

- B245 -

and a set of the second s





2

33 \_\_\_\_\_\_

•

- B246 -



.

1+

19 L

美丽

E.

Î

.

....

...

۱. ۰

1

...

1

-----

- B247 -



....

: '

..!

-

.

:

k

مادانات معاجدت والكثاب والمتنا والمنات والمرافع التديد والمراجع

All the second

CAN STRATE

i 1



- B248 -



- B249 -



- B250 -





## RESULT OF SYNGAS OPERATION

**K**4

1

!

i

-----

\*\*\*\*\*

\*\*\*\*

1.54

Į.

h

And the second of the

RUN NO. 12200-09 CATALYST CO/X9/X10/X4-U103 12251-10 80CC 37 G (WT CHANGE + 6 G) FEED H2:CO OF 50:50 @ 400CC/MN OR 300 GHSV

1

...

ľ

٠,

: ;

...

:

.

: ....

:

÷,

i L

•

.

- --

•

.....

| RUN & SAMPLE NO.     | 12200-09-01 | 200-09-02      |
|----------------------|-------------|----------------|
|                      | 电접역 전상은 바람당 | TEC 및 의 이 의 기능 |
| FEED H2:CO:AR        | 50:50: 0    | 50:50: 0       |
| HRS ON STREAM        | 18.5        | 42.5           |
| PRESSURE, PSIG       | 300         | 300            |
| TEMP. C              | 264         | 260            |
| FEED CC/MIN          | 400         |                |
| HOURS FERDING        | 18.50       | 24 00          |
| REFLAT GAS LITER     | 284.95      | 407 40         |
| GM AQUEOUS LAYER     | 30.66       | 34 18          |
| GH OIL               | 5.04        | 11 48          |
| MATERIAL BALANCE     | 0104        | A4.40 .        |
| GH ATOM CARRON %     | 85.42       | 95 67          |
| GH ATOM HYDROGRN 9   | 84.13       | 91 03          |
| GH ATOM OXYGEN S     | 95.79       | 49 90          |
| RATIO CHX/(H20+CO2)  | 0.5677      | 0 7806         |
| RATTO X IN CHY       | 2 4414      | 2 3944         |
| USAGE H2/CO PRODT    | 2 7051      | . 2 3424       |
| FRED H2/CO FRM REFLA | PT 0 0734   | A 6616         |
| PESTDUAL H2/CO PATTO | A 0.5730    | 0.5313         |
| RATTO CO2/(H20+CO2)  | 0.0390      | 0.0790         |
| K SHIRT IN PRPINT    | 0.0200      | 0.0308         |
| SPRCTRTC ACTIVITY SI | 0.0100      | 0.0214         |
| CONVERSION           | 1 0.2900    | 0.3/03         |
|                      | 14 04       | 16 26          |
|                      | 4,74        | 10.33          |
|                      | 42.30       | 40.20          |
| PEDT SELECTIVITY.WT  | 20.73       | 20.01          |
| CHA                  | 17.02       | 14.05          |
| C2 HC'S              | 3.35        | 3.00           |
| C3H8                 | 3,12        | 2.46           |
| C3H6=                | 5.89        | 4.67           |
| C4H10                | 3.43        | 2.60           |
| C4H8=                | 6.05        | 4.75           |
| C5H12                | 3.92        | 3.21           |
| C5H10=               | 1.30        | 0.50           |
| C6H14                | 4.46        | 3.26           |
| C6H12= & CYCLO'S     | 3.10        | 2.64           |
| C7+ IN GAS           | 17.37       | 14.23          |
| LIQ HC'S             | 30.98       | 44.64          |
| TOTAL                | 100.00      | 100.00         |

Table B15

١.

¥ 4

÷

| SUB-GROUPING          |           |         |
|-----------------------|-----------|---------|
| C1 -C4                | 38.86     | 31.52   |
| C5 -420 F             | 38.99     | 36.78   |
| 420-700 F             | 18.12     | 27.99   |
| 761-BND PT            | 4.03      | 3.70    |
| CS+-END PT            | 61.14     | 68.48   |
| ISO/NORMAL MOLE RATIO |           |         |
| C4                    | 0.0311    | 0.0000  |
| CS                    | 0.0537    | 0.0490  |
| C6                    | 0.0736    | 0,0000  |
| C4=                   | 0.0000    | 0.0000  |
| PARAFFIN/OLEFIN RATIO |           |         |
| C3                    | 0.5061    | 0.5029  |
| C4                    | 0.5464    | 0.5280  |
| C5 -                  | 2.9310    | 6.1712  |
| SCHULZ-FLORY DISTRBIN |           |         |
| Alpha (EZP(SLOPE))    | 0.8159    | 0.8209  |
| RATIO CH4/(1-A)**2    | 5.0213    | 4.3803  |
|                       |           | _       |
| ALPHA FRM CORRELATION | 0.8313    | 0.8296  |
| ALPHA (EXPTL/CORR)    | 0.9815    | 0.9895  |
| CH4 FRM CORRELATION   | 20.9859   | 20.6718 |
| ACH4 (EXFTL/CORR)     | 0.8112    | 0.6798  |
| LIQ HC COLLECTION     |           |         |
| Phys. Appearance      | CLR OIL   | OIL WAX |
| DENSITY (* 40 C)      | . 0.7516* | 0.7565  |
| N, REFRACTIVE INDEX   | 1.4221*   | 1.4236  |
| SIMULT'D DISTILATS    |           |         |
| 10 WT % @ DEG F       | 340       | 340     |
| 16                    | 378       | 373     |
| 50                    | 517       | 495     |
| 84                    | 684       | 650     |
| 90                    | 716       | 688     |
| RANGE (16-84 %)       | 306       | 277     |
| WT % 8 420 F          | 28.50     | 29.00   |
| WT % @ 700 F          | 87.00     | 91.70   |

Table B15, cont

## IX. <u>Run 17 (12200-10) with Catalyst 17 (Fe/K/UCC-103)</u>

The purpose of this run was to test the use of iron as the Fischer-Tropsch active metal in intimate contact with UCC-103. Because iron has been found to be generally less reactive than cobalt, the catalyst was formulated using the method employed in Catalyst 11, whose initial activity was so extraordinarily high.

Iron oxide was promoted with potassium, then formed in close contact with UCC-103 by the method used in Catalyst 11. The resulting powder, after bonding with 15 percent silica, was extruded to 1/8-inch pellets. The final catalyst, containing 8.5 percent iron and 0.2 percent potassium, was activated by CO reduction at 270C for 16 hours.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B207-210. Simulated distillations of the C5<sup>+</sup> product are plotted in Figs. B211-213. Carbon number product distributions are plotted in Figs. B214-217. Chromatograms from simulated distillations are reproduced in Figs. B218-221. Detailed material balances appear in Table B16.

The first three samples were invalidated by a leak in the reactor at the beginning of the run. In Sample 4, at 41.5 hours on stream, the syngas conversion was a very poor 23.1 percent. Total motor fuels and C5<sup>+</sup> were considerably lower than with co-

- B255 -



balt systems. The run was too short to yield any useful data on stability.

The catalyst demonstrated two desirable properties in comparison with the cobalt systems: a reduced methane yield, and a substantially higher olefin content of the C4's, on the order of 75 percent as against the 60 percent generally obtained with cobalt. The overall activity, however, is unacceptably low.

.

States in the second

المتشاطرة المتحرار عدوالكوليد



- B257 -



- B258 -



1. 19 T. 19 1.

i

-----

. Герад

. .

ι.

. .

ų,

7

- B259 -



l z

- B260 -



والمجروفية وشريته وشياع

i.

с,

. Arita

đ

:

L

r. ......

ŧ.,

í

ALL I.L. MARKEN

1. .

۲. ۲. ۲.

. . ]

.



- B261 -



11

Strates ....

4

Į

ľ

• ;

:.

• ;

. ',

5

Fig. B212

- B262 -

r



The state of the s

1.

٠.

<u>.</u>

•

;

Concerning of

Ê

Ē

ч.

