

DE85015537

IMPROVED CATALYSTS FOR LIQUID HYDROCARBON FUELS FROM SYNGAS. TECHNICAL PROGRESS REPORT, APRIL-JUNE 1985

UNION CARBIDE CORP., TARRYTOWN, NY. MOLECULAR SIEVE DEPT

1985

U.S. Department of Commerce National Technical Information Service

One Source. One Search. One Solution.

Providing Permanent, Easy Access to U.S. Government Information

National Technical Information Service is the nation's largest repository and disseminator of governmentinitiated scientific, technical, engineering, and related business information. The NTIS collection includes almost 3,000,000 information products in a variety of formats: electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

NTIS has upgraded its bibliographic database system and has made all entries since 1990 searchable on **www.ntis.gov.** You now have access to information on more than 600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites

Because many Government agencies have their most recent reports available on their own web site, we have added links directly to these reports. When available, you will see a link on the right side of the bibliographic screen.

Download Publications (1997 - Present)

NTIS can now provides the full text of reports as downloadable PDF files. This means that when an agency stops maintaining a report on the web, NTIS will offer a downloadable version. There is a nominal fee for each download for most publications.

For more information visit our website:

www.ntis.gov

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161

DOE/PC/70028--T3 DE85 015537

TECHNICAL PROGRESS REPORT DE-AC22-84PC70028

1 6 -

Third Quarterly Report · April - June 1985

IMPROVED CATALYSTS FOR

LIQUID HYDROCARBON FUELS FROM SYNGAS

Patent, Hold

This document copy, since it is transmitted in advance of patent clearance, is made available in confidence solely for use in performance of work under contracts with the U. S. Department of Energy. This document is not to be published nor its contents otherwise disseminated or used for purposes other than specified above before patent approval for such release or use has been secured, upon request, from the Chief Office of Patent Counsel, U. S. Department of Energy, 9800 South Cess Avenue, Argonne, Illinois 60439.

DOE-CH Form 383 (Rev. 6-78)

÷.

Molecular Sieve Department Catalysts and Process Systems Division

> Union Carbide Corporation Tarrytown Technical Center Tarrytown, New York 19591

<u>Contents</u>

ે પંચ

. .

I.	Contract	0Ъ,	jec	ti	. V I	e	•	•	•	•	•	•	٠	•	•	•	1
II.	Schedule	•	• •		•	•	•	٠	•	٠	•	•	•	•	•	•	2
CII.	Organizat	io	n.	•	,	•	•	•	•	•	•	•	•	٠	•	•	4
IV.	Summary o	f	Pro	gı	re	ss		•	•	•	•	•	•	•	•	•	5
V.	Changes	•	• •	•	,	•	•	•	•	•	•	•	•	•		•	8
VI.	Future Wo	rk							•						•		9

Appendixes

Α.	Catalyst	Testing:	Summa	iry of	Run	IS		
	Reported	During Th	nis Qu	larter	• •	•	•	Al

į

- B. Catalyst Testing: Details of Runs Reported During Last Quarter B1
- C. Comparison Between UCC and Gulf-Badger Process of Fischer-Tropsch Synthesis for Disel Production . . . Cl

I. CONTRACT OBJECTIVE

The objective of the contract is to consolidate the advances made during the previous contract in the conversion of syngas to motor fuels using Molecular Sieve-containing catalysts and to demonstrate the practical utility and economic value of the new catalyst/process systems with appropriate laboratory runs.

II. SCHEDULE

The contract work was planned for the twenty-eight month period beginning September 18, 1984.

Work on the program is divided into six tasks.

Task 1 consists of the preparation of a detailed, non-proprietary work plan covering the entire performance of the contract. This work plan was completed in November, 1984.

Task 2 consists of a preliminary techno-economic assessment of the UCC catalyst/process system. This assessment, as well as the final techno-economic evaluation planned for Task 6, will be based on a sensitivity analysis that MITRE is expected to conduct on their recently completed economic evaluation of the Union Carbide Corporation (UCC) system.

Task 3 consists of the optimization of the most promising catalysts developed under prior contract DE-AC22-81PC40077 towards goals defined by the MITRE and Task 2 studies. This work will run through the first 24 months of the contract.

Task 4 consists of the optimization of the UCC catalyst system in a manner that will give it the longest possible service life. This work will run through the first 24 months of the contract.

Task 5 consists of the optimization of a UCC process/catalyst

- 2 -

i

system based upon a tubular reactor with a recycle loop (i.e., the Arge reactor) containing the most promising catalyst developed under the Tasks 3 and 4 studies. This optimal performance will be estimated from a mathematical model of the tubular reactor which incorporates reaction rate constants determined from appropriate Berty reactor runs. This effort will run through the first 24 months of the contract.

Task 6 consists of an economic evaluation of the optimal performance found under Task 5 for the UCC process/catalyst system. This effort will run from the eighteenth through the twentyfourth month of the contract, and will be based on the anticipated MITRE sensitivity analysis referred to in the description of Task 2.

The final four months of the contract will be devoted exclusively to the writing of the Eighth Quarterly Report and the Final Technical Report.

III. ORGANIZATION

3

. :

:

This contract is being carried out by the Catalyst Research and Development Group of the Molecular Sieve Technology Department, Catalysts and Process Systems Division, Union Carbide Corporation, in Tarrytown, New York.

The principal investigator is Dr. Jule A. Rabo.

The program manager is Dr. Albert C. Frost.

IV. SUMMARY OF PROGRESS

A. Task 1

Task 1, a detailing of the work planned for the other tasks in the contract, has been completed.

B. Task 2

Task 2, a preliminary techno-economic assessment of the UCC catalyst/process system, will be based on a sensitivity analysis that MITRE is expected to conduct on their recently completed economic evaluation of the UCC system.

This sensitivity study is expected to graphically show the differential cost (around the base case cost), expressed as differential cents per gallon of motor fuels, for changes in each of the operating parameters of space velocity, catalyst life, methane make, alpha, C_{25} - C_{30} carbon cutoff, overall conversion, feed H₂:CO ratio, reactor temperature, and reactor pressure.

These differential cost-operating parameter curves will not only strikingly illuminate which of those operating parameters have the greatest effect on product cost (for Task 2), but they will also be used with catalyst performance data and the existing tubular reactor design curves to readily obtain an economic worth for each tested catalyst for any set of envisioned process conditions (for Task 6).

٩

C. Tasks 3 and 4

The major effort of this Quarter was directed towards improving the formulation of Catalyst 11, which had demonstrated a high initial specific activity (Appendix A of the Second Quarterly Report and Appendix B of this Quarterly Report).

Run 26 revealed the temperature sensitivity of a catalyst promoted with X9 and X10. At 240C this catalyst showed excellent stability with a specific activity of about 3.1. The catalyst, however, was less stable at higher temperatures, i.e., 250 and 260C. A similar catalyst formulated using UCC-113 in place of UCC-103 (Run 27) demonstrated poor stability even at 240C.

Run 32 revealed the effect of using a promising new additive, X11, in this type of catalyst formulation. The catalyst showed good to excellent stability up to temperatures of 260C, significantly reduced methane make, and improved olefin content of the light gas product. Specific activity at 260C was, however, only 2.0, a value that is comparable to the present best catalyst, Run 15 (Appendix A of the Second Quarterly Report and Appendix B of this Quarterly Report).

Other attempts, at varying the metal concentration, calcining procedures, and additives X4 and X3, were unsuccessful.

The preliminary test results of these three runs, as well as five other runs reported for this quarter, are listed in Appendix A as Runs 26-33. Additional, detailed analyses of these runs will be presented in the next quarterly report.

Such detailed analyses for the runs (10-25) reported for the

- 6 -

second quarter in a preliminary manner are listed in Appendix B. D. <u>Task 5</u>

A comparison between the UCC and the Gulf-Badger (as sketchily described in a 1983 <u>Hvdrocarbon Processing</u> article) catalyst/process systems indicates (with many assumptions) that the Gulf-Badger system may operate at a 40-50C lower temperature and an ill-defined higher H₂:CO ratio than does the UCC system to give a product distribution having slightly more naphtha but less distillate and wax. See Appendix C for details.

A small error was found in the FIXED computer program used to simulate the ARGE/UCC process design. This error has been corrected, and the revised program was used to check out some of the old design data sent to MITRE for their recently completed economic study. It was found that the required changes to the MITRE study were limited to easily made changes to the stated specific activity, and not to any of the stream compositions or space velocities. Consequently, only minor corrections will have to be made to the MITRE study.

E. Task 6

Since this final techno-economic evaluation is scheduled to begin in Fiscal Year 1986, no work was done on it this quarter.

Additionally, the sequential sensitivity studies expected from MITRE will substantially aid in satisfying the objectives of this task in addition to completing those of Task 2 (see B. <u>Task</u> <u>2</u>).

- 7 -

V. CHANGES

۱۰ : ۲

ł

There were no contract changes during the Third Quarter.

VI. FUTURE WORK

Task 2 will be deferred until the expected MITRE sensitivity study is completed.

Tasks 3 and 4 will continue to be devoted to developing new, stable catalyst formulations that will have higher specific activities and lower methane makes than do our present catalysts.

