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ABSTRACT

A generalized thermodynamics for chemically active multiphase solid-fluid mix-
tures in turbulent state of motion is formulated. The global equations of balance
for each phase are ensemble averaged and the local conservation laws for the mean
motions are derived. The averaged form of the Clausius-Duhem inequality is used
and the thermodynamics of the chemically active mixtures in turbulent motion is
studied. Particular attention is given to the species concentration and chemical
reaction effects, in addition to transport and interaction of the phasic fluctuation
energies. Based on the averaged entropy inequality, constitutive equations for the
stresses, energy, heat and mass fluxes of various species are developed. The explicit

governing equations of motion are derived and discussed.
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INTRODUCTION

Chemically active multiphase flow has attracted considerable attention due to
their many significant industrial applications such as pulverized coal and fluidized
bed combustion. Extensive surveys of literature on earlier and recent works were

prévided by Soo (1969), Smith et al. (1981), Hetsroni (1982), Borghi (1988) and
Zhou (1993).

Continuum theories for multiphase mixtures were developed by Truesdell and
Toupin (1960), Eringen and Ingram (1965), Drumheller and Bedford (1980), Nun-
ziato and Walsh (1980), Passman et al. (1984), Ahmadi (1982, 1987), Massoudi
(1986), and Johnson et al. (1991a,b). Time and volume averaging‘method were
used by Twiss and Eringen (1971), Drew and Lahey (1979), Ishii and Mishima
(1984), Ahmadi (1989) and Ahmadi and Ma (1990), among others.

The importance of turbulence kinetic energy in turbulent fluid flows and in de-
veloping turbulence models are now well recognized (Launder and Spalding, 1972;
Rodi, 1982; Lumley, 1983; Ahmadi, 1985, 1991; Chowdhury and Ahmadi, 1992).
Earlier works on modeling dispersed two-phase turbulent flows was reported by
Hetsroni and Sokolov (1972), Taweel and Landau (1977), Genchev and Karpuzov
(1980), and Chen and Wood (1985). In these models, it was assumed that the parti-
cles were simply transported by the carrier fluid flow. The effects of the particulate
phase in modifying the fluid turbulence were, thus, totally ignored. Elghobashi and
Abou-Arab (1983) developed a model for dilute flows which included, in part, the
interaction effects. Kashiwa (1987), Gidaspow et al. (1989), Louge et al. (1991) and
Sanjay et al. (1994) proposed more elaborated models that offered certain improve-
ments, but did not consider the fluctuation energy transfer and particle collisions

effects for dense multiphase turbulent flows.

Recently, by using the global phasic conservation laws, Ahmadi and Ma (1990)
and Abu-Zaid and Ahmadi (1993) developed the basic governing equations for the
mean motion and the fluctuation kinetic energies of the multiphase mixture in a

turbulent state. The constitutive laws for the mean motions of different species were




also developed. The model included the effects of particle collisions, as well as the
phasic fluctuation kinetic energy transfer, and is, therefore, suitable for application
to relatively dense multiphase flows. Cao and Ahmadi (1994a,b) used the model to
analyzed turbulent gas-particle flow in a vertical and inclined channels, and showed

that the model predictions are in good agreement with the available experimental

data of Tsuji et al. (1984) and Miller and Gidaspow (1992).

In this work, the thermodynamics approach of Ahmadi and Ma (1990) is further
generalized and applied to the chemically active multiphase turbulent flow. The
fluid is treated as one additional phase with many constituents. The global con-
servation laws including chemical reactions for different particulate phases and the
fluid phase are described. Ensemble averaging method is applied to the integral
form of the balance laws, and thé local forms of the basic laws of motion for differ-
ent constituents are developed. Attention was also given to the formulation of mass
diffusion of different species. The equations governing the fluctuation kinetic and
thermal energies of the particulate phases and the fluid phase are also described.
Based on the averaged Clausius-Duhem inequality, constitutive laws for the phasic
stress, energy, heat and mass fluxes are developed. The expressions for the phasic in-
teraction momentum supply, the interaction fluctuation kinetic and thermal energy
supply, as well as the interaction entropy supply due to chemical reactions are also
derived. It is shown that in the absence of the chemical reactions, and turbulence
effects, the present model will reduce to the thermodynamical formulation of multi-
phase mixture theory of Ahmadi and Ma (1990). When the effects of the turbulence
and/or the particulate fluctuation kinetic energy are neglected, the equations are
consistent with those of Zhou (1993), Nunziato and Walsh (1980), and Baer and
Nunziato (1986). |

GLOBAL BALANCE LAWS

Consider a dispersed mixture of n distinct particulate phases and m fluid phase.
The global balance laws for the ath phase in the multiphase mixture, in the presence

of chemical reaction and interfacial mass transfer are given as:




Conservation of mass

S - [ffrea

Balance of linear momentum

at// pa”adVJ”//Pa fvin;dA = /// p"f“dV+//t anA+/// PdV |

Balance of mechanical energy

5[5t + //,, o gn,da = ///pavafadv
+/[)» ft:'udw/// rav - [[frertpa @

Conservation of energy

5ol [ e v+ [[ 075+ empngda = [ [ [ gz seav
+// ?t?znadA+//q,n,dA+///‘/(r + e*t)dV (4)

Clausius-Duhem inequality

n+1 at// p“no‘dV-f-// pon°vin;dA — // hZ9%ndA — /// red9® +nt) dV] 20 ()

In these equations, V is a fixed volume of space with surface A, ¥ is the instanta-

neous velocity vector, p is the density, 7 is the unit normal vector, ]F is the body
force per unit mass, t;; is the stress tensor, F; is the interaction momentum supply
per unit volume, e is the internal energy per unit mass, ¢; is the heat flux vector
pointing outward of an enclosed volume, r is the heat source (due to radiation and
nonchemical reaction effects) per unit volume, A is the entropy flux vectors, C** is
the mass exchange between phases due to chemical reactions, et is the interaction
energy supply, n is the entropy per unit mass, n* is the interaction entropy supply

and ¥ is the coldness defined as

J=1/0 (6)
where 6 is the temperature. The superscript for a (1 < a < n) represents the ath

particulate phase and & = n + 1 in equations (2)-(5) (superscript f is used later)
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denotes the fluid phase. In equation (1), a = Ffn+l<a=f<n+m) refers
to the m fluid constituents. Throughout this work the regular Cartesian tensor
notation with Latin subscripts is used. Thus, indices after a comma denote partial

derivatives and d/dt stands for the total time derivative.

For turbulent multiphase flows, the field quantities for all phases vary randomly.
These random functions could be decomposed into mean and fluctuation parts.

These are:

9% = 9% + 9%, 9o =0,
12 =12 413, 2 =0,
CRE =RE 4 AT, R =0,
=g+, ¢ =0,
e°‘+=€°‘++e°‘+l, ;1720,

n*t =gt 2, pet =0,
cot =gt 4 oY, Cot =0. (7)

Here, a bar on the top of a letter stands for the expected value (ensemble average)

and a prime denotes the fluctuating part. The body force acceleration fi and heat
source r are assumed to be nonfluctuating. Following Farve (1965), mass-weighted
ensemble averaging for certain held quantities is used to obtain convenient forms of
the equations governing the mean motion. Accordingly, the following decomposi-

tions are introduced:




o ~ al’ ~ oy Ao o pEne
N =q% 4+, =4+ = : (8)

Here, a tilde on the top of a .letter represents a mass-weighted ensemble averaged
quantity and double prime stands for the ﬁuctuating part relative to the mass-
weighted average. Equation (8) also shows that v "is proportional to the fluctuation
velocity-density correlation. Note that the ensemble average of a double prime

quantity is not zero, while

prvi’ = prCot" = pre” = pene” = 0. (9)
The decomposition of the mass-weighted averaged entropy is along the line of Ah-
madi (1989). It is assumed that the mean entropy 7* is composed of two parts,
7* and 77, corresponding to the molecular and turbulent agitations, respectively.
While ﬁ“vis a function of temperature, n°7 is expected to be a function of the state

of fluctuation (turbulence) of ath phase.

Taking the ensemble average of equations (1)-(5), and using the decompositions
given by equations (7)and (8), the integral form of the balance laws follows. These
are:

Conservation of mass

([ pav s [[sssman [[] eoray 0

Balance of linear momentum

2 [fpera [fesmans |[FrTnas
Y

Balance of mechanical energy

aII Q"

3t///_a ??+k“dv+/f o =L 4 k)52 anA+//p°" o v¥'n;dA
Frstensn [y o [ on
+/// vy ”t;;’JdV+/// v P2dV — /// paCot"y a"~adv

+//] pC( Za oy k*)dV + /f/ p™ vy anca+~dvl (12)
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Conservation of energy

8t/.//—a i ’+k°‘+é°‘dV-I—//p by + k% + &%)5%n;dA
[t vy ’q”v n]dA+//m~°‘n]dA+//m_njdA

= [[[ izseav + / seEmdA+ [ / o& ;A

+// o‘"t“'anA+//qtndA+/// ¥ 4 e*t)d (13)

Claustus-Duhem inequality

n+1 6t/// p°7%dV + // (P*7°05 + pon*" v ')njdA
/ / Re9® + BF 9% )nidA — / / / (r0% + 7°)dV] > (14)

In these equations, k% is the fluctuation kinetic energy of the ath phase defined as

VY% (15)

F2E® = po

Equations (10)-(14) are the statements of global conservation laws for the mean

motion of the multiphase mixture.

