another shutdown test was conducted to get a more accurate estimate of gas hold-up. The shutdown test indicated a gas hold-up of 8 vol%.

As planned, the unit was shutdown after completing the baseline condition. As the slurry had degraded through the run, perhaps due to carbon formation, it was no longer a representative slurry. Hence, it was decided not to conduct the tracer or the filter work with this slurry. The reactor was cooled to 125°C and the slurry was transferred to the preparation tank, and subsequently drained. The slurry appeared a bit thicker than typical oxygenate slurry, but much thinner compared to the earlier spent slurry.

Mass Balance

Some simplifying assumptions were made for mass and elemental balance. The 22.18 Separator hydrocarbon to aqueous phase ratio was assumed to be constant during the run. An aqueous fraction of 0.542 by volume was estimated from the hydrocarbon and aqueous phase collected in the 22.16 Tank during the entire run. The 22.18 Separator hydrocarbon and aqueous phase flows were assumed to be constant at constant operating conditions.

A run-time table, which summarizes the cross-reference between run numbers, actual times and on-stream times, is given in Table 13. Analysis of liquid samples taken during the run are compiled in Appendix E. This includes both the hydrocarbon and aqueous phases. The analysis was performed by DOE-PETC. No wax samples were available as no significant amount of wax was produced during the run. The product distribution was calculated based on amounts and analysis of liquid collected as well as measured gas flows and analysis.

The mass balance was in the 95-97% range while the elemental balance ranged from 92 to 105%. This closure is considered good at the pilot scale given the number of components involved in some of the streams. A typical mass and elemental balance is given in Table 14. Mass balances for each data period are included in Appendix F. A summary of the results for each data period is given in Table 15.

Alpha Estimate

Alpha (α) was estimated for conditions at which liquid sample analysis was available. A typical α plot is shown in Figure 35. Additional α plots are included with respective mass balances in Appendix F. Generally, an excellent straight line fit was obtained for a single α in the C₁-C₁₆ range. Also, a peak corresponding to presence of Drakeol-10 was observed in C₂₀-C₂₇ range. The value of α declined from around 0.65 to 0.5 towards the end of F-T IIA operation.

Reactor Temperature Profile

Reactor temperature profile during the high productivity condition (Run No. AF-R12.2A) is shown in Figure 36. The reactor was essentially isothermal in the liquid phase with only a 1.7°C (3°F) variation along the height of the reactor. The temperature of the gas phase in the vapor disengagement zone was significantly lower due to heat losses.

Pilot Plant Results from Literature

Slurry thickening similar to the current run was experienced by Farley and Ray (6) in a pilot plant run at Fuel Research Station, Greenwich, UK in the 1950s. Gas hold-up in the reactor was found to decrease with increasing slurry viscosity due to formation of finely divided carbon. A plot of gas hold-up and viscosity as a function of free carbon in wax from this paper is shown in Figure 37. A constant gas hold-up of 45 vol% was observed for carbon under 1 wt%. Rapid drop in the hold-up was observed for higher carbon content. The hold-up drop coincided with the viscosity rise. At higher temperatures, excessive build-up of carbon increased viscosity substantially, leading to gelation of the reactor contents.

Heat Transfer Coefficients Estimate

Heat transfer calculations were made to check the performance of the new internal heat exchanger in comparison to its design basis. Overall heat transfer coefficients were calculated based on data from Runs AF-R12.1A and 12.2A. The "measured" coefficients were calculated using data from actual utility oil flow rate, temperature rise, reactor temperature and predicted utility oil heat capacity. Measured shell-side (slurry-side) coefficients were then backed out from measured overall coefficients using predicted tube-side coefficients from Sieder-Tate equation.

The measured coefficients are compared with predicted, as well as design, coefficients in Table 16. The predicted coefficients are based on Sieder-Tate equation for tube-side and Deckwer correlations (7) on the slurry-side. For design, a safety factor of 0.85 was used for the tube side (inside) coefficient and 0.75 for the slurry-side (outside) coefficient. The measured overall coefficients were within 6% of the predicted values and 11-22% higher than the design numbers. The measured slurry-side coefficients were within 15% of the predicted value and 14-35% higher than the design numbers. Hence, the data validate current design methods. Since significantly higher amount of heat was transferred during Run No. 12.2A compared to previous operations with the old heat exchanger, the results also indicate successful scale-up.

The new heat exchanger was designed to remove the entire heat of reaction. Considering heat removal with gas flow as well as heat leak through reactor walls, the reactor has significantly higher capacity for additional reactor productivity. As expected, the reactor temperature control needed manual intervention at high productivity conditions. A realignment of the utility oil system is planned to improve the control.