\*\*\*\*

F

こうしょう かんしょう かんかく かんしょう しょうしょう しゅうしょう かんしょう 御知 一般 いんしゅう 御知 したい 一般 いたい しんしょう

ļ

¥ 11.5

¥

à . 1

- B263 -

£ 1



観光 いわ

14.11.1.

ľ

۰,

- B264 -





:

: :

् ° ँ

- B266 -



- B267 -

-



 $\dot{\odot}$ 

. .



2 ÷ 4 ~ . بر ا VOU OVEN TERP NOT READY {\*\*: 610016 8.20 :-7 SETPT#20°C LIMIT#405°C .... ; 52 7, #99°C LIMIT =4850 · ] ., ..... ; ļ . \* RT: OVEN 72\*2=323\*3 3279 -32990 LITIT#485°C . . . -÷ ٠×) ï : •: j RT: SVEN TEXPERAGENC SETPTEROBNO LERCTEROSNO 1 SV- 3717 PLN 12200-10-04 Fig. B220 - B270 -



## RESULT OF SYNGAS OPERATION

RUN NO. 12200-10 FE/K-U103 12251-17 80 CC 37.5 G (WT CHANGE +5.5 G) CATALYST H2:CO OF 50:50 @ 400 CC/MN OR 300 GHSV FERD 12200-10-02 200-10-03 200-10-04 200-10-06 RUN & SAMPLE NO. 50:50: 0 50:50: 0 50:50: 0 50:50: 0 FEED H2:CO:AR HES ON STREAM 41.5 66.0 90.7 116.2 300 300 300 299 PRESSURE.PSIG 250 250 250 250 TEMP. C 400 400 · 400 400 FEED CC/MIN 22.50 24.50 24.67 25.50 HOURS FEEDING EFFLNT GAS LITER 199.60 207.39 212.31 444.80 20.76 22.73 ·24.18 GH AQUEOUS LAYER. 18.06 2.94 5.33 5.10 6.28 GH OIL MATERIAL BALANCE 45.62 92.07 GH ATOM CARBON % 46.38 46.16 GH ATOM HYDROGEN % 48.61 48.40 49.62 86.86 GH ATOM OXYGEN % 51.36 50.05 51.56 94,94 RATIO CHX/(H20+CO2) 0.5624 0.6226 0.5713 0.8097 RATIO X IN CHX 2.2777 2.2442 2.2486 2.2867 USAGE H2/CO PRODT 2.3354 2.4592 1.9727 2.4032 1.0482 1.0609 1.0748 0.9435 FEED H2/CO FRM EFFLNT 0.7823 RESIDUAL H2/CO RATIO 0.7919 0.7833 0.7607 RATIO CO2/(H20+CO2) 0.0849 G.0733 0.0686 0.1105 0.0576 K SHIFT IN RFFLMT 0.0735 0.0620 0.0945 SPECIFIC ACTIVITY SA 0.4998 0.5742 0.5562 0.5109 CONVERSION 15,90 17.89 17.44 ON CO % 15.08 39.37 39.91 31.53 ON H2 % 36.46 ON CO+H2 % 26.43 28.95 29.08 23.07 PRDT SELECTIVITY, WT % 7.75 6.20 6.38 8.71 CHA C2 HC'S 7.03 5.51 6.04 -6.02 2.47 2.52 C3H8 3.09 2.96 СЗН6≈ 8.00 7.63 9.36 9.02 C4H10 2.92 2.38 2.43 2.87 CAH8= 8.52 7.21 7.53 9.14 CSH12 3.23 2.57 2.68 3.29 CSH10= 1.94 1.78 1.73 6.79 C6H14 3.51 2.55 2.45 3.10 C6H12= & CYCLO'S 2.92 3.10 2.76 2.85 16.54 16.74 C7+ IN GAS 20.58 16.65 LIO HC'S 28.86 42.28 40.79 28.52 TOTAL 100.00 100.00 100.00 100.00

÷

Table B16

- B272 -

.

.

r .

••

. :

• •

.

•.

:

1

.,

And and a second se

: 75

k.

| •                      |         |         |          |         |
|------------------------|---------|---------|----------|---------|
| SUB-GROUPING           |         |         |          |         |
| <b>C1</b> - <b>C</b> 4 | 38.68   | 31.41   | 32.89    | 38.72   |
| C5 -420 F              | 42.42   | 39.42   | 38.56    | 41.18   |
| 420-700 F              | 17.72   | 26.58   | 24.39    | 17.08   |
| 700-END FT             | 1.18    | 2.49    | 4.16     | 3.02    |
| CS+-BED PT             | 61.32   | 68.59   | 67.11    | 61.28   |
| ISO/NORMAL MOLE RATIO  |         |         |          |         |
| C4                     | 0.0687  | 0.0668  | 0.0712   | 0.0735  |
| CS                     | 0,0906  | 0.0954  | 0.0986   | 0.0925  |
| Cé                     | 0.1225  | 0.0580  | 0.1048   | 0.0579  |
| C4=                    | 0.0000  | 0.0000  | 0.0000   | 0.0000  |
| PARAFFIN/OLEFIN RATIO  |         |         | -        |         |
| <b>C</b> 3             | 0.3146  | 0.3088  | 0.3009   | 0.3129  |
| C4                     | 0.3310  | 0.3193  | 0.3111   | 0.3034  |
| C5                     | 1.6152  | 1.4080  | 1.5028   | 0.4703  |
| SCHULZ-FLORY DISTRBIN  |         |         |          |         |
| Alpha (Exp(Slops))     | 0.7487  | 0.8027  | 0.8214   | 0.8014  |
| RATIO CH4/(1-A)**2     | 1.2276  | 1.5933  | 1.9999   | 2.2082  |
| •                      |         |         | -        | _       |
| ALPHA FRM CORRELATION  | 0.8227  | 0.8233  | 0.8233   | 0.8247  |
| ALPHA (SXPIL/CORE)     | 0.9101  | 0.9750  | 0.9977   | 0.9717  |
|                        | •       |         |          |         |
| WACH4 FRM CORRELATION  | 20.6666 | 20.5010 | 20.4822  | 20.0580 |
| WICH4 (EXPTL/CORR)     | 0.3751  | 0.3025  | 0.3114   | 0.4344  |
| LAQ MC COLLECTION      |         | ·       | <b>.</b> | 07 7 AT |
| PHIS. APPEARANCE       |         |         |          |         |
| PENSLIT                | 0.7630  | 0.7663  | 0./6//   | 0.7873  |
| N, REFRACTIVE INDEA    | 1.4265  | 1.4304  | 1.4314   | T.43T4  |
| STRUET D DISTILATA     | 240     | 240     | 240      | 340     |
| IU WI % @ DEG F        | 340     | 340     | 340      | 340     |
| 20 ·                   | 350     | . 707 . | 303      | 302     |
| <b>30</b>              | 437     | 460     | 450      | . 770   |
| 84                     | 333     | 628     | 203      | 203     |
| 90                     | 292     | 007     | 701      | /0/     |
| RANGE(16-84 %)         | 203     | 271     | 306      | 307     |
| WT % 8 420 F           | 34.50   | 31.00   | 30.00    | 29.50   |
| WT % @ 700 F           | 95.90   | 94.10   | 89.80    | 89.40   |
|                        |         |         |          |         |

Table B16, cont

- B273 -

X. Run 18 (12200-11) with Catalyst 18 (Fe/K/UCC-103)

This catalyst is identical, in composition and preparation, to Catalyst 17, Run 12200-10, except that it was calcined at a lower temperature and contained slightly more potassium.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B222-225. A simulated distillation of the C5<sup>+</sup> product of one sample is plotted in Fig. B226. A carbon number product distribution for one sample is plotted in Fig. B227. A chromatogram from simulated distillation of one sample is reproduced in Fig. B228. Detailed material balances appear in Table B17.

Both the activity and the selectivity of this catalyst were even poorer than with Catalyst 17. The product was lighter, less olefinic, and higher in methane.

- B274 -



12110

Ŀ

•••

**:** 

.

. \* .

... ....

.

• •

۰.

2**4** 



- B275 -

j



-

1

ł

l

1

- B276 -

**.**...

••••

-, ; ;



- B277 -

Kan Ser

:

... ٠.