Task 5 will be devoted to incorporating heat generation and heat transfer terms into the presently isothermal mathematical model, so that upper space velocity limits can be defined for different operating pressures.

Frost

<u>- 9 -</u>

APPENDIX A. CATALYST TESTING: SUMMARY OF RUNS REPORTED DURING THIS QUARTER

ļ

, '

...

 $\mathcal{T}_{\mathcal{T}}$

. . . .

J

مانية والمراجع

1

. •

•

APPENDIX A. CATALYST TESTING: SUMMARY OF RUNS REPORTED DURING THIS QUARTER

J. G. Miller, L. F. Elek, C-L Yang and P. K. Coughlin This report is organized around the eight catalytic tests conducted from April through June 1985, the third quarter of this contract.

A list of the catalysts tested and descriptions of their preparations are shown in Table Al. All of the catalysts tested involved cobalt oxide intimately contacted with UCC-103, except for Run 27 in which UCC-113 was substituted for UCC-103 as the catalyst support. One of the eight catalysts, Run 33, was prepared by the method developed in the previous three year contract (DE-AC22-81PC40077), while the remainder were prepared by the method used for the catalyst tested in Run 11 (Appendix A of the Second Quarterly Report and Appendix B of this report) of the present contract.

An abbreviated table of results for these catalyst runs is shown in Table A2. The conversion, weight percent CH_4 , weight percent C_5^+ , specific activity, the methane factor and a qualitative estimate of stability are listed for each catalyst. A more complete report of results and analyses for these runs will be presented in the Fourth Quarterly Report.

- A2 -

Table A1. Description of most of the catalysts tested during the third quarter.

:

. . .

3

-1

÷

Run	Catalyst	Catalyst preparation
26	Co/Xg/X10/UCC-103 (12185-14)	The X ₉ and X ₁₀ promoted cobalt oxide was formed in close contact with UCC-103 by the method used in Run 11 (similar to Run 20). The resulting powder was bonded with 15% silica and extruded to $1/8^{\rm m}$ pellets. Theoretical pct Co=11.9, pct X ₉ =0.5, pct X ₁₀ =0.7.
27	Co/Xo/X10/UCC-113 (12200-15)	The Xg and X ₁₀ promoted cobalt oxide catalyst was formulated by the method used for Catalyst 26, except that UCC-103 was replaced by UCC-113 (same formula- tion as Run 24). Theoretical pct Co=7.9, pct Xg=0.37, pct X ₁₀ =0.50.
28	Co/X ₉ /X ₁₀ /X ₄ /UCC-103 (12200-17)	The X ₉ and X ₁₀ promoted cobalt oxide catalyst was formulated similarly to Run 26, then further promoted with X ₄ . Theoretical pct Co=4.1, pct X ₉ =0.19, pct X ₁₀ =0.25, pct X ₄ =0.58.
29	Co/Xg/X10/UCC-103 (12200-18)	The Xg and X ₁₀ promoted cobalt oxide catalyst was formulated similarly to Run 26. Theoretical pct Co= 7.8, pct Xg=0.35, pct X ₁₀ =0.47.
30	Co/Xg/X ₁₀ /X3/UCC-103 (12185-16)	The X9, X10, X3 promoted cobalt oxide catalyst was formulated similarly to Run 26. Theoretical pct Co=7.8, pct X9=0.35, pct X10=0.47, pct X3=0.06.
31	Co/Xg/X10/UCC-103 (12185-17)	The X ₉ and X ₁₀ promoted cobalt oxide catalyst was prepared using the same formulation as that used in Run 29, except that the preparation contained no cal- cination steps. Theoretical pct Co=7.8, pct X ₉ =0.35, pct X ₁₀ =0.47.
32	Co/X ₁₁ /UCC-103 (12200-19)	The X ₁₁ promoted cobalt oxide catalyst was formu- lated similarly to Run 26. Theoretical pct Co=8.2, pct X ₁₁ =1.2.
33	Co/X ₉ /X ₁₀ /X4/X ₃ /UCC- 103 (12185-18)	The X9, X10, X3 promoted cobalt oxide was formed in close contact with UCC-103 by the method used in Run 15, then further promoted with X4. The resulting pow- der was bonded with 15% silica and extruded to $1/8^{m}$ pellets. Theoretical pct Co=8.2, pct X9=0.37, pct X10=0.49, pct X4=0.48, pct X3=0.06.

- A3 -

Run	Catalyst	Hours on stream	Total conver- sion (CO+H2)	CH4 wt %	C5+ wt %	Spe- cific acti- vity	Meth- ane fac- tor(1)	Stability
26	Co/X9/X10/UCC-103 (12185-14)	67.5 163.0	45.3 44.5	8.1 7.9	82.7 83.0	3.10 3.11	1.57 1.60	Excellent (2)
		186.5 332.7	51.3 50.1	11.2 12.2	78.5 76.7	2.75 2.29	2.60 3.08	Fair (3)
		354 .7 523 . 0	60.6 55.6	18.4 22.4	66.2 61.2	2.66 1.56	4.12 4.91	Fair (4)
27	Co/Xo/X10/UCC-113 (12200-15)	67.0 139.5	40.5 · 38.2	8.02 8.39	82.0 81.6	2.64 2.55	1.91 2.00	Fair (2)
		188.5 306.0	43.7 42.0	12.9 13.4	75.5 73.7	1.88 1.67	3.22 4.32	Fair (3)
28	Co/Xg/X ₁₀ /X4/UCC- 103 (12200-17)	44.0 68.0	27.0 26.4	18.2 14.8	66.5 73.4	1.04 0.97	3.22 2.89	(2)
29	Co/Xg/X10/UCC-103 (12200-18)	49.5 146.0	45.1 38.0	9.4 11.2	82.5 80.0	2.11 1.49	2.97 3.64	Fair (3)
30	Co/X9/X10/X3/UCC- 103 (12185-16)	114.0 258.0	48.7 41.7	8.3 10.8	81.2 77.3	3.09 2.08	1.99 3.10	Fair (3)
31	Co/X9/X10/UCC-103 (12185-17)	22.5 94.0	27.2 22.1	20.8 19.2	59.4 64.8	0.93 0.62	3.43 3.12	Poor (2)
32	Co/X ₁₁ /UCC-103 (12200-19)	43.5 187.0	46.5 42.1	5.43 5.31	85.8 84.5	3.11 2.55	1.03 0.96	Excellent (2)
		211.0 403.0	56.5 57.6	7.95 8.63	81.1 80.8	2.11 1.86	1.68 1.79	Very Good (4)
		427.0 499.0	62.9 55.7	14.2 17.7	71.9 66.7	1.55	2.85 3.32	Poor (5)
33	Co/X ₉ /X ₁₀ /X ₄ /X ₃ / UCC-103 (12185-18)	44.5 116.5	59.7 52.0	12.2 15.5	73.0 69.7	2.48 1.30	2.04 2.79	Poor (4)

Table A2. Preliminary catalyst test results for most of the runs made during the third quarter.

 The ratio of the amount of CH4 actually produced to the amount of CH4 pre-dicted from the Schulz-Flory equation, [CH4/(1-c)²].
Conditions 240C, 300 psig, 1:1 H2:CO, 300 GHSV. (2) (3) (4) (5)

••	2500		. 11	11	-11		14
72	2600	11	12	11	17	17	11
11 .	270C .	18	11	17	17,	11	17

「日本の日本」である

Service States

ផ

5

- A4 -

Appendix B. <u>CATALYST TESTING: DETAILS OF RUNS</u> <u>REPORTED DURING LAST QUARTER</u>

101

:

.

: :

•

·..

۰.

 Ł

Appendix B. <u>CATALIST TESTING: DETAILS OF RUNS</u> <u>REPORTED DURING LAST QUARTER</u>

J. G. Miller, L. F. Elek, C-L Yang and P. K. Coughlin Contents

I.	Intr	odu	iction			• •	••••• B3
II.	Run	10	(12185-06)	with	Catalyst	10	(Co/Th/X4/UCC-103)
III.	Run	11	(12200-06)	with	Catalyst	11	(Co/UCC-103)
IV.	Run	12	(12185-07)	with	Catalyst	12	(Co/Th/X4/UCC-103+UCC-101) B70
₹.	Run	13	(12200-07)	with	Catalyst	13	(Co/Th/X4/UCC-103)
VI.	Run	14	(1220008)	with	Caralyst	14	(Co/Th/X4/UCC-103)B161
VII.	Run	15	(12185-08)	with	Catalyst	15	(Co/X ₉ /X ₁₀ /X ₄ /UCC-103)B177
VIII.	Run	16	(12200-09)	with-	Catalyst	16	(Co/X9/X10/X4/UCC-103) B241
IX.	Run	17	(12200-10)	with	Catalyst	17	(Fe/K/UCC-103)B255
X.	Run	18	(12200-11)	with	Catalyst	18	(Fe/X/UCC-103)B274
XI.	Run	19	(12185-09)	with	Catalyst	19	(Co/X9/X10/X4/UCC-103), B284
XII.	Run	20	(12185-11)	with	Catalyst	20	(Co/X9/X10/UCC-103)
XIII.	Run Run	21 22	(12200–12) (12185–12)	with with	Catalyst Catalyst	21 22	(Co/Xg/X10/X4/UCC-103+UCC-112) (Co/Xg/X10/X4/UCC-103)B322
XIV.	Run	23	(12200–13)	with	Catalyst	23	(Co/Xg/X10/X4/UCC-103)
XV.	Run	24	(12185–13)	with	Catalyst	24	(Co/Xg/X10/UCC-113)
XVI.	Run	25	(12200-14)	with	Catalyst	25	(Co/Xg/X10/X4/UCC-103)
XVII.	Sum	ary	7				B445

- 82 -

I. INTRODUCTION

This report presents detailed analyses of the sixteen catalyst test runs summarized in Appendix A of the Second Quarterly Report, which constituted the major thrust of the work during that quarter.