CONCLUSIONS AND RECOMMENDATIONS

- A very high level of reactor productivity (more than five times the F-T I productivity) was demonstrated for slurry phase Fischer-Tropsch synthesis.
 Reactor productivity of 136 grams of HC/hr liter of slurry volume was achieved, which was within the target of 120-150. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening. With a cobalt catalyst or an improved iron catalyst, if carbon formation can be avoided, there is significant room for further improvements.
- The demonstration was conducted at a pilot scale of 5 T/D. An initial attempt with 44 wt% catalyst concentration had to be aborted as excessive slurry thickening was experienced due to carbon formation and particle agglomeration. A second test with 29 wt% catalyst concentration was successful. The catalyst activation with CO/N₂ proceeded well. The initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good watergas shift activity and a low α.
- Mass transfer limitations were observed during the high productivity runs. To
 alleviate these limitations and prevent excessive thickening, the slurry was
 diluted during the run. This enabled operations under kinetic control later in the
 run. However, the dilution resulted in lower conversion and reactor productivity.
 The catalyst activity declined steadily during the run, with carbon formation
 suspected to be the cause.
- Gas hold-up declined significantly earlier in the run and was much lower than expected (~ 10 vol%) during most of the run. Slurry thickening with time onstream appeared to be the reason for the low gas hold-up. The gas hold-up estimates were confirmed by shutdown tests.
- The new reactor internal heat exchanger performed well above design, and the system never limited the performance. As expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

FUTURE PLANS

Additional Fischer-Tropsch runs are planned during a new "Alternative Fuels and Chemicals from Synthesis Gas" program which began late 1994. Further slurry-phase F-T runs are needed to demonstrate high levels of productivity with highly selective (high wax producing) catalysts. The high productivity of the slurry-bubble-column reactor can be used to improve the economics of the process. The improved catalyst source could be either an industrial partner or a DOE-sponsored contractor. The LaPorte AFDU will be modified to install best available catalyst-wax separation technology. The newly installed heat exchanger has already been proven for its capacity to handle high heats of reaction, enabling operation at significantly higher productivity. The slurry-phase reactor can directly use synthesis gas from coal without the need for a separate shift reactor. However, a majority of the newly-developed cobalt-based catalysts which have been primarily focused for natural gas derived synthesis gas, do not have water-gas shift activity. In such cases, a demonstration is needed involving use of a mixture of a shift catalyst with a cobalt-based F-T catalyst to handle coal dérived synthesis gas in a single reactor.

ACKNOWLEDGMENTS

The developmental work described here was supported in part under a contract (No. DE-AC22-91PC90018) from the United States Department of Energy. In addition, cost participation was provided by Air Products and Shell Oil.

The author would like to thank Dave Hanauer from Air Products for his assistance during the start-up and the operation of the plant. Burtron Davis (CAER) and Robert Gormley (DOE-PETC) provided timely activity testing in support of the demonstration. Analytical assistance was provided by Curt White, Joe Hackett and Richard Anderson of DOE-PETC. Gary Stiegel, Richard Tischer and John Shen from DOE provided leadership and technical assistance. Technical expertise from Arend Hoek (Shell) was extremely helpful. Fred Tungate (UCI) worked with the partners through the catalyst scale-up. Thanks to CAER, PETC, Shell, and Air Products Laboratories, the analytical and activity testing during the run was completed very quickly.

REFERENCES

- 1. Bhatt, B. L., "Liquid Phase Fischer-Tropsch Demonstration in the LaPorte Alternative Fuels Development Unit", Topical Report Prepared for DOE by Air Products and Chemicals, Contract No. DE-AC22-91PC90018, June 1994.
- 2. Studer, D. W., Brown, D. M., Henderson, J. L. and Hsiung, T. H., "Status of the Development of Methanol Synthesis by the LPMEOH Process", DOE Indirect Liquefaction Contractors' Review Meeting, Pittsburgh, PA, November 13-15, 1989.
- 3. Bhatt, B. L., Schaub, E. S., Heydorn, E. C., "Recent Developments in Slurry Reactor Technology at the LaPorte Alternative Fuels Development Unit", 18th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, April 26-29, 1993.
- 4. Armstrong, P. A., Bhatt, B. L., Heydorn, E. C. and Toseland, B. A., "Isobutanol Dehydration: A key Step in Producing MTBE from Syngas", Coal Liquefaction and Gas Conversion Contractors' Review Conference, Pittsburgh, PA, September 27-29, 1993.
- 5. Hackett, J. P. and Gibbon, G. A., "Capillary Gas Chromatographic Characterization of Fischer-Tropsch Liquefaction Products: On-line Analysis", Journal of Chromatographic Science, Vol. 27, p. 405-412, July 1989.
- 6. Farley, R. and Ray, D. J., "The Design and Operation of a Pilot-scale Plant for Hydrocarbon Synthesis in the Slurry Phase", Journal of the Institute of Petroleum, Vol. 50, No. 482, February 1964.
- 7. Deckwer, W. D., "Hydrodynamics Properties of the Fischer-Tropsch Slurry Process", Ind. Eng. Process Des. Dev., 19, p. 699-708 (1980).

Iron Fischer-Tropsch Develormental Preparations Air Products & Chemicals, Inc.

