

- B364 -

- B365 -

i, i

.

Ę

ĭ

- B367 -

L

۰.

R

12

t

4

Star Billion and Star Bartin Bartin Star Bartin Starting Street Starting

- B368 -

2

- 11

.

n "1

and all concertained an electric to the standard of the standard o

n 28-

: : :

...

RESULT OF SYNGAS OPERATION

NUN NO. 12185-12 CATALYST CO/X9/X10/X4-U103 12251-33-13 250 CC 106.5 G (WT GAIN +44 G) FEED H2:CO OF 50:50 @1260 CC/MN CR 300 GHSV

rum & Sample No.	12185–12–01	185-12-02	185-12-03	185-12-04
	꺍놂윢햧얘쏡갴뤅녩		2250293582	
FEED H2:CO:AR	50:50: 0	50:50: 0	50:50: 0	50:50: 0
hes on steeam	21.5	45.5	69.5	93.5
Pressure, PSIG	300	300	300	300
TEMP. C	263	259	258	260
FEED CC/MIN	1260	1260	1260	1260
Hours Feeding	21.50	24.00	24.00	24.00
efflnt gas liter	571.25	805.85	877.20	876.35
Gh Aqueous layer	202.23	217.90	202.09	201.03
GH OIL	84.46	103.10	112.74	109.11
MATERIAL BALANCE				
Gh atom Carbon 💈	82.63	91.37	95.59	97.16
GH ATOM HYDROGEN %	89.21	97.92	102.28	101.52
GH ATOM OXYGEN %	92.20	97.12	97.23	98.55
RATIO CHX/(H20+CO2)	0.7819	0.8564	0.9560	0.9632
RATIO X IN CHX	2.3768	2.3612	2.3601	2.3768
USAGE H2/CO PEODT	1.7463	1.8556	1.7999	1.7725
FEED H2/CO FEH EFFLN	I 1.0797	1.0717	1.0701	1.0448
RESIDUAL H2/CO RATIO	0.3438	0.4568	0.5194	0.4855
RATIO CO2/(H20+CO2)	0.2053	0.1478	0.1455	0.1578
k shift in efflat	0.0888	0.0792	0.0885	0.0910
SPECIFIC ACTIVITY SA	4.0824	2.5030	2.1217	2.1427
CONVERSION	•			
ON CO %	52.47	43.96	43.01	43.46
ou H2 %	84.87	76.11	72.33	/3./3
CM CO+H2 %	69.29	60.59	58.17	58.93
PRDT SELECTIVITY, WI	**			
CH4	13.29	12.3/	12.19	13.01
C2 HG*S	2.04	1.94	1.79	1.95
C3H8	2.41	2.39	2.45	2.60
C3H6=	2.52	2.33	2.12	2.20
C4H10	2.38	2.38	- 2.38	2.52
C4H8=	3.51	3.03	2.79	2.96
C5H12	3.03	2.9/	2.94	3.25
C5H10=	3.38	2.79	2.65	2./8
C5H14	4.47	3.54	3.20	3.41
C5H12= & CYCLO'S	2.10	1.51	1.59	1.61
C7+ IN GAS	9.81	8.44	7.06	7.78
LIQ HC'S	51.05	56.02	58.83	55.91
TOTAL	100.00	100.00	100.00	100.00

Table B22

- B370 --

SUB-GROUPING				
C1	26.16	24.43	23.73	25.24
C5 -420 F	45.25	40.83	38.62	39.53
420-700 F	25.22	28.29	27.30	24.83
700-END PT	3.37	6.44	10.35	10.40
C5+-BND PT	73.84	75 .57	76.27	74.76
ISO/NORMAL MOLE RATIO				
C4	0.0170	0.0175	0.0177	0.0184
C5	0.0511	0.0496	0.0522	0.0568
C6	0.3592	0.0636 ~	0.0361	0.0368
C4=	0.0000	0.0000	0.0000	0.0000
PARAFFIN/OLEFIN RATIO				
C3	0.9136	0.9794	1.1050	1.1290
C4	0.6563	0.7586	0.8223	0.8222
C5	0.8706	1.0372	1.0799	1.1359
SCHULZ-FLORY DISTRBIN				·
ALPHA (EXP(SLOPE))	0.8133	0.8418	0.8563	0.8507
RATIO CH4/(1-A)**2	3.8132	4.9409	5.8991	5.8415
ALPHA FRE CORRELATION	0.8626	0.8490	0.8428	0.8460
ALPHA (EXPTL/CORR)	0.9428	0.9915	1.0160	1.0056
WICHA FRM CORRELATION	11.0514	14.4390	16.1538	15.5899
WACH4 (EXPTL/CORR)	1.2029	0.8565	0.7544	0.8348
LIQ HC COLLECTION			• .	
PHYS. APPEARANCE	CLR OIL	OIL WAX	OIL WAX	OIL WAX
DENSITY (* 40 C)	0.7541	0.7484*	0.7506*	0.7400*
N, REFRACTIVE INDEX SIMULT'D DISTILATN	1.4244	1.4205*	1.4228*	1.4226*
10 WT % @ DEG F	257	292	294	290
16	299.	306	325	308
50	453	483	494	487
84	627	• 667	711	. 724
90	669	710	766	781
RANGE(16-84 %)	328	361	386	416
WI % @ 420 F	44.00	38.00	36.00	37.00
WI % @ 700 F	93.40	88.50	82.40	81.40

ы

I

۷4

. .

ן יייי

1

- i .

. .

.

ŗ,

Table B22, cont

XIV. Run 23 (12200-13) with Catalyst 23 (Co/Xg/X10/X4/UCC-103)

The purpose of this run was to test the effectiveness of X4 obtained from a different source than that used in Runs 16 and 19.

The UCC-103 was combined with X_4 before forming in close contact, by the method used in Run 11, with cobalt oxide which had been promoted with Xg and X₁₀. The resulting powder, after bonding with 15 percent silica, was extruded to 1/8-inch pellets. The final catalyst contained 11.5 percent cobalt, 0.50 percent Xg, 0.66 percent X₁₀ and 2.21 percent X4.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B299-302. Simulated distillations of the C5⁺ product are plotted in Figs. B302-304. Carbon number product distributions are plotted in Figs. B305-306. Chromatograms from simulated distillations are reproduced in Figs. B307-308. Detailed material balances appear in Table B23.

The initial conversion of syngas was 51.9 percent, with a specific activity of 1.0. Although slightly higher than for Catalysts 16 and 19, this is far below the initial specific activity of about 12 for both Catalysts 11 and 20.

- B372 -

- B373 -

٠.

.

- B374 -

語を記録してい

- TE

•

¢,

i

1.

÷

į

- B377 -

2

R 👘

- B380 -

RESULT OF SYNGAS OPERATION

RUN NO. 12200-13

2

.

,..., , , ,

,

.

(. .

{

{

·. ;

i .

