6.48	1.06	0.95	2.18	0.25	3,33
LAB I RUN 2	3.01	290.64	32.29	1.61	0.55	30.14	5.81	10.76	<100	<0.1	39,83	8.61	19.38	6.89	<0.8	3.55	40.9		12.18	68.88	5,88	1.26	3.6	0.05	11297			49.54	15.36	0.97	16.43	2.23	0.35	96'0	2.24	0.3	2
BUN 1	2.36	236.33	53	1.29	0.5	25.78	4.73	8.7	<100	<0.1	36.52	11.82	17.19	4.08	<0.8	3.01	35.45	ATE	12.16	68.39	4.97	1.25	3.44	90.0	12460		TS	39.75	13.18	0.8	13.89	2.47	0.4	0.77	1.92	0.26	<u>Q</u>
TRACE ELEMENTS	As	m ı	Ca C	e c	S (<u>ئ</u> د	ခွင့် သိ	ם נ	ı.:	E E	<u> </u>	Wo.	Ž	0.0	as o	e c	>	PROXIMATE & ULTIMATE	ASH	CAHBON	HYDROGEN	NITROGEN	SULFUR	CHLORINE	Btu/lb		MAJOR ASH ELEMENTS	SiO ₂	Al ₂ O ₃	TiO ₂	Fe ₂ O ₃	CaO	Og X	Na ₂ O ₃	χ. Ο (P. 0.	so,

19

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE B

TRACE		AB I	-				; ; !		-	
ELEMENTS	RUN 1	RUN 2	HUN 1	RUN 2	RUN 1 RUN 2	BUN 2	RUN 1	BUN 2	BUN 1	LAB V RUN 2
As	2.7		3.26	3.18	-	0	u	2		
1 0 (260,01	258.48	193.41	189.71	260	270	5 5	<u> </u>	5,0	1.2
. da	37.44		47.8	49.3	64,3	73.7	47	46	777	192
e T	1.87		1.37	1.44	. t.	5.	1.4	, t		0.04
Ca Ca	0.92		0.97	_	<0,3	<0.3	40 A	2 5	0.1 0.1 0.1	80
<u>ن</u> د	36.4		32.57	35.14	35,2	34.5	1 8E	70,	0.07	0.947
S :	5.62		3.43	3.58	3.57	3.53) e:	õ		0.20
3 .	11.44		9.61	9.79	<41.8	<42.4	÷	5	13.7	20.0
<u>.</u>]	×100		124.37	125.42	110	120	S	2 5	2.5	0.5 0.5
51	<0.1		0.131	0.115	0.11	0.11	0.12	5 -	40.00	600
	32.24		40,6	39.9	29.9	28.1	60	2.5		0.30
2 :- E	7.28		7.2	7.36	<13,6	<13.8		š "	3 5	0.4.0
Z á	19.76		16.94	17.49	22.9	21.8	, 5	7 6	i t	0.6
۳. و	7.49		14.95	14.77	15	16	7.	- 1	5. C	4.0
go G	<0.8	•	0.69	0,69	0.707	0.566	2 7	2 7	7.01	- <u>-</u> <u>-</u>
\$	3.33		4.71	4.78		A	, +	7 5	2.50	₹ ;
>	49.92		38.79	39.20	7 74	•	- ť	€ ;	3.5	2.5
				3	ř	- 20 27	74	4	49.5	49.8
PROXIMATE & ULTIMATE	ATE				% DRY BASIS	SASIS				
ASH	12.68	12.54	12.69	12.72	12.56	12.53	12.45	12.55	10 49	4 6 4
. NOGUAN	68.33	67.79	70.23	70.07	70.12	69,95	68.86	6A A2	0.1.2. A R R A	14.40
HIDROGEN	5.1	5.29	4.82	4.84	4.83	4.81	4.51	4.56	468	07.00
NI NOGEN	1.26	1.23	1.33	1.44	1.42	1.4	1,35	-	0 e	4.00
SULFUR	3.63	3.63	3.43	3.49	3.46	3.47	3.48	27.6	5 4	77.
CHLOHINE	0.05	0.05	0.084	0.077	0.079	0.078	Ş		5.5	94.0
gI/n)s	11900	11480	12398	12402	12376	12367	12390	10378	- C	21.0
							2007	0/07-	1230	12321
MAJOR ASH ELEMENTS	ITS				%.DRY	ASH				
SiO ₂		49.47	51.04	51.01	S	S	50.45	2	9	9
Al ₂ O ₃	18.59	18.69	19,41	19.46	18,28	19.4	19.05	2 2	7.0	
]]]	1.01	-	-	0.99	0.86	0.78	0.96	2	n a	
	16.42	16.5	17.97	17.83	16.7	16.42	2	2	17.1	16.0
	1.84	1.62	3.94	3.85	1.84	1.97	2	2	. 6	. r
	0.0	0.36	1.09		0.77	0.77	Q	Q) -	, , ,
, Y	0.7	0.73	0.79	0.79	0.78	0.7	0.73	운	0.86	0.84
P,O,	6.0	. i.o.	. 2.39 . 0.08	2.38	2.25	2.22	2.26	2	2.2	2.2
Ş. Ç	2	2	1.94	1 96	- C.S.		⊋ ⊊	₽ 9	0.43	0.3
•			•	2	2	⋛	Ş	2	က	3.2

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE C

TRACE ELEMENTS	E N	LAB I	<u> </u>	LABII	₹	LAB III	LAB	≥ 5	¥1 ,	
	NOT	7 101	NO	NON E		Z NOL	NON	HON	T:	HON 2
As	3.06	5.85	13.61	13.04	5		9	9		13.4
œ	91.69	86.72	66.46	63.46	80		73	76		54
æ	28.52	27.55	32.2	34.9	34.6		35	35		34.3
æ	1.63	1.63	1.13	1.17	1.3		1.2	1.2		1.51
PO	0.08	0.08	0.1	0.11	<0.3		<0.4	<0>		0.237
ర	21.39	20.4	16.77	15.9	17.2		19	20		12.4
ග	9.37	8.67	4.51	4.46	4.92		z.	7		4.6
Cu	9.88	90.8	6.98	6.95	<38		8	89		11.2
ட	<100	<100	63.96	63.22	9		Q	Q		53
Hg	<0.1	0.16	0.147	0.143	0.1		0.14	0.14		0.145
Z	18.34	18.36	15.7	16.4	19		22	23		196
Mo	3.77	3.06	1.62	1.65	1.71		9>	9>		0.977
Z	16.3	16.32	12.44	12.06	10.4		15	15		13.8
Pb	3.77	0.65	6.44	6.52	Ω.		7	80		5.7
qs	<0.8	<0.8	99.0	0.7	0.603		7	7		S
Se	1.94	1.53	2.47	2.57	-	8	23	-		
>	37.69	37.75	24.63	25.27	90.6	29.9	33	33	33	33.2
PROXIMATE & ULTIMATE	IMATE				% DRY	% DRY BASIS				
ASH	11.59	11.62	11.52	11.53	11.64	11.6	11.57	11,51	11.61	11,59
CARBON	71.69	71.12	72.79	72.63	72.98	72.72	71,64	71.72	71.99	71.86
HYDROGEN	5.76	5.01	4.85	4.86	4.99	4.98	46	4.6	4.85	4.86
NITROGEN	1.4	1.38	1.44	1.39	1.42	1.42	1.45	1.45	1.43	1.36
SULFUR	3.44	3.55	3.15	3.16	3.28	3.27	3.13	3.18	3.37	3.16
CHLORINE	0.05	0.05	0.092	0.089	0.098	0.104	S	2	0.11	0.13
Btu/lb	11987	12644	12957	12971	12972	12932	12989	12953	12906	12906
					% DR	% DRY ASH				
MAJOR ASH ELEMENTS										
SiO ₂	47 09			45.57	2		44.73			44.3
Al ₂ O ₃	23 24			21.63	19.36		21.74			21.5
TIO3	1 08			0.98	1.1		0.99			6.0
Fe ₂ O ₃	25 13			26.06	23.41		2			25.4
CaO	0 64			1.29	1.17		2			-
M gO	0 35			0.69	0.72		S			0.71
Na ₂ O ₃	0 54			0.42	0.38		0.42			0.46
, X0	2 12			1.89	1.77		1.85			1.8
o, d	0 13	0.12	0.07	0.08	0.21	0.23	<u>Q</u>	2	0.15	0.23
ર્જુ	2			1.51			<u>9</u>			1.05