DIFFERENTIAL BALANCE LAWS

While the instantaneous ﬁeld variables in a dispersed multiphase turbulent flow
are random, discoﬁtinuous and non-differentiable functions, their averages are con-
tinuous, smoothly varying, differentiable functions of space and time. Applying the
divergence theorem to the surface integrals in equations (10)-(14) and rearranging
terms, the differential balance laws for the mean motion of the multiphase mixture

follows.

The differential forms of the equations of conservation of mass for the ath par-
ticulate phase as obtained from equation (10) is given as

ap~ a

at 8 (pava) - _aéa+‘ (16)




When the ath particulate phase is incompressible, it follows that

P~ = pgv”, (17)

where v* is the mean volume fraction of the ath phase. Since p§ is a constant,

equation (16) may now be restated as

o, 0
8t 6(13]'

(v*52) = v*C*T. (18)

Similarly, for the fth fluid phase the statement of conservation of mass becomes

9%’ 0 Sol) = F G
o7t og PH) = F O -~ (19)

The averaged density of the fluid phases is given as

pr=> 0 | (20)
ol =Y 5ol (21)

. ™
cf = -, Zcf = ]. (22)

Using equation (22), equation (19) may be restated as

8cf faCf 3J

..f f_
p ( i T dwz) 6‘:01 ¢ (23)

where the mass flux J/ and source term C/~ are defined as

Here
ﬁféf+ — Z p—fé’f+ (25)
f=1




Equation (23) is a diffusion equation for the fth fluid species.

~

Summing equation (19) for f = 1 to m and using equations (20) and (21), the

continuity equation of the fluid phases follows. i.e.,

apl 8 .. s
—+—;(pfvjf) = plCIt. (26)
Therefore, the fluid (gas) phases may be treated as an additional phase with m

different constituents of different concentrations. For an incompressible fluid phase,
7 =i, (27)

where density pé is also a constant. Equation (26) now may be rewritten as

ov' 3} . "
—gt— + Bz(z/fv]f) = ,Vfo+' (28)

For fully saturated mixtures, the following constraint is imposed:
p=p"+ 5% (29)
a=1l
When the constituents are incompressible, equation (29) leads to
v+ Y =1 (30)
a=1

In addition, the following constraint on the averaged mass exchange due to chemical

reactions must hold.

ﬁfé'f+ + Zpaéa+ = 0. (31)

a=1
Form equation (11), the local forms of balance of linear momentum for the ath

particulate phase and for the fluid phase are derived. These are

dv* o oty .
sa i Safa _ _J P 5« at o 2
"~ pﬂ+(3,$j+axj+z prCTHg, (32)
and
do! otl, ol .
ol — pfpf L a0 f_ Sfof+sf
= fi + 32, + 3z, + P/ = p/CTo]. (33)

In equation (32) for the particulate phases, the fluctuation (kinetic) stress tensor




tT and the collisional stress tensor ¢2° are combined. i.e.,

Fac T ol T ol
R S S 5 = —piud’, (34)

and

£ =15 - %, (35)

is the average stress tensor in the absence of collisional effects. The fluid turbulent

stress tensor t{,T is defined as

tiT = —pfol"vf". (36)

Using equations (16), (26) and (31), the equation of mass conservation for the

entire mixture becomes
FTi %(ﬁ'ﬁj) =0, (37)
where the density of mixture j is defined by equation (29) and the velocity of mixture
v; are defined as
Zﬁ o5 - (38)
The balance of linear momentum for the entire mixture follows by adding equation

(32) and (33) for all the species. i.e.,

di},' BT;
P = pft + _Ja 39

where the total mixture stress is defined as

z ( + 17 = T olo]) + (73 + 19 — 50802 + pit;. (40)
f=1 a=1

In the derivation of equation (39), the conditions that the net interaction momentum

supply must be zero. i.e.,

Pl +Y Pr=o, (41)

a=1

10




p—fé'f-i-ﬁf Z 520t &=, (42)

are used.

Equation (12) for the balance of mechanical energy may be restated in differential

form as
dk® —
= T — o B K = e+ s
H~a o o o ?”via" "
— RO G — 2Ok — pr i — e (43)
where,
p—aea — ﬁa(eac + Ea‘u)’ p—aeac — W7 ﬁaeav _ ta'u zJ (44)

In these equations, ¢* is the dissipation rate for ath phase p'er unit mass, €*° and

v are the particulate collisional and viscous dissipation rates and ¢3* = t2 + p*é;;

is the viscous (dissipative) part of ¢f;. Here

vg” .all Y —
Kja — _pa'_2}_ v¥ + v a tau_’_v tac_vjq pa/’ (45)

is the particulate fluctuation energy flux vector, and
pos% = v P¥ — PPpY = v P2, (46)

is the particulate interaction fluctuation energy supply term. In equation (43),

1

the particulate fluctuation pressure-velocity gradient correlation term v p®' was

neglected.