فيعقب فأحفظهم والمراجع لأشار المراد مراديا مراديا والمراجع المراجع المراجع

CATALYST CO/X9/X10/X4-U103 12251-36-17 250 CC 112.1G (WT CHANGE +43.5 G FEED H2:CO OF 50:50 @1260 CC/MN OR 300 GHSV

RUN & SAMPLE NO.	12200-13-01	200-13-02
	발생한병생문감가는	121026036
FEED H2:CO:AR	50:50: 0	50:50: 0
HRS ON STREAM	20.0	44.0 -
PRESSURE, PSIG	300	300
TEMP. C	263	260
FEED CC/MIN	1260	1260
HOURS FEEDING	20.00	24.00
EFFLNT GAS LITER	691.95	1133.80
GH AQUEOUS LAYER	173.42	142.57
GH OIL	49.13	61.09
MATERIAL BALANCE	•	
GM ATOM CARBON %	- 79.50	97.73
GM ATOM HYDROGEN 7	6 86.96	96.31
GM ATOM OXYGEN %	94.47	100.61
RATIO CHX/(H2O+CO2)	0.5992	,0.8940
RATIO X IN CHX	2.3916	2.4409
USAGE H2/CO PRODT	2.1973	1.9024
FEED H2/CO FRM. EFFLI	T 1.0940	0.9855
RESIDUAL H2/CO RATIO	0.5247	0.6171
RATIO CO2/(H2O+CO2)	0.1251	0.1345
k shift in efflut	0.0750	0.0959
SPECIFIC ACTIVITY SA	A 1.0958	0.843 9
CONVERSION		
on co 7	34.03	28.66
on H2 %	68.36	55.33
ON CO+H2 7.	51.97	41.90
PRDT SELECTIVITY,WT	*	
CH4	15.23	17.44
· C2 HC'S	1.84	1.83
C3H8	1.75	2.34
C3H6=	3.00	2.77
C4H1O	1.89	2.37
C4H8=	3.58	3.40
C5H12	2.37	2.94
C5H10=	3.35	3.16
C6H14	2.95	3.54
C6H12= & CYCLO'S	2.61	2.24
C7+ IN GAS	12.51	11.54
LIQ HC'S	48.92	46.44
ምስምልፒ.	100 00	100 00

Table B23

р. И

- B383 -

SUB-GROUPING **C1** -**C**4 30.14 27.29 C5 -420 F 40.91 39.44 420-700 F 26.66 24.52 700-END PT 5.14 5.90 C5+-END PT 72.71 69.86 ISO/NORMAL MOLE RATIO C4 0.0175 0.0140 C5 0.0500 0.0488 C6 0:0890 0.0990 C4= 0.0000 0.0000 PARAFFIN/OLEFIN RATIO C3 0.5564 0.8057 C4 0.5090 0.6725 C5 0.6887 0.9055 SCHULZ-FLORY DISTRBIN ALPHA (EXP(SLOPE)) 0.8358 0.8389 RATIO CH4/(1-A)**2 5.6494 6.7210 ALPHA FRM CORRELATION 0.8420 0.8343 ALPHA (EXPTL/CORR) 0.9926 1.0055 WACH4 FRM CORRELATION 17.4411 19.2147 WICH4 (EXPTL/CORR) 0.8733 0.9075 LIQ HC COLLECTION PHYS. APPEARANCE OIL WAX OIL WAX DENSITY (* 40 C) 0.7527* 0.7530* N, REFRACTIVE INDEX 1.4245* 1.4245* SIMULT'D DISTILATN 10 WT % @ DEG F 299 300 16 340 341 50 506 507 84 665 682 90 706 718 RANGE(16-84 %) 326 341 WT % @ 420 F 35.00 34.50 WT % @ 700 F 89.50 87.30

1004

ય સં

¢

Table B23, cont

::

- B384 -

XV. <u>Run 24 (12185-13) with Catalyst 24 (Co/Xg/X10/UCC-113)</u>

The purpose of this run was to test a newly developed shapeselective component, UCC-113, being used in place of UCC-103 in a formulation similar to that of Catalyst 20 (Run 12185-11).

2

Formulation of the catalyst was similar in method to that of Catalyst 20 except that UCC-113 was substituted for UCC-103. Cobalt oxide was promoted with X9 and X10, then formed in close contact with UCC-113 by the method used in Run 11. The resulting powder, after bonding with 15 percent silica, was extruded to 1/8-inch pellets. The final catalyst contained 7.9 percent cobalt, 0.37 percent X9 and 0.50 percent X10.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B309-312. Simulated distillations of the C5⁺ product are plotted in Figs. B313-319. Carbon number product distributions are plotted in Figs. B320-326. Chromatograms from simulated distillations are reproduced in Figs. B327-333. Detailed material balances appear in Tables B24-25.

Between Sample 2 of the run at 42.5 hours on stream, and Sample 3 at 66.5 hours, the temperature in the reactor rose briefly from the design value of 260C to nearly 290C when the temperature controllers malfunctioned. The vertical dotted lines in Figs. B309-312 indicate the time when this occurred.

- B385 -

The initial conversion of syngas was 90.1 percent, with a specific activity of 11.8, characteristic of the high initial activity levels with this type of formulation. Comparable values for Catalyst 20 were 88.2 percent and 7.6, so that this catalyst was a little more active on a volume basis. Since it contained only two-thirds as much cobalt, however, on a basis of percent cobalt its activity was considerably higher.

The initial water gas shift activity was, characteristically, also very high.

Once again, however, the catalyst deactivated rather quickly during the early part of the run. From its initial value of 90.1 percent, the syngas conversion dropped to 55.7 percent at 114 hours on stream. During the last 48 hours of the run, from 114.5 to 162.5 hours on stream, the conversion appeared to hold fairly stable at a rate of about 57.8 percent and a specific activity of about 1.5.

The product distribution was similar to that of Catalyst 20, except weighted a little more toward the heavies. The Schulz-Flory plots, which show a fairly linear product distribution, lack any indication of a carbon number cutoff such as appeared for Catalyst 20. The quality of product of the two catalysts was closely similar.

Subject to allowance for the temperature-control anomaly, this run demonstrated that UCC-113, as well as UCC-103, can be used to produce a catalyst of high activity, at least initially. Further investigation appears to be indicated.

- B386 -

• : [``.

]

...

•

•

1 1 1

and the second se

. . .

1 1

Fig. B309

- B387 -

- 3388 -

State of the second second

- B389 -

- B391 -

•:

;; ; ; ;

••• • •

7.7 • •

> ، ا

۱:-۱ ۱.

.

۱ ۱۰۰

• •

.

٣.

日本語語語語がないであったものできたというというというというというという

..

1

.

.

ŀ

::

.

÷.,,

- **-**

Service and the service of

- B393 -

- B394 -

Į

ata (with i)

Children and the second second

•

2

ŗ

;

,

Ξ.

i.

-

Ī

¥.

n)

ţ

;

t

••

.

:∴ .

:

.

..

... ...

Stran Content

Fig. B317

- B395 -

Ĭ

i.

.

•

:

•••

i i

....

. . .

12

- B396 -

H I

el su da da da

•

.

21.76

: [

- B397 -

- B398 -

- B399 -

.

- B400 -

÷

÷,

- B401 -

- B402 -

3

•

- B403 -

> للملية محمدة تقدير المريد الملية المحمد المحمد المريد

- B404 -

ï

ţ

r

<u>.</u>..

٠. •. •

•

1. . i.