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE D

TRACE ELEMENTS	RUN 1	AB I RUN 2	RUN 1	LAB II RUN 2	LAE RUN 1	LAB III RUN 2	LAB RUN 1 B	≥ 3	LAB V RUN 1 RU	RUN 2
As	1,25	1.87	1.93	1.89	⊽	₹		S	0.45	0.63
	117.71	104.86	40.44	39.86	1 00	110	8	06	102	9/
Ba	187.83	137.31	432.1	424.4	269	640	170	150	450	536
Be	0.53	0.47	0.45	0.41	0.4	0.4	0.3	0.3	0.421	0.408
Cq	<0.06	<0.06	0.07	0.07	<0.3	<0.3	<0.4	. <0.4	0.049	Q
ŭ	6.01	4.62	6.17	4.64	4.79	3.97	4	4	3.03	3.54
ဝိ	<2.0	<2.0	1.19	1.17	0.757	0.663	⊽	7	2	0.77
Cu	11.65	8.74	7.5	7.07	. <45	<43.9	80	80	14	12.1
ı.	<100	<100	48.59	48.12	20	20	2	<u>Q</u>	33	35
· 571	<0.1	<0.1	0.086	960.0	0.08	0.08	0.1	0.1	0.102	0.091
Mo	137.74	121.08	188.4	186.3	96	8'66	160	150	148	151
Mo	8.01	6.99	6.55	6.39	11.1	10.8	7	4	4.84	5.37
Z	5.01	3.74	4.15	3.34	16	15.2	8	-	2.08	2.08
Pb	5.13	5.12	5.44	5,45	8	7	S	S	3.8	2.9
Sb	<0.8	<0.8	0.48	0.48	0,451	0.429	₹	V	9	S
Se	<0.6	0.97	0.9	0.92	7	v	Ψ-	S	Q	2
	11.65	10.86	8.54	7.99	9.73	8.3	O	6	9.5	9
					% DRY BASIS	BASIS				
PROXIMATE & UL'IIMATE	АТЕ								•	
ASH	12	11.67	11.86		11.51	11.51	11.7	11.79	11.48	11.55
CARBON	62.27	62.9	68,55		68.41	68.21	67.27	67.36	67.38	67.43
HYDROGEN	7.42	1.95	4.68		4.63	4.61	4.51	4.52	4.33	4.38
NITROGEN	0.98	0.94	0.93	0.85	1,08	Ξ	1.02	1.01	1.08	1.12
SULFUR	0.93	0.91	96'0		0.95	4.82	0.91	0.92	0.97	-
CHLORINE	0.04	0.04	<0.02		<0.01	<0.1	2	S	0.03	0.04
Btu/lb	11342	9083	11735	•	11693	11601	11751	11759	11634	11663
					% DRY ASH	ASH				
MAJOR ASH ELEMENTS	TS									
Ö,	42.49	38.97		44.06	S	2	41.94		41.7	41.8
Al ₂ O ₃	9.07			19.09	18.48	18.26	18.88		18.2	18.1
, Q	0.92			0.85	9.0	0.87	0.85		0.8	0.8
Fe ₂ O ₃	5.22			7.12	6.97	6.1	2		6.3	6.8
CaO	2.92			13.12	4.2	4,01	2		11.7	11.5
MgO	-			4.09	1.22	1.21	2		4	3.8
la ₂ O ₃	0.31	0.25	0.32	0.32	0.27	0.26	0.3	Q.	0.25	0.24
<u></u>	0.72			0.51	0.4	0.4	0.5		0.47	0.48
P ₂ O ₅	0.33			0.3	0.56	0.56	2		0.26	0.24
ွှင့်	2			11.21	Q	문	2		13.02	13.54

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE E

LAB V RUN 1 RUN 2				0.639 0.732						0.113 0.136							16.2 16.2					1.05 1.02			9939 9917					0.5 0.4						
IV RUN 2 RL	80	140	380	0.7	<0.4	හ	2	7	2	0.18	140	9>	တ	4	<u>~</u>	-	18		17.5	58.61	<u>ල</u>	0.82	1.12	2	9823			Q	2	2	2	<u>Q</u>	Q	S	<u>Q</u>	S
LAB RUN 1	7	130	400	9.0	<0.4	ω	-	7	2	0.18	140	9>	9	4	₹	-	17		17,45	58,91	3.92	0.79	1.13	Q	2777			39.61	12.38	0.49	2	Q	<u>Q</u>	0.87	1.25	S
BUN 2	ស	150	687	0.7	<0.3	8.14	1.91	<46.3	9	0.17	88.8	7.13	<17.4	4	0.073	7	15,5	BASIS	16.29	59.17	4.31	1.02	1.14	<0.01	9914	ASH		2	11.98	0.43	6.17	5.04	1.05	0.78	2:1	0.21
LAB RUN 1	4	150	795	0.7	<0.3	9.6	1.91	<48.2	9	0.17	93.9	7.51	18.1	4	0.679	<u>~</u>	16.4	% DRY BASIS	16.23	59.05	4.24	1,02	1.15	<0.01	9920	% DRY AS		Q	12.35	0.55	6.43	5.32	1.19	0.8	1.99	000
LAB II RUN 2	11.69	45.15	8.699	0.73	0.1	9.85	2.54	7.1	60.87	0.144	151.2	2.75	7.62	2.63	0.72	0.98	14.32		16.19	59,55	4.15	0.91	1.13	<0.02	9841			40.18	12.69	0.46	7	17.53	4.97	0.89	1.39	0.14
RUN 1	11.53	45.15	628.9	0.72	0.1	7.88	2.66	6.97	55.8	0.159	149.2	2.77	6.97	3.04	0.77	0.88	14.34		16.15	59.58	4.21	0.99	1.13	<0.02	9842					0.45						
LAB I RUN 2	8.63	139,65	266.6	0.71	<0.06	7.87	2.79	8.89	<100	<0.1	99.02	3.3	5.71	9.0>	<0.8	<0.6	16.5		16.32	54.93	7.38	0.88	1.09	0.03	8208			36.67	3.53	0.44	4.67	3.16	1,15	0.72	0.12	0.13
EV 1	<0.6	153.79	192.23	0.82	0.12	8.59	3.33	96.6	<100	<0.1	108.93	3.59	8.07	1.92	<0.8	9.0>	17.94	ATE	17.69	55.85	7.41	0.00	1.15	0.03	9252		ITS	37.26	3.01	0.45	4.35	2.23	0.94	29.0	4.1	0.13
TRACE ELEMENTS	As	B	Ba	Be	Cd	ن	Co	Çn	L	Hg	M	Mo	ž	Pb	Sb	Se	>	PROXIMATE & ULTIMATE	ASH	CARBON	HYDROGEN	NITROGEN	SULFUR	CHLORINE	Btu/lb		MAJOR ASH ELEMENTS	sio,	Al ₂ O ₃	TO,	Fe ₂ O ₃	CaO	MgO	Na ₂ O ₃	Ko O	P.O.

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE F

TRACE		LAB I		LAB II	K	=	LAB	≥	IAB	>
ELEMENIS	HON	HUN 2	BUN 1	RUN 2	RUN 1	RUN 2	HUN 1	RUN 2	RUN 1	RUN 2
As	4.82	50.43	35,51	35.07	17	17	24	S	28.7	28.1
נים	89.23	96.74	64.7	63.46	73	76	68		649	7.00
Ha L	55.38	53.51	86.4	98.1	93	85,6	83	83	0 tc	87.9
9 7	2.67	2.78	2.14	2.18	6.1	8	2.3	2.4	2.75	5.43
<u>ت</u> و	0.07	0.09	0.1	0.12	<0.3	<0.3	<0.4	<0.4	0 093	2
٠ ت	22.56	22.64	25,35	28.97	19.7	21.7	20	2		7 5
ဝ (9.74	11.32	5,9	5.88	6.23	9	œ		4 56	2.50
.	21.54	21.61	17,35	17.07	<37.8	<37.4	50	. 5	000	300
4 :	< 100	<100	90.46	92.55	06	100	S	i	53	,
D.	0.21	0.27	0.238	0.251	0.24	0.26	0.25	0.25	0.338	0.303
E :	25.64	15.73	26.6	26.6	27	23.2	30	3	25.55	26.6
0	7.38	6.48	4.25	4.46	3.65	3.8	9	9	1 92	1 5.0
Ž	26.67	29.84	21.98	22.39	26.8	28.2	, r.	80	20.0 1.00 1.00	- C. C
d'	7.28	<0.0>	15.67	15.66	.15	1	16	4 5	50.7	2.00
Sp	1,95	2.88	2.2	2.25	1.97	2.1		- 0	2.3 2.3 2.3	2 2
80	1.13	2.26	3.27	3.29	•	i	; c	4 5	5 4	2 6
>	40	42.19	28.06	97 OR	3 9 6	900	ט פ	<u>Ş</u> 8	ני	2.2
, , ,	!) !		5: 23	0.50	20.3	ဂ္ဂ	8	35.5	38.2
	!				% DRY BASIS	ASIS				
PHOXIMA I E & ULTIMATE	ATE									
ASH	13,42	13.42	13.42	13.45	13.44	***	70 07	7	4	1
CARBON	66.75	66.24	71 23	71 11	74.94	7 00.1	13.21	13.51	13.39	13.37
HYDROGEN	i E	20 A	7 76	11.1	5.5	95.17	70.41	70.23	69.98	69.94
NECHTIN	5.5	7.50	5.5	4.77	4.94	4.88	4.63	4.58	4.77	4.75
SILFIB	 	 	.40 0.40	1.43	1.45	1.39	1.39	1.35	1.28	1.32
CHIODINE	 	2.95	2.9	2.95	3.1	ဇာ	2.96	2.99	3.16	3.13
Bridge	9.0	0.05	0.155	0.14	0.119	0.122	2	2	0.12	0,13
arina arina	1220/	10953	12674	12648	12645	12609	12665	12688	12623	12583
					% DRY ASH	ASH				
MAJOH ASH ELEMENTS										
SiO ₂	45.86	49.3	47.18	46.04	9	9	44.91	S	46.1	45.9
Alzo,	23.1	24.62	23.19	23.37	22.98	23.97	22.55	Š	22.4	0.00
1102	1.12	1.23	1.06	1.07	1.3	1.12	1.12	2	-	7.77
Fe ₂ O ₃	20.76	23.02	21.68	22.01	20.9	19.67	S	2	- 24	- 6
CaO	1.18	1.07	1.85	1.91	1.44	1.36	2	2	17	7 4
Og :	0.43	0.33	0.87	0.87	0.73	0.86	2	S	98.0	98.0
Na.C.	0.22	0.21	0.3	0.3	0.25	0.25	0.38	2	0.24	0.26
) (2.39	2.22	2.3	2.32	1.92	2.11	2.05	2	2.2	2.5
ر در در در در در در در در در در در در در د	0.47	0.53	0.48	0.46	0.89	0.89	2	2	0.45	0.46
ົ້ງຄ	₹	S	1.78	1.83	9	2	9	9	1.53	1.49