· · · · · · · · · · · · · · · · · · ·	F		1 2		1							
Comments	22.0% LOI, 1000 ⁰ F	7	14.8% IOI, 1000 ⁰ F	1 C	.1% IOI,	#12	6% LOI.,	O G	1% IOI,	9#	6% IOI,	
Bulk Density, g/cc				0.63	97 0	0.67	6	1.07	1.09	1.10	1.16	1.18
Activity	*.				*				*		*	
BM + BM + \$ 15 Br	1.0	1 . 1	9-0	0.2		0.1	5	0.1	0.01	0.1	0.01	0.01
Average Particle Size, At. 120x325 Mesh	7-6	7:1	23.8	10.5	24.2	12.9	C a	, w	4.3	11.3	66.0	62.1
calc. T, º	Uncalc 370	009	Uncalc	009	Uncalc	009	Uncalc	009	Uncalc 370	009	Uncald 370	. 600
\$ Binder	28.0 Silica	30	31.5 Silica	30	30.2 Silica	30	28.6 Kaolin	30	31.2 Kaolin	. 02	No Binder	·
* K20	1.17	1.0	0.098	0.1	1.78	2.0	0.092	0.1	0.93	1.0	er.0	0.1
\$ CINO	4.91	5.0	5.53	5.0	6.25	5.0	5,65	5.0	5.58	5.0	7.97	7.15
* Fe203	65.9	64.0	62.9	64.9	61.8	63.0	62.3	64.9	62.3	64.0	0.06	92.75
Identification	1185-43	Nominal	1185-54	Nominal	1185-55	Nomina].	1185-56	Nominal.	1185-57	Nomiral	1185-61	Nominal
	* CMO % K20 % Binder Calc. T, Oc Particle FRAT Activity Density, Comments 120x325 FIF Rest Mesh	% Fe ₂ O ₃ % CMO % K ₂ O % Binder Calc. T, O ₂ Particle Activity Bulk 512e, M. \$ 15 Hr \$ 15 Hr \$ 0.63 65.9 4.91 1.17 28.0 Silica Uncalc 7.6 1.0 ** 0.63	\$ Fe ₂ O ₃ \$ Caro \$ Fe ₂ O ₃ \$ Caro # Average Size, At. 25.0 Silica Uncalca # Average Size, At. 26.0 Silica Uncalca # Average Size, At. 27.0 Silica Uncalca # Average Size, At. 27.0 Silica Uncalca # Average Size, At. 27.0 Silica Uncalca Silica Sili	\$ Fe ₂ O ₃ \$ CMO \$ K ₂ O \$ Bulk Hearticle Hearticle Hearticle Hearticle Hearticle Hearticle Hearticle Hearticle Bulk Bulk 65.9 4.91 1.17 28.0 Silica Uncalc 7.6 1.0 ** 0.63 64.0 5.0 1.0 30 7.1 1.1 1.1 0.63 62.9 5.53 0.098 31.5 Silica Uncalc 7.3 0.6 7.3 1.3	% Fe ₂ O ₃ % O ₄ O ₄ % Verage at the strict of	\$ Fe ₂ O ₃ \$ Owo \$ K ₂ O \$ Binder Calc. T, Or Size, At. Particle Size, At. # Binder Size, At. Bulk Bulk Bulk 65.9 4.91 1.17 28.0 Silica Uncalc Uncalc 7.6 1.0 ** 0.63 64.0 5.0 1.0 30 4.91 1.17 28.0 Silica Uncalc 7.1 1.1 1.1 0.63 64.0 5.0 1.0 30 4.91 4.91 1.1 1.1 1.1 0.63 64.9 5.0 0.1 30 4.91 4.05 0.6 1.23 0.63 1.23 64.9 5.0 0.1 30 4.03 10.5 0.2 0.63 0.63 0.6 0.63	\$ Fe ₂ O ₃ \$ Ono \$ K ₂ O \$ Binder Calc. T, Oracle (Size, AL) Average (Barticle (Bart)) + Activity (Bulk) Bulk (Bulk) 65.9 4.91 1.17 28.0 Silica (Drcalc) 7.6 1.0 ** 0.63 64.0 5.0 1.0 30 7.1 1.1 1.1 0.63 64.9 5.53 0.098 31.5 Silica (Drcalc) 7.1 1.1 1.1 0.63 64.9 5.0 0.1 30 10.5 23.8 0.6 1.23 64.9 5.0 0.1 30 10.5 23.8 0.6 0.2 0.2 0.63 64.9 5.0 0.1 30 10.5 24.2 1.0 ** 0.63 63.0 5.0 2.0 30 60 12.9 0.1 0.65 0.65	# Re ₂ 03	\$ Fe_2O_3 \$ Ono \$ KZ \$ Binder Calc. T, Or Size, A. Size, Size, A. Size, Size, A. Size, Size, Size, A. Size,	\$ Fe_2O3 \$ Calc T, O2 Particle State, At. State, Sta	\$ Fe ₂ 03 \$ Calo \$ Fe ₂ 04 \$ Fe ₂ 05 \$ Fe ₂ 05 \$ Fe ₂ 05 \$ Fe ₂ 04 \$ Fe ₂ 05 \$	\$ Fe ₂ O ₃ \$ CMO \$ KZO \$ Binder Calc. T, Or Starticule Startic

/slo Fir-240 4/19/93

+ FBAT - Fluid Bed Attrition Test ** Selected for Activity Testing

TABLE 2

FISCHER-TROPSCH II CATALYST (FIRST 500 LBS BATCH)

	Specifications	L-3950 (1185-149) (500 lb composite)
Composition at 1000°F:		
Fe ₂ O ₃ (wt%)	87.9 ± 2	86.6
CuO (wt%)	11.1 ± 1	12.5
K ₂ O (wt%)	0.052 ± 0.01	0.05
Particle Size (D50), Microns	<u>:</u>	
	77 ± 10	D10: 40 μ
	≥ 80% above 20 µ	D50: 92 μ
	≤ 3% below 5 μ	D90: 137 μ
FBAT. % 15 Hrs:	< 1.5	0.2
Density, g/cc oxides:	1.09 ± 0.1	1.305
Surface Area, m ² /g oxides:	27 ± 5	40