<u>.</u>

•.• • -



e l

2

Ĭ

- B278 -





ł

1

No. of the second se

振業


Service for the difference of

Substances and and a substance of

and the second secon

فتدومة الآمة بمنقطية

1

## RESULT OF SYNGAS OPERATION

.

j

à

| RUN NO. 12200-11      |            |                    |            |            |
|-----------------------|------------|--------------------|------------|------------|
| CATALYST FE/X-U103 1  | 2251-28 8  | 0 CC 34.0 G        | (WT CHANGE | 5 +0.9 G ) |
| Feed H2: CO of 5      | 0:50 @ 400 | CC/MN OR 30        | ) GHSV     |            |
|                       |            |                    | •          |            |
| RUN & SAMPLE NO. 1    | 2200-11-01 | 200-11-02          |            | ·          |
|                       |            | 3222200 <b>3</b> 2 |            |            |
| FRED H2:CO:AR         | 50:50:0    | 50:50:0            |            |            |
| hrs on stream         | 19.5       | 43.0               |            |            |
| Pressure, PSIG        | 300        | 300                |            |            |
| TRMP. C               | 250        | 251                |            |            |
|                       |            |                    |            | ,          |
| FEED CC/MIN           | 400        | 400                |            |            |
| Hours Freding         | 19.50      | 23.50              |            |            |
| EFFLNT GAS LITER      | 371.40     | 472.10             |            |            |
| GH AQUEOUS LAYER      | 6.35       | 7.85               |            |            |
| Ge CIL                | 0.22       | 0.51               |            |            |
| MATERIAL BALANCE      |            | •                  |            |            |
| GM ATOM CARBON %      | 93.67      | 97.43              |            |            |
| GM ATOM HYDROGEN 💈    | 86.52      | 91.01              |            |            |
| GH ATOM OXYGEN %      | 94.49      | 98.58              |            |            |
| RATIO CHX/(H2O+CO2)   | 0.9226     | 0.8915             |            |            |
| RATIO X IN CHX        | 2.4985     | 2.5183             |            |            |
| USAGE H2/CO PRODT     | 1.3837     | 1.4395             |            |            |
| FBED H2/CO FRM EFFLNT |            | 0.9341             |            |            |
| RESIDUAL H2/CO RATIO  | 0.8454     | 0.8558             |            |            |
| RATIO CO2/(H2O+CO2)   | 0.3675     | 0.3440             | . •        |            |
| K SHIFT IN EFFLAT     | 0.4912     | 0.4488             |            |            |
| SPECIFIC ACTIVITY SA  | 0.4229     | 0.4016             |            |            |
| CONVERSION            |            |                    |            |            |
| ON CO 7               | 14.54      | 13.41              | •          |            |
| ON H2 7               | 21.78      | 20.66              |            |            |
| ON CO+H2 %            | 18.01      | 16.91              | •          |            |
| PRDT SELECTIVITY WT % |            |                    |            |            |
| CH4                   | 17.61      | 18.55              |            |            |
| C2 HC'S               | 10.24      | 10.27              |            |            |
| C3H8                  | 5.89       | 5.91               |            |            |
| C3H6=                 | 11.47      | 10.60              |            |            |
| CAHIO                 | 5.67       | 5.67               |            |            |
| · CAH8=               | 9.56       | - 8,89             | -          | •          |
| C5H12                 | 5.01       | 4.93               |            |            |
| C5H10a                | 6 34       | 5 87               | •          | •          |
| C5H14                 | A. 70      | 3.85               |            |            |
| C6H12= & CYCLO'S      | 2 92       | 7.40               |            | • .        |
| C7+ IN $CAS$          | 18.01      | 20.19              |            |            |
| LTD HC'S              | 1 61       | 3 30               |            |            |
|                       |            |                    |            |            |
| ተለማ ይ በ               | 100.00     | 100 00             |            | -          |
|                       | T00.00     | T00.00             |            |            |

Table B17

- B282 -

į

F

Santa Stran

•

.

.... ...

1. ٠.

۱.

.

(\* : .

: • 1. 1

. . .

Ċ

j

\$

١Č

14

Ĩ

Ĩ

ľ

;

2 ŧ

ł Ţ

ŝ

Ч.

|                       | <del>,</del> | •       |  |
|-----------------------|--------------|---------|--|
| SUB-GROUP ING         |              | · · · · |  |
| C1 -C4                | 60.44        | 55.88   |  |
| C5 -420 F             | 38.75        | 37.46   |  |
| 420-700 F             | 0.65         | 2.26    |  |
| 700-END PT            | 0.16         | 0.40    |  |
| C5+-BND PT            | 39.56        | 40.12   |  |
| ISO/NORMAL MOLE RATIO |              |         |  |
| C4                    | 0.0358       | 0.0438  |  |
| C5                    | 0.0656       | 0.0596  |  |
| C6                    | 0.1124       | 0.0494  |  |
| C4 <del>=</del>       | 0.0000       | 0.0000  |  |
| PARAFFIN/OLEFIN RATIO |              |         |  |
| C3                    | 0.4901       | 0.5315  |  |
| CÁ                    | 0.5730       | 0.6153  |  |
| <b>C</b> 5            | 0.7684       | 0.8760  |  |
| SCHULZ-FLORY DISTRBIN |              |         |  |
| ALPHA (EXP(SLOPE))    | 0.6041       | 0.7216  |  |
| RATIO CH4/(1-A)**2    | 1.1233       | 2.3919  |  |
| •••• -                |              |         |  |
| ALPHA FRM CORRELATION | 0.8195       | 0.8189  |  |
| ALPHA (EXPTL/CORR)    | 0.7371       | 0.8811  |  |
|                       |              |         |  |
| WACH4 FRM CORRELATION | 21.6545      | 22.0748 |  |
| WACH4 (EXPTL/CORR)    | 0.8131       | 0.8401  |  |
| LIQ HC COLLECTION     |              | •       |  |
| PHYS. APPEARANCE      | CLR OIL      | CLR OIL |  |
| DENSITY               | N/A          | N/A     |  |
| N, EEFRACTIVE INDEX   | N/A          | N/A     |  |
| SIMULT'D DISTILATN    | -            |         |  |
| 10 WT % @ DEG F       |              | 377     |  |
| . 16                  |              | 414 -   |  |
| 50                    |              | 565     |  |
| 84                    |              | 686     |  |
| 90 -                  |              | 715     |  |
| RANGE (16-84 %)       |              | 272     |  |
| WT % @ 420 F          |              | 17.00   |  |
| WI % @ 700 P          |              | 87.50   |  |

Table B17, cont

## XI. Run 19 (12185-09) with Catalyst 19 (Co/Xg/X10/X4/UCC-103)

This run is a second attempt to develop an effective catalyst by incorporating the three additives X9,  $X_{10}$  and X4 into the cobalt/UCC-103 formulation of Catalyst 11 (Run 12200-06). The first attempt, in Catalyst 16 (Run 12200-09), was unsuccessful.

]

1

いたないで、 いたたいないのでのない

Cobalt oxide was formed in close contact with UCC-103 by the method used in Run 11, then further promoted with X9, X<sub>10</sub> and X4. The resulting powder, after bonding with 15 percent silica, was extruded to 1/8-inch pellets. The final catalyst contained 11.3 percent cobalt, 0.5 percent X9, 0.7 percent X<sub>10</sub> and 1.3 percent X4.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C<sub>4</sub>'s are plotted against time on stream in Figs. B229-232. Simulated distillations of the C<sub>5</sub><sup>+</sup> product are plotted in Figs. B233-234. Carbon number product distributions are plotted in Figs. B235-236. Chromatograms from simulated distillations are reproduced in Figs. B237-238. Detailed material balances appear in Table B18.

The initial activity, although higher than with Catalyst 16--syngas conversion about 44.8 percent, specific activity 0.7, as against 28.7 percent and 0.29 respectively--was still unacceptably low.

Due to the nature of the new method of preparation, the X4

- B284 -

used both in this catalyst and in Catalyst 16 was obtained from a different source than previously. As will be reported in Run 20, subsequent analysis of the catalyst indicated that use of the new source resulted in a poisoning of the catalyst.