- B405 -

1 Ê I į 000 · • • 311018 0.23 <u>:</u>. :] EH:1) OC SETPTAGANO UIN(T=405°C Ł र"ः उपट DATE LEADELES VEAD SETPT=320°C _IMIT=48590 1 . . . -?": ONEN. 32797=49390 LINIT=495°C 14: ILE 574 12185-13-04 Fig. B330 - B408 -

C 1 UVEN TERÓ NOT READY • 5_1025 2.29 2 :• ₁ ;:] . LINIT=495*C SETPT=SOOD : . . . **₹**"1 'Ex3=329°C SET97=320°C LIMIT=485°C SYEN 2 22201245 ·•• : . _1#17=40590 ET: 2424 TERAHABAG SETPTHABBAG l the state ally 12185-13-06 5475 Fig. B332 - B410 -

RESULT OF SYNGAS OPERATION

ч

-;

> > . :

l

RUN NO. 12135-13 CATALYST CO/X9/X10-U113 12251-43 80 CC 34.1 G (WT CHANGE +14 G) FEED H2:CO OF 50:50 @ 400 CC/MN OR 300 GHSV

RUN & SAMPLE NO.	12185-13-01	185-13-02	185-13-03	185-13-04	185-13-05
-) 2 11 2 4 2 2 2 3 3)	·····································	按34.64444	10100000000	
FEED H2:CO:AR	50:50: 0	50:50: 0	50:50: 0	50:50: 0	50:50: 0
HRS ON STREAM	18.5	42.5	66.5	90.5	114.5
PRESSURE, PSIG	300	300	300	300	300
TEMP. C	263	266	255	263	261
FRED CC/MTN		400	AOD	400	400
HOURS FEEDING	18.50	24.00	24.00	24.00	24.00
REFINT GAS LITER	176.30	173.75	222.10	252.60	297.75
GM AQUEOUS LAYER	23.37	61.57	75.19	69.53	63.90
GM OIL	4.29	42.51	30.56	36.61	27.99
MATERIAL BALANCE					
GH ATOM CARBON 🕇	96.42	92.23	87.78	95.65	94.74
GM ATOM HYDROGEN %	84.88	97.29	84.81	99.53	104.23
GH ATOM OXYGEN 🐔	106.90	96.71	100.52	103.10.	100.50
RATIO CHX/(H2O+CO2)	0.8104	0.9182	0.7050	0.8551	0.8516
RATIO X IN CHX	2.8243	2.4858	2.2423	2.3923	2.4853
USAGE H2/CO PRODT	0.9360	1.2335	1.9162	1.6505	1.8284
FBED H2/CO FRM EFFLN	T 0.8803	1.0549	0.9662	1.0298	1.1001
RESIDUAL H2/CO RATIO	0.4899	0.2764	0.2753	0.4092	0.5707
RATIO CO2/(H2O+CO2)	0.7158	0.4516	0.1507	0.2307	0.1772
k shift in efflut	1.2341	0.2276	0.0489	0.1227	0.1229
SPRCIFIC ACTIVITY SA	11.8014	14.8632	6.2281	2.8946	1.5031
CONVERSION					
un co 7	87.51	81.34	42.11	49.99	42.09
on H2 %	93.05	95.11	83.50	80.13	69.96
on Co+H2 %	90.11	88.41	62.45	65.28	56.69
PRDT SELECTIVITY, WT	%				
CH4	32.33	18.38	6.30	13.35	18.31
C2 HC'S	4./2	2.39	1.75	2.42	2.8/
C3HB .	8.53	3.54	1.66	2,98	3.34
C3H6=	1.10	1.38	3.11	2.34	1.63
CAHLU	8.26	3.07	, 1.00	2.00	3.08
C4H8=	2.59	2.83	3.37	3.28	2,02
CSH12	9.04	3.04	2.03	3.30	3.34
CONTO=	4.40	2.40 . A 17	3.50	2.24	2.23
CONTA CONCLUS	9.33	4.17	3.24	3.70 0.02	3.00
CONTS= & CTOPA 2	12 70	1.JU 7 A7	2.J2 g 2n	8 20	7 91
577 18 VAD 170 4019	7 05	/ ዓ.ዓ./ አር 1 አ	59.34	56 29	49 29
and one a	/ • • J	77.67	33197	, and "af 6 day of	~ ~
TOTAL	100.00	100.00	100.00	100.00	100.00

Table B24

- B412 -

٠,

•••

. .

... • ;

۰.

٠. ·...

:

.

·. ·.

l

÷

. 1

11

51

ŗ:

i. :

-

is wind 2.

;;;

1

SUB-GROUPING		·			
C1C4	57.52	31.42	18.58	27.03	31.89
G5 -420 F	38.23	46.23	48.78	38.64	36.29
420—700 F	3.90	21.13	28.96	26.63	23.21
700-END PT	0.35	1.23	3.68	7.71	6.60
C5+-END PT	42.48	68.58	81.42	72.97	68.11
ISO/NORMAL MOLE RATIO					
CA	0.0471	0.0196	0.0205	0.0201	0.0242
C5	0.1497	0.0817	0.0555	0.0732	0.0898
C6	0.4086	0.2043 ~	0.0681	0.0973	0.1325
C4=	0.1708	0.1038	0.0000	0.0000	0.0986
PARAFFIN/OLSFIN RATIO					
C 3	7.4014	2.4387	9,5108	1.2147	1.8791
C4	3.0715	1.1170	0.4592	0.7817	1.1281
C5	3.5460	1.4968	0.6552	2.6723	1.5465
SCHULZ-FLORY DISTRBIN					212402
ALPHA (EXP(SLOPE))	0.7076	0.7889 -	0.8197	0.8461	0.8362
RATIO CH4/(1-A)**2	3.7813	4.1238	1.9378	5.6383	6-8253
· .					
ALPHA FRH CORRELATION	0.8454	0.8731	0.8739	0.8542	0.8381
ALPHA (EXPTL/CORR)	0.8370	0.9035	0.9380	0.9906	0.9978
					013370
WICH4 FRM CORRELATION	16.4035	8.4250	5.8673	13.6847	18,2599
WACH4 (EXPTL/CORR)	1.9707	2.1822	1.0733	0.9758	1.0025
LIQ HC COLLECTION					
PHYS. APPEARANCE	CLR OIL	CLR OIL	OIL WAX	OTL WAX	OTT. WAT
DENSITY (* 40 C)	0.7218*	0.7321*	0.7442*	0.7490*	0 7495#
N, REFRACTIVE INDEX	1.4095*	1.4147*	1.4198*	1.42095	1.42112
SIMULT'D DISTILATN					an 19 - 7 An 19 an 1
10 WT % @ DEG F	209	235	259	282	203
16	247	257	300	303	319
50	341	407	448	481	478
84	482	570	624	683	478
90	589	614	676	734	731
					731
RANGE(16-84 %)	235	313	324	380	359
					000
WT % @ 420 F	39.70	54.50	45.00	39.00	39.50
WT % @ 700 F	95.00	97.50	93.80	86.30	86.60
	75.67	54.50	45.00	39.00	39.50
	95.04	97.52	92.33	86.30	86.57
					/

.

۰.

Table B24, cont

,

RESULT OF SYNGAS OPERATION

1

1717 23

· · · · ·]

- |

ł

i۱

1

RUN NO. 12185-13 CATALYST CO/X9/X10-U113 12251-43 80 CC 34.1 G (WT CHANGE +14.0 G) FEED H2:CO OF 50:50 @ 400 CC/HN OR 300 GHSV

RUN & SAMPLE NO.	12185-13-06	185-13-07
	그녀대자석대원학교	
FRED H2:CO:AR	50:50: 0	50:50: 0
HRS ON STREAM	140.0	162.5
Pressure, PSIG	300	300
TEMP. C	, 260	260
FEED CC/MIN	400	400
HOURS FREDING	25.50	22.50
EFFLNT GAS LITER	319.30	283.20
GM AQUEOUS LAYER	63.79	57.69
GH OIL	29.42	25.29
MATERIAL BALANCE		
GM ATOM CARBON 🐔	95.76	95.64
GH ATOM HYDROGEN 7	102.23	103.04
GH ATOM OXYGEN %	99.91	100.50
RATIO CHX/(H2O+CO2)	0.8884	0.8706
RATIO X IN CHX	2.4588	2.4741
USAGE H2/CO PRODT	1.7660	1.8058
FRED H2/CO FRM EFFLS	TT 1.0675	1.0773
RESIDUAL H2/CO RATIO	0.5663	0.5653
RATIO CO2/(H2O+CO2)	0.1892	0.1799
K SHIFT IN RFFLAT	0.1321	0.1240
SPECIFIC ACTIVITY SA	1.6024	1.5726
Conversion		
on co %	41.78	41.27
ON H2 %	69.11	69.18
on co+H2 %	55.89	55.75
PRDT SELECTIVITY, WT	2	
CH4	16.71	17.54
C2 HC'S	2.75	2.77
C3HB	3.51	3.55
C3H6=	1.77	1.85
C4H10	3.14	3.18
C4H8=	2.71	2.81
CSH12	3.86	3.89
C5H10=	2.49	2.54
C6H14	• 4.20	4.27
C6H12= & CYCLO'S	1.46	0.99
C7+ IN GAS	8.51	8.63
liq HC's	48.89	47.97
TOTAL.	100-00	700-00

1

:

الج. كالمكمد . دلامات

Table B25

- B414 -

١.