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE G

AB	HON Z												_		6.1 7.5	_		27 27.9								10804 10797										1,3		
	νļ					<0.6									=		_									10857 10										1.28		
LAB IV		8	82	250	-	9.0>	6	4	9	2	0.07	77	9>	9	9	-	8	27		20.64	61.25	4.51	1.04	69.0	9	10848			59.37	21.59	1.19	9	S	2	0.31	1.23	S) (
= 2		-	. 84	461	1.2	<0.4	0	4.38	<42.9	90	0.08	82.7	5.92	<16.1	12	1,63	-	26.8	ASIS	20.63	61.95	4.76	1.06	69'0	<0.01	10848	ASH		2	22.92	1.48	4.87	2.13	0.84	0.23	1.27	0.03	;
LAB	NOL	-	98	402	1.2	<0.4	10.2	4.24	<40.5	06	0.08	73.9	6.65	<15.2	12	1.38	-	52	% DRY BASIS	20.6	61.81	4.71	7:	0.71	<0.01	10848	% DRY ASH		9	20.51	1.35	4.48	1.52	0.73	0.2	1.15	0.05	1
LABII	7	2.57	6'06	417.4	1.4	<0.01	10.44	4.07	10.47	91.53	0.093	100.7	1.73	7.74	10.06	1.72	1.84	25.52		20.66	62.02	4.62	1.03	0.73	<0.02	10858			61.62	22.61	0.93	4.68	4.68	1.32	0.27	1.39	0.03	
Y		2.53	87.94	404.6	1.33	,0.01	12.89	3.96	10.44	92.65	0.097	3'66	1.75	8.4	10.02	1.72	1.62	24.82		20.54	62.29	4.6	0.89	0.71	<0.02	10855			61.22	22.76	96.0	4.63	4.68	1.33	0.25	1.4	0.03	•
B -	7	1.65	74.61	88.87	1.21	>0.06	8.56	4.83	10.53	<100	<0.1	50.47	7	69'9	5.05	0.99	9.0>	24.14		20.6	58.61	5.38	1.02	0.53	0.05	9471			50.22	16.1	0.81	3.5	2.01	0.33	0.11	1.09	0.03	2
LAB	1	1.53	95.36	92.36	1.53	<0.06	10.96	5.59	52.61	×100	<0.1	54.81	2.52	7.45	6.25	1.97	<0.6	29.6	里	20.52	58.09	5.82	1.01	9.0	0.08	6926	ļ		62.96	18.16	0.98	4.35	2.24	0.23	0.12	1.16	0.04	2
TRACE		As	ത 1	Ва	Ве	PO	ర	Co	Ou	te :	Нд	Mar.	™ o	Ž	Pb	Sb	Se	>	PROXIMATE & ULTIMATE	ASH	CARBON	HYDROGEN	NITROGEN	SULFUR	CHLORINE	Btu/lb		MAJOH ASH ELEMENTS	SiO ₂	Al ₂ O ₃	TiO ₂	Fe ₂ O ₃	CaO	MgO	Na ₂ O ₃	Κο	oʻd.	` •¢

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE H

I AB V	RUN 1 RUN 2															_		40.4 39.6								12734 12706					16.1						
≥	8	2	150	48	4.2	<0.4	22	4	12	Q	90.0	31	8	18	=	⊽	2	38		10.48	71.23	1.73	1,43	2.89	Q	12767		2	2	2 5	S	2	2	2	2	2	2
LAB	RUN 1 RUN	ო	160	20	1 .3	<0.4	22	ιΩ	12	2.84	0.05	31	4	18	=	⊽	CI	36		10.51	71.27	4.7	1.43	2,86	2	12776		48 07	21.35	20:12 80 t	S	2	2	0.76	2.28	Ž	1
=	RUN 2	က	170	49.9	:	<0.2	20.1	3.71	<32.2	80	0.05	22.3	11.4	13.4	6	0.417	8	36.5	ASIS	10.5	72.71	5.01	1.5	2.86	0.148	12809	ASH	S	20.21	100	13.41	1.68	0.85	0.72	2.29	0.94	M1.1.18
EAB	RUN 1	တ	160	54.5		<0.2	23.1	4.08	<34.0	80	0.05	21.2	11.5	13.6	6	0.585	8	36.1	% DRY BASIS	10.57	72.59	5.1	1.46	2.87	0.135	12815	% DRY	S	21.61	-	15.37	1.89	0.85	0.79	2.78	0.35	
B II	RUN 2	4.51	134,99	20	1.26	0.63	19.89	3.62	11.19	93.09	0.098	31.7	5.1	15:32	10.73	0.61	3.01	31,58		10.71	72.14	4.8	1.54	2.84	0.124	12828		50.64	22.14	1.09	16,59	3,39	1.07	0.93	2.61	0	
	HUN 1	4.63	142.76	51.1	1.23	0.56	19.58	3.59	10.99	92.92	0.098	31.7	5.05	15.19	10.6	0.62	3.09	. 31,43		10.67	72.52	4.91	4.1	2.8	0.122	12858		50.71	22.1	1.09	16.52	3.3	1.06	0.91	2.6	0.18	
- B	RUN 2	3.63	181.49	33.09	1.49	0.4	21.35	7.79	11.74	<100	0.15	23.49	6.73	18.15	9'0>	<0.8	1.71	37,37		10.68	67.64	6.63	1.43	2.87	90.0	11670		44.98	18.88	0.98	14.01	1.54	0.38	0.69	2.41	0.18	,)
2	RUN 1	9.0>	203.01	37.4	1.71	0.46	22.44	6.41	13.89	<100	<0.1	26.71	5.98	20.3	5.45	<0.8	1.39	40.6	VTE	10.47	67.37	9	1.29	3.08	90'0	11827	S.		23.13	1.16	16.05	1.71	0.39	0.85	2.83	0.21	. 11.1
TRACE	ELEMENTS	As	m	Ba	Be ∴	Ca	ٔ ت	ပိ	n Ö	<u>u</u> :	Hg	Z	Wo :	Z	Pb	Sp	Se	>	PROXIMATE & ULTIMATE	ASH	CARBON	HYDROGEN	NITROGEN	SULFUR	CHLORINE	Btu/Ib	MAROR ASH ELEMENTS	SiO,	Aļ,	πό,	Fe ₂ Ô,	CaO	MgO	Na ₂ O ₃	K,O	P.O.	V = Z

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE J

PPM DRY WHOLE COAL BASIS

TRACE	LA	B 1	٦	LABII	IAB	B	LAB	2	IAB	>
ELEMENTS	BUN 1	RUN 2	BUN 1	RUN 2	RUN 1	RUN 2	RUN 1	RUN 2	RUN 1	
As	1.03	2.9	3.42	3.34	2	8	8	pu	2.1	2.2
B	311.53	257.9	186.96	179.35	230	220	200	210	222	205
Ва	3.22	27.94	54.1	57.7	54.7	55.6	51	49	2	51.6
Be	1.61	<u>←</u> r.	1.15	1.19	4.	1.4	7	1.2	1.47	1.43
Cd	0.88	1.01	9.0	0.65	<0.3	<0.3	<0.4	<0.4	0.417	0.276
ڻ	34.38	26.86	26.3	26.97	28.6	26.5	30	28	56	33.3
ဝိ	6.45	5.48	3.65	3.59	3.49	3.13	3	၈	2.52	2.63
Cu	8.81	10.75	9.35	9.18	<39.2	<35.2	5	6	13.1	13.9
tr.	0.01	0.01	111.15	110.27	100	110	4.35	<u>Q</u>	91	87
Hg	0.18	<0.1	0.117	0.111	0.1	0.1	60.0	60'0	0.113	0.107
Z	17.19	35.46	53.4	51.8	30.6	28.2	45	45	42.6	43.8
Mo	10.74	7.52	7.07	7.04	16.7	15.6	5	ហ	5.2	5.4
Ž	21.48	19.34	16.12	16.55	15.3	13.2	19	17	18.3	21,5
Pb	9'0>	8.81	11.16	10.85	16	12	Ξ	=	7.6	7
Sb	<0.8	<0.8	0.51	0.49	0.49	0.421	٧	^	2	2
89 B	1.93	2.79	4.16	3,99	ဗ	တ	တ	QN	2.5	2.5
>	45.12	36.54	32.32	33.8	33.5	32.1	36	36	38.5	38.6
PROXIMATE & ULTIMATE	MATE				¥0.4	* DHY BASIS				
ASH	12.2	12.17	12.13	12.16	11.75	11.77	11.89	11.87	11.84	11.85
CARBON	69.43	69.07	70.45	70.4	70.01	69.92	69,56	69.4	68.98	69.34
HYDROGEN	4.78	5.7	4.86	4.84	4.88	4.95	4.43	4.47	4.77	4.73
NITROGEN	1.29	1.3	1.26	1.26	1.37	1.42	1.27	1,31	1.32	1.25
SULFUR	3.52	4.05	3.46	3.42	3.53	2.15	3.42	3,44	3.44	3.39
CHLORINE	0.04	0.04	0.08	0.075	0.079	0.076	2	2	0.11	0.01
Btu/lb	10161	11035	12502	12493	12493	12515	12446	12451	12410	12422
					% DB	& DRY ASH				
MAJOR ASH ELEMENTS	INTS									
SiO ₂	7.17	43.52	48.35	48.95	2	윤	48.17		47.5	48.2
AI ₂ O ₃	5.65	13.51	18,95	18.67	18.56	17.23	18.57		17.6	17.8
TO,	1.09	6.0	0.94	0.93	6.0	0.74	0.94		6.0	6.0
Fe ₂ O ₃	15.11	13.89	17.2	17.23	14.94	14.01	2		16.4	16.8
CaO	1.85	1.98	6.55	6.45	2.21	2.1	2		5.3	5.5
MgO	0.15	0.28	1.06	1.04	0.92	0.74	2		-	-
Na ₂ O ₃	0.69	6.0	0.93	0.91	0.85	0.82	1.01		0.99	-
, , ,	1.7	2.02	2.17	2.15	1.47	1.25	2.05		2.1	2.1
ر در ا	0.28	0.24	0.27	0.29	0.51	0.55	2 5	2 5	0.24	0.28
ર્ડે	Ž	Ş	7.80	7.00	Š	Š	Ş		5.80	6.05