1

ŀ

:

'ई: 1

:.

<u>.</u>

i



· · · ·

.....

;

÷

:

**-** B286 -

and the second secon

Ĩ



Fig. B230

- B287 -

'n



t



- B288 -



- B289 -

:

Ì



Ì

- 3290 -

-

(1)



.

:

The second second

÷

Standard Barry of a second

I

į

1

۰.



- B291 -

ľ



\_

្រា





f angel to t 5nT SVEN TETRINGT REACK •T: 410048 2.122 ≥≦<u>3</u>∘0 \_3\*35=495°C 1.45#350S SETPT#9990 IN: #48590 í . .... \$2707#<u>72</u>205 -2+\*\*312\*C 11237=42593 DIE 1424 TEMPELSENS - SETDTEAGOOD - LONSTEAGOOD 1 :2185-09-02 Fig. B238 • - B295 -ALL CALL

## RESULT OF SYNGAS OPERATION

. .

Ņ

. 4

Í

RUN NO. 12185-09 CATALYST CO/X9/X10/X4-U103 12251-20-14 80 CC 42.4 G (WT CHANGE +2.8 G) H2:CO OF 50:50 @ 400 CC/MN OR 300 GHSV FEED 12185-09-01 185-09-02 RUN & SAMPLE NO. 50:50: 0 50:50: 0 FEED H2:CO:AR 24.5 48.5 HRS ON STREAM 300 PRESSURE, PSIG 300 262 264 TRMP. C • 400 FEED CC/MIN 400 24.50 24.00 HOURS FREDING BFFLNT GAS LIYER 335.00 349.15 56.96 58.01 GM AQUEOUS LAYER 14.28 10.70 GM OIL MATERIAL BALANCE GM ATOM CARBON % 91.89 94.82 GH ATOM HYDROGEN % 93.39 98.16 99.42 102.29 GH ATOM OXYGEN % RATIO CHIX/(H20+CO2) 0.7558 0.7568 RATIO X IN CHY 2.4783 2.4592 2.2778 2.3019 USAGE H2/CO PRODT FRED H2/CO FRM EFFLNT 1.0163 1.0353 RESIDUAL H2/CO RATIO 0.5370 0.5813 RATIO CO2/(H20+CO2) 0.0656 0.0571 K SHIFT IN EFFLAT 0.0377 0.0352 SPECIFIC ACTIVITY SA 0.7337 0.5577 CONVERSION 27.53 ON CO % 26.38 ON H2 74 58.66 61.71 ON CO+H2 % 44.76 42.80 PRDT SELECTIVITY, WT % CH4 18.53 18.09 C2 HC'S 4.11 3.54 C3H8 3.60 2,80 C3H6= 6.60 5.50 3.08 C4H10 3.76 C4H8= 6.33 5.41 CSH12 4.34 3.34 CSH10= 4.84 4.19 C6H14 4.46 3.24 3.31 2.62 C6H12= & CYCLO'S C7+ IN GAS 13.95 12.42 LIQ HC'S 26.18 35.75 TOTAL 100.00 100.00

Table B18

38.43 37.79 20.31 3.47 61.57

-

.

h. |-

in Same and a such as the

F

THE REPORT OF THE PARTY OF THE

「「「「「」」

------

| SUB-GROUPING     |        |  |
|------------------|--------|--|
| <b>C1 -C4</b>    | 42.92  |  |
| <b>C5 -420 F</b> | 40.32  |  |
| 420-700 F        | 14.90  |  |
| 700-KND PT       | 1.86   |  |
| C5+-END PT       | 57.08  |  |
| ISO/NORMAL MOLE  | RATIO  |  |
| C4               | 0.0367 |  |
| C5               | 0.0757 |  |
| C6               | 0.0900 |  |
| C4=              | 0.0000 |  |
| PARAFFIN/OLEFIN  | RATIO  |  |

• •

瀬湯

the state and

. .

.

• • • • •

...

.

••• •• ••

> ۱. .

> > (\* : | | ....

.

: ·

.

.

.

... {...

.

ţ,

2

Ŋ,

| C4                    | 0.0367  | 0.0358   |
|-----------------------|---------|----------|
| C5                    | 0.0757  | 0.0692   |
| C6                    | 0.0900  | 0.0379 . |
| C4=                   | 0.0000  | 0.0000   |
| PARAFFIN/OLEFIN RATIO |         |          |
| C3                    | 0.5208  | 0.4852   |
| C4                    | 0.5731  | 0.5501   |
| C5                    | 0.8718  | 0.7752   |
| SCHULZ-FLORY DISTRBIN |         |          |
| ALPHA (EXP(SLOPE))    | 0.7852  | 0.8107   |
| RATIO CH4/(1-A)**2    | 4.0144  | 5.0514   |
|                       |         |          |
| ALPHA FRE CORRELATION | 0.8410  | 0.8370   |
| ALPHA (EXPTL/CORR)    | 0.9336  | 0.9686   |
| WACH4 FRM CORRELATION | 17.5659 | 19.2152  |
| WICH4 (EXPTL/CORR)    | 1.0547  | 0.9417   |
| LIQ HC COLLECTION     |         |          |
| PHYS. APPEARANCE      | CLD OIL | OIL WAX  |
| DENSITY               | 0.7577  | 0.7730   |
| N, REFRACTIVE INDEX   | 1.4265  | 1.4276   |
| SIMULT'D DISTILATN    |         |          |
| 10 WT % @ DEG F       | 301     | 303      |
| 16                    | 341     | 344      |
| 50                    | 480     | 489      |
| 84                    | 647     | 658      |
| 90                    | 678     | 696      |
| RANGE (16-84 %)       | 306     | 314      |
| WT % @ 420 F          | 36.00   | 33.50    |
| WT % @ 700 F          | 92.90   | 90.30    |
|                       | 36.00   | 33.50    |
|                       | 92.27   | 90.36    |

Table B18, cont

- B297 -

## XII. Run 20 (12185-11) with Catalyst 20 (Co/Xg/X10/UCC-103)

This run continues the search for additives to stabilize the cobalt/UCC-103 Catalyst 11 of Run 12200-06, whose initial activity was exceptionally high. Formulation was the same as for Catalyst 16 (Run 12200-09) but omitting the additive X4.

Cobalt oxide was promoted with X<sub>9</sub> and X<sub>10</sub>, then formed in close contact with UCC-103 by the method used in Run 11. The resulting powder, after bonding with 15 percent silica, was extruded to 1/8-inch pellets. The final catalyst contained 11.9 percent cobalt, 0.5 percent X<sub>9</sub> and 0.7 percent X<sub>10</sub>.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B239-242. Simulated distillations of the C5<sup>+</sup> product are plotted in Figs. B243-247. Carbon number product distributions are plotted in Figs. B248-252. Chromatograms from simulated distillations are reproduced in Figs. B253-257. Detailed material balances appear in Table B19.

The performance of this catalyst was similar in many respects to that of Ca alyst 11 (Run 12200-06). Its conversion of syngas was initially 88.8 percent, for a specific activity of about 7.6 (vs. 91.48 percent and 12.5 respectively for Catalyst 11), and deactivated rapidly to 62.0 percent, specific activity 2.3, at 115.5 hours on stream (vs. 68.5 percent, 4.0 and 165.5 hours re-

- B298 -

spectively for Catalyst 11). Evidently the inferior activity of Catalysts 16 and 19, both consisting of  $Co/X_9/X_{10}/X_4/UCC-103$ , was due to the additive X4.

The initial water gas shift activity was also extremely high, with nearly 60 percent of the oxygen converted to  $CO_2$ , and decreased to 28 percent at 115.5 hours. These values compare with an initial 69 percent for Catalyst 11, and a final 26 percent at 165.5 hours; the final levels with both catalysts were twice as high as for any previous intimately contacted catalyst.

As to selectivity, the calculated alpha value and the C5<sup>+</sup> product were substantially lower than with Gatalyst 11. Most of the difference in this respect, however, is probably due to the slightly lower activity of this catalyst, resulting in a higher residual H2:CO ratio in the reactor. In terms of ratio of weight percent methane experimentally observed to weight percent predicted by the mathematical model, this catalyst actually produces less methane than Catalyst 11:

> Catalyst 20, Run 12185-11 1.09:1 Catalyst 11, Run 12200-06 1.28:1

The clefinic content of the C4's varied with time, and leveled off at about 50 percent, as compared with about 60 percent for Catalyst 11.