SUB-GROUPING		
C1 C4	30.59	31.70
C5 -420 F	41.54	40.95
420-700 F	22.19	21.35
700-END PT	5.67	6.00
CS+-BND PT	69.41	68.30
ISO/NORMAL MOLE RATIO		
C4	0.0193	0.0204
C5	0.0767	0.0843
C6	0.1108	0.1156 .
C4=	0.0789	0.0790
PARAFFIN/OLEFIN RATIO		
C3	1.8886	1.8301
C4	1.1164	1.0943
C5	1.5096	1.4891
SCHULZ-FLORY DISTRBTN		
ALPHA (EXP(SLOPE))	0.8289	0.8306
RATIO CH4/(1-A)**2	5.7075	6.1098
ALPHA FRM CORRELATION	0.8385	0.8386
ALPHA (EXPTL/CORR)	0.9885	0.9904
•		
WICH4 FRM CORRELATION	17.9164	17.8904
WACH4 (EXPTL/COBR)	0.9329	0.9805
LIQ HC COLLECTION		
Phys. Apprarance	OIL WAX	OIL WAX
DENSITY (* 40 C)	0.7448*	0.7449*
N, REFRACTIVE INDEX	1.4190*	1.4187*
SIMULT'D DISTILATN		
10 WT % @ DEG F	261	274
16	301	300
50	452	451
84	665	668
90	715	725
RANGE(16-84 %)	364	368
WT % 6 420 F	43.00	43.00
WT % @ 700 F	88.40	87.50
	43.00	43.00
	88.36	87.50

. 5

.

. : ...

÷.,

]...

.

ł

Table B25, cont

1

•

Þ.

Ň

... ...

ĩ.

ł

XVI. <u>Run 25 (12200-14) with Catalyst 25 (Co/Xg/X10/X4/UCC-103)</u>

The purpose of this run was to test an X4 additive obtained from still another source than those used in Catalysts 16, 19 and 23. All three of those tests failed to produce an active catalyst, and there is reason to suspect that contamination of the X4 at its source may have been the cause.

Formulation of the catalyst was similar to that of Catalyst 23. The UCC-103 was combined with X_4 (from the new source) before forming in close contact, by the method used in Run 11, with cobalt oxide which had been promoted with X9 and X10. The resulting powder, after bonding with 15 percent silica, was extruded to 1/8-inch pellets. The final catalyst contained 7.2 percent cobalt, 0.32 percent X9, 0.43 percent X10 and 0.33 percent X4.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C₄'s are plotted against time on stream in Figs. B334-337. Simulated distillations of the C₅⁺ product are plotted in Figs. B338-343. Carbon number product distributions are plotted in Figs. B344-349. Chromatograms from simulated distillations are reproduced in Figs. B350-355. Detailed material balances appear in Tables B26-27.

The initial conversion of syngas was 67.9 percent, with a specific activity of 6.8. This is the highest initial activity yet obtained with an X4-containing catalyst formulated by the new

- B416 -

method first tested in Catalyst 11; the highest specific activity previously obtained was 1.0. Also worth noting is the fact that whereas the other catalysts contained more than 11 percent cobalt, this one contained only 7.2 percent. Estimating the specific activity on a basis of percent cobalt, this catalyst was as active as Catalyst 11 which contained no promoters.

Again, however, the stability was poor. By 140 hours on stream the conversion had dropped to 52.6 percent, with a specific activity of 1.5. The combination of additives X9, X10 and X4 did not confer the same stabilizing effect in this formulation as it did in Catalyst 15, which was formulated by the previous method.

The product selectivity was unstable as well. The initial methane production was a low 6.5 percent as against 27.5 percent with Catalyst 20, the latter value resulting from a much higher water gas shift activity (60 percent for Catalyst 20, 21 percent for this catalyst).

<

The olefin content of the C4's ranged from 60 to 70 percent, as against 35 to 58 percent for Catalyst 20. This was consonant with previous experience that the presence of X4 raises the olefin content of the lighter products.

The Schulz-Flory plots of the product distribution are linear except for the usual excess of methane, with no evidence of a carbon number cutoff such as observed for Catalyst 20.

This run, with its high initial activity, has been the first successful attempt at incorporating X4 into this new catalyst

- B417 -

formulation. Like the others in its group, however, it suffers from very poor stability.

and the second second

acitaeurosecticasi a č n g

. . .

1

÷.

: ز:

- B419 -

S.,

1

•

د.. ا

ן: ה

ŀ

.

- B420 -

の時代であるというという

- B421 -

Salar - Co

1

! ...

(... (...

.

l

L

Fig. B338

- B423 -

Ì.

•:

· . .

·. ;'

: נ.

.. 1

. :: :"r

.'

L

Fig. B339

- B424 -

.

ī,

;

1

ě.

s

ł

۴

1

:

Contraction of the second

:

.

> (* . { :

•

٠,

.

.

14

- 8425 -

Ĭ

ъđ

-

ż

. .

1

۰. v

......

- B426 -

Ĭ

3-

.

.

í

i...

1.

Heres the

Fig. B342

. . .

- B427 -

- 8428 -

And the second s

- B429 -

- B430 -

and the 1 subscription

.

17 17 17

(·

ţ.

1

ļ

. .

; .

٠.

Ĩ

·==:

- B431 -

.

7.

4

- B432 -

- B434 -

. • - م زوان و

.

a a

•

WEN TEND NOT READY -": SLLCES 3.29 32:- 29°C LISIT=485°C 200 LINIT=48590 RT: OVEN TEXTON 32340 SETPT #7299C =433°C 17: JYEN TEMPERAGOOD SETPTERAGOOD -405%

1 244 2729 414

3+==>_=:12200-14-04

Fig. B353

- B438 -

.

RESULT OF SYNGAS OPERATION

「「「「「「」」」

Ç

Γ.

ł

ł.