All sixteen catalysts contained either cobalt oxide or iron oxide, in each case intimately mixed with a Molecular Sieve. Fifteen of them also contained the shape selective component UCC-103; one contained a newly developed shape selective component, UCC-113.

Two different methods of preparation were employed, and the catalysts prepared by each method were used to explore several lines of investigation.

With seven of the catalysts, prepared by the same method employed in the previous contract (DE-AC22-81PC40077), the following possibilities were investigated:

...

- Whether perfórmance can be improved by raising the metal loading.
- 2. Reproducing the results obtained in the previous contract.
- 3. The effects of replacing radioactive thoria with X_4 and X_{10} .
- 4. The effectiveness of the additives UCC-101 and UCC-112.
- 5. Whether a spent catalyst can be regenerated with hydrogen.

Preparation of the nine remaining catalysts involved a method of intimately contacting a Fischer-Tropsch active metal with UCC-103 or UCC-113, which has been newly developed with the objective of improving the catalyst's activity and stability. These were used to explore:

Ē.

- 2. The effect of replacing the Molecular Sieve UCC-103 with the newly developed UCC-113.
- 3. The effectiveness of a catalyst based on potassium-promoted iron.

II. <u>Run 10 (12185-06) with Catalyst 10 (Co/Th/X4/UCC-103)</u>

This run continued the search for improvements on the performance of the most promising catalyst to date (Catalyst 6, Run 11677-11, Third Annual Report, Contract DE-AC22-81PC40077). Specifically, the purpose was to test a substantially higher level of cobalt promoted with thorium and X4.

The thorium-promoted cobalt oxide was formed in close contact with UCC-103 and further promoted with X4. The resulting powder was bonded with 15 percent silica, then extruded to 1/8-inch pellets. The final catalyst contained theoretically 18.8 percent cobalt, 2.9 percent thorium and 1.7 percent X4. Catalyst 11677-11, in contrast, contained 4.5 percent cobalt. Catalyst 4, Run 12185-03, of the First Quarterly Report contained nearly as much cobalt (17.0 percent) as this one, but no thorium or X4.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B1-4. Simulated distillations of the C5⁺ product are plotted in Figs. B5-12. Carbon number product distributions are plotted in Figs. B13-20. Chromatograms from simulated distillations are reproduced in Figs. B21-28. Detailed material balances appear in Tables B1-2.

The specific activity, initially about 2.5, fell off steeply to about 1.3 at 116 hours on stream; assuming this catalyst had

- B5 -

the same specific activity per percent cobalt as Catalyst 11677-11, it would be predicted to have a specific activity on the order of 3.8. Thus, although this catalyst contained four times the cobalt concentration of 11677-11, and approximately the same concentration as Catalyst 12185-03 with the addition of thorium and X4, it was substantially less active than either. The initial specific activity of Catalyst 12185-03, for example, was approximately 8 (but with poor stability).

Following its initial deactivation, the catalyst appeared very stable for the remaining 70 hours of the run, but this was too short a period to permit reliable conclusions.

Production of methane was significantly lower than with the two other catalysts. Following are the ratios of weight percent methane experimentally observed, to weight percent predicted by the mathematical model:

12185-06	Co/Th/X4/UCC-103	0.6:1
11677-11	Co/Th/X4/UCC-103+UCC-101	1.0:1
12185-03	Co/UCC-103	1.2:1

The calculated Schulz-Flory alpha value was fairly high at 0.86, corresponding to a high wax production of about 12 percent. The Schulz-Flory plots show a fairly linear product distribution with little or no observed carbon number cut-off.

This catalyst's use of cobalt was not very efficient. Its selectivity for C5⁺, however, was very good, and following the initial deactivation period its stability was, at least potentially, very good as well.

- B6 -

:

۲.

1 .

States and the states of the s

- B7 -

<u>P</u>

: •

: : :

÷

¥.

1.1

¥

Fig. B2

PARTY AND A CARCELLARD

- B8 -

Fig. B3

- B9 -

j.

Fig. B4

- B10 -

ľ

2

1

Ĭ

• •

۰.

Fig. B5

- B11 -

1

Ĭ

I

بريقا

.

•••

•

÷.

· ` ;

Fig. B6

- B12 -

ł

Fig. B7

·

Statistical states

÷π

- B13 -

- B14 -

4

3 • •

1

I

١

– B15 –

- B16 -

×

...

.:

í

Fig. B11

- B17 -

١

1

• ;

·*.

- B18 -

ĬĬ

Í

- B20 -

- B22 -

- B23 -

I

and the second states of the second s

- B24 -

÷";;;;;;

'#

- B25 -

- B26 -

-fi

: ..

2 AND THE MARCH CALL . . 1.11.11 5. 2 ··· ··· ·· . 2 ar: 110015 8.19 : T • ••• : _____ τ. ,jj • :. . . • . . -. . #1797D ________________ 34. -• • . • . . No. 1 ۰. 1 • RT: IVEN TERFERTANC SETPTERTON _INITE40500 . . . ·.. . • ٤. . . land sheet and .. · 12185- CG. QI : : - B27 -_..... •

I 1 ¢ C C IVEN TERM WIT PEASY er: 611026 8.20 -STTPT=24-90 _131T=495°C ··VEN Ħ 近く五 =:75%3 10MIT=405/0 10 Mun 47: 34E4 TEXP=275+0 SETPT#27590 LINIT#49590 12 11 2 12 道二 RT: SVEN TEMP#STRPS SETPT#35096 _1717=49590 1 (T. 1727 P. . 12185-06-02 12185-06-02 12185-06-02 Fig. B22 - B28 -

SERVICE SERVICE 2828 TEMP NOT PERSY --: 41:015 8.29 : 1 CHEN TETRE2600 SETPT=25°C _____#405°C •• . 1141.4445-0 1 3.77 4, 5 1 : _17:***85°0 1+1- T179=276*C SET#T=276*C 11#1T=485*C . • : RT: 1/24 TEX #=35240 SETRT#35090 LONDT=40590 | ==: :=<u>-</u>:= =_+ 12185-06-04 Fig. B23 - B29 -

1

i

Ł

1. ç. 101 1969 TEMP (17 9141) ÷ •** alli a alla • . ATE INES ., . ÷. .: =27590 42 -275 °C _1.M.T#49590 Winne 7-1122-934893 12727#405°C £____ *** 3717 *.~ 12185-06-07 Fig. B26 - B32 -

RESULT OF SYNGAS OPERATION

RUN NO. 12185-06

...

3

÷.

•,

CO/TH/X4-U103 12006-48 80 CC 36.76 CM (49.76 AFTER RUN +13.G) -H2:CO OF 50:50 @400CC/MN OR 300 GHSV CATALYST FEED

RUN & SAMPLE NO.	12185-06-01	185-06-02	185-06-04	185-06-05	185-06-06
					2232423422
IBC ON CEDENK	30:30: U	50:50: 0	50:50: 0	30:50: 0	50:50: 0
HAS ON SIRBAH	20.0	43.0	67.0	91.0	116.0
PRESSURE, PSIG	300	300	300	306	300
TAMP. C	261	261	260	260	260
FEED CC/MIN	400	400	400	400	400
HOURS FEEDING	20.00	23.00	20.00	24.00	25.00
efflnt gas liter	178.00	219.75	205.65	258.50	297.64
GM AQUEOUS LAYER	61.73	72.14	56.72	62.11	67.19
GH OIL .	21.04	30.36	43.50	42.86	30.69
MATERIAL BALANCE					
GM ATOM CARBON %	76.50	81.50	99.29	95.72	89.34
GM ATOM HYDROGEN 7	82.99	93.20	105.35	100.85	100.93
GM ATOM OXYGEN %	· 94.35	-94.16	94.73	92.31	94.90
RATIO CHX/(H2O+CO2)	0.5879	0.7027	1.1179	1.0963	0.8463
RATIO X IN CHX	2.3705	2.3391	2.2829	2.3118	2.3668
USAGE H2/CO PRODT	2.0283	2.0064	1.7109	1.7419	1.9720
FRED H2/CO FRM EFFLN	T 1.0849	1.1436	1.0610	1.0536	1.1297
RESIDUAL H2/CO RATIO	0.3812	0.4682	0.4417	0.4816	0.5965
RATIO CO2/(H2O+CO2)	0.1666	0.1370	0.1341	0.1304	0.1119
K SHIFT IN EFFLNT	0.0762	0.0743	0.0684	0.0722	0.0752
SPECIFIC ACTIVITY SA	2.5673	1.9621	2.6727	2.1241	1.2304
Conversion					
ON CO %	42.72	43.91	48,79	45.39	38.76
ON H2 12	7 9 .88	77.03	78.68	75.04	67.67
ON CO+H2 7	62.06	61,58	64.18	60.60	54.10
PRDT SELECTIVITY, WT	2				
CH4	12.89	11.16	8.23	9.67	12.30
C2 HC'S	2.42	2.10	1.58	1.90	2.34
C3H8	1.91	1.84	1.44	1.90	2.63
C3H6=	2.63	2.03	1.61	2.18	2.20
C4H10	2.10	1,96	1.57	1.87	2.52
C4H8≕	3.62	2.82	2.19	2.56	2.73
C5H12	2.85	2.65	2.10	2.43	3.10
C5H10=	1.28	1.17	0.88	1.05	1.29
Сбні4	3.03	2.92	2.22	2.60	3.31
C6H12= & CYCLO'S	1.72	• 1.37	1.03	1.22	1.26
C7+ IN GAS	7.47	7.85	6.01	7.68	9.85
LIQ HC'S	58.09	62.13	71.14	64.95	56.46
TOTAL	100.00	100.00	100.00	100.00	100.00