For the fluid phase equation (43) may be restated as

il —ol B+ KL = e+

. - fll fll
— plCi+ "] — 25T CITRS — pf =5 =C, (47)

where the fluid turbulent kinetic energy &/ and fluid dissipation rate ¢/ are defined

11




~ v Uy - v f
FE = o2 B =t (43)

respectively. Here,

f” f“
f f” i f T
K' '_,Df % 9 i J + v; tﬂu - Uj pf y (49)

is the fluid fluctuation energy flux vector, and

st = vszif - Pifﬁif = v;f"P‘f, (50)

T

is the fluid fluctuation energy supply term. The instantaneous stress tensor in the

fluid phase is expressed as t{i = —plé; + tJz , where t{f is the viscous part of the
fluid stress tensor and p’ is the fluid hydrodynamic pressure. Equations (43) and
(47) show that the fluctuation energies are being produced by the action of the total
fluctuation (kinetic plus collisional for the particulate phases) stresses in a mean
shear field, transported by convection and diffusion and are dissipated. Furthermore,
fluctuation energies could be supplied or extracted through the interaction source
terms. There are also a secondary source terms related to the product of the density-

velocity correlation and mean pressure gradient fields.

Subtracting the mechanical energy equation given by (12) from equation {13)

and using the divergence theorem, it follows that

—-adéa —a x o o~ o Do a” -4
p—:i—t-ij,1+q31+pe +tJ111_vP — P+t e
. ape o —_—
_paOoH-(éa_ [ _ka)+pavz 20 Ca+u+pa0a+u o ~za, (51)
and
déf n
ﬁf 7 —qm'i'q“+pf€f+tﬂv],'——vfpf {1—{—7' +&ft
B ~f~f fll f” —__T
—pIOIH(E - 2 ) 4 pf 2O pf0f+"v{ 3. (52)
where
q;.xT = W’ q}fT = pf@f”’l}jf”. (53)
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are the ath particulate and the fluid turbulent heat flux vectors. Note that for all

phases, the net energy exchange should be zero. i.e.,'

gty et = (54)
a=1

Equations (51) and (52) are the statement of the local form of the conservation
of energy for the ath particulate and the fluid phases. In these equations, the
fluctuation pressure-velocity gradient correlation terms p* v, and p/’ vzf ;' were also

neglected.

The entropy inequality equation as given by (14) may be restated in differential
form as: ' '

n+1 . _ - . .
So[pT = (Re9%), — ReT — ro9™ 4 gt — ST — 7t 4 5o C*i®] 2 0. (55)
a=1

where the turbulent entropy flux vector S#T and the heat flux-coldness correlation

vector R*T are defined as

S¢T = —prode”, (56)
and
R = hg'9". _ (57)

The net entropy exchange for all phases should also be zero. i.e.,

7t + gt =0 (38)

a=1
" The phasic Helmholtz free cnerzy functions for the mean thermal and turbulent
fluctuations are defined as (Ahmadi and Ma, 1990)
2/301 =% — ﬁa/&a’ ,()baT = k% — 770‘T/19QT,
of =&l il pdt, T =k =TT (59)

In these equations, 9°T and ¥/7 are the particulate fluctuation and the fluid turbu-

lence coldness defined analogous to the thermal coldness.
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Using equations (43), (47), (51)-(52) and (59) in equation (33), the result may

be restated as

pits 4

)+ @+ T 150 + pe

T2
(92)
L gy, s0Pr — post— pTT- Lper g L
19& 1 2 1 1 4,1 ﬂa 2, : ,lga
+%;—aéa+ﬁa _ﬁcxéa+éa
~q~a . o .a// g”COt'*’” _——_-7~
+ﬁa(1}12vz +ka)cya+ Ak vé +p°‘C“+"v§’ 'Uia
i =f
—~ 7 — T f ~ —~
+0! [~ (i _T'f(&f)Z) +al;+qf; + L+ a0
1 ;- _ - 1 1
(B IAN _5fpf _sff s 2 pfT L of+ . f+
,gf(hzﬂ )11 sz p s p vz,z ﬂfRz,z +6 ﬂfn
bl ErET _ 5 Gt
o .
v v Ly
+ﬁf(v’ v + kf)0f+ + p_.g?__}i‘____ + ,O-fo+"U;f 1”){]
= l9atT —af o oT GGT' —a~o
+2_:1 [—P (™" —n W)‘*‘Tjivi,j
ww T e L ea_ L ca
—pre* — v Py + K7+ ptst - ﬂaTSi,iT
' .n ~// a+! 4
_Qﬁaéa+ka _ pav? v; ¢ — paCa+”via"5?
. 'léfT
T =f T T fT~f
+9/ {“P (T —n? W) + 5055
_ T _ _ 1 T
—pfef —v;f p£+Kj{j+pfsf—-1-’;ﬁSi{i
) T ——
_opfatpt — P v O e T > o (60)
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Equation (60) is the statement of averaged form of Clausius-Duhem inequality

for chemically active turbulent multiphase flows.