¢

l

•_

12.1

 RUN NO.
 12200-14

 CATALYST
 CO/X10/X9/X4-U103
 12251-41-21
 80 CC 35.95 G (WT CHANGE +13.7G)

 FEED
 H2:CO
 OF 50:50
 @ 400 CC/MIN OR 300 GHSV

RUN & SAMPLE NO.	12200-14-01	2001402	200-14-03	200-14-04	200-14-05
	770727722	570:313300	슻슻 슻 쀻췩낰些깼다	*****	*==
FEED H2:CO:AR	50:50: 0	50:50: 0	50:50: 0	50:50: 0	50:50: 0
HRS ON STREAM	20.0	44.0	~ 68.0	93.5	116.0
PRESSURE, PSIG	300	300	300	300	300
TEMP. C	264	259	259	259	259
FEED CC/MIN	400	400	400	400	400
HOURS FEEDING	20.00	24.00	24.00	25.50	22.50
EFFLNT GAS LITER	156.55	227.15	255.90	295.60	274.06
GM AQUEOUS LAYER	55.53	71.20	• 71.73	71.37	59.41
GM OIL	27.58	37.55	28.05	25.62	18.53
MATERIAL BALANCE					
GM ATOM CARBON %	82.17	88.50	88.07	90.83	91.08
GM ATOM HYDROGEN 7	76.56	90.12	90.27	91.32	88.63
GM ATOM OXYGEN %	91.99	95.70	100.60	102.12	103.65
RATIO CHX/(H20+CO2)	0.7617	0.8217	0.6925	0.7081	0.6628
RATIO X IN CHX	2.2433	2.3041	2.2891	2.4001	2.3719
USAGE H2/CO PRODT	1.6858	1.8871	2.0066	2.0210	2.0050
FEED H2/CO FRM EFFLM	NT 0.9316	1.0182	1.0250	1.0054	0.9731
RESIDUAL H2/CO RATIO	0.2118	0.3423	0.4171	0.4333	0.4566
RATIO CO2/(H20+CO2)	0.2123	0.1372	0.1340	0.1386	0.1521
k shift in efflnt	0.0571	0.0544	0.0646	0.0697	0.0819
SPECIFIC ACTIVITY SA	6.7786	3.5637	2.2202	1.9321	1.6420
Conversion					
on co %	48.83	43.76	38.24	36.03	33.36
ON H2 %	88.37	81.09	74.87	72.43	68.73
ON CO+H2 %	67.90	62.59	56.78	54.28	50.81
PRDT SELECTIVITY, WT	%				
CH4	6.45	9.72	8.43	14.73	12.46
C2 HC'S	1.76	1.60	2.07	2.27	2.69
C3H8	1.65	1.54	2.35	2.65	3.35
C3H6=	3.14	2.69	3.01	2.88	3.35
C4H1O	1.62	1.54	2.20	2.35	3.01
04HB=	3.95	3.32	3.82	3.79	4.46
C5H12	2.15	1.98	2.68	2.79	361
C5H1O=	3.81	1.71	3.39	3.40	3.94
C6H14	2.60	2.30	3.05	2.79	3.99
COHIZ= & CICLO'S	2.40	0.00	2.14	1.40	2.38
C/+ IN GAS	8.11	7.00	8.27	9.44	9.89
LIG HC.2	62.35	66.61	58.58	51.51	46.86
TOTAL.	100.00	100.00	100.00	100.00	100.00

1

¥

¢.

k.

Table B26

- B441 -

SUB-GROUPING		•			
C1 – C 4	18.57	20.40	21.89	28.67	29.32
C5 -420 F	45.89	35.96	39,74	36.92	41.86
420-700 F	32.11	29.84	25.89	25.14	20.48
700-END PT	3.43	13.79	12.48	9.27	8.34
C5+-END PT	81.43	79.60	78.11	71.33	70.68
ISO/NORMAL MOLE RATIO					
C4	0.0123	0.0137	0.0133	0.0000	0,0128
C5	0.0557	0.0458	0.0476	0.00 00	0.0549
C6	0.0734	0.0620	0.0706	0.0000	0.0734
C4=	0.0000	0.0000	0.0000	0.0000	0.0000
PARAFFIN/OLEFIN RATIO			•		
· C3	0.5022	0.5457	0.7451	0.8780	0.9520
C4	0.3954	0.4470	0.5566	0.5972	0.6498
C5	0.5495	1.1226	0.7670	0.7975	0.8906
SCHULZ-FLORY DISTRBIN					
ALPHA (EXP(SLOPE))	0.8177	0.8697	0.8512	0.8446	0.8292
RATIO CH4/(1-A)**2	1.9408	5.7227	3.8054	6.1001	4.2720
ALPHA FRM CORRELATION	0.8862	0.8631	0.8535	0.8516	0.8490
ALPHA (EXPTL/CORR)	0.9227	1.0077	0.9973	0.9918	0.9766
WACH4 FRM CORRELATION	3.9544	10.0774	13.0651	13.6437	14.4332
WACH4 (EXPTL/CORR)	1.6312	0.9642	0.6453	1.0797	0.8635
LIQ HC COLLECTION					••••••
PHYS. APPEARANCE	OIL WAX	OIL WAX	OIL WAX	OTL WAX	OTL WAX
DENSITY (* 40 C)	0.7456*	0.7694*	0.7751*	0.7706*	0.76367
N, REFRACTIVE INDEX	1.4210*	1.4251*	1.4250*	1.4235*	1.4224
STMULT'D DISTILATN					
10 WT % @ DEG F	274	294	294	295	292
16	301	335	335	336	312
50	451	511	512	513	483
84	619	741	747	716	715
90	661	802	812	782	783
RANGE(16-84 %)	318	406	412	380	403
WT % @ 420 F	43.00	34.50	34.50	33.20	38.50
WI % @ 700 F	94.50	79.30	78.70	82.00	82.20

⊽ ∵j

Table B26, cont

RESULT OF SYNGAS OPERATION

EUN NO. 12200-14 CATALYST CO/X10/X9/X4-U103 12251-41-21 80 CC 35.95 G (WT CHANGE +13.7G) FEED H2:CO OF 50:50 @ 400 CC/MN OR 300 GHSV ŗ

: i.

> Y De

. . . .

.

> .. i

i.,

1

む 新二教 いい

1

2

RUN & SAMPLE NO.	12200-14-06
•	개방문 것은 것은 것은 것을 것을 했다.
FEED H2:CO:AR	50:50: 0
HRS ON STREAM	140.0
PRESSURE, PSIG	300
TEMP. C	259
PPPD OG WTW	400
HOUDE EPEDING	400
TREINT CAS I TED	24.00
CM ADIEDIS LAVED	474.10
CY OTI	03.47 21 70
MATERIAL BALANCE	
GW ATON CARRON %	37 09
GM ATOM HYDROGEN 7	94.71
GH ATOM OXYGEN %	100.93
RATIO CHX/(H20+CO2)	0.7348
RATIO X IN CHX	2.4501
USAGE H2/CO PRODT	1,9902
FEED H2/CO FRM EFFL	TT 1.0398
RESIDUAL H2/CO RATIO	0.5076
RATIO C02/(H20+C02)	0.1464
K SHIFT IN EFFLAT	0.0871
SPECIFIC ACTIVITY SA	A 1.5222
CONVERSION	
on co %	35.90
on H2 🛪	68.70
on Co+H2 %	52.62
PRDT SELECTIVITY,WT	%
CH4	17.11
C2 HC'S	2.47
C3H8	3.12
C3H6=	2.99
C4H10	2.74
C4H8=	3.91
C5H12	3.29
C5H10=	3.12
C6H14	3.59
C6H12= & CYCLO'S	2.08
C7+ IN GAS	9.01
LIQ HC'S	46.57
TOTAL	100.00

••

2.4

<u>(</u>;;

r F

í.

Į.

ζ.

{

{÷.

, |

.