SANTAGE NET A

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE K

TRACE		LAB		LAB II	\$	LAB III	PA LA	>	Y.	>
FLEMENIS	HON	RUN 2	HUN 1	HUN 2	BUN 1	RUN 2	RUN 1	RUN 2	BUN 1	1 RUN 2
As	2.49	2.8	3.18	3.22	-	2	8	8	6.1	2.8
an i	228,69	. 238,84		167.32	200	180	200	200	201	205
Ka	32.22	32.19		46.7	61.1	57.4	52	49	50.1	56.5
i de	1.66	1.77		1.42	1.7	1.7	1.2	4.1	1.69	2.37
<u> </u>	2.18	2.08		96.0	<0.3	<0.3	<0.4	<.04	0.564	0.184
٠٠	33.26	33.23		33.49	36.9	34.2	32	38	30.5	38.1
္တိ (4.57	4.88		3.68	3.67	3.42	တ	ဗ	1.82	3.84
	11.43	11.42		2.6	<35.4	<33.9	6	5	13.8	15.9
ш. :	0.01	0.01	•	134.87	110	120	2	2	96	88
Hg	0.18	0.19		0.105	0.011	0.011	0.012	0.12	0.121	0.095
X	28.07	28.04		39.9	27.3	28.5	34	39	33.9	40.8
W o	7.07	7.58		7.38	17.6	18.4	9	9	5.8) (C
Ž	17.67	17.65		17.52	13.5	12.2	18	19	17.4	88
Pb	9.77	14.54		15.61	18	18	<u> 1</u>	16	10.2	9 8 8
Sb	<0.8	<0.8		0.73	0.657	0.597	V	₹ ▼	2	S
Se	2.81	3.53		4.94	က	တ	က	2	, eg	0 0
>	46.78	45.69		4	44.8	46.8	42	4	48.6	57.9
										<u>:</u>
PROXIMATE & ULTIMATE	ΛΈ				% DRY BASIS	BASIS				
ASH	12.59	12.38	12.63	12.6	12.44	12.49	12.47	12.46	10 44	40.60
CARBON	68.06	81,55	70.23	70.02	69.61	69.21	00 89	60 88	7 9 9	20.25
HYDROGEN	4.98	46	4 82	78.6	50.5	13:50	66.50	20,00	7.00	59.00
NECORTIN	7	4	707	0.0		y. 4.	4.00	5.03 5.03	4.09	4.7
	5 5	CS: -	45.L	1.32	1.41	1.36	1.29	1.35	1.33	1.26
SULFUR	4	3.88	9.6	3.43	3.51	3.54	3.48	3,45	3.44	3.39
CALCAINE	0.04	0.03	0.073	60'0	0.086	0.088	2	2	0.07	0.07
ai/nia	11326	11013	12359	12363	12391	12411	12392	12369	12384	12388
					W DDV ACE	A Ct.I				
MAJOR ASH ELEMENTS	TS				2	2				
SiO ₂	46	46.73	51.78	51.75	2	Q	48.95	S	50.5	ň
Al ₂ O ₃	15.6	17.43	19.36	19.39	18.74	17	18.5	2	18.6	18.4
TO	0.94	0.98	0.99	0,98	0,85	0.71	1.68	S	σ - C	-
Fe ₂ O ₃	14.17	15.59	19.07	18.9	1.74	1.59	Q	S	17.5	17.4
CaO	1.5	1.41	3.81	3.68	1.92	1.81	2	2	. w	j Kr en
MgO	0.3	0.26	1.09	1.09	0.74	0.81	2	S	-	-
Na ₂ O ₃	0.7	0.27	0.77	0.76	0.8	0.7	0.77	2	0.92	0.82
K ₂ O	2.19	2.32	2.36	2.35	1.71	2.05	1.95	2	2.2	2.2
P_2O_5	0.26	0.27	0.31	0.28	0.59	0.51	2	S	0.39	0.32
SO'	Q N	8	1.87	1.82	Q	S	2	2	3.56	3.54

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE L

V RUN 2	10.7	50.1	33	1.44	0.054	11.9	4.33	10.6	52	0.176	19.2	Q	14.7	4 .3	2	2.3	32.3			11.67	71.67	4.81	123	20 E	2.0	12936			44.3	20.7	-	25.2	1.2	0.71	0.52	1.8	0.21	4.
LAB V RUN 1 RU	10.9	63.9	2	1.43	0.088	11.7	4.49	Ξ	52	0.185	18.9	2	14.3	4.7	Q	Ξ	32.8			11,49	71.59	4.82	134	00.6	0.23	12925			45.1	21.2	6.0	25.4	1.2	0.73	0.57	6.1	0.19	1.42
N N N		63	30	1:1	<0.2	16	4	7	2	0.1	18	8 V	12	9	<u>.</u>	2	27			11.38	71.97	4.87	1.38	3 15	2 S	12973			2	Q	Q	2	2	Q	2	2	2	Q
LAB RUN 1 R	60	59	30	==	<0.2	15	4	7	2	0.1	18	~	14	9	⊽	8	58			11.45	71.92	4.88	1.41	3.08	SS	12977			45.42	22.07	0.97	2	윤	Q	0.5	1.83	2	Q
RUN 2		72	34.1	1.5	<0.3	16.5	5.56	<32.6	20	0.12	17.5	2.02	16.7	O	0.597	CZ	32.5	ASIS		11.61	72.38	5.05	1.42	3 29	960 0	12950	HSK	<u>.</u>	2	21.56	1.08	21.53	1.17	69'0	0.33	1.42	0.21	Q
LAB RUN 1	7	6/	34.4	. 7:	<0.3	17	5.18	<34.9	9	0.12	19.3	1.87	19.3	15	0.546	8	32.7	% DRY BASIS		11.61	72.69	5.03	1.43	3.26	6600	12925	% DBY ASH		Q	21.55	96'0	21.83	1.21	0.68	96'0	1.58	0.24	<u>Q</u>
LAB II RUN 2	13.29	64.7	32,9	1.05	0.15	14.92	4.43	6.76	61.71	0.154	16.3	1.54	12.18	6.55	99'0	2.74	24.07			11.53	72.82	4.88	1.42	3.17	0.078	13009			45.89	21.86	0.98	26.12	1.29	0.71	0.41	1.92	0.1	1.62
RUN 1	13.18	62.87	32.7	0.99	0.15	15.08	4.54	6.91	61.87	0.155	16.3	1.58	12.39	6.67	0.67	2.65	24.64			11.45	72.74	4,9	1,39	3.12	0.091	13004			45.66	21.77	0.97	26.21	1.28	0.7	0.41	1.9	0.1	1.64
LAB 1 RUN 2	10.18	98.77	27.49	1.63	0.12	20.36	9.67	8.96	<100	0.19	18.33	3.56	16.29	3.67	<0.8	2.14	37.67			11.56	71.51	5,41	1.37	3.52	90.0	13308			47.19	23.29	1.07	26.45	9.0	0.28	0.38	2.02	0.13	9
LA RUN 1	14.26	81.46	25.46	1.32	60'0	16.29	6.11	7.33	<100	<0.1	15.27	< 5	13.24	3.46	<0.8	1.93	30.55	μ	ı •	11.58	71.12	5.17	1.36	3.41	0.05	12539		S	39.57	19.93	0.94	22.63	0.5	0.26	0.37	1.7	0.11	Q Q
TRACE ELEMENTS	As	æ	Ва	Be	PO	స	Co	Cu	ட	Hg	Ma	Mo	Z	Pb	Sb	Se Se	>	PROXIMATE & UI TIMATE		ASH	CARBON	HYDROGEN	NITROGEN	SULFUR	CHLORINE	Btu/lb		MAJOR ASH ELEMENTS	SiO,	Al ₂ o,	πō,	Fe ₂ O ₃	CaO	MgO	Na ₂ O,	, ox	P.O.	sō,