^ -

TABLE 3

PHYSICAL AND CHEMICAL DATA FROM UCI ON PRODUCTION CATALYST

CATALYST # 1185-149	CALCINATN TEMP, °C	% LOI @ 538°C	PAF DIS	PARTICLE SIZE DISTRIBUTION (MICRONS)	IZE ON	COMPACTED DENSITY	SURFACE AREA M2/G	FBAT ATTRITION	₹	WT%	WT% K20
			D10%	D20%	%06Q			HRS)	દ		
1st 500 lbs	350	1.9	40	92	137	1.305	40	0.2	86.6	12.5	0.05
2nd 500 lbs	350		42	88	132	1.130		1.0	86.4	12.0	0.05
3rd 500 lbs	350		53	101	148	1.107		2.8	87.3	87.3 11.7	0.05

__

START-UP WAX FOR LAPORTE F-T II

TMC 24810, EX HPS 9/8, HT 95-3, ZP (V-650)

CARBON DISTRIBUTION BY HIGH TEMPERATURE GLC

Pct w	Carbon No	Pct w
0.53	26	2.56
1.88	27	2.44
3.02	28	2.30
3.56	29	2.18
3.78	30	2.07
3.91	31	2.05
3.92	32	1.87
3.90	33	1.78
3.84	34	1.69
3.72	35	1.65
3.77	36	1.47
3.43	37	1.47
3.27	. 38	1.38
3.13	39	1.31
2.98	40	1.23
2.84		
2.69		
	0.53 1.88 3.02 3.56 3.78 3.91 3.92 3.90 3.84 3.72 3.77 3.43 3.27 3.13 2.98 2.84	0.53 26 1.88 27 3.02 28 3.56 29 3.78 30 3.91 31 3.92 32 3.90 33 3.84 34 3.72 35 3.77 36 3.43 37 3.27 38 3.13 39 2.98 40 2.84

Carbon No range	Pct w
09-10	2.41
11-20	36.85
21-30	26.46
31-40	15.90
41-50	9.25
51-60	5.05
61-70	2.26
71-80	1.10
81-90	0.50
91+	0.22

Average composition:

normal paraffins: 93 %w isoparaffins: 7%w

TABLE 5

	_	, 1	\neg		1			1		1	Т	П	Ţ		\neg
	WATER	GPD TOPD			142	174.8	343.1	203.1	174.8	142.0	343.1			3551	
	HC	GPD			496.3	9.609	1117.6	8'069	9'609	496.3	1117.6			12147	
	LIGHT WAX	GPD			51.4	106.5	286.6	2'99	106.5	51.4	286.6			2328	
	000	MOLE%			80	80	83	09	80	80	83				
	SYNGAS	LBMOL/HR		24	99	80	150	150	80	99	150				
-7	LIN GAS	VEL (IN), FT/SEC		0,38	0.36	0.23	0.24	0.45	0.23	0.36	0.24				
FT II RUN PLAN		DAYS ON- STREAM		l .	2	2	3	က	2	0,5	0.5	က		16	
EL.	REACTOR	TEMP., DEG C		270	265	270	300	300	270	265	300				
	REACTOR	PRESS., PSIG		150	200	400	750	400	400	200	750				
	SPACE	VELOCITY SL/HR KG-FE		2000	2500	3000	5600	5600	3000	2500	5600				
	DESCRIPTION			ACTIVATION	TIE-IN WITH F-T I	NEW BASE LINE	HIGH PRODUCTIVITY	HIGH IN VEI OCITY	DETI IPN TO BASE INE	TRACER STUDY	TRACER STUDY	FILTRATION TESTS		TOTAL	
	RUN NO.			AE-A7	AE-R11.1	AF-P11 2	AE-D11 3	AE-D11 4	AE-D11 5	AE-R11 6A	AF-R11.6B	AF-R11.7			

TABLE 6

FISCHER-TROPSCH II ACTIVATION CONDITIONS

- TRANSFER SLURRY FROM PREP TANK TO REACTOR AT ~200°F
- REACTOR PRESSURE AT 150 PSIG

INITIAL HEAT UP UNDER NITROGEN

- 16°F/HR FROM ~200°F TO 302°F (~ 6 HRS)
- N2 FLOW = 12,500 SCFH (LIN. VEL = 0.15 0.18 FT/SEC)

ACTIVATION WITH 75% CO, 25% N2

- 12°F/HR FROM 302°F TO 518°F (~18 HRS)
- CO + N2 FLOW = 20,900 SCFH (LIN. VEL = 0.30 0.38 FT/SEC)

HOLD TEMPERATURE AT 518°F FOR 12 HOURS MAX

MONITOR CO2 CONC. IN EFFLUENT & CUMULATIVE CO2 PRODUCTION

ACTIVATION CHEMISTRY:

$$Fe_2O_3 + 4.6CO$$
 -----> $0.4Fe_5C_2 + 3.8CO_2$
 $CuO + CO$ ----> $Cu + CO_2$

ACTIVATION TARGET:

CO2 CONC. IN EFFLUENT BACK AT BASELINE AFTER PEAK & TOTAL CO2 PRODUCTION > 100% THEORETICAL

DO NOT EXCEED 120% OF THEORETICAL CO2 PRODUCTION OR 12 HOURS AT 518°F

TABLE 7

FISCHER-TROPSCH (II) DEMONSTRATION RESULTS

- INITIAL PERFORMANCE LOWER
 CO CONVERSION 35% VS. 80% IN AUTOCLAVE
- CONFIRMED EXPECTED LOW α

OPERATING PARAMETERS VARIED IN ATTEMPT TO IMPROVE PERFORMANCE:

REACTOR TEMP INCREASED FROM 265°C TO 270°C INCREASED GAS VELOCITY BY REDUCING REACTOR PRESSURE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2		
FROM 265°C TO 270°C PERFORMANCE UNSTEADY NUCLEAR DENSITY READINGS AND REACTOR TEMPERATURES REACTOR TEMPERATURE MORE STABLE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO PERFORMANCE UNSTEADY NUCLEAR DENSITY REACTOR TEMPERATURE MORE STABLE LARGER SWINGS IN NUCLEAR DENSITY READINGS PERFORMANCE LOWER (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2	CONDITION CHANGE	
UNSTEADY NUCLEAR DENSITY READINGS AND REACTOR TEMPERATURES REACTOR TEMPERATURE MORE STABLE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2	REACTOR TEMP INCREASED	LITTLE IMPROVEMENT IN
UNSTEADY NUCLEAR DENSITY READINGS AND REACTOR TEMPERATURES REDUCING REACTOR PRESSURE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMPERATURE MORE STABLE LARGER SWINGS IN NUCLEAR DENSITY READINGS PERFORMANCE LOWER (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2	FROM 265°C TO 270°C	PERFORMANCE
INCREASED GAS VELOCITY BY REDUCING REACTOR PRESSURE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO REACTOR TEMPERATURE MORE STABLE REACTOR TEMPERATURE MORE STABLE LARGER SWINGS IN NUCLEAR DENSITY READINGS BOTH REACTOR TEMP AND N. D. READINGS STEADIER PERFORMANCE LOWER (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
INCREASED GAS VELOCITY BY REDUCING REACTOR PRESSURE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO REACTOR TEMPERATURE MORE STABLE REACTOR TEMPERATURE MORE STABLE LARGER SWINGS IN NUCLEAR DENSITY READINGS BOTH REACTOR TEMP AND N. D. READINGS STEADIER PERFORMANCE LOWER (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2		UNSTEADY NUCLEAR DENSITY
INCREASED GAS VELOCITY BY REDUCING REACTOR PRESSURE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMPERATURE MORE STABLE LARGER SWINGS IN NUCLEAR DENSITY READINGS BOTH REACTOR TEMP AND N. D. READINGS STEADIER PERFORMANCE LOWER (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2		READINGS AND REACTOR
INCREASED GAS VELOCITY BY REDUCING REACTOR PRESSURE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMPERATURE MORE STABLE LARGER SWINGS IN NUCLEAR DENSITY READINGS BOTH REACTOR TEMP AND N. D. READINGS STEADIER PERFORMANCE LOWER (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2		TEMPERATURES
REDUCING REACTOR PRESSURE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2		
REDUCING REACTOR PRESSURE AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2	INCREASED GAS VELOCITY BY	REACTOR TEMPERATURE MORE
AND INTRODUCING ADDITIONAL NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO LARGER SWINGS IN NUCLEAR DENSITY READINGS BOTH REACTOR TEMP AND N. D. REACTO		
NITROGEN (TO IMPROVE SLURRY MIXING) SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO LARGER SWINGS IN NUCLEAR DENSITY READINGS BOTH REACTOR TEMP AND N. D. REACTOR TE		. OTABLE
SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO DENSITY READINGS BOTH REACTOR TEMP AND N. D. REA		I ADGED SWINGS IN NI ICI EAR
SLURRY DILUTED TO MAXIMUM HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO BOTH REACTOR TEMP AND N. D. REACTOR TEMP AND N. D	* ** *	
HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO REACTOR TEMP INCREASED TO READINGS STEADIER PERFORMANCE LOWER (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2	(10 IMPROVE SLURRY MIXING)	DENSIT READINGS
HEIGHT (TO REDUCE MASS TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO REACTOR TEMP INCREASED TO READINGS STEADIER PERFORMANCE LOWER (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2		DOTU DEACTOR TEMP AND N. D.
TRANSFER LIMITATIONS), GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO NO IMPROVEMENT IN HIGHER CH4, LOWER CO2		
GAS VELOCITY REDUCED BY BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO PERFORMANCE LOWER (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2		READINGS STEADIER
BACKING OUT N2 AND INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO (26% CO CONV.) NO IMPROVEMENT IN PERFORMANCE HIGHER CH4, LOWER CO2		
INCREASING PRESSURE (TO REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO NO IMPROVEMENT IN NO IMPROVEMENT IN NO IMPROVEMENT IN NO IMPROVEMENT IN		· — · · · - · · · · · · · · · · · · · ·
REDUCE GAS SLUGGING AND CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO NO IMPROVEMENT IN NO IMPROVEMENT IN	BACKING OUT N2 AND	(26% CO CONV.)
CHANNELING) H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO NO IMPROVEMENT IN NO IMPROVEMENT IN	INCREASING PRESSURE (TO	
H2/CO RATIO INCREASED FROM 0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO NO IMPROVEMENT IN NO IMPROVEMENT IN	REDUCE GAS SLUGGING AND	•
0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO PERFORMANCE HIGHER CH ₄ , LOWER CO ₂ NO IMPROVEMENT IN	CHANNELING)	
0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO PERFORMANCE HIGHER CH ₄ , LOWER CO ₂ NO IMPROVEMENT IN	Í	
0.7 TO 2.0 IN FEED GAS (TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO PERFORMANCE HIGHER CH ₄ , LOWER CO ₂ NO IMPROVEMENT IN	H2/CO RATIO INCREASED FROM	NO IMPROVEMENT IN
(TO REMOVE CARBON DEPOSITED ON CATALYST) REACTOR TEMP INCREASED TO NO IMPROVEMENT IN	_ · · · · · · · · · · · · · · · · · · ·	PERFORMANCE
ON CATALYST) HIGHER CH ₄ , LOWER CO ₂ REACTOR TEMP INCREASED TO NO IMPROVEMENT IN		
REACTOR TEMP INCREASED TO NO IMPROVEMENT IN	ł V	HIGHER CH4, LOWER CO2
	BEACTOR TEMP INCREASED TO	NO IMPROVEMENT IN
288°C PERFORMANCE	288°C	PERFORMANCE
	. 200 0	