CONSTITUTIVE EQUATIONS

In this section, based on averaged entropy inequality as given by (60), a set
of constitutive equations for the mean turbulent multiphase flow are developed.
Following Ahmadi and Ma (1990), in analogy with classical thermodynamics, we

assume




=g, k=gl -3 A
ReT = 279>, 5oT = K-“z?“T,
RIT Z]fT o, ST = K9 - Bl (61)

That is the mean entropy flux for the particulate phase is assumed to be equal to the
mean heat flux, while that of the fluid phase includes the products of mass diffusion
of the fth species and the corresponding chemical potential ﬁf. The turbulence
entropy flux is assumed to be equal to the product of the energy flux vector and the
corresponding coldness. For the fluid phase a vector Ef is introduced in equation

(61) to account for the possible differences.

Using equation (61), inequality (60) may be restated as

> 3 2 Aoy 19 o, qo ja ~a PP
Zﬂa[—ﬁa(¢ -n ) 3 Q 19 +t]zv31+p €

D I 1 = ~ox
—OX P — p%s* — pv + &t — 5—770‘“L p*Cte

page ~ 2y’ Cot!  — 0 —
+ﬁa(vz2vz + ka)0a+ + P Ui Uz +paCa+”via {)ZC‘]
sl ap03l g i’ Vorar o L Smyqiofary . Lafaf o afd
+9 {‘P (¥ -9 (5f)2)_WQi0'i+WZ(J Y+ 1505+ ple
f=1 )

~ - 7 1 x
—{),Lszf —ﬁfs _pfv;fz +éf+— _&_“f‘i’__ —fo+éf

~,f~f _ fll f” f+" . — v
4 (B kO 4 &%C_ ST
19 oT
+Z19QT[ ¢aT aT = )+7:]z3:~;1]
a=1 (190‘ )
Al s agaT

_v pz ﬁa6a+ﬁasa_m

P G
1t
2

_2ﬁaéa+ka _ _ p“C"“*‘"vf‘"ﬁf‘

o T
+ﬁfT[_pf(¢fT—nfTW)+tsz j:]

-7 Kf 95T + Ef

9
plol vl C i+
2
where Q7 and Q! are the total heat flux vectors defined as

255 CIHES — — pfct+ "5l >0, (62)
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QF =g+,
Ql =¢ +47
J =345 (63)

The constitutive independent variables are

p%, B, o, 8, 9o, 9t 9IT g 9T Bl it de dl, e, @l (64)

17? 129
These are all frame-indifferent tensors and czf_; and d?] are the mean deformation rate

tensors defined as

Ja 1 ~ ~ o - 3f - l . ~ : .
di = (07 + 93,), d}; = 5(”3:1 +2f2)- (65)

Along the line of Ahmadi and Ma (1990), the following set of frame-indifferent
constitutive equations are proposed:

P = 9%(p70%), T = o T(p% 97T %),

B =), T =T T,

7_-1'(; ‘Fi?(ﬁaﬂgaady?j)? tAft = 7?O!( 190/[ d:vj’ a),

I of (~f af i T T/-f ofT
th =t 9 dly), ] = (¢ 07" dle)

Il

QF = QF(p" 90, K = K7 (p*0°T 07 1e%),
Qf = QI 9 30), K=Kl 9797,
vf" = o (57,550 59T ),

v;_f” f”(—f _f /19f ﬂf ﬁfT f)

’p ’”
El = Ef (' 977, ﬂfT el el),
I =Tl 3, ). (66)

For incompressible constituents the respective densities could be replaced by the

corresponding volume fraction in the constitutive relations given by equation (66).
Furthermore, according to the principle of equipresence of continuum mechanics
all the constitutive dependent variables must, in general, be functions of all the
independent constitutive variables. For simplicity of analysis, only the most relevant

variables are included in the constitutive equations given by (66).
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Employing (66), inequality (60) may be restated as

no 8¢C¥ ﬁa o 1 - A _ - _
I U = ==Q7V% + (15 + p™6i;)07; + p*e”
O; { P (Gga (19a)2) Go G (G P8+
_ — 1 _ o P
_62' Pia — ﬁcxsa _ I_)avzo:i + ea+ . ggnaﬁ- _ paca+ea

~ ey~ o .all gllCa+// o
+'5 (vz2 + ka)0a+ £ Y v; +paCo¢+uvia 5?]
- 81bf 7t '—f 1 ~ _ ~ . L
7 (G~ AT G Pl

R AN, L —fa‘/’f
+ 3 (& = )+ 5 T W97 = =]

- " ]_ - ~ ~
[P/ — sl — o] + 0% — ot — OIS

~-f~f T 4 S
4 (B k)0 4 2_%9’__ + O]
- o —a a,‘/)aT UQT "a —o o ~a
+Zﬂ T[—p (aﬂaT_(lgan)ﬁ T+ (Tﬁ +p T&'j)vi,j
a=1