An unusual feature of this catalyst is a carbon number cutoff, as shown in the Schulz-Flory plots. The effect appears to be real, since it persisted even after good material balances were obtained. This is the most striking difference between this catalyst and Catalyst 11.

This run has been useful for its demonstration that the additive X4 has probably been responsible for the poor activity of certain previous catalysts. The additives X9 and X10 have somewhat improved product selectivity, reduced the production of methane, and induced a carbon number cutoff. What is needed now is an additive or treatment to improve the catalyst's stability.

:

.

: }

: }

¥.



- B301 -

ĺ٠.

In the second second 

: : |



- 3302 -

" ;



- B303 -



- B304 -

The state











ייי צויייא לישנולי בלוא קיאר בנייו בוריותני ורבויריבי בי

....

: : :

:

1

:

. J.







- B309 -

F

-----



- B310 -

.



i. Ken



- B312 -

- the second

in the second

AND AND LAN

đ



- B313 -

(-



ì

ないたいない いい たい

ł

- B314 -



ļ L J a VET #142M 11 - E 911015 0.10 • • • 20000 32777=298°C LISIT#485°C . j Manna ÷ ייי ייי ני \*\*\*\*\*\*\*\* 35-27=72300 2500 AT: OVEN 1275 Ξ... RT: 1211 TEMPELARY: 85777=48890 a495 - 0 ..... · :/. :\*:\* \*... 12185-11-02 ----Fig. B254 - B316 -






# RESULT OF SYNGAS OPERATION

RUN NO. 12185-11 CATALYST CO/X9/X10-U103 12251-30-23 250 CC 108.2 G (WT CHANGE +49.4 G ) H2:CO OF 50:50 @ 1260 CC/MN OR 300 GHSV FEED

1

\*\*

•

·· · •..

:(

۰, • ·**·**··

. -. ۰ د. ••

1 ;

::•

| RUN & SAMPLE NO.       | 18511.01 | 18511.02 | 18511.03 | 18511.04         | 18511.05 |
|------------------------|----------|----------|----------|------------------|----------|
| FRED H2:CO:AR          | 50:50: 0 | 50:50: 0 | 50:50: 0 | 50:50: 0         | 50:50: 0 |
| HRS ON STREAM          | 20.0     | 42.5     | 67.0     | 92.0             | 115.5    |
| PRESSURE, PSIG         | 300      | 300      | 300      | 300              | 300      |
| TRMP. C                | 262      | 262      | 262      | 262              | 261      |
| FRED CC/MIN            | 1260     | 1260     | 1260     | 1260             | 1260     |
| Hours Feeding          | 20.00    | 22.50    | 24.50    | 25.00            | 23.50    |
| EFFLAT GAS LITER       | 515.75   | 513.86   | 649.19   | 841.80           | 841.45   |
| GH AQUEOUS LAYER       | 104.72   | 167.30   | 205.10   | 185.61           | 171.53   |
| GH OIL                 | 50.79    | 130.81   | 113.59   | , 87 <b>.8</b> 2 | 70.79    |
| MATERIAL BALANCE       |          |          |          |                  |          |
| GM ATOM CARBON %       | 88.43    | 90.53    | 85.45    | 93.81            | 94.51    |
| GM ATOM HYDROGEN %     | 90.58    | 89.47    | 94.35    | 96.13            | 96.01    |
| GM ATOM OXYGEN %       | 91.13    | 95.91    | 89.40    | 96.98            | 97.85    |
| RATIO CHX/(H29+C92)    | 0.9454   | 0.8966   | 0.9103   | 0.9222           | 0.9138   |
| RATIO X IN CHX         | 2.6870   | 2.3730   | 2.4294   | 2.5030           | 2.4799   |
| USAGE H2/CO PRODT      | 1.0862   | 1.1686   | 1.5108   | 1.4999           | 1.5470   |
| FEED H2/CO FRM EFFLMT  | 1.0244   | 0.9883   | 1.1041   | 1.0247           | 1.0159   |
| RESIDUAL H2/CO RATIO   | 0.6385   | 0.3283   | 0.4442   | 0.4788           | 0.5031   |
| RATIO CO2/(H20+CO2)    | 0.5959   | 0.4685   | 0.2909   | 0.3684           | 0.2825   |
| k shift in efflat      | 0.9417   | 0.2895   | 0.1823   | 0.2135           | 0.1981   |
| SPRCIFIC ACTIVITY SA   | 7.5897   | 12.7630  | 4.0002   | 2.7086           | 2.3143   |
| CONVERSION             |          |          |          |                  |          |
| om co %                | 86.19    | 78.55    | 61.87    | 53.46            | 49.13    |
| om H2 %                | 91.39    | 92.87    | 84.66    | 78.26            | 74.81    |
| on Co+H2 %             | 88.82    | 85.67    | 73.83    | 66.01            | 62.07    |
| PRDT SELECTIVITY, WT % |          |          |          |                  |          |
| CH4                    | 27.49    | 12.91    | 15.35    | 19.01            | 17.87    |
| C2 HC'S                | 3.43     | 1.91     | 2.41     | 2.96             | 2.87     |
| C3H8                   | 5.44     | 2.55     | 3.25     | 4.02             | 4.11     |
| C3H6=                  | . 1.15   | 1.96     | 1.50     | 1.63             | 2.04     |
| C4H10                  | 5.61     | 2.40     | 3.01     | 3.60             | 3.71     |
| C4H8=                  | 2.57     | • 3.13   | 2.47     | 2.73             | 3.16     |
| C5H12                  | 6.92     | 3.23     | 3.70     | 4.36             | 4.64     |
| C5H10=                 | 2.52     | 3.03     | 2.42     | 2.10             | 2.44     |
| C6H14                  | .7.52    | 3.62     | 4.04     | 4.77             | 5.03     |
| C6H12= & CYCLO'S       | 0.37     | 1.84     | 1.56     | 1.68             | 2.00     |
| C7+ IN GAS             | 13.25    | 7.87     | 8.83     | 11.80            | 14.50    |
| LIQ HC'S               | 23.73    | 55.57    | 51.45    | 42.34            | 37.63    |
| TOTAL                  | 100.00   | 100.00   | 100.00   | 100.00           | 100.00   |

等於國外和

Table B19

- B320 -

- - - - - -

| •     |       |
|-------|-------|
| 45,69 | 24.85 |
|       | 24142 |

ł

. .

i.

きょうちょう ちょう あってい

ĬL.

SUB-GROUPING

. .

.

. . .

. . !

€:

÷ :

. .