Table B1

- 335 -

1

SUB-GROUPING					
C1 G4	25.57	21.92	16.62	20.07	24.73
CS -420 F	38.01	38.63	31.09	35.76	39.42
420-700 F	33.52	32.74	32.51	30.85	28.28
700-END PT	2.90	6.71	19.78	13.32	7.57
CS+-END PT	74.43	78.08	83.38	79.93	75.27
ISO/NORMAL MOLE RATIO					
C4	0.0181	0.0181	0.0185	0.0167	0.0173
CS	0.0531	0.0527	0.0478	0.0664	0.0631
C6	0.0962	0.0897	0.0721	0.0718	0.0810
C4= .	0.0488	0.0569	0.0551	0.0619	0.0686
PARAFFIN/OLRFIN RATIO					
- C3	0.6921	0.8685	0.8528	0.8318	1.1378
. C4	0.5614	0.6710	0.6900	0.7058	0.8894
CS	2.1656	2.2007	2.3274	2.2575	2.3285
SCHULZ-FLORY DISTRBIN					
ALPHA (EXP(SLOPE))	0.8281	0.8523	0.8973	0.8703	0.8453
RATIO CH4/(1-A)**2	4.3612	5.1204	7.7949	5.7419	5.1385
LIQ HC COLLECTION					
PHYS, APPEARANCE	CLD OIL	OIL WAX	OIL WAX	OIL WAX	OIL WAX
DRNSITY (* 40 C)	0.7410	0.6970	0.7730	0.7500	0.7690
N, REFRACTIVE INDEX	1.4260	1.423*	1.430*	1.425*	1.421*
SIMULT'D DISTILATN					
10 WT % @ DEG F	299	299	310	301	300
16	316	320	351	342	339
50	461	483 ·	563	516	484
84	625	661	786	737	673
90	655	710	839	802 ·	732 ·
RANGE(16-84 %)	309	341	435	395	334
WT % @ 420 F	37.30	36.50	26.50	32.00	36.50
WT % @ 700 F	95.00	89.20	72.20	79.50	86.60

i

.....

i

Ξ.

Table Bl, cont

- B36 -

RESULT OF SYNGAS OPERATION

٠.

<u>:</u> ...

÷

;.

 1

_

ľ

2.

ł

RUN NO. 12185-06					
CATALYST CO/TH/X4-U10	3 12006-4	8 80 CC 36	.76 GM (49.76	AFTER R	UN +13.C)
FEED H2:CO OF 50	:50 @400	CC/MN 01	r 300 Chsv		
POR & RAMPLE NO 12	185-06-07	185-06-08	185-04-09		
		10J-08-08	103-00-03		
FEED H2:CO:AR	50:50: 0	50:50: 0	50:50: 0		
HRS ON STREAM	140.0	163.0	187.5		
PRESSURE, PSIG	300	300	300		
TEMP. C	261	260 .	260		
FRED CC/MIN	400	400	- 400		
HOURS FEEDING	24.00	23.00	24.50		
efflint gas liter	285.49	286.37	311.72		
GM AQUEOUS LAYER	64.81	54.01	54.49		
GH OIL	33.69	34.54	40.13		
MATERIAL BALANCE					
gm atom carbon 🐔	93.95	94.84	101.63		
GM ATOM HYDROGEN 🛪	102.99	104.32	103.69		
GH ATOM OXYGEN 🛪 ·	96.59	92.51	95.21		
RATIO CHX/(H20+CO2)	0.9277	1.0724	1.2088		
RATIO X IN CHX	2.3575	2.3471	2.3365		
USAGE H2/CO PRODT	1.8944	1.7971	1.7218		
FEED H2/CO FRM EFFLAT	1.0962	1.1000	1.0202		
RESIDUAL H2/CO RATIO	0.5523	0.6273	0.5475		
RATIO CO2/(H20+CO2)	0.1161	0.1184	0.1216		
K SHIFT IN EFFLAT	0.0/25	0.0843	0.0758		
SPECIFIC ACTIVITY SA	1.3883	1.2202	1.4934		
CONVERSION	10 50	10 11			•
UN CO %	40.52	40.41	40.26		
	70.93	66.UZ	D7.94 E4 01		
	22,30	23.82	24.24		
PRDI SELECIIVIII, WI %	11 90	11 22	10.60		
	11.00	77.55	10.00		
02 NC 3	2.21 2.51	2.04	2.20		
6316 -	2.00	2.31	2.30		
Cauta Cauta	2.13 J 20	2 20	7 97 7 97		
CAU2-	2.30	2.30	2.21 · 2 AA		
07/102 (581)	3 02	2.27	2.93		
v2n±2 CSH10⇒	0 42	0.57	0.55		
CGHIA	3.19	3.07	3.06		
C6812= & CYCLO'S	1.20	1.01	1.14'		
C7+ TN GAS	9,82	9,19	8.41		
LIQ HC'S	58.39	61.30	62.11		
TOTAL.	100.00	100.00	100.00		

Table B2

- B37 -

SUB-CROUPING			
C1 -C4	23.75	22.05	21.80
CS -420 F	36.83	37.80	36.58
420-700 F	26.74	28.50	27.70
700-END PT	12.67	11.65	13.91
CS+-END PT	76.25	77.95	78.20
ISO/NORMAL MOLE RATIO			
C4	0.0160	0.0197	0.0174
CS	0.0615	0.0643	0.0569
C6	0.0754	0.0872	0.0677
C4=	0.0687	0.0751	0.0672
PARAFFIN/OLEFIN RATIO			
C3	1.1116	1.3819	1.1650
C4	0.8719	0.9891	0.8986
CS	4.7111	5.4209	5.1809
SCHULZ-FLORY DISTRBIN			
ALPHA (EXP(SLOPE))	0.8623	0.8628	0.8684
RATIO CH4/(1-A)**2	6.2255	5.9602	6.1189
LIQ HC COLLECTION			
PHYS. APPEARANCE	OIL WAX	OIL WAX	OIL WAX
DENSITY (* 40 C)	0.7620	0.7710	0.7750
N, REFRACTIVE INDEX	1.4245*	1.4235*	1.4245*
SIMULT'D DISTILATN			
10 wr % @ Deg F	301	301	301
16	342	342	342
50	516	504	515
84	749	727	756
90	813	788	818
RANGE(16-84 %)	407	385	414
WT % @ 420 F	32.50	34.50	33.00
. WT % @ 700 F	78.30	81.00	77.60

4. 7. *

اللسابلة أسفاعد

а 9 ł

Table B2, cont

III. Run 11 (12200-06) with Catalyst 11 (Co/UCC-103)

The purpose of this run was to test a new method of combining cobalt oxide in close contact with UCC-103, intended to yield a more active Fischer-Tropsch catalyst. The cobalt oxide was formed in close contact with UCC-103 using the new procedure. The resulting powder was bonded with 15 weight percent silica and extruded to 1/8-inch pellets. The final catalyst contained 12.8 weight percent cobalt.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B29-32. Simulated distillations of the C5⁺ product are plotted in Figs. B33-39. Carbon number product distributions are plotted in Figs. B40-46. Chromatograms from simulated distillations are reproduced in Figs. B47-53. Detailed material balances appear in Tables B3-4.

This catalyst demonstrated some unusual properties not observed in any previous catalyst.

Most significant of these was a remarkably high initial syngas conversion rate of 91.48 percent, equivalent to a specific activity of about 12.5. At the end of the 165.5 hour run these had deactivated steadily, with an apparent leveling off at the very end, to 68.49 percent and about 4.0, respectively.

Another noteworthy property was an extremely high water gas

- B39 -

shift activity. Initially 69 percent of the oxygen was being converted to CO₂. While this also decreased throughout the run to a final level of 26 percent, that was still twice as high as for any previous intimately contacted catalyst.

Production of methane was very high initially at 32 percent, decreased to a low of about 10 percent at 94.5 hours on stream, then rose again to 16 percent at the end of the run. The high initial value was probably due in part to the high H₂:CO ratio in the reactor resulting from the initial high water gas shift activity.

