OXYGENATES via SYNTHESIS GAS

FINAL TECHNICAL REPORT January 1, 1995-September 30, 1996

FINAL

Kamil Klier and Richard G. Herman with Alessandra Beretta, Maria A. Burcham, Qun Sun, Yeping Cai, and Biswanath Roy

> Zettlemoyer Center for Surface Studies and Department of Chemistry LEHIGH UNIVERSITY Bethlehem, PA 18015

> > April 1999

Prepared as a subcontractor to Air Products and Chemicals, Inc. BUILDER E ASSOTATE

200 2 I - A 338

Cooperative Agreement DE-FG22-95PC93052

U.S. DEPARTMENT OF ENERGY PITTSBURGH ENERGY TECHNOLOGY CENTER

OXYGENATES via SYNTHESIS GAS

DISCLAIMER

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

EXECUTIVE SUMMARY

Methanol synthesis from H_2/CO has been carried out at 7.6 MPa over zirconia- supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO_2 were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO_2 addition, water injection, reaction temperature, and H_2/CO ratio have been investigated. Both CO_2 addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO_2 *via* the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface.

The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr₂O₃ catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr₂O₃ catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H₂/CO synthesis gas mixtures. While the conversion of CO to C₂₊ oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C₁-C₃ alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double-bed system that provides the feedstock for the synthesis of high octane and high cetane ethers, where the isobutanol productivity was as high as 139 g/kg cat/hr.

Higher alcohol synthesis has been investigated over a Cs/Cu/ZnO/Cr₂O₃ catalyst at temperatures higher (up to 703K) than those previously utilized, and no sintering of the catalyst was observed during the short-term testing. However, the higher reaction temperatures led to lower CO conversion levels and lower yield of alcohols, especially of methanol, because of equilibrium limitations. With the double catalyst bed configuration, the effect of pressure in the range of 7.6-12.4 MPa on catalyst activity and selectivity was studied. The upper bed was composed of the copper-based catalyst at 598K, and the lower bed consisted of a copper-free Cs-ZnO/Cr₂O₃ catalyst at a high temperature of 678K. High pressure was found to increase CO conversion to oxygenated products, although the increase in isobutanol productivity did not keep pace with that of methanol. It was also shown that the Cs/Cu/ZnO/Cr₂O₃ catalyst could be utilized to advantage as the second-bed catalyst at 613-643K instead of the previously used copper-free Cs-ZnO/Cr₂O₃ catalysts, high space time yields of up to 202 g/kg cat/hr, with high selectivity to isobutanol, were achieved.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

	Page No.
Title Page	
Disclaimer	i
EXECUTIVE SUMMARY	ii
TABLE OF CONTENTS	iii
RESEARCH RESULTS	• 1
I. Cu/ZrO ₂ Catalysts for Alcohol Synthesis	1
Introduction	1
Experimental	2
Catalyst Preparation	2
Catalyst Characterization	2
Kinetic Catalytic Testing	3
Results	4
Catalyst Characterization	4
Kinetic Catalytic Tests	11
Discussion	18
Conclusions	21
II. Cs/Cu/ZnO/Cr ₂ O ₃ and Cs/ZnO/Cr ₂ O ₃ Catalyst	s as Single Beds
and in a Double Bed Configuration for Higher A	Alcohol Synthesis 22
Introduction	22
Experimental	23
Catalyst Preparation	23
Activity Tests	24
Quantitative Product Analysis	25
Results	27
HAS Over the 3 mol% Cs-Promoted Cu/Zn	$10/Cr_2O_3$ Catalyst 27
HAS Over the 4 mol% Cs-Promoted ZnO/C	$Cr_2 O_3$ Catalyst 34
HAS Over the Double-Bed 3 mol% Cs-Pro	moted $U_1/2nO/Cr_2O_3$
and 4 mol% Cs-Promoted ZnO/Cr ₂	J ₃ Catalysts 36
Discussion	38
Conclusions	40

III.	Effect of Reaction Pressure on Higher Alcohol Synthesis Over	
	the Double-Bed Cs-Promoted Catalysts	41
	Introduction	41
	Experimental	42
	Catalyst Preparation	42
	Catalytic Testing	42
	Results	43
	HAS Over the Double-Bed 3 mol% Cs-Promoted Cu/ZnO/Cr ₂ O ₃	
	and 4 mol% Cs-Promoted ZnO/Cr ₂ O ₃ Catalysts	43
	HAS Over the Single-Bed 3 mol% Cs-Promoted Cu/ZnO/Cr ₂ O ₃	
	Catalyst at High Temperature	48
	Discussion	48
	Conclusions	51
IV.	Double Bed Cs/Cu/ZnO/Cr ₂ O ₃ Catalyst for Higher Alcohol	
	Synthesis	52
	Catalytic Testing Results	52
	Conclusions	55
ACK	NOWLEDGEMENTS	56
LIST	OF PUBLICATIONS TO DATE	57
REFE	ERENCES	59