Table B27

- B443 -

SUB-GROUP ING	
Cl C4	32.34
C5 -420 F	38.78
420-700 F	20.72
700-END PT	8.15
C5+−END PT	67.66
ISO/NORMAL MOLE RATIO	
C4	0.0142
CS	0.0583
C6	0.0768
C4=	0.0000
PARAFFIN/OLEFIN RATIO	
C3	0.9947
C4	0.6760
C5	1.0245
SCHULZ-FLORY DISTRBIN	
ALPHA (EXP(SLOPE))	0.3337
RATIO CH4/(1-A)**2	€.1891
	•
ALPHA FRM CORRELATION	09439
ALPHA (EXPTL/CORR)	0.9880
W%CH4 FRM CORRELATION	16.0351
W%CH4 (EXPTL/CORR)	1.0671
LIQ HC COLLECTION	
PHYS. APPEARANCE	OIL WAX
DENSITY (* 40 C)	0.7637*
N, REFRACTIVE INDEX	1.4226*
SIMULT D DISTILATN	
10 W1 % @ DEG F	293
16	331
50	483
84	711
90 .	781
RANGE (16-84 %)	380
WT % @ 420 F	38.00
WI % @ 700 F	82.50

and a line to make

1

۵۰ میدولید به وید کمی استان میکند تا افغان میدود دو با افغان میکند. ۱۹۰۰ میدود میکن استان میکند تکریم اور استان میکند از افغان میکند.

Table B27, cont

XVII. Summary

The work reported in this Quarter has been fruitful both in establishing the means for obtaining some of the essential properties of a fully effective catalyst, and in developing promising lines for future investigation.

Significant improvements have been obtained on the intimately contacted cobalt/UCC-103 catalyst system developed during the previous contract.

A new method has been tested for preparing cobalt in intimate contact with a Molecular Sieve, which shows considerable promise for improving both activity and product selectivity.

In the catalysts prepared by the previous method of formulation, thoria was successfully replaced by a combination of additives X9 and X_{10} .

The combination of these additives with X_4 has produced a catalyst with excellent stability, some reduction of methane, and a higher specific activity than the most stable catalyst yet developed (Catalyst 6, Run 11677-11, Third Annual Report of the previous contract). The product was lower in olefinic content, but results with Catalysts 21 and 23 suggest that this might be corrected with a higher concentration of X_4 .

i. .

t:

Attempts to raise the specific activity of these catalysts above 2.0 were unsuccessful. Incorporation of a second shapeselective component (UCC-101, UCC-112), was found to contribute little or nothing to product quality. An attempt to replicate the results of Catalyst 11677-11 failed, probably due to a lower ratio of thorium to cobalt than in the original.

A new method of intimately combining cobalt oxide with UCC-103, first tested in Catalyst 11, resulted in unprecedented high initial specific activity of 12.5 and water gas shift activity of 69 percent oxygen conversion to CO_2 , but very poor stability. Similar results were obtained with Catalyst 24, in which UCC-113 was substituted for UCC-103. Several attempts to improve stability, including the use of additives X9, X10 and X4, were unsuccessful.

Iron was tested as the Fischer-Tropsch metal component in Catalysts 17 and 18. Both proved low in activity, although Catalyst 17 did produce a much lower methane yield and a substantially higher olefin content of the C_4 's.

An unexpected result with Catalyst 20, which warrants further investigation, was the appearance of a possible carbon number cutoff.

-1

.

<u>.</u>

The most significant opportunity for future work, however, lies in improving the stability of catalysts incorporating the new method of combining cobalt with UCC-103, UCC-113 or other shape-selective components.

- B446 ·

Appendix C. <u>COMPARISON BETWEEN UCC AND GULF-BADGER PROCESS</u> OF FISCHER-TROPSCH SYNTHESIS FOR DIESEL PRODUCTION

2

*

¥. 8 877

1.1 ...

1

野花

a server a la server presente a la sale e presente anna ser a

i

4

ŗ 2ª

۳1

:

; .

!

.

(

:

i L

.

: •

<u>.</u>:

4.1

£

Marcine Construction

Appendix C. COMPARISON BETWEEN UCC AND GULF-BADGER PROCESS OF FISCHER-TROPSCH SYNTHESIS FOR DIESEL PRODUCTION

のなどの方法の一部の

Ä

C-L Yang and A. C. Frost

Gulf-Badger has reported a process for converting natural gas to hydrocarbon liquid fuel via steam reforming and Fischer-Tropsch synthesis (A. H. Singleton and S. Regier, <u>Hydrocarbon</u> <u>Processing</u>, May 1983).

Since Gulf-Badger's Fischer-Tropsch synthesis process/catalyst system appears to be similar to that proposed by Union Carbide Corporation (UCC) for the MITRE economic study, the Department of Energy requested that we compare the two systems.

Such comparisons have accordingly been made of (1) the product distribution from the Gulf-Badger fixed bed pilot plant (Table 2, Page 73 of the article), (2) the temperature versus syngas conversions for the Gulf-Badger fixed bed pilot plant (Figure 5, Page 73 of the article), and (3) the liquid product distribution from the Gulf-Badger demonstration plant (fourth paragraph from the end of the article, page 74).

The findings of these comparisons indicate (with many assumptions) that the Gulf-Badger system may operate at a 40-50C lower temperature and at an ill-defined higher H₂:CO ratio than does the UCC system to give a product distribution having slightly more naphtha but less distillate and wax.

- C2 -

These findings are detailed for the following aforementioned areas.

1. Pilot Plant Product Distribution

;; } :

ŧ.:

The product distribution given for the Gulf-Badger pilot plant (Table 2, page 73 of the article) is repeated in Column 2 of Table C1 of this Appendix. This distribution has the same general type of selectivity that has been found for the UCC Fischer-Tropsch catalyst, i.e., a relatively high methane make and a liquid product containing a considerable amount of distillate plus material.

Column 3 presents the product distribution normalized to an oxygen-species free basis, a form useful in calculating the Column 4 Schulz-Flory alpha's for each of the product cuts quantified by Column 3 and defined by Column 1.

It can be seen that these Column 4 alpha's hop around a bit over a range from a low of 0.800 to a high of 0.855. This fact, plus the additional fact that Figure 4 on page 73 of the reference shows three liquid products having boiling ranges which more closely correspond to C_5 - C_9 for the naphtha and C_{10} - C_{20} for distillate, prompted the Column 5 recalculation of Schulz-Flory alpha's based on these new definitions for the cuts quantified in Column 3.

The far smaller scatter in these recalculated Column 5 alpha's indicates the possibility that the descriptions of the product cuts given in Table 2 of the reference may be better defined in the manner described above.

2. Temperature versus Conversion

「ないないないないないない」、「ないという」、「ない」というできたない」、

うちょうちょう ないていたい いっていたい しゅうちょう ないまたない ないない ないない ないない ないない ないない ないない ひょうちょう しょうちょう しょうちょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう

NAME AND ADDRESS OF AD

The temperature versus syngas conversion plot given for the Gulf-Badger pilot plant (Figure 5, page 73 of the article) for different E2:CO feed ratios is reshown as Figure Cl of this Appendix. Also shown in Figure Cl are similar computer plots from the UCC catalyst used in the same type of tubular reactor operating with no recycle stream.

Although the UCC computer simulation employed the same 715 GHSV used by Gulf-Badger, the operating pressure was set at 300 psig, rather than the 250 psig used by Gulf-Badger, since this was the only pressure at which the rate expressions for UCC's catalyst have yet been correlated.

Figure Cl shows that the plotted curves for the UCC catalyst not only include those for the same 2.0, 1.7, and 1.5 H₂:CO feed ratios given by Gulf-Badger, but also include additional curves for 1.0, 0.8, 0.7, and 0.65 H₂:CO feed ratios as well.

These additional curves for the lower H_2 :CO ratios were included because it is only at these lower feed ratios that the UCC catalyst can produce a product having a high C_5^+ yield. This is seen from the product distributions given in Table C2. These distributions show that only at H_2 :CO feed ratios of 0.7 or lower are the C_5^+ yields above an acceptable 70 percent at the 10-55 percent syngas conversions shown in Figure C1 for the Gulf-Badger catalyst.