Production of C5⁺ fluctuated rather irregularly.

The olefin content of the C4's, initially around 22 percent, rose quickly to about 60 percent at 47 hours on stream. Isomerization of the pentane was low throughout the run. The Schulz-Flory plots were non-linear for the first three samples, but except for the usual high methane, were linear for the remainder of the run.

This is an important catalyst for its demonstration of the potencial for obtaining very high specific activity. The instability both in syngas conversion and in selectivity suggests that the nature of the catalyst may have changed drastically during the course of the run. - B40 -

ł

••

.

住所

Fig. B30

::

- B42 -

- B43 -

1

1

:,

Fig. B32

- B44 -

ž

::

1 11

יי זו

8.5

Fig. B34

- B46 -

•

....

and a state of the state of the

. r

-

-

- B47 -

2

e E

۰.

• ·

•

۱

•

.

Fig. B36

- B48 -

C > HERRIC

Fig. B37 .

Ì

i.

٣

- B49 -

Service and the service of the servi

Fig. B38

- B50 -

÷

:

٩.

Ĭ

5

.....

and is a more a firm in something the state of the set

1 1 . . .

No. of the local diversity of the local diver

ъ

Fig. B39

- B51 -

- B53 -

in the states

- 354 -

- B55 -

. 1

Fig. B44

- B56 -

.

- B57 -

Fig. B46

- B58 -

..... 5 INEN TEME NIT HEAD-<u>17: 11:11</u> 1.22 . _ : ٠. Tai7540 SETPT#17640 1101/#493*0 { 3T+ 12E+ 1£T+=27690 - 3ET9T≠27690 11717=495+0 ۰. :; ; . (5-FT: 1424 TEARSERS (66797435040) LITITARESAD ..: ÷ 410 gr. - 4.0 12200-6-21 Fig. B48 - B60 -.

1.

Ĭ f Sec. Sec. 19.00 Phil r, ; ۰, L J J 6725 TEF . -10 2.94 01-0-#176°C LIMIT#405°C Same and MAR 2414 TETP#276*C 81777#276*C LIMIT#405*C --: :.:. "IMP#ISSOC SITET#SEGOD _IMPIT#46500 I ***: :*:* *.~ 12200-6-7L .: Fig. B53 - B65 -

RESULT OF SYNGAS OPERATION

12200-06 RUN NO. CO-U103 12006-55 80 CC 36.06 GM (45.47 G AFTER RUN +9.41G) CATALYST FEED H2:CO OF 50:50 @400 CC/MN OR 300 GHSV RUN & SAMPLE NO. 12200-06-01 200-06-02 200-06-03 200-06-04 200-06-05 50:50: 0 50:50: 0 50:50: 0 50:50: 0 FEED H2:CO:AR 50:50: 0 47.0 HRS ON STREAM 22.0 71.0 94.5 118.5 300 PRESSURE.PSIG 300 300 300 300 261 261 260 TEMP. C 261 261 FEED CC/MIN 400 400 400 400 400 HOURS FEEDING 22.00 25.00 24.00 23,50 24.00 185.55 183.10 189,25 EFFLNT GAS LITER 191.50 214.60 GH AOUEOUS LAYER 28.47 63.19 67.20 65.49 64.08 12.08 36,17 49.00 49.72 43.97 GH OIL MATERIAL BALANCE 84.85 93,92 GH ATOM CARBON % 91.47 92.02 93.69 GM ATOM HYDROGEN % 83.91 82.90 90.26 92.63 93.51 GH ATOM OXYGEN % 99.70 95.43 96.44 95.60 95.79 0.8447 0.7864 0.9078 0.9632 0.9515 RATIO CHX/(H2O+CO2) RATIO X IN CHX 2.8007 2.4131 2.3169 2.3112 2.3660 0.9606 USAGE H2/CO PRODT 1.3003 1.4147 1.4679 1.5101 0.9770 FEED H2/CO FRM EFFLNT 0.9173 0,9808 0.9862 0.9980 0.5495 0.2432 0.2159 0.2523 0.3282 **RESIDUAL H2/CO RATIO** 0.6995 0.4027 0.3178 0.2833 0.2744 RATIO CO2/(H2O+CO2) 1.2790 0.1639 0.1006 0.0997 0.1241 K SHIFT IN EFFLNT SPECIFIC ACTIVITY SA 12.5050 13.0794 12.3531 8.7423 5,5424 CONVERSION ON CO % 89.46 69.42 63.81 60.37 56.68 ON H2 🔨 93.68 92.39 92.03 89.86 85.75 ON CO+H2 % 91.48 80.77 77.78 75.01 71.20 PRDT SELECTIVITY,WT % 32,13 15.02 10.09 9.78 CH4 12.47 C2 HC'S 4.05 1.97 1.49 . 1.41 1.71 2.52 C3H8 6.71 1.65 1.70 2.18 C3H6= 0.76 1.95 1.76 1.65 1.42 1.86 C4H10 6.85 2.46 1.71 2.15 2.08 3.26 2.84 2.50 2.31 C4H8≃ CSH12 8.37 3.76 2.47 2.34 2.84 1.48 CSH10= 1.65 2.12 1.65 1.48 4.45 8.81 3.03 2.70 C6H14 3.24 C6H12= & CYCLO'S 0.58 1.21 1.07 1.16 1.31 C7+ IN GAS 11.26 9.19 5.82 5.39 6.36 LIQ HC'S 16.75 52.08 66.27 68.19 62.53 100.00 100.00 100.00 100.00

TOTAL

1 1

Table B3

100.00

- B66 -

SUB-GROUPING					
ClC4	52.58	27.19	19.70	18.75	22.24
C5 -420 F	43.52	48.44	39.35	37.74	39.05
420-700 F	2.80	22.60	31.01	30.55	28.39
700-RND PT	1.11	1.77	9.94	12.96	10.32
C5+-END PT	47.42 .	72.81	80.30	81.25	77.76
ISO/NORMAL MOLE RATIO					
C4	0.0321	0.0113	0.0695	0.0122	0.0166
C5 ·	0.1483	0.0617	0.0535	0.0550	0.0633
C6	0.3815	0.1431	0.1507	0.1039	0.1176
C4=	0.2132	0.0568	0.0584	0.0471	0.0607
PARAFFIN/OLEFIN RATIO			•		
C3	8.3698	1.2358	0.8958	0.9865	1.4682
C4	3.1793	0.7279	0.6313	0.6613	0.8999
C5	4.9340	1.7236	1.4525	1.5407	1.8674
SCHULZ-FLORY DISTRBIN					
ALPHA (EXP(SLOPE))	0.6845	0.7879	0.8653	0.8732	0.8616
RATIO CH4/(1-A)**2	3.2282	3.3395	5.5626	6.0800	6.5085
LIQ HC COLLECTION			_		
PHYS. APPEARANCE	CLD OIL	CLD OIL	CLDOIL	CLD OIL	CLD OIL
DENSIT	0.7287	0.7761	0.7942	0.7946	0.8108
N, REFRACTIVE INDEX	1.4110	1.4200	1.4274	1.4289	1.4274
SIMULT'D DISTILATN					
10 WT % @ DEG F	210 .	253	261	275	273
16	244	270	302	307	303
50	339	414	485	500	484
84	453	. 573	691	727	706
90	490	618	748	788	766
RANGE(16-84 %)	209	303	- 389	420	403
WI % @ 420 F	76.70	53.20	38.20	36.20	38.10
WT % @ 700 F	93.40	96.60	85.00	81.00	83,50

1.

4.

.

Table B3, cont

RESULT OF SYNGAS OPERATION

RUN NO. 12200-06						•			
CATALYST CO-U103 12	006-55 80	CC 36.0)6 GM	(45.47	G	AFTER	RUN	+9.41	G)
FEED H2:CO OF 5	0:50 @400	CC/MN	OR 30	0 GHSV					
RUM & SAMPLE NO. 1	2200-06-06	200-06-	-07						
FKED H2:CO:AR	50:50: 0	50:50:	0						
HES ON STREAM	142.5	165.5	-						
PRESSURE, PSIG	300	300							
TEMP. C	261	261			•				
FRED CC/HIN	400	400							
HOURS FERDING	24.00	23.00)						
RFFLNT GAS LITER	230.60	223.90)					•	
GH AQUEOUS LAYER	64.22	61.18	ł						
GH OIL	37.24	36.41	•						
MATERIAL BALANCE		1							
GM ATOM CARBON %	93.95	94.30)	1					
GM ATOM HYDROGEN 🐔	93.35	95.43	6	· .					
GM ATOM OXYGEN %	98.65	97.70)						
RATIO CHX/(H2O+CO2)	0.8913	0.9204	۱.					19 - P	
RATIO X IN CHX	2.4173	2.4376	1	÷					
USAGE H2/CO PEODT	1.5555	1.5688	;						
FEED H2/CO FRM EFFLMT	0.9936	1.0121							•
RESIDUAL H2/CO RATIO	0.3459	0.3677	1	•					
RATIO CO2/(H2O+CO2)	0.2703	0.2639							
k shift in efflat	0.1281	0.1318							
SPECIFIC ACTIVITY SA CONVERSION	4.3789	4.0024	•						
on co %	53.55	53.64	•	۰.				•	
on H2 %	83.83	83.16	, `						
on co+H2 %	68.64	68.49	I						
PRDT SELECTIVITY, WT %									
CH4	14.97	16.07	•						
C2 HC'S	2.09	2.11	-						
Сзнв	2.69	2.69)						
C3H6=	1.50	1.32	1						
C4H10	2.59	· 2.56	•						
C4H8=	2.45	2.20							
C5H12	3.43	3.32	2						
C5H10=	1.61	1.45							
C6H14	3.82	3.66	1						
C6HI2= & CYCLO'S	1.37	1.21	•						
C7+ IN GAS	7.15	7.04	\$						
LIQ HC'S	56.35	56.36	•						
TOTAL	100.00	100.00	,	•					

Table B4

- B68 -

n na state a st

۲.