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE M

TRACE		LAB I	٦	LAB II	IAF	IAB III	I AB	2	•	•
ELEMENTS	HUN 1	RUN 2	HUN 1	RUN 2	BUN 1	RUN 2	RUN 1	RUN 2	HUN 1	LAB V RUN 2
As	1.36	1.36	1.74	1.75	Ω.	•		S	0.54	0
ם מ	101.72	105,45	26.13	31,55	66	5	97	9 9	79.6	0.02
# C	161.27	173.68	438.5	451.3	559	589	120	140	445	2.10
ב ב	0.52	0.5	0.52	0.53	4.0	0.4	6,0	0.4	0.383	940
	>0.06	<0.06	0.1	0.11	<0.3	<0.3	<0.4	40×	0000	6 GN
<u>.</u>	5.24	5.09	4.8	4.76	4.94	5.01	Ø	4	0000	<u> </u>
S :	<2.0	2.73	1.19	1.16	0.619	0.641	•	٠ -	3 2	2.0 AB:O
ט נ	10.42	10.3	8,21	8.21	<36.7	<41,6	: -	- cc	<u> </u>	0.4
<u>.</u>	<100	<100	50.01	53,25	4	40	. C	S	0.5	0. 6
BH.	<0.1	<0.1	0.082	0.08	0.07	0.07	0.06	2 0	0 100	900
S :	119.09	119.09	184.4	186.5	126.3	132.7	140	160	0.102	0.000
O X	7.57	7.2	6.93	7.33	18.7	19.8	<u>.</u>	2	- 1 - 1	141
Ž	4.09	4.47	3.6	3.56	7 0	2 5	7	* (7.0	5.3
Pb	4,09	4.84	5.49	5 44		† a	- t	N 1	2	Q
Sb	<0.8	<0.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	0.40		- 64	0	ດ :	ີ ຄ	9.8	2.9
Se	90>	9 0	66.0	ָ נְלָלָלָלָ	9.4.0	0.461	⊽	V	2	2
· >	9 6	0 10	0.98	0.95	- -	-	•	2	1.01	CZ
,	9.08	10.67	9.3	9.35	8.68	9.07	89	6	9.3	9.6
						6				
PROXIMATE & ULTIMATE	\TE				% DAY BASIS	ASIS				
ASH	11.94	12.07	11.74	11.88	11.54	11.49	11 43	11 46	7	3
CAHBON	67.62	67.2	68.81	68.56	68.36	68.49	67.86	67.79	57.73	20.1.1 20.5
HYDROGEN	7.29	6.03	4.72	4.75	4.72	4 70	20.70	77.70	10.70	79.70
NITROGEN	0.98	-	0.84	0.07	4 ¥	0 **	9.0. 9.0.	4.56	4.38	4.33
SULFUR	0.89	- BB C	000	600	2 .		0.36	0.96	1.1	-
CHLORINE	666	30.0	96.0	88.0	ر د0.۲	1.03	0.94	96.0	0.98	0.98
Bti/lb	0000	10.0	20.05 	<0.02	<0.1	<0.01	2	2	0.04	0.04
	08001	9333	11/4/	11743	11738	11707	11775	11745	11670	11662
	ł				% DRY ASH	ASH				
MAJOH ASH ELEMENIS										
SO ₂	40.07	41,85	43.44	43.5	2	Q	43.29	S	40.3	0
A.c.	8.64	7.77	18.96	18.97	15.34	16.2	18.98	S	, o	£ +
	0.81	0.86	0.81	0.81	1.29	1.23	0.84	2	<u>.</u>	~ c
Fe ₂ O	4.75	4.85	7,05	7.64	5.21	6.02	Ž	2	9 6	0.0
CaO	2.76	2.16	12.82	12.83	3.75	4.21	S	S	7) *
ენ წ	1.45	1.1	4.04	4.02	96.0	0.99	S	S		- -
Na ₂ O ₃	0.24	0.24	0.29	0.32	0.26	0.29	0.32	2 5	6.6	n 0
۲. ن	0.84	0.46	0.5	0.51	0.37	0.44	0.48	2	0.02	0.00
P ₂ O ₅	0.31	0.31	0.29	0.29	0.64	9	S 2	2 2	9.0	10.0
ွှဲ့ဝွ်	2	2	1.77	11.84	- CZ	? 2	<u> </u>	2 2	6Z'O	0.27
2	<u>:</u>	<u>}</u>	:	<u>-</u>	2	3	Ş	3	14.48	14.08

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE N

TRACE ELEMENTS	RUN 1	LAB 1 RUN 2	RUN 1	LAB II RUN 2	LAB BUN 1	B III BUN 2	LAB RUN 1	B IV	S S	LAB V
								:		
As	11.83	10.07	11.69	11.71	4	ιΩ	က	2	6.9	
m (199.3	149.18	41.06	49.2	145	145	150	140	136	124
Ва	361.24	335.65	695.5	655	73	6.77	390	460	754	
Ве	0.97	77.0	0.51	0.51	0.8	0.8	9.0	9.0	0.711	
P _O	0.11	<0.06	0.13	0.13	<0.4	<0.4	<0.4	<0.4	0.11	
ర	10.09	7.71	8.01	8.45	90'6	8.67	8	20	6.4	
ဝိ	4.73	3.11	2.78	2.67	1.85	1.95	-	-	1.27	
Cu	11.58	8.95	7.72	7.57	<39.7	<40.7	7	7	16.2	
L.	× 100	<100	62.27	62.91	50	50	2.05	Q	54	
Hg	<0.1	<0.1	0.129	0.167	0.11	0.1	0.13	0.13	0.153	
M	137.02	105.67	150.8	147.9	93.1	96.5	130	130	120	
Mo	3.99	3.85	2.82	2.88	10.5	Ξ	9>	9>	0.142	
Ž	7.22	5.59	7.3	7.49	15.5	16.4	4	4	5.32	
Pb	3.61	2.98	2.6	2.5	O	60	0	· m	1.97	
Sp	<0.8	<0.8	77.0	0.79	0.672	0.704	7	~		
& S	0.95	9.0>	1.03	1.03	٧	<u>v</u>	-	2	1.56	
>	21.18	16.16	15.72	15.78	19.4	19.2	16	17	16	16.2
PROXIMATE & ULTIMATE	ATE				% DRY BASIS	BASIS				
ASH	16.73	16.96	16.11	16.15	16.64	16.46	16.74	16.69	17.06	
CARBON	58.35	58,36	59.77	59.64	59,26	59.22	58.96	59.22	59.26	
HYDROGEN	6.03	4.36	4.23	4.25	4.28	4.31	4.06	4.02	3.8	
NITROGEN	0.82	0.82	0.91	0.91	1.06	1.05	0.81	0.77	1.02	
SULFUR	1.02	1.02	1.15	1.13	1.18	1.16	1.13	1.14	1.13	
CHLORINE	2	2	<0.02	<0.02	<0.01	<0.01	Q	2	0.04	
Btu/lb	9107	7314	9887	9881	9924	9066	9066	9894	9892	9885
					9	104				
MAJOR ASH ELEMENTS	ITS				LION IND &	LION I				
SiO ₂	46.27	34.56	41,36	40.88	2	2	39,59			39.4
Al ₂ O,	4.36		12.34	12.09	12.98	13.13	12.28			12.2
Ω, ,	0.57		0.43	0.42	0.44	0.53	0.48			0.5
Fe ₂ O ₃	5.22		7.09	7.06	6.25	6.38	2			6.6
CaO	4.9		17.58	17.35	4.77	5.06	2			16
Og.	1.23		4.8	4.73	1:1	1.05	문			4.7
Z Z	0.94		0.87	0.84	0.8	0.81	0.85			0.92
) (1.79		1.37	1.33	1.19	1.36	1.26			4.1
۲. ص	91.0	0.14	0.13	0.12	0.33	0.31	2	2	0.18	0.15
ર્જ	5		14.56	14.4	2	S	2		_	14.94

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE O

TRACE		LAB 1		LAB II		LAB III	LAB	≥	LAB	> 8
ELEMENTS	RUN 1	RUN 2	BUN 1	RUN 2	HUN 1	RUN 2	BUN 1	RUN 2	HUN 1	RUN 2
As	46.12	35,85	34.96	36.04	21	18	27	QN	29.4	31
82	99.41	74.78	58.5	62.38	73	77	72	80	54.5	47.8
Ва	53.29	48.15	84.8	86.2	107	5	82	83	2	82
Be	2.97	2.25	6.1	2.03	2.7	2.4	2.1	2.4	2.58	2.61
Cd	0.11	90'0	0.14	0.13	<0.3	<0.3	<0.4	<0.4	0.11	2
రే	22.55	18.44	20.68	19.39	21	22.6	20	20	13.3	13.9
လ	9.74	9.12	5.9	6.16	6.67	7.72	80	7	4.6	5.8
C n	23.57	18.44	17.81	18,62	^31	<32.6	22	22	22.7	23.5
i L	0.01	0.1	80,03	68.12	06	06	<u>Q</u>	2	73	73
Hg	0.14	6.0	0.248	0.273	0.23	0.23	0.2	0.5	0.399	0.353
Æ	26.64	21.51	27.2	24.8	27.4	30,4	30	31	26	26.4
Mo	10.25	5.33	4.05	4.09	5.09	5.68	9	9>	1.85	2.79
Z	27.67	21.51	21.12	22.1	54.5	61.9	26	25	23.7	24.1
Pb	9.94	11.27	15.29	15.14	17	20	19	18	10.5	9.7
Sb	2.15	1.43	2.09	2.17	1.85	1.78	8	2	2.6	2.4
Se	2.05	2.15	3.39	3.37	Ø	ဂ	၈	<u>Q</u>	9.9	2.2
>	44.07	33.8	28.47	30.13	32.3	32.1	58	26	35.6	36.6
	i									
PROXIMATE & ULTIMATE	IATE				% DHY BASIS	BASIS				
ASH	13.29	13.46	13.32	13.3	13.28	13.4	13.12	13,18	13.31	13.46
CARBON	69.61	69.56	71,35	71.16	71.19	71.46	70.38	70.79	70.5	70.66
HYDROGEN	5.06	5.24	4.82	4.78	4.91	, ro	4.6	4.65	4.76	4.79
NITROGEN	6.	1.31	1.34	1.47	1.41	1.37	1.36	1.38	1,33	1.35
SULFUR	3.08	3.1	2,92	2,97	3.02	2.99	3.01	3.04	2,93	2.91
CHLORINE	0.02	0.02	0.13	0.13	0.127	0.13	2	2	0.12	0.12
Btu/lb	11774	11530	12737	12720	12654	12655	12690	12708	12644	12637
					% DRY	/ ASH				
MAJOR ASH ELEMENTS									٠	
SiO ₃	52.88	39.14	Ĭ	46.9	<u>Q</u>		42.89	2		45
Al ₂ O ₃	24.76	20.13	-	23.32	20.52		21.3	윤		22.6
	1.29	96'0		1.08	1.03		2.32	2		
Fe ₂ O ₃	23.15	17.41		22.17	20.6		2	2 !		21.4
CaO	1.1 9	0.97		6 . 1	1.31		2	2		1.7
Og X	0.37	0.44		0.87	0.83		2	Q:		0.85
Na.O.	0.24	0.21		0.29	0.25		0.36	2 9		0.44
) (2.5	2.11		2.32	2.27		27.1	2 5		2.2
	88.0 CN	2. Z	0.45	127	76.0 CM	0.87 0.87	25	2 2	94.O	0.53
ŝ	<u>}</u>	<u> </u>		?	}		<u>}</u>	3		<u>r</u>