These results indicate that <u>if</u> the Gulf-Badger catalyst produces the product distribution shown in their Table 2 <u>at</u> the con-

- C4 -

ditions indicated by their Figure 5, the UCC catalyst must be run at a 40-50C higher temperature and a 50-70 percent lower H_2 :CO ratio to achieve the same sort of conversions and product distributions achieved by the Gulf-Badger catalyst.

3. Demonstration Plant Product Distribution

::

į

i

::

[]:

|... |...

i

The Gulf-Badger demonstration plant is shown in Figure 8 of their article as employing a recycle stream, a configuration that is common with our own process. Consequently, the product distribution from this Gulf-Badger process configuration can be expected to be comparable to those of our own.

The product distribution for the Gulf-Badger demonstration plant was described on page 74 of their article as approximately 15 bpd of naphtha, 15 bpd of diesel fuel, and 7 opd of wax. Table C3 compares these values with those from a UCC catalyst (S.A.=2.5, U=1.3, S.G.=C.6) operating in a tubular reactor at 300 psig, 270C, and a 2.3 recycle ratio (only the non-condensibles from the reactor effluent are recycled) with a 1.35 H₂:CO feed ratio required to give a 13.94 weight percent CH₄ make (arbitrarily chosen to match the oxygen-free pilot plant value given in Table 2 of their article) and with a 379 GHSV required to ensure an overall 85 percent syngas conversion.

The UCC product distributions so obtained under these conditions are shown in Table C3 on a consistent total 37 bpd basis for naphtle defined both as C_5-C_8 and as C_5-C_9 , the two possible definitions for naphtha discussed in the first section of this report.

- C5 -

Table C4 shows the same type of comparison with product from the same UCC catalyst (S.A.=2.5, U=1.8, S.G.=0.6) in a tubular reactor operating at the same 270F, 300 psig, 2.3 recycle ratio, but employing a 1.30 H₂:CO feed ratio required to give a more economically desirable 10.0 weight percent CH4 make (instead of the 13.9 weight percent make for the Table C3 case) and now using a 265 GHSV (instead of the 379 GHSV for the Table C3 case) to achieve the 85 percent overall syngas conversion.

ないななななないないというという。

•

Sar Second

こと、ことになったので、こので、

The Table C3 results show that when the UCC catalyst/process system is operated at conditions giving a 13.9 percent CH4 make, it produces 24-38 volume percent less gasoline, 9-23 volume percent more diesel, and 30 volume percent more wax than does the Gulf-Badger system. Similarly, the Table C4 results show that when the UCC catalyst/process system is operated at conditions giving an economically more desirable 10.0 weight percent CH4 make, it produces 14-29 volume percent less gasoline, 11-27 volume percent more diesel, and 6 volume percent more wax than does the Gulf-Badger system.

3

:;

• • .-.-

...

.

6 Ga & S. ---

17 1

{. ;. ↓:.

.

[Fig. C1]

			funce frame france	410 61 10 6 6 2 0 11 6
(1) Product components	(2) Table 2 reference listing	(3) Table 2 reference listing, oxygen free basis	(4) Schulz-Flory alpha's for each product cut quantified in col. 3 and de- fined by col. 1	(5) Schulz-Flory alpha's for each product cut quantified in col. 3 and de- fined as C5-C9 being naphtha & C10-C20 being distillate
CH4	13.7	13.937		
$C_{2}H_{4}$ to $C_{4}H_{10}$	11.6	11.801	0.855	0.855
C5-C8 naphtha	25.4	25.839	0.811	0.849
C9-C20 distillate	33-4	33.978	0.800	0.846
C ₂₁ &+ wax	14.2	14.445	0 .853	0.853
Oxygenate	1.7		н 1	
Total .	100.0	100.000		

Table Cl. Analysis of Gulf-Badger's pilot plant product distribution.

Ĭ

Σı,

1

Table C2. Simulated conversions and product distributions at different temperatures and H_2 :CO feed ratios for a UCC catalyst in a tubular reactor having no recycle. Feed space velocity: 715. Reactor pressure: 300 psig. UCC catalyst: S.A.=2.5, U=1.8, p=0.6 gm/cc.

	Temperature, deg C						
	215	220	230	240	250	260	270
Feed gas	H ₂ :CO rati	lo: 2.00	<u>u (j. ⁶1. in j</u>			·	
Conv H ₂ Conv CO Conv SG	19.267 21.407 19.980	25.832 28.702 26.788	44.180 49.087 45.814	68.216 75.795 70.742	89.119 99.020 92.418		
Average alpha FCH4*	0.77915 5.32866	0.77858 5.59073	0.77706 6.09518	0.77447 6.57620	0.76959 7.13748		
CH4 C2-C4 C5-C8 C9-C20 C21&+ C5 ⁺	25.990 20.006 24.767 26.372 2.865 54.004	27.411 19.699 24.328 25.787 2.776 52.890	30.294 19.114. 23.452 24.560 2.580 50.592	33.448 18.580 22.533 23.109 2.330 47.972	37.892 18.035 21.245 20.859 1.969 44.073		
Feed gas	H ₂ :CO rat	io: 1.70		•			
Conv H ₂ Conv CO Conv SG	17.663 16.681 17.298	23.685 22.369 23.197	40.587 38.332 .39.751	63.225 59.712 61.923	84.599 79.899 82.858	95.577 90.267 93.610	98.748 93.262 96.716
Average alpha FCH4*	0.78792 5.17338	0.78770 5.45327	0.78744 5.99117	0.78760 6.50326	0.78858 7.00008	0 .7905 1 7.51567	0 .7 9255 8.08147
CH4 C2-C4 C5-C8 C9-C20 C21&+ C5+	23.268 19.496 25.052 28.603 3.582 57.236	24.578 19.194 24.640 28.084 3.504 56.228	27.070 18.595 23.845 27.120 3.370 54.335	29.340 17.997 23.092 26.295 3.276 52.663	31.290 17.384 22.388 25.684 3.254 51.326	32.983 16.758 21.709 25.236 3.314 50.259	34.778 16.171 21.008 24.654 3.388 40.050

*The ratio of the amount of CH₄ actually produced to the amount of CH₄ predicted from the Schulz-Flory equation, \tilde{j} CH₄/(1-cc)²].

- C9 -

٠.

continued

....

14 7

ie 10

à.

ļ.

ĥ

.

2

.

• 6

[

(; · {; ;

(

1

ð

	Temperature, deg C						
	215	220	230	240	250	260	270
Feed gas	H2:CO rati	o: 1.50					
Conv H2 Conv CO Conv SG	16.465 13.721 15.366	22.061 18.384 20.589	37.747 31.456 35.230	58.909 49.090 54.981	79.919 65.599 74.590	92.611 77.176 86.436	97.435 81.196 90.938
Average alpha FCH4*	0,79449 5,02734	0.79445 5.32229	0.79478 5.88812	0.79606 6.42860	0.79897 6.97041	0.80346 7.58658	0.80795 8.32411
CH4 C2-C4 C5-C8 C9-C20 C21&+ C5 ⁺	21.233 19.065 25.184 30.299 4.220 59.702	22.487 18.767 24.786 29.811 4.149 58.747	24.797 18.163 24.021 28.965 4.054 57.040	26.737 17.530 23.300 28.376 4.057 55.733	28.171 16.838 22.615 28.144 4.232 54.991	29.304 16.110 21.906 28.078 4.601 54.586	30.701 15.455 21.148 27.680 5.016 53.844
Feed gas	Ho:CO rat:	io: 1.00					
Conv H ₂ Conv CO Conv SG	13.137 7.299 10.217	17.597 9.777 13.686	30.173 16.763 23.466	47.725 26.515 37.119	67.470 37.484 52.476	83.553 46.419 64.985	92.739 51.522 72.129
Average alpha FCH4*	0.81501 4.34412	0.81525 4.69799	0.81641 5.36936	0.81897 6.00100	0.82357 6.62691	0.83015 7.33555	0.83713 8.23159
CH4 C2-C4 C5-C8 C9-C20 C21&+ C5 ⁺	14.867 17.461 25.116 35.628 6,928 67.673	16.036 17.186 24.744 35.168 6.866 66.778	18.098 16.601 24.010 34.437 6.856 65.302	19.667 15.936 23.271 34.046 7.080 64.397	20.629 15.158 22.487 34.044 7.682 64.213	21.163 14.297 21.602 34.185 8.753 64.540	21.834 13.500 20.650 33.905 10.110 64.666

Table C2, continued.