...

1.

SUB-GROUPING **C1 -C4** 26.28 26.95 C5 -420 F 39.35 39.85 420-700 F 25.02 25.14 9.35 700-END PT 8.06 C5+-END PT 73.72 73.05 ISO/NORMAL HOLE RATIO C4 0.0171 0.0229 **C**5 0.0618 0.0721 **C6** 0.1249 0.1256 C4= 0.0691 0.0830 PARAFFIN/OLEFIN RATIO C3 1.7122 1.9454 C4 1.0178 1.1198 C5 2.0749 2.2226 SCHULZ-FLORY DISTRBIN ALPHA (EXP(SLOPE)) 0.8523 0.8479 RATIO CH4/(1-A)**2 6.8602 6.9509 LIQ HC COLLECTION PHYS. APPEARANCE CLD OIL CLD OIL DENSITY (* 40 C) · 0.7480* 0.7471* N, REFRACTIVE INDEX 1.4276* 1.4210* SIMULT'D DISTILATN 10 WT % @ DEG F 273 262 16 303 301 50 482 472 84 706 685 90 767 746 RANGE(16-84 %) 403 384 WI % @ 420 F 39.00 41.10 WT % @ 700 F 83.40 85.70

Table B4, cont

IV. Run 12 (12185-07) with Catalyst 12 (Co/Th/X4/UCC-103+UCC-101)

.

• *

This run was an attempt to reproduce the results of Run 11677-11 of the Third Annual Report of the previous contract. The catalyst was formulated in the same way as for that run. The thorium-promoted cobalt oxide was formed in close contact with UCC-103, then further promoted with X4. The resulting powder was mixed with UCC-101 in a weight ratio of 1.125:1, and the mixture, after bonding with 15 weight percent silica, was extruded as 1/8inch pellets. The final catalyst contained 4.4 percent cobalt, 0.6 percent thorium and 0.4 percent X4.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B54-57. Simulated distillations of the C5⁺ product are plotted in Figs. B58-70. Carbon number product distributions are plotted in Figs. B71-83. Chromatograms from simulated distillations are reproduced in Figs. B84-96. Detailed material balances appear in Tables B5-7.

The initial activity was comparable to that of Catalyst 11677-11. The initial syngas conversion was 50.2 percent for a specific activity of 1.2; the values for Catalyst 11677-11 were 55.5 percent and 0.9 respectively.

The water gas shift activity, however, was only one-third that of Catalyst 11677-11, with 3 percent of the oxygen converted

to CO2 as against 9 percent.

Ľ

In this run the stability was also inferior. With Catalyst 11677-11 there was essentially no deactivation throughout the 284.5 hours of the run, whereas this catalyst deactivated at a rate of one percentage point every 74 hours on stream. The difference may be due to an observed difference, determined by elemental analysis, in the ratios of cobalt to thorium:

 Run 11677-11, ratio cobalt:thorium
 27.0:1

 Run 12185-07, """
 47.6:1

The initial product selectivity, like the initial activity, was similar to that of Catalyst 11677-11, both runs producing about 13-14 percent methane and about 68 percent C_5^+ . The selectivity was similarly stable as well, with methane production increasing at one percentage point every 1300 hours and C_5^+ production decreasing at one percentage point every 572 hours. In comparison with a mathematical model calculated for Catalyst 11677-11, however, the methane production of this catalyst was significantly lower, with a ratio of experimental to calculated methane of about 0.7:1 as against about 1:1 for Catalyst 11677-11.

È

<u>ب</u>

「「「「「」」」

Except for the loss of stability in this run, possibly due to the different cobalt:thorium ratios, and the lower water gas shift activity, the two runs compare reasonably well.

– B71 –

•

. .

Fig. B54

- B72 -

۱. لا

r

いた

A REAL PROPERTY OF A REAL

[]., N - - . .

「「いい」の言語になっていた。

1

.

Fig. B55

- B73 -

Fig. B56

- B74 -

- B75 -

٠i a borne

E

高が通知

....

• • :: • :

•

;

÷.

Fig. B58

- B76 -

- B77 -

AN

I

おいま 文字 トート

باخت الاشتار المالية المالية المستشمرة والاثرانية المراكبة المستمالة المالية المالية المالية المالية المالية ال المناسبة المالية المالي İ

27. T. T. T.

....

.

۰.

..:

ł

۴.

÷.

ž

Fig. B60

- B78 -

- B79 -

۰.

... ł

.....

1_

Fig. B62

- B80 -

ŗ

·*: ····

....

:

-_;

• •

- B82 -

I

۱<u>.</u>

ĥ

: :

<u>,</u>

Fig. B65

- B83 -

APPENDING NO.

ξş.

•

A STATE STATE AND

:

;;

. .

> • `. ••

•.*.

2.

.

...

Fig. B67

- B85 -

•••

•... •

....

• •

:

.^.

57 6

Fig. B68

- B86 -

ż

1

1

Fig. B69

- B87 -

20.0

•••

. - -

...

.

- B89 -

Fig. B72

ł

- B90 -

- B9.1 -

.

Ĭ

Fig. B74

- 392 -

- 1

生ま

The second se

122 ST. 1.

- B96 -

- B97 -

- B98 -

- B99 -

ĩ

1

- B100 -

.

X

M

i.

- 5

••

į.

1 L

١.

Fig. B83

- B101 -

,**f** • ł 1989 TEVE OF HER 17. ELCOM 2.40 ۰. 47: CVEN TERAN257. €, ; • ; PT: OVEN TETPETSAD - 82797-7507 1 1.7.9 GE: Tal7600 LIN 7=48800 i J. Marine ş ŝ ÷, ۰. RT: 1424 T179#38300 8278T#35800 _1001T#40590 ••• <u>1718</u> 214 12185-07-01 Fig. 884 Я - B102 -4 ٩

.

. TT: 1.2.5 TETHESESYC BETETHERESKO LINET#48590

} ==: :=:= +.×

·· ·.

1945 TERE NOT READY

•": <u>sticis</u> 0.20

12185-07-09 :***::::::::::::::::

Fig. B92

- B110 -

rnn

; } ;

> ; ;,

•••

. .

:

: : :,

, ! : .

-- .I

•••• INEN TEXT NOT READY PT: GLIGES 4.29 • 241300 276 VC L. 1: - #685 . TERP=176°C SETPT=176°C LIRIT=485°C 1964 **WWW** 577: 342- 717942754C 88797=2754C LIMI7=4854C : RT: 0,2% "Errestand SETPT=35200 LONSTELGEOD 1 ==: ==== =.× 12185-07-10 . Fig. B93

.

. . .

Ξ.

č,

۰.

. . .

: 2

.

...',

,

...

ATO

.

- B111 -

- 28 1 ш L L DVEN TEXP. NOT READY en: \$10015 e.29 3.5 34350 17900 52777=175°C LIRIT=495°C .] **7** • ÷ 327 1274 20 •_= 117 add 9 00 i. AT: 3424 TIMPESSON: 32THPESSON _1727=495% ł 1 1 12:95-07-11 3 Fig. B94 - B112 -

国際であったの . ч₁.: JTU •---JHEN TERE WIT REPORT <u>97: 911028</u> 8.28 7 -.. 1100 ... 11317=40570 7<u>=17940</u> Sys-:. •• • . , ---- ---- -_-i2:85-07-12 Fig. B95 - B113 -Ĺ.