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE P

As 1.75 Ba 89.74 Ba 82.08 Be 1.42 Cd <0.06 Cd <0.06 Cd <0.06 Cd <0.06 Cd <0.07 Hg 6.24 Mn 51.44 Mn 51.44 Ni 8.54 Pb 7.33 Sb 1.42 Se 1.2 V 26.27 V 26.27 NITROGEN 60.52 HYDROGEN 60.52 SULFUR 0.01 Btu/lb 10329	2.19 2.19 2.19 2.142 2.25 4.102 4.102 4.103 4.103 7.27.35	2.48 75.17 397.2 1.14 <.01	2.6		-	•	2		
SE STANDATE & ULTIMATE SE SE SE SE SE SE SE SE SE SE SE SE SE	90.81 79.87 1.42 2.95 10.72 6.24 14.22 <100 0.16 47.05 8.1 8.1 1.97 1.03	75.17 397.2 1.14 <.01 9.42			1		2	2.3	2.4
SXIMATE & ULTIMATE BON BOGEN FUR ORINE ID	79.87 1.42 2.95 10.72 6.24 14.22 <100 0.16 47.05 2.95 8.1 8.1 1.97 1.03	397.2 1.14 <.01 9.42	75.9	80	1.2	82	74	45.2	62.9
XIMATE & ULTIMATE BON BOGEN FUR ORINE ID	1.42 2.95 10.72 6.24 14.22 <100 0.16 47.05 2.95 8.1 8.1 1.97 1.03	1.14 < 0.01 9.42	377.8	495	462	230	240	382	374
XIMATE & ULTIMATE BON BOGEN FUR ORINE ID	2.95 10.72 6.24 14.22 <100 0.16 47.05 2.95 8.1 8.1 1.97 1.03	< 0.019.424.45	1.16	1.2	1.4	1.3	1:1	1.32	1.35
XIMATE & ULTIMATE BON BOGEN FUR ORINE ID	10.72 6.24 14.22 <100 0.16 47.05 2.95 8.1 1.97 1.03	9.42	<0.1	<0.4	<0.4	<0.6	<0.6	0.018	2
S XIMATE & ULTIMATE BON BOGEN POGEN FUR ORINE	6.24 14.22 <100 0.16 47.05 2.95 8.1 1.97 1.03	4 15	6.6	10.8	8.6	10	O	7.6	7.4
XIMATE & ULTIMATE BON BOGEN FUR ORINE ID	14.22 <100 0.16 47.05 2.95 8.1 1.97 1.03	<u>.</u>	4	4.34	3.79	ស	თ	2.74	3.41
SXIMATE & ULTIMATE BON BOGEN FUR ORINE I	<100 0.16 47.05 2.95 8.1 8.1 1.97 1.03 27.35	11.56	11.49	<39.2	<35.7	=	5	13.7	13.4
SXIMATE & ULTIMATE BON ROGEN FUR ORINE ID	0.16 47.05 2.95 8.1 8.1 1.97 1.03 27.35	87.98	98.66	80	8	2	2	56	56
SXIMATE & ULTIMATE BON ROGEN FUR ORINE ID	47.05 2.95 8.1 8.1 1.97 1.03 27.35	0,082	0.089	0.07	0.08	0.08	0.08	0.078	0.077
ZIMATE & ULTIMATE BON ROGEN FUR ORINE ID	2.95 8.1 8.1 1.97 1.03 27.35	90'06	90.6	82.5	79.1	87	79	77.1	75.4
XIMATE & ULTIMATE BON ROGEN FUR ORINE ID	8.1 8.1 1.97 1.03 27.35	1.68	1.66	<19.6	<17.8	8	8	0.488	2
XIMATE & ULTIMATE BON ROGEN FUR ORINE ID	8.1 1.97 1.03 27.35	7.28	8.23	<14.7	<13.4	īO	9	5.9	7.3
XIMATE & ULTIMATE BON BON ROGEN ROGEN FUR ORINE	1.97 1.03 27.35	9.45	9.63	=	6	10	O	6.72	7
XIMATE & ULTIMATE BON BON ROGEN FUR ORINE	1.03	1.7	1.73	1.77	1.55	8	-	2.6	2
XIMATE & ULTIMATE BON ROGEN ROGEN FUR ORINE	27.35	1.59	1.72	•	-	7	Q	0.79	0.26
XIMATE & ULTIMATE BON ROGEN ROGEN FUR ORINE		22.37	23.81	26.1	21.6	28	56	27	26.1
BON 6 ROGEN POGEN FUR ORINE 1				% DRY	% DRY BASIS				
~	20.54	20.58	20.6		20.43	20.24	20.29	20.51	20.75
-		62.04	62.16		62.4	61.58	61.24	61,09	61.27
-		4.65	4.66		4.84	4.61	4.65	4,51	4.58
JR RINE		0.98	-		1.15	1.08	,	1.09	1.08
RINE		0.7	0.072		0.7	0.69	0.7	0.7	0.71
	0.01	<0.02	<0.02		<0.01	2	2	0.04	0.04
٠	9469	10913	10898	10872	10870	10852	10865	10857	10830
				% DR	% DRY ASH				
A ASH ELEMENTS									
		61.79	61.01	9	물		59.54	58.2	58.8
Al ₂ O ₃ , 16.09		22.5	22.16	22.53	19.93	22.08	21.79	21.1	20.9
		0.95	0.93	-			0.93	-	-
		4.84	4.86	4.5			9	4.4	4.5
		4.57	4.51	2.38			Q N	4.3	4.3
		1.34	1.31	0.93			2	1.2	1.2
•		0.27	0.26	0.26			0.22	0.27	0.27
		1.39	1,39	1.32			1.27	1.3	1.3
5 0.03	0.04	0.04	0.04	0.02	0.03	2	2	0.04	0.04
		3.61	3.52	Z			2	3.92	3.B

INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE Q

TRACE		LAB I	_	LAB II	LAB	LAB III	LAB IV	≥	r IAB v	>
ELEMENIS	HUN 1	BUN 2	HUN 1	RUN 2	RUN 1	RUN 2	BUN 1	RUN 2	HUN 1	RUN 2
As	4.72	5.67	4.39	4.43	တ	Ø	တ	2	2.3	93
m 1	235.98	288.74	138.35	135,55	160	180	160	170	140	160
	39.69	41.71	6.03	50.8	56.8	67.1	50	47	48.6	50.2
76	1.93	2.35	-	1.18	7.5	<u>د</u> .	1.2	1.2	1.44	1.48
<u> </u>	0.55	1.39	99.0	0.63	<0.2	<0.2	<0.3	<0.3	0.286	0.089
<u>ن</u> د	25.74	32.08	19.39	20.28	21.9	21.5	22	22	19.2	17.4
ိ	7.08	8.77	3.61	3.59	3.88	4.23	4	ໝ	2.79	2.29
ວ ີ ເ	12.87	18.18	10.72	10.79	<34.3	<34.8	12	12	15.3	15.3
4.	×100	<100	80.61	80.89	80	80	9	2	70	75
	<0.1	0.18	0.098	0.109	0.07	0.07	60.0	0.08	0.117	0.113
	33.25	34.22	32.4	33.2	29.7	29.3	ક	30	26.6	26.9
O.	6.54	60.6	5.06	5.1	9'8>	<8.7	9>	9	4.34	4
Z	21.45	24.6	15.19	15.24	28.4	29.7	18	16	17.3	16.5
Pb	6.22	1.39	10.87	10.68	=	12	=======================================	12	8	9
qs ·	<0.8	<0.8	0.61	0.58	0.445	0.596	₹	! ⊽	1.78	S
80 80	1.39	2.03	3.04	2.91	က	6	٠ م	; <u>S</u>	200	1 87
>	48.27	57.75	31.51	32.81	36.6	35.7	: 60 0	30	40	39.4
								l I	•	•
PROXIMATE & ULTIMATE	ATE				% DRY BASIS	ASIS				
ASH	10.61	10.58	10,65	10.76	10.56	10.55	10.46	10.51	10.62	40.64
CARBON	66.15	69'89	72.54	72.7	72.68	72.58	71.30	7.5	74.05	10.01
HYDROGEN	6.38	5.87	4.89	4 89	5 4	200	47.4	0.7	67.1	52.17
NITROGEN	1.41	1 42	1 48	97 +	- 64	0.0	- 10	4.70	4.7.4	27.4
SILFIE		3 2 6	- 0	- · ·	20.1	0.40	75.1	1.36	1.34	1.31
CHIOBINE	0.63	0.60	2.77	2.76	2.78	2.86	2.9	2.92	2.87	2.78
	70:0	90.0	0.139	0.137	0.148	0.136	2	2	0.1	0.1
	12200	11290	12901	12875	12785	12769	12815	12809	12768	12733
					% DRY	ASH				
MACON AND ELEMENTS										
SO.	99'09	69.31	50.76	50.64	2	2	49.64	Q	50.1	50.2
Algo,	24.82	26.73	22.2	22.07	19.79	19.71	21.62	2	21.7	21.5
	1.37	1.64	1:1	1.01	0.27	0.27	1.07	2	1.2	-
Fe ₂ O	18.79	21,68	16.92	16.92	16.53	16.39	2	2	15.4	15.5
Oac O	1.7	1.56	3.31	3.4	2.22	2.01	2	2	2.9	6
OBM	0.34	0.28	1.03	1.04	0.69	0.66	Q	2	-	•
Na ₂ O ₃	0.91	1.01	0.87	0.89	2.0	0.81	0.81	2	6.0	0.91
o,	2.92	3.41	2.58	2.56	1.9	2.04	2.38	2	2.5	2.4
or.	0.22	0.3	0.2	0.21	0.39	0.43	9	2	0.21	120
တ်	2	2	2.23	2,32	2	2	2	2	2.82	2.9