| ClC4                  | 45.69   | 24.85   | 27.99   | 33.95       | 33.75    |
|-----------------------|---------|---------|---------|-------------|----------|
| C5 -420 F             | 47.43   | 51.26   | 43.71   | 42.90       | 45.17    |
| 420-700 F             | 6.45    | 22.95   | 25.21   | 19.60       | 17.20    |
| 700-END PT            | 0.43    | 0.94    | 3.09    | 3.56        | 3.88     |
| C5+-END PT            | 54.31   | 75.15   | 72.01   | 66.05       | 66.25    |
| ISO/NORMAL MOLE RATIO |         |         |         |             |          |
| C4                    | 0.0293  | 0.0138  | 0.0239  | 0.0223      | 0.0192   |
| C5                    | 0.1278  | 0.0722  | 0.0899  | 0.0912      | 0.0818 . |
| C6                    | 0.3643  | 0.1537  | 0.1710  | 0.1706      | 0.1516   |
| C4=                   | 0.2294  | 0.0549  | 0.1171  | 0.1124      | 0.0916   |
| PARAFFIN/OLEFIN RATIO |         |         | -       |             |          |
| C3                    | 4.5172  | 1.2425  | 2.0674  | 2.3475      | 1.9210   |
| C4                    | 2.1064  | 0.7404  | 1.1762  | 1.2726      | 1.1357   |
| C5                    | 2.6724  | 1.0372  | 1.4853  | 2.0169      | 1.8488   |
| SCHULZ-FLORY DISTRETN |         |         |         |             |          |
| ALPHA (EXP(SLOPE))    | 0.7305  | 0.7969  | 0.8184  | 0.8185      | 0.8150   |
| RATIO CH4/(1-Å)**2    | 3.7838  | 3.1313  | 4.6531  | 5.7713      | 5.2226   |
|                       |         |         |         |             |          |
| ALPHA FRM CORRELATION | 0.8325  | 0.8649  | 0.8502  | 0.8466      | 0.8442   |
| ALPHA (EXPTL/CORR)    | 0.8774  | 0,9214  | 0.9625  | 0.9668      | 0.9655   |
|                       |         |         |         |             |          |
| WACH4 FRM CORRELATION | 20.1838 | 10.1304 | 14.6990 | 15.8328     | 16.3551  |
| WACH4 (EXPTL/CORR)    | 1.3620  | 1.2746  | 1.0444  | 1.2009      | 1.0924   |
| LIQ HC COLLECTION     |         | •       |         |             |          |
| PHYS. APPRARANCE      | CLD OIL | OIL WAX | OIL WAX | CLR OIL     | CLR OIL  |
| DENSITY               | 0.7310  | 0.7421  | 0.7521  | 0.7531      | 0.7536   |
| N, REFRACTIVE INDEX   | 1.4142  | 1.4192  | 1.4244  | 1.4248      | 1.4254   |
| SIBULT'D DISTILATE    |         |         | •       |             |          |
| 10 WT % @ DEG F       | 209     | 231     | 257     | . 258       | 259      |
| 16                    | 243     | 258     | 298     | 299         | 300      |
| 50                    | 347     | 391     | 450     | 4 <b>54</b> | 453      |
| 84                    | 486     | 559     | 625     | 650         | 661      |
| 90                    | 533     | 599     | 666     | 690         | 703      |
| RANGE (16-84 %)       | 243     | 301     | 327     | 351         | 361      |
|                       |         |         |         | ~~~         | ~~~      |
| WT % @ 420 F          | 71.00   | 57.00   | 45.00   | 44.00       | 44.00    |
| WT % @ 700 F          | 98.20   | 98.30   | 94.00   | 91.40       | 89.70    |

Table B19, cont

:

# XIII. <u>Run 21 (12200-12) with Catalyst 21</u> (Co/Xg/X10/X4/UCC-103+UCC-112) <u>Run 22 (12185-12) with Catalyst 22</u> (Co/Xg/X10/X4/UCC-103)

The purpose of these two runs was to test the effects of a number of variations on the successful Catalyst 15 (Run 12185- ' 08). As compared with Catalyst 15, both catalysts contained (a) higher levels of cobalt oxide in close contact with UCC-103, intended to improve the specific activity, and (b) higher proportions of X<sub>4</sub> to cobalt, intended to raise the clefin content of the product. In addition, a new shape selective component, UCC-112, was incorporated in Catalyst 21 to test its effect on product quality.

In Catalyst 21, cobalt oxide was promoted with Xg and X<sub>10</sub>, then further promoted with X4, and formed in close contact with UCC-103, as in Catalyst 15. The resulting powder was mixed with UCC-112 in a weight ratio of 1.125:1, and the mixture, after bonding with 15 percent silica, was extruded as 1/8" pellets. The final catalyst contained 5.84 percent cobalt, 0.26 percent Xq, 0.29 percent X<sub>10</sub> and 1.34 percent X4.

Catalyst 22 was formulated in the same way except without UCC-112. The final catalyst contained 11.0 percent cobalt, 0.49 percent X<sub>9</sub>, 0.54 percent X<sub>10</sub> and 2.54 percent X<sub>4</sub>.

For Catalyst 21 (Run 12200-12), conversion, product selectiv-

- B322 -

ity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B258-261. Simulated distillations of the C5<sup>+</sup> product are plotted in Figs. B262-268. Carbon number product distributions are plotted in Figs. B269-275. Chromatograms from simulated distillations are reproduced in Figs. B276-282. Detailed material balances appear in Tables B20-21.

ç, i

1

:

5

I I

For Catalyst 22 (Run 12185-12), conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B283-286. Simulated distillations of the C5<sup>+</sup> product are plotted in Figs. B287-290. Carbon number product distributions are plotted in Figs. B291-294. Chromatograms from simulated distillations are reproduced in Figs. B295-298. Detailed material balances appear in Table B22.

The specific activity of Catalyst 15, at 93 hours on stream, was about 2.3. On a percent cobalt basis, the comparable specific activities of Catalysts 21 and 22 should have been 1.6 and 3.0 respectively. Instead, the specific activity of Catalyst 21 at 90.5 hours was 0.71, and that of Catalyst 22 at 93.5 hours was 2.1.

Both runs were too short to provide useful data on stability. Catalyst 21, at the end of its 163.5 hour run, was still deactivating at a rate of one percentage point every 20 hours. Catalyst 22, which lacked UCC-112, appeared to have stabilized after about 69.5 hours on stream at a syngas conversion rate of 58 per-

- B323 -

cent and specific activity of 2.1. A similar initial deactivation was observed for the reference Catalyst 15.

ŀ.X

The product selectivities of all three catalysts were fairly similar. Raising the X4 content in Catalysts 21 and 22, as expected, improved the olefin content of the C4 fractions: 56 and 55 percent respectively at about 100 hours on stream, versus about 50 percent for Catalyst 15.

.....

Isomerization of the  $C_5^+$ 's was nearly the same with both Catalysts 21 and 22. The product of Catalyst 21, however, did contain a small proportion of isomerized C4 olefins, which was not detected in the product of Catalyst 22. The incorporation of UCC-112 thus had little or no effect on product quality.

These two runs demonstrate that increasing the cobalt content does not in itself necessarily raise a catalyst's specific activity; that raising the X4 content in this type of formulation can improve olefin production; and that UCC-112, like other second shape-selective components which have been added, contributes little or nothing to product quality.



.

. .

1

Ĭ

보로

•

.....

Ē.

· · · · · · · · · · · ·

Fig. B258

- B325 -



- B326 -

- 220



ł

1

1

ł

|





H

-

1

×.

Fig. B261

- B328 -



34

t

2. E

5. 1

Little A The Second

. .

::

.

÷.

ľ 1

. .

ţ:

. .....

:

٤

:::

۰. د د

. .

; 1 ;

۰. : ...

i ì 

ALXING PROPERTY AND í ч, ¥



- B329 -



• :

· . ·

÷

1

Ś

1

and a second of the second second

8

Fig. B263

- B330 -



- B331 -

1 H. Januar.



.

÷,

ŝ

i

Fig. B265

- B332 -



F

¥

2.00

·

ŀ

\*37

. .

> 2. 1

:

.--

r .

•

.

٠.

. ;

-----

.

.

÷.

•

1...

۰.

٤,

-

. . .

і. . .:

- B333 -



- B334 -

; ]

ġ

: :

•

:

::



•

ı 🖬

13

51

•

• •

 [ 2 ]

2.

. \*\*\*

1

Π.

ì...5

.. W

.

5 F

**P**\*\*

これ。

:

ï

- B335 -

E



. 1

Ì

- B336 -



ない

.

5



Ň

41

a ather the

4

•.»

.....

· •

.

. .

.

E.

ŀ

- B338 -



- B339 -

•.e

1.5



- B340 -



- B341 -



- B342 -



é ļ 「「「「「「「「」」」、「「」」、「」、「」、「」、「」、「」、」、 . GGT INEN TEMA NOT ABAIM •: 47: Alijis A.28 ••• • ; . : RTA IVEN TERRABBYD θ£ . 1 1 . . 100 3-15 00 2 .;. 3 -----ب کچ ... :ji : : RT: INEN 219432390 92707#36300 \_1\*1 'ㅋㅋ만 같아? · ... am: C.E. Terralogic (EETATaaggid) 1000-40300 ļ 148 1728 1.4 12200-12-02 Fig. B277 - B344 -ې بې



i

Ĩ. E

.