1

RESULT OF SYNGAS OPERATION

 RUN NO.
 12185-07

 CATALYST
 CO/TH/K4-U103+U101
 12006-59
 250
 CC
 111.15
 G
 (128.5
 G
 AFTER
 RUN)

 FEED
 H2:CO
 OF
 50:50
 0
 1260
 CC/MIN
 OR
 300
 GHSV

T

RUN & SAMPLE NO.	12185-07-01	185-07-02	185-07-03	185-07-04	185-07-05
FEED H2:CO:AR	50:50: 0	50:50: 0	50:50: 0	50:50: 0	50:50: 0
HES ON STREAM	19.0	43.0	67.0	95.5	211.5
Pressure, psig	300	300	300	300	300
TEMP. C	261	261	260	,260	260
FEED CC/MIN	1260	1260	1260	1260	1260
HOURS FREDING	19.00	24.00	24.00	28.50	116.00
EFFLNT GAS LITER	700.35	957.25	981,45	1193.45	5101.00
GH AQUEOUS LAYER	158.59	189.57	185.49	218.36	825.96
GM OIL	38.86	53.92	55.77	75.81	279.22
MATERIAL BALANCE					
GM ATOM CARBON %	84.74	90.00	90.84	95.63	96.17
GH ATOM HYDROGEN %	91.01	95.01	96.04	101.02	99.62
GH ATOM OKYGEN %	93.44	95.79	96.03	96.81	97.50
RATIO CHX/(H2O+CO2)	0.7408	0.8198	0.8345	0.9622	0.9542
RATIO X IN CHX	2.3935 .	2.4007	2.3985	2.3702	2.3736
USAGE H2/CO PRODT	2.2874	2.1899	2.1862	2.0454	2.0744
FEED H2/CO FRM EFFLM	T 1.0741	1.0556	1.0572	1.0563	1.0359
RESIDUAL H2/CO RATIO	0.5111	0.5378	0.5563	0.5636	0.5834
RATIO CO2/(H2O+CO2)	0.0584	0.0592	0.0553	0.0566	0.0498
k shift in efflut	0.0317	0.0338	0.0326	0.0338	0.0306
SPECIFIC ACTIVITY SA	1.1816	1.0833	1.0623	1.1579	0.9857
Conversion					
on co 🐒	31.69	31.34	30.73	33.25	30.35
OH H2 %	67.50	65.02	63.55	64.38	60.77
on Co+H2 %	50.24	48.64	47.60	49.24	45.83
PRDT SELECTIVITY, WI	%				40100
CH4	13.82	14.16	13.94	12.32	12.93
C2 HC'S	2.92	2.92	2.94	2.49	2.66
C3H8	4.06	4.00	4.09	4.38	▲.11
C3H6=	2,87	2.83	3.15	3.25	2.98
C4H10	3.21	3.13	3.18	3.75	3.02
C4H8=	5.24	5.20	5.26	5.91	4.50
C5H12	3.82	3.64	3.63	3-87	3.41
C5H10=	4.68	4.52	4.58	5.24	4.63
C6H14 .	4.09	4.02	3.93	3.82	3.49
C6H12= & CYCLO'S	2.16	2.96	2.83	3.44	3 42
C7+ IN GAS	16.50	14.56	12.93	12.00	16 12
LIO HC'S	36.62	38.04	39.55	39.54	38.74
•			~~~~		
TOTAL.	100.00	100 00	100 00	100 00	100.00

.

;

4

:

3

:

....

١.,

(1)

Table B5

- B115 -

1 1 1 i

I

::

.....

,						
SUB-GROUPING				•		
G1 -G4	32.13	32.26	32.56	32.08	30.21	
C5 -420 F	49.20	46.82	45.81	46.76	49.07	
420-700 F	17.03	17.61	17.99	17.87	17.39	
700-END PT	1.65	3.31	3.64	3.28	3.33	
C5+-END PT	67.87	67.74	67.44	67.92	69.79	
ISO/NORMAL MOLE RATIO						
C4	0.1135	0.0874	0.0858	0.1129	0.0558	
CŜ	0.2006	0.1515	0.1411	0.1249	0.1038	
C6	0.2966	0.2364	0.1895	0.0759	0.1228	
C4=	0.0547	0.0654	0.0633	0.0751	0.0717	
PARAFFIN/OLEFIN RATIO						
C3	1.3479	1.3469	1.2416	1.2857	1,3149	
C4	0.5913	0.5810	0.5827	0.6121	0.6475	
C5	0.7949	0.7839	0.7703	0.7172	0.7155	
SCHULZ-FLORY DISTRBIN						
ALPHA (EXP(SLOPE))	0.7724	0.8018	0.8048	0.7970	0.7977	
RATIO CH4/(1-A)**2	2.6673	3.6044	3.6590	2.9893	3.1606	
					•	
ALPHA FRM CORRELATION	0.8434	0.8410	0.8394	0.8387	0.8370	
ALPHA (EXPTL/CORR)	0.9158	0.9534	0.9589	0.9502	0.9530	
	•					
WACH4 FRM CORRELATION	16.5927	17.3628	17.6464	17.8438	18.3662	
WACH4 (EXPTL/CORR)	0.8327	0.8158	0.7898	0.6904	0.7041	
LIQ HC COLLECTION						
PHYS. APPEARANCE	CLD OIL	CLR OIL	CLR OIL	CLR OIL.	CLR OIL	
DENSITY (* 40 C)	0.7548	0.7567	0.7557	0.7440*	0.7432*	
N, REFRACTIVE INDEX	1.4259	1.4272	1.4267	1.4214*	1.4205*	
SIMULT D DISTILATN		•		•		
10 WT % @ DEG F	262	271	276	279	284	
16	300	302	302	301	302	
50	423	449	447	441	442	
84	596	644	642	623	623	
90	641	688	690	683	684	
RANGE(16-84 %)	296	342	340	322	321	
UT 9 0 430 12		15 00	16 00		10 00	
67 % 8 700 F	49.00	43.00	43.30	46.50	46.50	
	73,47	3T.3V	34.00	37.10	91 . All	

Table B5, cont

- B116 -

RESULT OF SYNGAS OPERATION

1

1.2

: • •

.

.

::

.

distant and the second second

، در کې کې د. د

÷

RUN NO. 12185-07 CATALYST CO/TH/X4-U103+U101 12006-59 250 CC 111.15 G (128.5 G AFTER RUN) FEED H2:CO OF 50:50 @ 1260 CC/MN OR 300 GHSV

۰.,

RUN & SAMPLE NO.	12185-07-06	185-07-07	185-07-08	185-07-09	185-07-10
		羊掌派한時史민준말	气能以外的最高级的		백월 14 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
FEED H2:CO:AR	50:50: 0	50:50: 0	50:50: 0	50:50: 0	50:50: 0
HRS ON STREAM	235.5	259.5	379.5	403.5	427.5
PRESSURE, PSIC	、300	300	300	300	300
TEMP. C	260	260	260	260	260
FEED CC/MIN	1260	1260	1260	1260	1260
HOURS FEEDING	24.00	24.00	120.00	24.00	24.00
EFFLNT GAS LITER	1082.40	1089.00	5622.45	1133.60	·1138.00
GM AQUEOUS LAYER	165.59	162.44	780.33	152.22	152.68
GH OIL	53.34	52.51	252.60	46.81	45.95
MATERIAL BALANCE				•	
GM ATOM CARBON %	96.63	96.39	98.13	94.32	94.56
GM ATOM HYDROGEN %	99.26	99.14	100.60	99.46	99.90
GH ATOM OXYGEN 🐾	98.24	97.81	98.42	96.79	97.04
RATIO CHX/(H20+CO2)	0.9430	0.9489	0.9893	0,9060	0.9060
RATIO X IN CHX	2.3866	2.3889	2.3900	2.4115	2.4213
USAGE H2/CO PRODT	2.0887	2.0884	2.0581	2,1503	2.1543
FEED H2/CO FRM EFFLN	T 1.0272	1.0286	1.0252	1.0544	1.0565
RESIDUAL H2/CO RATIO	0.5913	0.6002	0.6161	0.6604	0.6612
RATIO CO2/(H20+CO2)	0.0504	0.0491	0.0478	0.0458	0.0460
K SHIFT IN EFFLAT	0.0314	0.0310	0.0309	0.0317	0.0319
SPECIFIC ACTIVITY SA	0.9204	0.8886	0.8430	0.6975	0.6964
CONVERSION	. •		•		010304
on co %	29.11	28,79	28.37	26.45	26.47
on H2 %	59.19	58.45	56.95	53.93	53.98
on Co+H2 %	44.35	43.83	42.84	40.55	40.60
PRDT SELECTIVITY,WT	%				
CH4	13.58	13.70	13.58	14.84	15.16
C2 HC'S	2.88	2.76	2.81	2.80	3.19
C3H8	4.22	4.26	4.53	4.40	4.51
C3H6=	2.95	2.92	3.47	2.96	2.92
C4H10	3.12	3.15	3.32	3.28	3.41
C4H8=	4.63	4.64	4.71	4.38	4.56
C5H12	3.46	3.53	3.60	3.56	3.66
C5H10=	4.71	4.75	4.03	4.13	4.00
C6H14	3.45	3.56	4.14	3.54	3.53
C6H12= & CYCLO'S	3.41	3.38	3.47	3.48	3.49
C7+ IN GAS	16.46	16.37	17.00	16.06	15.82
LiQ HC'S	37.12	36.98	35.34	36.57	35.75
TOTAL	100.00	100.00	100 00	100 00	100 00

Larry Frank

Ī.