~ ^

TABLE 9

START-UP CONDITIONS & ACTIVATION PROCEDURE FOR FISCHER-TROPSCH (IIA)

START-UP CONDITIONS:

- 29 WT% SLURRY
- START-UP MEDIUM: STRIPPED WAX @ CAER DRAKEOL-10 @ LAPORTE

ACTIVATION PROCEDURE:

- 75 PSIG
- HEAT UP TO 428°F UNDER 100% N₂
- SWITCH TO 75% CO/ 25% N₂ AT 428°F (SPACE VEL. = 2.0 NL/HR-KG FE)
- HEAT UP TO 518°F AT 30°F/HR
- START H₂ BLENDING AT 100% OF THEORETICAL ACTIVATION
- SLOWLY BLEND H₂ AT ACTIVATION CONDITION TO REACH H₂/CO = 0.7
- CHANGE TO F-T CONDITION

TABLE 10

FISCHER-TROPSCH (IIA) DEMONSTRATION RESULTS

SLURRY CONC., WT%	25	23
GAS HOLD- UP, VOL%	23.5	6
REACTOR PROD., GM HC/HR - LIT. RXT VOL	41.4	136.4
C ₁ -C ₅ SELECT, MOLE% C (CO ₂ FREE)	. 64.7	62.6
CO ₂ SELECT, MOLE% C	44.9	43.7
co conv.,	84.7	54.2
REACTOR TEMP., °C	270	302
REACTOR PRESS., PSIG	175	750
SPACE VEL., SL/HR- KG FE	2534	12266
.RUN NO.	AF-12.1	AF-12.2

1ABLE 11

FISCHER-TROPSCH IIA AT LAPORTE AFDU

RUN NO.	REACTOR	REACTOR	INLET	H2/C0	EXPANDED	00	CO2	REACTOR
	TEMPERATURE,	PRESSURE,	FLOW RATE,	RATIO,	SLURRY	CONVERSION,	SELECTIVITY,	PRODUCTIVITY
	DEG F	PSIG	MSCFH	NET	неснт, н	MOLE %	MOLE %	GM HC/HR-LIT RXT
AF-R12,3A	592.9	750.1	57.8	0.70	17.8	52.4	42.0	136,1
AF-R12.3B	567.1	749.9	58.4	0.72	17.8	42,0	48.4	9.79
AF-R12.3C	570.9	749.5	73.5	1.27	17.8	40.9	34.7	114.9
AF-R12.3D	573.9	749.9	56.8	69'0	17.8	40.3	41.7	104.3
				:	,			
AF-R12.3E	571.6	750.0	58.1	0.70	20.3	48,0	41.2	111.7

TABLE 12

FISCHER-TROPSCH (IIA) DEMONSTRATION RESULTS

SLURRY CONC., WT%	14.4	15	13.8	14.1
GAS HOLD- UP, VOL%	8.9	13	6.7	6.1
CO ₂ SELECT, MOLE% C	28.5	20	22.4	46.1
co conv.,	24.6 (30 - 21)	15.6	10	43.6
REACTOR TEMP., °C	303	303	270	310
REACTOR PRESS., PSIG	750	200	175	175
SPACE VEL., SL/HR- KG FE	18529	18682	3665	3771
RUN NO.	AF-R12.3F	AF-R12.4	AF-R12.5A	AF-R12.5B

RUN TIME TABLES

	TIME	PERIOD,	HRS		9	
	TI	PERI	H			
	TIME	ON-STR,	HRS		13	35
14:30 21:00	END	TIME			10:00	8:00
10-May-94 11-May-94	END	DATE		٠	12-May	13-May
N START	TIME	ON-STR,	HRS		7	31
ACTIVATION START RUN START	START	TIME			4:00	4:00
	START	DATE			12-May	13-May
RUN F-T II:	AVG TIME	ON-STR,	HRS		10	33
		RUN NO.			R11.1A	R11.1B