APPENDIX B

INTRALABORATORY TRACE ELEMENT REPEATABILITY AS PERCENT DIFFERENCE

Laboratory Repeatability Samples A & J

TRACE	LAB I	LAB II	LAB III	LAB IV	LAB V	MEAN	SDEV	PRSD
ELEMENTS	i i							
]		ļ į	1			
As	31.0%	1.9%	0.0%	0.0%	6.7%	7.9%	13.2%	166.3%
В	7.7%	1.0%	6.5%	11.5%	14.3%	8.2%	5.1%	62.0%
Ва	65.2%	6.3%	29.7%	12.2%	63.1%	35.3%	27.7%	78.5%
Be	57.1%	6.6%	7.4%	16.0%	2.1%	17.8%	22.5%	126.2%
Cd	9.1%	7.5%			27.9%	14.8%	11.4%	76.7%
Cr	12.4%	4.4%	3.5%	17.3%	16.8%	10.9%	6.6%	61.0%
Со	0.5%	6.9%	1.5%	50.0%	23.2%	16.4%	20.9%	127.2%
Cu		6.9%		23.3%	2.6%	10.9%	10.9%	99.8%
F !		2.2%	4.9%		24.6%	10.6%	12.2%	115.8%
Hg	1	18.7%	10.5%	10.5%	5.3%	11.3%	5.5%	49.1%
Mn	36.7%	1.5%	2.8%	18.2%	2.2%	12.3%	15.3%	124.4%
Мо	11.2%	2.3%	8.4%	50.0%	9.0%	16.2%	19.2%	118.6%
Ni	11.0%	3.3%	6.1%	20.0%	11.1%		6.3%	61.5%
Pb !	21.8%	1.9%	54.5%	12.8%	7.8%	19.8%	20.8%	105.1%
Sb	-	4.9%	7.1%	-	i	6.0%	1.6%	26.2%
Se	32.6%	12.5%	18.2%	0.0%	17.4%	16.1%	11.7%	72.7%
V	6.7%	13.2%	6.6%	17.7%	1.4%	9.1%	6.4%	69.7%
		ŀ	i			i		
Average	23.3%	6.0%	11.2%	18.5%	14.7%	13.8%	7.9%	57.8%

Laboratory Repeatability Samples B & K

TRACE ELEMENTS	LAB I	LAB II	LAB III	LAB IV	LAB V	MEAN	SDEV	PRSD
								
As	3.7%	0.6%	0.0%	85.7%	32.1%	24.4%	36.8%	150.5%
В	10.3%	11.8%	33.0%	2.5%	3.2%	12.2%	12.4%	101.6%
Ва	10.5%	2.0%	15.2%	8.2%	13.6%	9.9%	5.2%	52.4%
Ве	8.4%	1.8%	12.5%	3.8%	9.5%	7.2%	4.4%	60.5%
Cd	86.4%	0.0%		1	67.7%	51.4%	45.5%	88.5%
Cr	7.3%	1.9%	2.0%	6.9%	7.1%	5.0%	2.8%	55.9%
Co	7.3%	1.6%	0.1%	0.0%	3.1%	2.4%	3.0%	123.9%
Cu	0.2%	0.5%		5.1%	9.5%	1 5	4.4%	115.4%
F	ł	5.2%	0.0%	į	0.5%		2.8%	149.1%
Hg	1	14.8%	163.6%	4.3%	2.3%		78.4%	169.5%
Mn	12.0%	0.9%	3.9%	2.7%	6.8%	5.2%	4.3%	82.8%
Мо	2.3%	1.4%		i	9.9%	4.5%	4.7%	102.6%
Ni	8.3%	1.6%	54.0%	12.7%	9.6%		20.9%	121.6%
Pb	84.5%	3.8%	14.9%	3.3%	2.1%	1	35.5%	163.5%
Sb	i	2.2%	1.5%			1.8%	0.5%	25.0%
Se	28.1%	10.1%	15.4%	100.0%	7.3%	32.2%	38.7%	120.4%
V		2.1%	2.4%	4.3%	7.0%	4.0%	2.3%	56.9%
				i			i	
Average	20.7%	3.7%	22.7%	17.2%	12.0%	14.8%	23.8%	160.7%

Laboratory Repeatability Samples C & L

TRACE	LABI	LAB II	LAB III	LAB IV	LAB V	MEAN	SDEV	PRSD
ELEMENTS								<u> </u>
.								
As	93.4%	0.7%	22.2%	28.6%	16.6%	32.3%	35.7%	110.6%
В	1.0%	1.8%	5.8%	19.9%	15.5%	8.8%	8.5%	96.2%
Ва	5.7%	2.3%	15.2%	15.4%	71.2%	22.0%	28.1%	128.1%
Be	10.0%	12.0%	18.2%	8.7%	5.8%	10.9%	4.6%	42.5%
Cd	27.0%	35.3%			76.0%	46.1%	26.2%	56.9%
Cr	13.1%	8.5%	5.5%	22.9%	5.7%	11.1%	7.2%	65.0%
Co	13.4%	0.0%	6.6%	40.0%	2.2%	12.4%	16.2%	130.5%
Cu	9.6%	1.9%	j	13.3%	2.3%	6.8%	5.6%	83.1%
F	!	2.9%	8.7%		6.5%	6.0%	2.9%	48.8%
Hg	17.1%	6.3%	13.3%	33.3%	25.3%	19.1%	10.5%	55.0%
Mn	8.8%	1.5%	1.9%	22.2%	1.3%	7.2%	9.0%	125.7%
Мо	62.9%	4.7%	16.3%	İ	į	28.0%	30.8%	110.2%
Ni	9.9%	0.3%	52.2%	14.3%	3.5%	16.0%	20.9%	130.6%
Pb	46.9%	2.0%	66.7%	22.2%	12.5%	30.1%	26.4%	87.7%
Sb	į	2.2%	9.5%	j		5.9%	5.1%	87.6%
Se	15.9%	6.7%	28.6%	0.0%	54.8%	21.2%	21.6%	102.0%
V	10.1%	2.4%	7.5%	18.2%	1.7%	8.0%	6.7%	84.1%
	-							
Average	23.0%	5.4%	18.5%	19.9%	20.0%	17.2%	11.6%	67.9%

Laboratory Repeatability Samples D & M

TRACE	LAB I	LAB II	LAB III	LAB IV	LAB V	MEAN	SDEV	PRSD
ELEMENTS								
						į		1
As	13.7%	9.0%		0.0%	1.9%	6.1%	6.4%	103.5%
В	7.2%	32.8%	5.4%	7.0%	23.3%	15.1%	12.3%	81.2%
Ва	0.3%	3.8%	15.2%	20.7%	3.9%	8.8%	8.7%	99.1%
Be	0.2%	19.9%	0.0%	15.4%	16.6%	10.4%	9.6%	91.8%
Cd		40.0%			32.5%	36.2%	5.3%	14.7%
Cr	3.2%	12.3%	12.7%	13.3%	1.1%	8.5%	5.9%	
Co		0.4%	11.9%		11.0%	7.8%	6.4%	82.1%
Cu	1.6%	11.9%		6.5%	12.2%	8.0%	5.0%	62.7%
F	i	6.6%	22.2%		5.3%	11.3%	9.4%	83.2%
Hg		11.6%	13.3%	50.0%	1.6%	19.1%	21.2%	110.9%
Mn	8.3%	1.0%	26.8%	3.3%	5.9%	9.0%	10.3%	113.7%
Мо	1.5%	9.7%	55.0%	20.0%	7.4%	18.7%	21.3%	113.9%
Ni	2.2%	4.5%	52.1%	0.0%		14.7%	25.0%	170.0%
Pb	13.8%	0.4%	0.0%	0.0%	0.0%	2.8%	6.1%	216.4%
Sb	ļ.	3.1%	8.7%		İ	5.9%	4.0%	67.5%
Se	1	5.9%		0.0%		2.9%	4.1%	141.4%
V	10.1%	12.1%	1.6%	5.7%	3.1%	6.5%	4.5%	68.7%
	5.6%	10.9%	17.3%	10.9%	9.0%	11.3%	7.1%	63.0%

Laboratory Repeatability Samples E & N

TRACE	LAB I	LAB II	LAB III	LAB IV	LAB V	MEAN	SDEV	PRSD
ELEMENTS								
As	86.9%	0.8%	0.0%	85.7%	7.7%		45.8%	126.6%
В	17.1%	0.0%	3.4%	7.1%	10.6%	7.6%	6.6%	86.2%
Ва	41.2%	1.6%	163.0%	8.6%	4.7%	43.8%	68.5%	156.3%
Be	12.8%	34.8%	13.3%	8.0%	29.3%	19.6%	11.7%	59.4%
Cd	8.7%	26.1%			26.8%	20.5%	10.2%	49.9%
Cr	7.8%	7.4%	1.2%	0.0%	0.0%	3.3%	4.0%	121.5%
Co	24.6%	4.7%	0.5%	40.0%	31.7%	20.3%	17.1%	84.3%
Cu	11.8%	8.3%		0.0%	24.9%	11.2%	10.3%	92.0%
F		7.0%	18.2%		0.9%	8.7%	8.8%	100.6%
Hg		2.3%	47.3%	32.3%	21.2%	25.8%	18.9%	73.5%
Mn	15.4%	0.6%	3.7%	7.4%	0.8%	5.6%	6.1%	110.2%
Мо	12.9%	3.2%	38.0%		50.7%	26.2%	21.9%	83.7%
Ni	7.3%	1.4%		11.8%	66.0%	21.6%	29.9%	138.4%
Pb	109.8%	10.6%	72.0%	28.6%	96.7%	63.5%	42.8%	67.4%
Sb	i	4.6%	58.6%	İ	ļ	31.6%	38.2%	120.9%
Se	-	10.2%	[0.0%	70.6%	26.9%	38.2%	141.7%
v	81.0%	9.4%	19.0%	5.9%	0.6%	23.2%	33.0%	142.3%
						:	-	
Average	33.6%	7.8%	33.7%	18.1%	27.7%	23.3%	19.5%	83.9%