• Table B6

- B117 -

		;	1			
SUB-CROUPTNC			5			
	31 40	21	20.40	20 44		
C5 420 F	75 03	JI.44	32.42	32.06	33.75	
	40.93	49.7/	48.92	48.32	46.83	
700-FND PT	2 12	2 1 4 0	13.48	12.01	15.98	
CSL-END PT	49 40	29.24	3.10	3.40	3.43	
	00.00	00.20	67.38	67.34	66.23	
	0 0515	0.0604	0.0500	0 0600	·	
	0.1001	0.10604	0.0500	0.0509	0.0500	
CG	0.1001	0.1000	0.0930	0.0/1/	0.0695	
	0.1203	0.1133	0.2551	0.1158	0.1152	
444 Atras 11/01 22711 Dagto	0.0/2/	0.0118	0.0738	0.0779	0.0811	
C2	1 2626	1 0050				
	1.3030	1.3952	1.2439	1.4176	1.4716	
C4	0.6508	0.6559	0.6812	0.7229	0.7.225	
	0.7146	0./219	0.8687	0.8368	0.8888	
SCHULZ-FLORY DISTRBIN			- -			
ALPHA (EXP(SLOPE))	0.7937	0.7944	0,7899	0.7917	0.7922	
RATIO CH4/ $(1-A)$ **2	3.1905	3.2394	3.0761	3.4185	3.5099	
	0.0001					
ALPHA FRA CORRELATION	0.8364	0.8357	0.8344	0.8310	0.8309	
ALPHA (EXPTL/CORR)	0.9489	0.9506	0.9467	0.9527	0.9534	
WICH4 FRM CORRELATION	18.5691	18.7942	19.1893	20.2398	20.2584	
WACH4 (EXPTL/CORR)	0.7316	0.7288	0.7076	0.7331	0.7483	
LIQ HC COLLECTION						
PHYS. APPEARANCE	CLR OIL	CLR OIL	OIL WAX	OIL WAX	OIL WAX	
DENSITY (* 40 C)	0.7432*	0.7430*	0.7429*	0.7430*	0.7430*	
N, REFRACTIVE INDEX	1.4204*	1.4202*	1.4201*	1.4194*	1.4191*	
SIMULT'D DISTILATN		•				
10 WT % @ DEG F	288	289	290	289	293	
16 -	302	302	302	301	308	
50	441	442	440	436	444	
84	620	621	621	623	634	
90	682	683	684	689	696	
RANGE (16-84 %)	318	319	319	322	326 ⁻	
9T % @ 420 F	47.00	47.00	47.20	48.00	45.70	
WT % @ 700 F	91.60	91.50	91.00	90.70	90.40	

Table B6, cont

- B118 -

RESULT OF SYNGAS OPERATION

. . .

.

...

Έ.

٠.

÷

.....

4

1

<u>_</u>____

12185-07 RUN NO. CATALYST CO/TH/X4-U103+U101 12006-59 250 CC 111.15 G (128.5 G AFTER RUN) H2:CO OF 50:50 @ 1260. CC/MN OR 300 GHSV FEED RUN & SAMPLE NO. 12185-07-11 185-07-12 185-07-13 FEED H2:CO:AR 50:50: 0 50:50: 0 50:50: 0 HRS ON STREAM 452.0 475.5 499.5 PRESSURE, PSIG 500 500 ~ 500 TEMP. C 260 260 259 FEED CC/MIN 1260 1260 1260 HOURS FEEDING 24.50 22.50 25.00 EFFLNT GAS LITER 1065.70 988.54 1141.36 GM AQUEOUS LAYER 174.45 159.35 169.85 GM OIL . 56.12 54.92 - 60.80 MATERIAL BALANCE GM ATOM CARBON. % 93.38 93.20 95.93 GM ATOM HYDROGEN 7. 97.09 98.60 99.91 96.77 GM ATOM OXYGEN % 96.32 · 97.79 RATIO CHX/(H20+CO2) 0.8832 0.8916 0.9335 RATIO X IN CHX 2.3792 2.3831 2.3814 USAGE H2/CO PRODT 2.1455 2.1465 2.1047 FEED H2/CO FRM EFFLNT 1.0398 1.0579 1.0415 PESIDUAL H2/CO RATIO 0.5881 0.6121 0.6181 RATIO C02/(H20+C02) 0.0495 0.0472 0.0473 K SHIFT IN EFFLNT 0.0306 0.0303 0.0307 SPECIFIC ACTIVITY SA 0.5138 0.4842 0.4934 CONVERSION ON CO % 29.00 29.06 28.48 ON 42 7 59.84 58.95 57.55 ON CO+H2 % 43.31 44.72 44.43 PRDT SELECTIVITY, WT % CH4 13.20 13.29 13.22 C2 HC'S 2.52 2.71 2.46 C3H8 4.18 4.09 4.21 C3H6= 3.28 3.16 3.23 C4H10 3.25 3.16 3.25 C4H8 =4.82 3.65 3.70 C5H12 3.29 3.20 3.25 CSH10= 4.09 3.90 3.92 C6H14 · 3.35 3.22 3.32 C6H12= & CYCLO'S 3.54 3.38 3.42 C7+ IN GAS 14.63 13.92 14.30 LIQ HC'S 39.85 42.33 41.72 TOTAL 100.00 100.00 100.00

F

1:

.

ŀ

:•

1

「「「「「「「」」」

Table B7

- B119 -

÷.

SUB-GROUPING			
Cl -C4	31.24	30.06	30.06
C5 -420 F	47.04	46.24	46.20
420-700 F	18.13	18.88	18.32
700-END PT	3.59	4.83	5.42
CS+-BND PT	68.76	69.94	69.94
ISO/NORMAL MOLE RATIO			
C4	0.0563	0.0569	0.0543
CS	0.0913	0.0878	0.0874
C6	0.1148	0.0999	0.1045
C4= '	0.0634	0.0800	0.0774
PARAFFIN/OLEFIN RATIO		•	
C3	1.2179	1.2346	1.2432
C4	0.6508	0.8346	0.8490
C5	0.7819	0.7974	0.8048
SCHULZ-FLORY DISTRBIN			
ALPHA (EXP(SLOPE))	0.7931	0.8064	0.8085
RATIO CH4/(1-A)**2	3.0832	3.5446	3.6048
ALPHA FRM CORPRIATION	0 9367	0 9347	0 9242
ALPHA (EXPTL/CORR)	0.0307	0.0547	0.0343
	0.5400	0.900T	0.3031
W%CH4 FRM CORRELATION	18.4878	19.0915	19.0114
W%CH4 (EXPTL/CORR)	0.7137	0.6961	0.6951
LIQ HC COLLECTION	•		
Phys. Appearance	OIL WAX	OIL WAX	OIL WAX
DENSITY (* 40 C)	0.7440*	0.7620	0.760
N, REFRACTIVE INDEX	1.4198*	1.4204*	1.4210
SIMULT'D DISTILATN			
10 WT % @ DEG F	293	291	293
16	303	302	305
50	445	449	451
84	621	658	666
90	682	720	736
RANGE(16-84 %)	318	356	. 361
WT % @ 420 F	45,50	44.00	43.10
WT % @ 700 F	91.00	88.60	87.00
-	45.50	44.00	43.11
	91.09	88.56	87.00

Table B7, cont

.

V. Run 13 (12200-07) with Catalyst 13 (Co/Th/X4/UCC-103)

1.1

i

1....

The purpose of this run was to try to isolate the effect of UCC-101 in Catalyst 12. As in the preparation of Catalysts 10 and 12, the thorium-promoted cobalt oxide was formed in close contact with UCC-103, then further promoted with X4. The resulting powder, after bonding with 15 percent silica, was extruded to 1/8-inch pellets. The final catalyst contained 8.3 percent cobalt, 1.1 percent thorium and 0.8 percent X4.

Conversion, product selectivity, isomerization of the pentane, and percent olefins of the C4's are plotted against time on stream in Figs. B97-100. Simulated distillations of the C5⁺ product are plotted in Figs. B101-110. Carbon number product distributions are plotted in Figs. B111-120. Chromatograms from simulated distillations are reproduced in Figs. B121-130. Detailed material balances appear in Tables B8-9.

The specific activity of this catalyst was about 2.2, or about 1.8 times that of Catalyst 12185-07. But since it also contained about 1.8 times the concentration of cobalt, the activity per gram cobalt was essentially the same.

The stability, however, was considerably poorer. As estimated by linear least squares analysis, the syngas conversion decreased at a rate of one percentage point every 21.8 hours, some three times as rapidly as with Catalyst 12185-07. This may,

ĸ

۰,

н Н

ちょうちょう ちょうしょう

1

NAME OF COMPANY

ų

3

1

ġ

1

. .

however, have been due not so much to the absence of UCC-101 as to a lower residual H_2 :CO ratio in the reactor, 0.40 versus 0.53 H_2 :CO for Catalyst 12185-07.

The product balance was biased toward the heavier species, which is also consistent with a lower residual H₂:CO ratio. With both catalysts the ratios of experimentally observed methane to methane predicted by the mathematical model are essentially the same at about 0.7:1.

The Schulz-Flory plots of the product distributions are fairly linear except for the usual excess of methane. This is true for both formulations, with and without UCC-101. Isomerization of the pentane was about 6 percent of total pentane produced; with Catalyst 12185-07 it was initially 12 percent and decreased with time on stream.

This run yielded some useful information on the function of UCC-101 as an additive. Its presence apparently has little effect on a catalyst's product distribution. The catalyst lacking UCC-101 was less stable, but this may have been an effect of its higher activity.

B123 ---

1

罰

- B124 -

- B125 -

Kato Statistica.

- B126 -