AVG TIME START TIME END TIME AVG TIME START TIME DATE TIME TIME ON-STR, DATE TIME ON-STR, TIME ON-STR, TIME ON-STR, TIME ON-STR, HRS HRS <th></th> <th>RUN F-T IIA:</th> <th></th> <th>ACTIVATION</th> <th>N START</th> <th>26-May-94</th> <th>20:30</th> <th></th> <th></th>		RUN F-T IIA:		ACTIVATION	N START	26-May-94	20:30		
AVG TIME START TIME ON-STR, HRS TIME TIME TIME TIME TIME ON-STR, HRS HRS HRS TIME ON-STR, HRS TIME ON-STR, HRS HRS 30.5 27-May 17:00 5 28-May 1:00 13 41.8 29-May 13:00 25 29-May 0:00 36 45.5 29-May 3:00 39 29-May 10:15 46.3 48.3 29-May 11:50 47.8 29-May 10:15 46.3 50.7 29-May 11:50 47.8 29-May 10:15 46.3 50.7 29-May 16:40 50.7 30-May 10:00 60 56.3 29-May 16:40 52.7 30-May 8:00 92 84 30-May 16:00 76 31-May 8:00 92 100.5 31-May 2:00 10:00 60 92 100.5 3	:			RUN START		27-May-94	12:00		
HRS TIME ON-STR, PRS TIME ON-STR, PRS TIME ON-STR, PRS HRS H		AVG TIME	START	START	TIME	GNE	END	TIME	TIME
HRS HRS 9 27-May 17:00 5 28-May 1:00 41.8 29-May 3:00 39 29-May 0:00 45.5 29-May 8:50 44.8 29-May 10:15 48.3 29-May 11:50 47.8 29-May 10:15 50.7 29-May 14:00 50 29-May 12:45 50.7 29-May 16:40 50 29-May 15:20 56.3 29-May 16:40 52.7 30-May 15:20 84 30-May 16:00 76 31-May 8:00 100.5 31-May 10:00 94 31-May 23:00 116 1-Jun 2:00 110 1-Jun 14:00 129 5 1-Jun 18:00 126 2-Jun 1:00	N NO.	ON-STR,	DATE	TIME	ON-STR,	DATE	TIME	ON-STR,	PERIOD,
9 27-May 17:00 5 28-May 1:00 30.5 28-May 13:00 25 29-May 0:00 41.8 29-May 8:50 44.8 29-May 10:15 48.3 29-May 11:50 47.8 29-May 10:15 50.7 29-May 14:00 50 29-May 15:20 56.3 29-May 16:40 52.7 30-May 0:00 84 30-May 16:00 76 31-May 8:00 100.5 31-May 10:00 94 31-May 23:00 116 1-Jun 2:00 110 1-Jun 14:00	-	HRS	-		HRS			HRS	HRS
30.528-May13:0025-May0:0041.829-May3:003929-May8:3045.529-May11:5044.829-May10:1550.729-May14:005029-May12:4556.329-May16:405029-May15:208430-May16:007631-May8:00100.531-May10:009431-May23:001161-Jun2:001101-Jun14:00129.51-Jun18:001262-Jun1:00	2.1A	Ø	27-May	17:00	2	28-May	1:00	13	æ
41.8 29-May 3:00 39 29-May 8:30 45.5 29-May 8:50 44.8 29-May 10:15 48.3 29-May 11:50 47.8 29-May 12:45 50.7 29-May 16:40 50 29-May 15:20 56.3 29-May 16:40 52.7 30-May 0:00 84 30-May 16:00 76 31-May 8:00 110.5 31-May 10:00 94 31-May 23:00 116 1-Jun 2:00 110 1-Jun 14:00	2.2A	30.5	28-May	13:00	25	29-May	00:0	36	11
45.5 29-May 8:50 44.8 29-May 10:15 48.3 29-May 11:50 47.8 29-May 12:45 50.7 29-May 14:00 50 29-May 15:20 56.3 29-May 16:40 52.7 30-May 0:00 84 30-May 16:00 76 31-May 8:00 100.5 31-May 10:00 94 31-May 23:00 116 1-Jun 2:00 110 1-Jun 14:00	2.3A	41.8	29-May	3:00	39	29-May	8:30	44.5	5.5
48.3 29-May 11:50 47.8 29-May 12:45 50.7 29-May 14:00 50 29-May 15:20 56.3 29-May 16:40 52.7 30-May 0:00 84 30-May 16:00 76 31-May 8:00 100.5 31-May 10:00 94 31-May 23:00 116 1-Jun 2:00 110 1-Jun 14:00	2.3B	45.5	29-May	8:50	44.8	29-May	10:15	46.3	1.4
50.7 29-May 14:00 50 29-May 15:20 56.3 29-May 16:40 52.7 30-May 0:00 84 30-May 16:00 76 31-May 8:00 100.5 31-May 10:00 94 31-May 23:00 116 1-Jun 2:00 110 1-Jun 14:00 129 5 1-Jun 18:00 126 2-Jun 1:00	2.30	48.3	29-May	11:50	47.8	29-May	12:45	48.8	6.0
56.3 29-May 16:40 52.7 30-May 0:00 84 30-May 16:00 76 31-May 8:00 100.5 31-May 10:00 94 31-May 23:00 116 1-Jun 2:00 110 1-Jun 14:00 129.5 1-Jun 18:00 126 2-Jun 1:00	2.30	50.7	29-May	14:00	50	29-May	15:20	51.3	1.3
84 30-May 16:00 76 31-May 8:00 100.5 31-May 10:00 94 31-May 23:00 116 1-Jun 2:00 110 1-Jun 14:00 129.5 1-Jun 18:00 126 2-Jun 1:00	2.3臣	56.3	29-May	16:40	52.7	30-May	00:0	09	7.3
100.5 31-May 10:00 94 31-May 23:00 116 1-Jun 2:00 110 1-Jun 14:00 129 5 1-Jun 18:00 126 2-Jun 1:00	2.3F	84	30-May	16:00	76	31-May	8:00	92	16
116 1-Jun 2:00 110 1-Jun 14:00 126 2-Jun 1:00	2.4	100.5	31-May	10:00	94	31-May	23:00	107	13
129.5 1-1111 18:00 126 2-Jun 1:00	2.5A	116	1-Jun	2:00	110	1-Jun	14:00	122	12
TOUR TOUR	R12.5B	129.5	1-Jun	18:00	126	2-Jun	1:00	133	7