Laboratory Repeatability Samples F & O

TRACE	LAB I	LAB II	LAB III	LAB IV	LAB V	MEAN	SDEV	PRSD
ELEMENTS								
				i		:		
As	38.9%	0.6%	13.7%	11.8%	6.1%	14.2%	14.7%	103.5%
В	6.5%	5.8%	0.7%	13.3%	14.5%	8.2%1	5.7%	70.1%
Ba	7.1%	7.6%	14.7%	4.7%	53.0%	17.4%	20.2%	116.1%
Be	4.3%	9.5%	26.7%	4.3%	0.6%	9.1%	10.3%	113.9%
Cd	6.1%	20.4%			16.7%	14.4%	7.4%	51.6%
Cr	9.8%	30.2%	5.2%	2.5%	6.8%	10.9%	11.1%	102.0%
Co	11.0%	2.3%	16.2%	0.0%	24.3%	10.8%	10.0%	92.7%
Cu	2.7%	5.7%		7.1%	10.3%	6.4%	3.1%	48.9%
F	•	21.1%	5.4%		13.1%	13.2%	7.8%	59.3%
Hg	8.7%	6.3%	8.3%	22.2%	12.9%	11.7%	6.3%	54.3%
Mn	15.1%	2.3%	14.1%	0.0%	0.6%	6.4%	7.5%	117.5%
Мо	11.7%	6.8%	36.4%		30.0%	21.2%	14.2%	67.1%
Ni	13.9%	2.6%	71.6%	3.8%	1.1%	18.6%	30.1%	161.5%
Pb	97.8%	2.9%	20.9%	11.4%	16.4%	29.9%	38.5%	129.0%
Sb	29.7%	4.4%	11.4%	0.0%	ļ	11.4%	13.1%	115.1%
Se	21.3%	3.0%	22.2%	0.0%	39.1%	17.1%	16.0%	93.2%
·V	5.4%	4.5%	8.2%	27.2%	2.1%	9.5%	10.2%	107.3%
Average	18.1%	8.0%	18.4%	7.7%	15.5%	13.6%	9.8%	72.6%

Laboratory Repeatability Samples G & P

TRACE	LAB I	LAB II	LAB III	LAB IV	LAB V	MEAN	SDEV	PRSD
ELEMENTS								
As	21.3%	0.4%	0.0%	66.7%	82.3%	1 .	38.2%	112.0%
В	6.0%	16.8%	8.0%	5.9%	2.7%	7.9%	5.3%	67.6%
Ва	12.9%	5.9%	10.3%	6.2%	0.7%	7.2%	4.7%	65.1%
Ве	3.6%	17.1%	8.0%	4.3%	6.9%	8.0%	5.4%	68.0%
Cd					165.0%	165.0%	ļ	
Cr	9.9%	18.8%	2.4%	0.0%	3.4%	6.9%	7.6%	109.9%
Co	18.0%	1.5%	5.9%	0.0%	26.3%	10.3%	11.4%	110.3%
Cu	79.1%	9.7%		4.9%	6.1%	24.9%	36.2%	144.9%
F		4.2%	11.8%		29.7%	15.2%	13.1%	86.1%
Hg		10.5%	6.5%	13.3%	3.9%	8.6%	4.2%	48.8%
Mn	6.7%	10.0%	3.1%	4.3%	0.5%	4.9%	3.6%	73.4%
Мо	80.4%	4.1%			86.0%	56.8%	45.7%	80.5%
Ni	16.2%	4.0%		9.5%	3.1%	8.2%	6.0%	73.8%
Pb	30.9%	5.1%	18.2%	10.0%	0.9%	13.0%	11.9%	91.4%
Sb	13.5%	0.3%	9.8%	40.0%	98.5%	32.4%	39.8%	122.7%
Se		4.4%	0.0%		92.0%	32.2%	51.9%	161.4%
V	0.2%	8.6%	8.2%	3.6%	3.3%	4.8%	3.6%	74.4%
Average	23.0%	7.6%	7.1%	13.0%	36.0%	25.9%	18.9%	73.1%

Laboratory Repeatability Samples H & Q

TRACE	LAB I	LAB II	LAB III	LAB IV	LAB V	MEAN	SDEV	PRSD
ELEMENTS						:		
As	96.4%	3.6%	0.0%	0.0%	27.7%	25.5%	41.3%	161.7%
В	30.8%	1.4%	3.0%	6.3%	3.0%	8.9%	12.4%	139.5%
Ва	14.4%	0.6%	17.1%	1.0%	4.1%	7.4%	7.8%	104.1%
Ве	28.9%	8.4%	30.8%	4.1%	1.4%	14.7%	14.1%	95.7%
Cd	77.1%	8.1%			15.7%	33.6%	37.8%	112.5%
Cr	27.6%	0.5%	0.5%	0.0%	1.7%	6.0%	12.1%	199.6%
Co	11.0%	0.1%	4.0%	0.0%	2.6%	3.6%	4.5%	126.6%
Cu	19.1%	3.1%		0.0%	2.3%	6.1%	8.8%	143.0%
F		14.1%	0.0%		2.1%	5.4%	7.6%	141.0%
Hg	18.2%	5.5%	33.3%	42.9%	6.3%	21.2%	16.6%	78.0%
Mn	29.4%	3.4%	30.2%	1.6%	0.9%	13.1%	15.3%	116.4%
Мо	20.6%	0.1%			18.3%	13.0%	11.2%	86.4%
Ni	18.0%	0.3%	73.1%	5.7%	3.9%	20.2%	30.3%	150.1%
Pb	33.1%	1.0%	24.4%	4.4%	10.2%	14.6%	13.6%	93.2%
Sb		3.3%	3.8%		100.0%	35.7%	55.7%	155.9%
Se	9.8%	2.5%	40.0%	0.0%	22.7%	15.0%	16.5%	110.2%
V	30.5%	2.1%	0.4%	1.3%	0.8%	7.0%	13.1%	187.8%
								
Average	31.0%	3.4%	18.6%	5.2%	13.2%	14.8%	15.2%	103.2%

39 D-63

Laboratory Repeatability All Coals

TRACE	LAB I	LAB II	LAB III	LAB IV	LAB V	MEAN	SDEV	PRSD
ELEMENTS								<u> </u>
As	48.2%	2.2%	4.5%	34.8%	22.6%	22.5%	19.7%	87.6%
В	10.8%	8.9%	8.2%	9.2%	10.9%	9.6%	1.2%	12.4%
Ва	19.7%	3.8%	35.1%	9.6%	26.8%	19.0%	12.6%	66.6%
Be	15.7%	13.8%	14.6%	8.1%	9.0%	12.2%	3.4%	28.2%
Cd	26.8%	17.2%			53.6%	32.5%	18.9%	58.0%
Cr	11.4%	10.5%	4.1%	7.9%	5.3%	7.8%	3.2%	40.3%
Co	10.7%	2.2%	5.9%	16.3%	15.5%	10.1%	6.1%	60.2%
Cu	15.5%	6.0%		7.5%	8.8%	1	4.2%	44.5%
F		7.9%	8.9%		10.3%	9.0%	1.2%	13.6%
Hg	5.5%	9.5%	37.0%	26.1%	9.8%	17.6%	13.4%	76.3%
Mn	16.6%	2.6%	10.8%	7.5%	2.4%	8.0%	6.0%	74.7%
Мо	25.4%	4.0%	19.3%	8.8%	26.4%	16.8%	10.0%	59.7%
Ni	10.9%	2.2%	38.6%	9.7%	12.3%	14.7%	13.9%	94.3%
Pb	54.8%	3.5%	34.0%	11.6%	18.3%	24.4%	20.4%	83.3%
Sb	5.4%	3.1%	13.8%	5.0%	24.8%	10.4%	9.0%	86.7%
Se	13.5%	6.9%	15.5%	12.5%	38.0%	17.3%	12.0%	69.5%
v	18.0%	6.8%	6.7%	10.5%	2.5%	8.9%	5.8%	65.3%
-						5.575	0.070	30.070
Average	19.3%	6.5%	17.1%	12.3%	17.5%	14.7%	6.9%	46.6%

Average Repea	tability by Coals
Coal	Avg
· A&J	13.8%
B&K	14.8%
C & L	17.2%
D & M	11.3%
E&N	23.3%
F & O	13.6%
G&P	25.9%
H & Q	14.7%

DOE COAL ROUND ROBIN TRACE ELEMENT REPEATABILITY RESULTS % of Individual Lab Analysis Within Repeatability Ranges

Repeatability Range	Lab I	Lab II	Lab III	Lab IV	Lab V	All Labs
Less than 10%	31.0	79.0	42.0	46.0	52.0	50.0
10 to 20%	24.0	14.0	19.0	17.0	15.0	18.0
20 to 30%	8.0	2.0	7.0	7.0	11.0	7.0
30 to 50%	7.0	4.0	6.0	6.0	3.0	5.0
Greater than 50%	10.0	0.0	9.0	4.0	12.0	7.0
Non Determined	20.0	1.0.	18.0	21.0	7.0	13.0

41 D-65