161 14

:

いたね



- B345 -

12.1.1.1



こうちょう ちょうちょうちょう

ころうないないですので、ころうないないないないで、ころうないないで、

- B346 -

C C C C C C

> • • • • • •

> > •

. .

1

•=+;

![](_page_102_Figure_0.jpeg)

С, SWEW TEPP ALT PEALS PT: 812618-0.20 : -7=23°C ł -----3573742000 1417=4980C •:: יי | | RT: IVEN •••• 12+0=7230S 82777232393 **-**: 17EN -:\*: ÷.j . . - ; FIR IVEN Tir≈≠433%3 42\_0.at09600 - 1 - ÷ 🖌 12200-12-06 Fig. B281 - B348 -

![](_page_104_Figure_0.jpeg)

القذيبان سلانيا التد

- Stanted Sta

1

والإنتاز تتعادر فرم وتعاويه والأسمور والتهامية المراكلاتين

.

×.

## RESULT OF SYNGAS OPERATION

ł

1

 RUN NO.
 12200-12

 CATALYST
 CO/X9/X10/X4-U103+U112
 250 CC
 107.5G (WT CHANGE +16.7 G)

 FEED
 H2:CO
 OF 50:50 @1260 CC/MN OR 300 GHSV

| run & Sample NC.     | 12200-12-01 | 200-12-02 | 200-12-03            | 200-12-04 | 200-12-05 |
|----------------------|-------------|-----------|----------------------|-----------|-----------|
|                      | 174275222   |           | 4= 4 = 2 = 2 = 2 = 2 | ********* |           |
| FEED H2:CO:AR        | 50:50: 0    | 50:50: 0  | 50:50: 0             | 50:50: 0  | 50:50: 0  |
| HRS ON STREAM        | 19.5        | 42.5      | 66.5                 | 90.5      | 115.5     |
| PRESSURE, PSIG       | 300         | 300       | 300                  | 300       | 300       |
| TEMP. C              | 262         | 261       | 261                  | 261       | 261       |
| FEED CC/MIN          | 1260        | 1260      | 1260                 | 1260      | 1260      |
| HOURS FEEDING        | 19.50       | 23.00     | 24.00                | 24.00     | 25.00     |
| efflnt gas liter     | 783,75      | 1021.75   | 1092.40              | 1143.35   | 1234.20   |
| GH AQUEOUS LAYER     | 158.48      | 168.73    | 167.95               | 154.49    | 152.32    |
| GH OIL               | 36.61       | 47.54     | 49.27                | 45.48     | 40.37     |
| MATERIAL BALANCE     |             |           |                      |           |           |
| GM ATCM CARBON %     | . 94.55     | 97.47     | 97.79                | 95.54     | 97.63     |
| GM ATOM HYDROGEN 7   | 91.81       | 93.95     | 94.76                | 99.79     | 97.08     |
| ge atom oxygen 😘     | 101.62      | 103.37    | 102.59               | 98.64     | 101.65    |
| RATIO CHX/(H20+CO2)  | 0.7889      | 0.8059    | 0.8346               | 0.8847    | 0.8443    |
| RATIO X IN CHX       | 2.3417      | 2.3905    | 2.3819               | 2.4488    | 2.4752    |
| USAGE H2/CO PRODT    | 2.1452      | 2.1792    | 2.1627               | 2.1511    | 2.2013    |
| FEED H2/CO FRM EFFLN | T 0.9710    | 0.9639    | 0.9689               | 1.0445    | 0.9943    |
| RESIDUAL H2/CO RATIC | 0.4546      | 0.5108    | 0.5382               | 0.6450    | 0.6163    |
| RATIO CO2/(H2O+CO2)  | 0.0736      | 0.0651    | 0.0598               | 0.0571    | 9.0582    |
| k shift in efflnt    | 0.0361      | 0.0356    | 0.0342               | 0.0391    | 0.0381    |
| SPECIFIC ACTIVITY SA | 1.3416      | 1.0307    | 0.9289               | 0.7067    | 0.6708    |
| CONVERSION           |             |           |                      |           |           |
| on co %              | 30,55       | 27.16     | 26.52                | 26.52     | 23.85     |
| on H2 %              | 67.48       | 61.40     | 59.18                | 54.63     | 52.80     |
| on Co+H2 %           | 48.74       | 43.97     | 42.59                | 40.88     | 38.28     |
| PRDT SELECTIVITY, WT | 7.          |           |                      |           |           |
| CH4                  | 10.64       | 12.62     | 12.32                | 16.58     | 13.04     |
| C2 HC'S              | 3.37        | 3.76      | 3.31                 | . 2.08    | 2.97      |
| Сзня                 | 4.61        | 4.90      | 4.45                 | 4.06      | 4.06      |
| C3H6≏                | 3.31        | 3.10      | 3.05                 | 3.06      | 3.29      |
| C4H10                | 3.66        | 3.69      | 3.65                 | 3.45      | 3.62      |
| C4H8=                | 5.81        | 5.22      | 4.75                 | 4.35      | 4.42      |
| C5H12                | 4.05        | 4.27      | 4.44                 | 4.28      | 4.31      |
| C5H10=               | 4.99        | 2.79      | 3.34                 | 3.95      | 3.83      |
| C6H14                | 4.38        | 4.21      | 4.81                 | 4.46      | 4.91      |
| C6H12= & CYCLO'S     | 1.86        | 1.09      | L.20                 | 2.16      | 2.35      |
| C7+ IN GAS           | 21.54       | 16.74     | 16.81                | 15.31     | 15.34     |
| LIQ HG'S             | 31.79       | 37.62     | 37.84                | 35.35     | 32.86     |
| TOTAL                | 100.00      | 100.00    | 100.00               | 100.00    | 100.00    |

Table B20

![](_page_106_Picture_0.jpeg)

•

All has a first of the of

; i

i

i. T

> . . .

· · ·

:

.