4

1

a manufacture of the second second

*The ratio of the amount of CH4 actually produced to the amount of CH4 predicted from the Schulz-Flory equation, $[CH4/(1-\infty)^2]$.

continued

	Temperature, deg C						
	215	220	230	240	250	260	270
Feed gas	H2:CO rat:	io: 0.80		~			
Conv H ₂ Conv CO Conv SG	11.596 5.154 8.016	15.545 6.910 10.746	26.740 11.885 18.486	42.660 18.961 29.493	61.461 27.317 42.491	78.390 34.841 54.195	89.522 39.788 61.891
Average alpha FCH4*	0.82602 3.78335	0.82630 4.17899	0.82756 4.92348	0.83020 5.61216	0.83481 6.27350	0.84139 6.98716	0.84866 7.87882
CH4 C2-C4 C5-C8 C9-C20 C21&+ C5 ⁺	11.452 16.456 24.758 38.388 8.946 72.092	12.609 16.199 24.399 37.916 8.878 71.192	14.641 15.641 23.673 37.157 8.888 69.718	16.180 -14.993 22.916 36.718 9.193 68.827	17.119 14.221 22.081 36.622 9.958 68.661	17.577 13.347 21.119 36.646 11.311 69.076	18.045 12.507 20.071 36.274 13.103 69.449
Feed gas	Ho:CO rat:	io: 0.70					
Conv H ₂ Conv CO Conv SG	10.757 4.184 6.889	14.427 5.612 9.240	24.876 9.675 15.933	39.893 15.515 25.552	58.074 22.585 37.198	75.263 29.270 48.207	87.389 33.986 55.974
Average alpha FCH4*	0.83255 3.36195	0.83283 3.78689	0.83409 4.58244	0.83670 5.31023	0.84120 5.99451	0.84765 6.70788	0.85493 7.58787
CH4 C2-C4 C5-C8 C9-C20 C21&+ C5 ⁺	9.427 15.816 24.434 39.948 10.375 74.757	10.583 15.572 24.083 39.464 10.299 73.845	12.614 15.036 23.366 38.673 10.312 72.351	14.160 14.404 22.602 38.180 10.654 71.435	15.116 13.646 21.743 37.996 11.500 71.239	15.569 12.778 20.745 37.912 12.997 71.654	15.970 11.922 19.647 37.442 15.020 72.109

Table C2, continued.

÷.

ŀ

Ľ

[....

[

[

*The ratio of the amount of CH4 actually produced to the amount of CH4 predicted from the Schulz-Flory equation, $[CH4/(1-\alpha)^2]$.

continued

1

1.

K: I

÷

ĥ

1.1 1.2 Mi

••

••

a' i "y

. . . .

1-14. 1

1. 1. 1.

e,

: ; ;

F	able	C2,	continued.
---	------	-----	------------

٩.,

Ċ.

.

Para and an and a state of

していたかってい

こうどう ひょうちょうしん

stander og skalester for som state

		Temperature, deg C					
	215	220	230	240	250	260	270
Feed gas	H ₂ :CO rat:	io: 0.65					
Conv H ₂ Conv CO Conv SG	10.315 3.725 6.320	13.840 4.999 8.481	23.896 8.630 14.643	38.432 13.880 23.551	56 .257 20 . 316 34 . 474	73.525 26.552 45.055	86.144 31.109 52.788
Averzge alpha FCH4*	0.83616 3.09461	0.83644 3.53747	0.83769 4.36423	0.84026 5.11582	0.84468 5.81391	0.85102 6.52637	0.85827 7.40010
CH4 C2-C4 C5-C8 C9-C20 C21&+ C5 ⁺	8.307 15.450 24.218 40.776 11.248 76.242	9.464 15.213 23.873 40.284 11.167 75.323	11.498 14.690 23.161 39.473 11.179 73.812	13.054 14.070 22.395 38.944 11.537 72.876	14.025 13.321 21.526 38.704 12.423 72.654	14.484 12.460 20.511 38.551 13.994 73.056	14.866 11.599 19.387 38.014 16.134 73.536

*The ratio of the amount of CH4 actually produced to the amount of CH4 predicted from the Schulz-Flory equation, $[CH4/(1-\alpha)^2]$.

	Union Carbide, 1	4 wt pct CH4	Gulf-Badger demonstration		
	Yield, barrels per day	Individual alpha	Yield, barrels per day	Individual alpha	
Naphtha defi	ned as C5-C8				
Naphtha Diesel Wax	10.58 19.03 7.39	0.859 0.872 0.859	15.0 15.0 7.0	0.792 . 0.782 0.857	
Total	37.00		. 37.0		
<u>Naphtha defi</u>	ned as C5-C9				
Naphtha Diesel Wax	12.94 16.66 7.40	0.858 0.859 0.859	15.0 15.0 7.0	0.836 0.818 0.856	
Total	37.00		37.0		

R

i.

ic ie

Table C3. Comparison of product distributions with the UCC system producing 13.94 weight percent CH_4 and for maphtha defined in two ways.

Table C4. Comparison of product distributions with the UCC system producing 10 weight percent CH4 and for naphtha defined in two ways.

1

|.·

[...

|:-

and the second

	Union Carbide, 1	O wt pct CH4	Gulf-Badger demonstration unit		
	Yield, barrels per day	Individual alpha	Yield, barrels per day	Individual alpha	
Naphtha defin	ed as C5-C8	•			
Naphtha Diesel Wax	9.30 18.51 9.19	0 .872 0.879 0.873	15.0 15.0 7.0	0.792 0.782 0.857	
Total	37.00		37.0		
Naphtha defir	ned as C5-C9				
Naphtha Diesel Wax	11.44 16.36 9.20	0.872 0.882 0.873	15.0 15.0 7.0	0 .836 0.818 0.856	
Total	37.00		37.0		

- C13 -

SATISFACTION GUARANTEED

NTIS strives to provide quality products, reliable service, and fast delivery. Please contact us for a replacement within 30 days if the item you receive your order. filling if we have made an error in defective or ŋ

E-mail: info@ntis.gov Phone: 1-888-584-8332 or (703)605-6050

Reproduced by NTis

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are custom reproduced for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available.

Occasionally, older master materials may reproduce portions of documents that are not fully legible. If you have questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and related business information – then organizes, maintains, and disseminates that information in a variety of formats – including electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia training products; computer software and electronic databases developed by federal agencies; and technical reports prepared by research organizations worldwide.

For more information about NTIS, visit our Web site at <u>http://www.ntis.gov</u>.

Ensuring Permanent, Easy Access to U.S. Government Information Assets

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000