¢aT‘
gaT i Vi TP T

T Yt
povs U C

S T e
+'9fT[ ﬁf(azg;: (1;]:TT) 9o (tfz’T +pr‘5iJ')"~’z{j
_5e — b "I;’fz_ 45— JlﬁKfﬂfT + 0fTEf _ aé’i .
25/ Ik — [olcr pfCr+l"sl] > 0, (67)
where
P = (ﬁ“)"‘gﬁ: , T =(p" )"’aa‘i T
p=(7 )zgﬁ;, p’t = (ﬁf)ﬁ(;b;. (68)
The consistency conditions for pressures require that
T =5k, pT = ST, (69)

where ¥® is a parameter which is a strong function of solid volume fraction v.
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Demanding that the entropy inequality (67) holds for all independent variations

of 9, 9/, 9°T and ¥/7 it follows that

Ao Jo al&a o 28'1/) e
=05 T =0 S (70)
. = 2a¢f ' 2 09I T
W =) o= 0 =01 o (71)
Furthermore, )
Oyt
pl= Bf (72)
The inverse of the mean coldness are now defined as
- 1 A -1
0% = Fa 67 = 57 (73)

In general, 6 and 6/ are different from the mean temperatures §* and /. They are

equal only within the limit of a linearized theory.

Following Ahmadi and Ma (1990), it is assumed that
T=0aT/ka’ 19J'T= C’J'T/kf7 (74)

where C°T and C/7T are some positive parameters corresponding to the energy ca-
pacities of turbulent fluctuations. Using equations (71)-(73), inequality (67) reduces
to V "

n

200 [ean‘Gj‘; - (8% + p%65)0% + pYe*

a=1

_..~°‘Pa — p s¢ _p 1) + ea+ éaﬁa-i- _ ﬁaéfa-')—éa
i ~ L G T L —

+ﬁa(vz vz + ka)ca-{» + ,0 vz 'U, +p°‘C°‘+“v$‘”6§‘

2 2
+ { QfQ’; (fi‘*‘ﬁf‘sij)ﬁf,r*'ﬁfff

T Z [ngf ) _ —fﬁféf—]
=1 os
_vfp‘ - p sf p f{’ +eft = éf—f+ _ ﬁfc"ff+éf

ﬁfﬁ P vf"vf"Cf+f/

+5 (== + )OIt + + plCI+! 51
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Based on the Clausius-Duhem inequality given by (75), thermodynamically con-
sistent constitutive equations may be formulated. Ahmadi and Ma (1990) described

a set of isotropic quasi-linear constitutive equations for the stresses. These are:

for —a 2 o Jo @ Jo
tij = _(p + 5” dmm)éij + 20“‘ dij7 (76)
= o —a.a 2 aT ja aT ja
Tiy = —(7 P E* + E);u dmm)&'j + 2/“ dij’ (77)
0o (5 4 20 V6 ouf
ty = =" + g dn)bij + 207 iy, (78)
2 . .
tf = =3 (K +wT )65 + 2077 (79)

Here, u* and pf are the coefficients of viscosity given by

peT = Cconprd ()2, W7 = Ol (R e (80)

where C** and C/# are parameters which depend on p* and pf, and d* is an ap-

propriate length scale of the ath particulate phase. Generalized rate-dependent and
nonlinear constitutive equations for the phasic turbulent stresses were derived by
Abu-Zaid and Ahmadi (1993). However, those more general formulation are not

considered in this study.



The constitutive equation for the fluid species mass fluxes are given by

5 f
J =D gi (81)
where R
f_ o OE6) 8 18%
b7 = o2l = 0p L (22, (2)

with Cp being a constant. The constitutive equations for the density-velocity cor-

relations are given as

oT — T
e o 7 _ [ _f
vio= O-appakapv“ s O'fpﬁfkf 29 (83)
where o°? and ¢/? are parameters which are in general functions of p* and p-.
The fluctuation energy fluxes are assumed to be given as
aT, f
o © 1.
K=k, K =+ SR (84)

where 0% and o/* are parameters corresponding to the Prandtl numbers for tur-

bulence energy fluxes. It is also assumed that the heat fluxes satisfy the extended

Fourier law of conduction. i.e.,
Qf = (v + 583, Qf = (+ + &1, (85)
where «’s are heat conductivity and superscript T refers to turbulence.
p p

The entropy inequality given by (75) also ifnposes the following restriction on

the parameters:

pr20, w20, pT>0, pT>0,
k* >0, fcfZO, T >0, «7T>0,
o®? >0, o/P>0, >0, oF>0,
D! >o. (86)

Assuming that the fluctuation velocity and the mass supply due to chemical

reactions are statistically independent, it follows that

po‘C’a'*’"vf‘”vf‘" — po‘Oa‘I'”’l)?“ — 07 , (87)

plCI+" vl oI = proi+iy!” = 0. (88)