i. V -

••

| 31.39   | 33.28                                                                                                                                                                                                                                                                  | 31.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 54.08   | 45.65                                                                                                                                                                                                                                                                  | 46.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13.10   | 18.10                                                                                                                                                                                                                                                                  | 18.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.43    | 2.97                                                                                                                                                                                                                                                                   | 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 68.61   | 66.72                                                                                                                                                                                                                                                                  | 68.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1328  | 0.0369                                                                                                                                                                                                                                                                 | 9.0302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.1587  | 0.0693                                                                                                                                                                                                                                                                 | 0.0628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.1745  | 0.0313                                                                                                                                                                                                                                                                 | ~ 0.0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.1510  | 0.0772                                                                                                                                                                                                                                                                 | 0.0757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •       |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.3313  | 1.5110                                                                                                                                                                                                                                                                 | 1.3921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6079  | 0.6820                                                                                                                                                                                                                                                                 | 0.7406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.7894  | 1.4903                                                                                                                                                                                                                                                                 | 1.2907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.7703  | 0.8056                                                                                                                                                                                                                                                                 | <sup>-</sup> 0.8127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.0162  | 3.3379                                                                                                                                                                                                                                                                 | 3.5139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.8899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.8491  | 0.8435                                                                                                                                                                                                                                                                 | 0.8409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.9072  | 0.9551                                                                                                                                                                                                                                                                 | 0.9665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15.0493 | 16.5842                                                                                                                                                                                                                                                                | 17.3732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.1096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.4224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7072  | 0.7609                                                                                                                                                                                                                                                                 | 0.7093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OIL WAX | OIL WAX                                                                                                                                                                                                                                                                | OIL WAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OIL WAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OIL WAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7578  | 0.7568                                                                                                                                                                                                                                                                 | 0.7560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U.7569×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7486*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.4268  | 1.4274                                                                                                                                                                                                                                                                 | 1.4266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4206*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4216*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 260     | 289                                                                                                                                                                                                                                                                    | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 296     | 305                                                                                                                                                                                                                                                                    | 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 406     | 451                                                                                                                                                                                                                                                                    | 457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 585     | 639                                                                                                                                                                                                                                                                    | 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 634     | 682                                                                                                                                                                                                                                                                    | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 289     | 334                                                                                                                                                                                                                                                                    | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 54.30   | 44.00                                                                                                                                                                                                                                                                  | 41.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 95.50   | 92.10 <sup>.</sup>                                                                                                                                                                                                                                                     | 90.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 31.39<br>54.08<br>13.10<br>1.43<br>68.61<br>0.1328<br>0.1587<br>0.1745<br>0.1510<br>1.3313<br>0.6079<br>0.7894<br>0.7703<br>2.0162<br>0.8491<br>0.9072<br>15.0493<br>0.7072<br>0IL WAX<br>0.7578<br>1.4268<br>260<br>296<br>406<br>585<br>634<br>289<br>54.30<br>95.50 | 31.39       33.28         54.08       45.65         13.10       18.10         1.43       2.97         68.61       66.72         0.1328       0.0369         0.1587       0.0693         0.1745       0.0313         0.1510       0.0772         1.3313       1.5110         0.6079       0.6820         0.7894       1.4903         0.7703       0.8056         2.0162       3.3379         0.8491       0.8435         0.9072       0.9551         15.0493       16.5842         0.7072       0.7609         0IL WAX       0IL WAX         0.7578       0.7568         1.4268       1.4274         260       289         296       305         406       451         585       639         634       682         289       334 | 31.39       33.28       31.54         54.08       45.65       46.13         13.10       18.10       18.54         1.43       2.97       3.78         68.61       66.72       68.46         0.1328       0.0369       9.0302         0.1587       0.0693       0.0628         0.1745       0.0313       0.0805         0.1510       0.0772       0.0757         1.3313       1.5110       1.3921         0.6079       0.6820       0.7406         0.7894       1.4903       1.2907         0.7703       0.8056       0.8127         2.0162       3.3379       3.5139         0.8491       0.8435       0.8409         0.9072       0.9551       0.9665         15.0493       16.5842       17.3732         0.7072       0.7609       0.7093         OIL WAX       OIL WAX       OIL WAX         0.7578       0.7568       0.7560         1.4268       1.4274       1.4266         260       289       298         296       305       308         406       451       457         585 | 31.39       33.28       31.54       34.48         54.08       45.65       46.13       44.31         13.10       18.10       18.54       17.14         1.43       2.97       3.78       4.07         68.61       66.72       68.46       65.52         0.1328       0.0369       9.0302       0.0255         0.1587       0.0693       0.0628       0.0605         0.1745       0.0313       0.0805       0.0360         0.1510       0.0772       0.0757       0.0722         1.3313       1.5110       1.3921       1.2650         0.6079       0.6820       0.7406       0.7660         0.7894       1.4903       1.2907       1.0537         0.7703       0.8056       0.8127       0.8159         2.0162       3.3379       3.5139       4.8899         0.8491       0.8435       0.8409       0.8321         0.9072       0.9551       0.9665       0.9805         15.0493       16.5842       17.3732       20.1096         0.7072       0.7609       0.7093       0.8243         01L       WAX       01L       WAX       01L WAX |

K

The suit of the substantial is have been substantial the substantial s

A. She at such the fail is

1:

Table B20, cont

### RESULT OF SYNGAS OPERATION

4 1

-7

• ]

..

÷.,

. .

-12

1....

. . .

· . : : : /

477

RUN NO. 12200-12 CATALYST CO/X9/X10/X4-U103+U112 12251-14 250 CC 107.5 G(WT CHANGE +16.7 H2:CO OF 50:50 @1260 CC/MN OR 300 GHSV FEED RUN & SAMPLE NO. 12200-12-06 200-12-07 FEED H2:CO:AR 50:50: 0 50:50: 0 HRS ON STREAM 138.5 163.5 300 300 PRESSURE.PSIG TEMP. C 261 262 1260 FEED CC/MIN 1260 25.00 HOURS FEEDING 23.00 1265.25 EFFLNT GAS LITER 1148.30 GM AQUEOUS LAYER 135.90 147.88 GM OIL 45.95 43.98 MATERIAL BALANCE GH ATOM CARBON % 99.70 98.88 GM ATOM HYDROGEN % 99.19 98.25 GH ATOM OXYGEN % 101.33 102.40 RATIO CHX/(H2O+CO2) 0.9349 0.8601 RATIO X IN CHX 2.4531 2.4855 USAGE H2/CO PRODT 2.0991 2.1861 FEED H2/CO FRM EFFLNT 0.9949 0.9937 RESIDUAL H2/CO RATIO 0.6264 0.6299 RATIO CO2/(H20+CO2) 0.0594 0.0592 K SHIFT IN EFFLNT 0.0396 0.0396 SPECIFIC ACTIVITY SA 0.6946 0.6031 CONVERSION 25.02 ON CO % 23.38 ON H2 % 52.79 51.43 ON CO+H2 7. 38.87 37.36 PRDT SELECTIVITY, WT % CH4 16.96 18.42 C2 HC'S 3.02 3.24 C3H8 3.66 3.88 C3H6= 3.04 3.32 C4H10 3.39 3.52 C∆HB= 4.14 4.23 C5H12 4.21 3.96 C5H10= 3.52 3.75 C6H14 4.40 4.67 C6H12= & CYCLO'S 2.02 2.13 C7+ IN GAS 12.60 14.07 LIQ HC'S 37.81 36.03 TOTAL 100.00 100.00

Table B21

- B352 -

-1
| SUB-GROUPING          |         |          |
|-----------------------|---------|----------|
| C1 -C4                | 34.22   | 36.60    |
| C5 -420 F             | 42.72   | 41.06    |
| 420-700 F             | 18.45   | 17.83    |
| 700-BND PT            | 4.61    | 4.50     |
| CS+RND PT             | 65.78   | 63.40    |
| ISO/NORMAL MOLE RATIO |         |          |
| C4                    | 0.0311  | 0.0250   |
| C5                    | 0.0483  | 0.0549   |
| C6                    | 0.0341  | 0.0305 - |
| C4=                   | 0.0675  | 0.0000   |
| PARAFFIN/OLEFIN RATIO |         |          |
| C3                    | 1.1507  | 1.1162   |
| C4                    | 0.7900  | 0.8049   |
| CS .                  | 1.0923  | 1.0916   |
| SCHULZ-FLORY DISTRBIN |         |          |
| ALPHA (EXP(SLOPE))    | 0.8172  | 0.8145   |
| RATIO CH4/(1-A)**2    | 5.0758  | 5.3514   |
| · •                   |         |          |
| ALPHA FRM CORRELATION | 0.8335  | 0.8332   |
| ALPHA (EXPTL/CORR)    | 0.9804  | 0.9776   |
| WICH4 FRM CORRELATION | 19.6679 | 19.9785  |
| WICH4 (EXPTL/CORE)    | 0.8625  | 0.9218   |
| LIO HC COLLECTION     |         |          |
| PHYS. APPEARANCE      | OIL WAX | OIL WAX  |
| DENSITY (* 40 C)      | 0.7479* | 0.7489*  |
| N. REFRACTIVE INDEX   | 1.4210* | 1.4217*  |
| SIMULT'D DISTILATN    |         |          |
| 10 WT % @ DEG F       | 300     | 300      |
| 16                    | 340     | 340      |
| 50                    | 476     | 481      |
| 84                    | 667     | 669      |
| 90                    | 719     | 727      |
| RANGE (16-84 %)       | 327     | 329      |
| WT % @ 420 F          | 39.00   | 38.00    |
| WT % @ 700 F          | 87.89   | 87.50    |

.:

•:

••••

;

r • • •

:

:

; ~. ; ...

. ` .

:

••

ı

ł

;

.

......

Table B21, cont



Ì

Б

- [

. } -}

. 1

:

5

ы



- B354 -



Fig. B284

- B355 -

· 🗄 💡



- B356 -



- B357 -

Ş

e e

ĮĦ

.



·· ] • . .

- -

.

R



3<sup>5</sup>

:.

ĸ

CHAR HISTORIA AND A MARKAN AND A LAND

- 近州昭

- B359 -

CISELLO

ł

4

. 1 (



I

- B360 -

7



ţ

-

; ;•

;

; i

٠,·

.

.

; (\* .

•

·...

í



ł



- B362 -

子言



- B363 -

î Ir