TABLE 14

MASS / ELEMENTAL BALANCE RUN NO. AF-R12.3F

N LB/HR	103.5	103.5	0	0	0	0 .	103.5	100.0
O LB/HR	1401.1	1252.7	0	0	5.	57.6	1311.8	93.6
H LB/HR	118.3	100.0	0	0	6.9	8.9	115.8	6'.26
C LB/HR	1051.7	964.9	0	0	38.5	12.3	1015.7	96.6
TOTAL LB/HR	2674.7	2421.1	0	0	46.9	78.8	2546.8	95.2
	REACTOR FEED GAS	MAIN GAS OUTLET	27.10 REACTOR WAX	22.14 LIGHT WAX	22.18 HC PHASE	22.18 AQ PHASE	TOTAL OUT	% BALANCE

			SUMMARY OF	F RESULTS FOR F	T-II / IIA DEMO	ARY OF RESULTS FOR FT-II / IIA DEMONSTRATION RUN AT LAPORTE	I AT LAPO	RTE		
:										
RUN	ON-STREAM	TEMPERATURE	PRESSURE	SPACE	SUPERFICIAL	CATALYST	SLURRY	GAS	တ	H2
Š	TIME			VELOCITY	GAS VEL-	IN REACTOR	CONC.	HOLD-UP	CONV.	CON.
	HRS	DEG F	PSIG	SL/KG-FE HR	INLET, FT/SEC	SBT	WT%	NOL%	MOLE%	MOLE%
AF-R11.1A	10	508.2	200.1	2440	0.35	985	43.5	18.7	34.7	37.9
AF-R11 1B	33	521	300	2433	0.24	985	41.1	24.5	25.7	27.5
AF-R12.1A	6	517.9	175	2534	0.19	445	25.0	23.5	84.7	79.6
AF-R12.2A	30.5	576	750	12266	0.24	445	23.0	9.0	54.2	56.3
AF-R12.3F	84	577.5	750	18529	0.24	297	14.4	8.9	24.6	32.2
AF-R12.4	100,5	577.9	500	18682	0,36	297	15,0	13.0	15.6	18.6
AF-R12.5A		517.8	175	3665	0.18	297	13.8	6.7	10.0	11.7
AF-R12.5B	129.5	589.4	175	3771	0.20	297	14.1	6.1	43.6	41.7

_	1	Τ Λ	_	1	 1		_	-			1	· ·		
			C5H11	SUM	8.51	2.54			7.92	8.45	6.24	5.09	5.33	7.33
		% ek C	C4H8	SUM SUM SUM	7.53	3.56			5.69	3.96	8.49	7.68	6.47	10.41
		<hc %="" (co2="" c-<="" free)="" mole="" p="" selectivity=""></hc>	C4H10	SUM	7.44 7.53	5.80			13.4 11.7 0.49 13.3 4.65 7.46 5.69	8.16	2.16	1.38	3.87 3.00 5.24 1.26 10.0 0.83 6.47	10.4 11.3 3.96 7.86 13.2 3.27 10.41
N RUN AT LAPORTE		(CO21	C3H6		48.6 19.2 14.8 0.62 15.1 5.74	2.31			4.65	3.66	11.2	4.44 4.72 2.23 11.1	10.0	13.2
		ctivity	C3H8		15.1	11.1			13,3	14.5	3.42	2.23	1.26	7.86
		C Sele	C2H4		0.62	12.7 9.83 0.44			0.49	11.8 12.0 0.39	3.13	4.72	5.24	3.96
IRATIO		Ŧ	C2H6		14.8	9.83			11.7	12.0	5.59		3.00	11.3
MONS.		V	CH4		19.2	12.7				11.8	5.52	5.55	3.87	10.4
SUMMARY OF RESULTS FOR F-T II / IIA DEMONSTRATION RUN AT LAPORTE		C02	SELECT. CH4 C2H6 C2H4 C3H8 C3H6 C4H10 C4H8 C5H1	MOLE%	48.6	34.8			44.9	43,7	28.5	20	22.4	46.1
		H2/CO IN	OUTLET	MOLE/MOLE	99'0	0.68			1.00	0.65	09'0	99'0	0.64	0.76
SUMMARY OF RE		H2/CO USAGE	RATIO	MOLE/MOLE	0.76	0.74			0.70	0.71	0.88	0.82	0.79	0.70
J ,		CO CONV	RATE	MOLE% GMOLE/KG-FE HR	21,5	15.9			53.1	172.2	118.7	75.4	9.5	41.2
		CO+H2	CONV.	MOLE%	36	26.4			82.5	55.0	27.6	16.8	10.7	42.8
		RUN	NO.		AF-R11.1A	AF-R11.1B			AF-R12.1A	AF-R12.2A	AF-R12.3F	AF-R12.4	AF-R12.5A	AF-R12.5B