20



The resulting Clausius-Duhem inequality (73) then becomes:

éb};[—ﬁap — P 4 B — Gt — aéa+éa+pa(6’?g +k‘*)é“+]
+9‘—11f[“5'fpf*ps +elt ¢/ ”—pr“’wLP(Z;Z prufcf]
+Z:c]*:T 5% — 25%C* k" + Ck—j;T[pfsf —2/CIk] > 0. (89)
Now let

Cim = icfcil/ﬁfi, (90)

=1
where v/ is proportional to stochiometric coeflicients of constituent f in the ith
chemical reaction, and éi is the rate of advancement of reaction I. Inequality (89)

now implies that
P A >0, ~ (91)
i=1

where A is the affinity of the {th chemical reaction defined by

Al =~ > cfciufiﬂf. (92)
f=1
From (91), it follows that
g=g@Ha, (93)
and
= ZcfcfAﬁ(Gf), (94)
i=1
where
A7) = €\ (§) T AT (95)

Note that the summation over { covers the fluid constituents and the particulate
species that participate in the chemical reactions. Equation (94) is an averaged

form of the Arrhenius law for binary reactions.

Inequality (89) now may be restated as

n 1 a
25‘[— o7 — o) P + p7(



n CaT

e O L Lo
+Z:1 T P8 + o S +a=1éae +éfe

n

_Q(anTﬁaéa+ + CfTﬁféf+) |

a=1
nol R : . 3 e ofof .
+Zé_a[_ ﬁasa _ gaﬁa+ _ﬁaca-}—ea +ﬁaka0a+ _ Uifpia +ﬁa 32 1 Ca-{-}
a=1

1 . - . _ 5l of .
+97f_[ _ st @it — O 4 GG 5 B+ ﬁf%z_cfﬁu] > 0(96)

Entropy inequality (96) admits the following constitutive equations for the mean

interaction momentum supply:
Pf = D(5] - ) + 55" C°* (57 + o). (97)

Furthermore, P/ may be obtained from equations (41) and (97). i.e.,

D - a(~a ~ : 1—a~a ~ o ~
P =3 (D5(5 - 5]) - 5570 (57 + 9))). (98)

a=1

where D, is a positive definite matrix given as
D¢ = Dgé; + 2L>d};. (99)

In this equation, D§ and L“ correspond to the drag and shear lift coefficients. For a

dilute suspension of spherical particles in an incompressible fluid of density pf and

viscosity /.té,

1/2
o B (140127 L 2181(07) " (100)
0 — R:17%- - 3 7. ’
(d"‘)z (1 _ Va/ygl)25 ) da(d{jdfi)l/‘;

were suggested by Ahmadi and Ma (1990). Here, d* is the diameter of the ath

particulate phase, and the particle Reynolds number is defined as

plde |5 — %]
b

a-——.

ed — (].Ol)

In equation (100), »2 is limiting dense packing volume fraction for shear flows. For

a single size spherical particulate phase, v, = 0.64356 (Ma and Ahmadi, 1986).
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Entropy inequality (96) imposes the following restriction on the fluctuation ki-

netic energy source terms

n_ (T T

C
3 el prsf > 0. | (102)

a=1

Based on inequality (102), Abu-Zaid and Ahmadi (1993) obtained

pos® = 2DZ(ck! — k%), (103)
Fs =23 DRk — k) + 3o e DS (e — ) — ), (104)

where - =
c= m T, = 0.165-13;, = g—;, (105)

and s is a positive parameter with 1 > s > 0. Note the second term in equation
(104) accounts for the generation of fluid phase turbulence due to the mean particle-

fluid slip velocity.

Inequality (96) also implies that

~ Lo Lo
—e*" 4+ —e/T > 0. 106
a=lga Hf ( )

Using equation (54), the expressions for €** and &/* satisfying inequality (106) are

givens as
et =e2(f -0, (107)
et =Y eg(d* - b, (108)
a=1

where €2 is a positive function of 6 and §*. -

Equations (97), (98), (103), (104), (107) and (108) imply that the transport of
momentum, and the fluctuation and thermal energies occur between each particulate
phase and the fluid-phase. Thus, the direct transport between the particulate phases
is ignored. Further generalization to include such effect is not considered in this

study.

The resﬁlting entropy inequality now becomes
f

1

5f .

1 Ca+
2

D

= 1 ) A ~ = ~f Do o
Zé_a{_ ﬁasa _ Baﬁa-{»- _ p—aca-{-ea + p—akaca-{- _ lsz + P
a=1 .
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+éLf[ _ st T - fo+ S TR G BTy g Cf+] (109)
Inequality (109) admits the following expressions for the entropy fluxes:
1 ~ -
ﬁa-i- — aa[ QDO:( k _ ka) _p-actcu}»éa +Ib-aka0a+
~axf
ar=f  ~oy~f 2 Vi Ui X
= D5(6] = 55! — g =50, (110)
it = { 23" Dk — > seDg(5e — o) (5 - 5))
a=1 o=
. - ' ol .
—ﬁfo+€f +ﬁfkfcf+ ED zf__p—f 121 Cf+]_ (111)

Equations (76)-(86), (94), (97), (98), (103), (104), (107), (108), (110) and (111)

are thermodynamically consistent constitutive relationships for multiphase turbulent

reactive flows. Further generalization to include nonlinear and/or stress transport

type model could be done along the line of Abu-Zaid and Ahmadi (1993). But this

further generation is left for the future studies.

BASIC EQUATIONS

Using the constitutive relationships derived in previous section in equations (23),

(32), (33), (43), (47), (51) and (52), the resulting governing equations are:

Fluid Species Concentration

ac facf J 0!
#( S+ 528 = 2 (pf2) 1 57 3 o dafied) (112)
ot oz; Jz; Ozx; -
Linear Momentum
—-adf;ia — Qo a —c¢ o —a 1o 2 [ aTy\~a
Pr =P —axi[P PR+ (W% + )
0 o o 8{)? a'i}‘?‘ a 1—0: o ~ ~
+7[(# +p T)(gxﬁ' +a—;)] + (Dg; + F7°C o) (o —5)  (113)
7 %
2 .
o - ——[pf PR+ 3w+ w )
Bv 31) i | P o~
MG + g+ (D5 + 57 C76,)(57 - 9]) (114)
k3 a:l N
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Fluctuation Energy

L dk — oT s 9o L p, 002 0v¥ 95 9 u°T Ok~
dt —(* 7%k +3ﬂ )8xi+ﬂ (axj+8x,-)5xj+(‘3xi(a""8:ri)
vf‘"g pe” + 2D% (k! — k%) — 25*Cotk” (115)
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;dkd 2 av! asf  ovf o5l b wIT Ok

___—ff fo — T ( J 3 —_ f NI
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+ Zsta 5 — )52 — of) — 2/ CIHES (116)
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Heat Transfer
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et D 20 HfT)ae] o + 2t )af;{+ a{ (av +aﬁ;‘)]aa{
7Ta T ot oz, T3 T G T 5, Y oz, T Bz by

— Pl + 5 + o - sta(v )5 - of vapa 52— 5])

a=1

- —fcf+(§v CE) 4+ Y g6t - 0 (118)

a=1

where the v®”" and 7 in the equations (115)-(118) are given by Abu-Zaid and
Ahmadi (1993) as

‘ aT —x 9o —a qja
— @ 0p* 0p ap> 06
= aappaka(aﬁa oz; = §f~ axi)’ (119)
— T =f 95f =f 56f
T =t (2 0r | O 00, (120)
cfrpfkf 0pf 0x;  HOf Oz,

Here it is assumed that 5* and 5/ are the functions of 5%, g and Iz o/ , respectively.
For a incompressible dispersed mixture and when surface tension and Brownian

motion effects are negligible, it may be assumed that (Ahmadi and Ma, 1990)
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o a f _

=o', ' =vipl. (121)

where p/ is the mean pressure in the fluid phase.

When dissipation rates ¢ and €/ are specified, equations (109)-(115), (18), (28)
and (30) may be used to determine phasic mean velocities, solid volume fraction,
fluctuation energies and temperatures for an chemically active multiphase turbulent
mixture flows. Algebraic expressions and the transport equation for the dissipation
rates were suggested by Ahmadi and Ma (1990), Abu-Zaid and Ahmadi (1993) and
Cao and Ahmadi (1994a,b).

Equations (16), (19) and (112)-(118) are the governing equations for densities,
mean velocities, fluctuation kinetic energies and thermal energies of different species.
When no chemical reaction occurs, the present model equations will reduce to the
thermodynamical formulations of multiphase turbulent flows of Ahmadi and Ma
(1990). When the effects of the particulate fluctuation energies are neglected, the
resulting governing equations are consistent with those suggested by Zhou (1993).
In the absence of turbulence effects, the present formulation resembles those of

Nunziato and Walsh (1980), and Baer and Nunziato (1986).

CONCLUSIONS

The governing equations for the motion of chemically active multiphase turbulent
flows are studied. The averaged form of the Clausius-Duhem inequality and the
generalized thermodynamics of mixtures in turbulent state are used in the analysis.
Thermodynamically consistent constitutive equations for siresses, heat and energy
fluxes of various species are developed. The explicit system of governing equations
are derived and discussed. The resulting model accounts for the fluctuation and
thermal energy transport and interactions. Furthermore, the chemical reactions
effects are included in the formulation. Thus, the developed model is suitable for
applicable to chemically active multiphase turbulent flows at relative high particulate

concentrations.
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