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capable of either 20 or 40 dB of gain and an attenuator capable of 0 to 58 dB of 

attenuation. The received pulse is then sent to the oscilloscope where the signal is 

averaged, and a Fast Fourier Transform (FFT) is performed on the averaged waveform. 

The average is usually calculated over 50 to 100 sweeps of the time domain duration of 

the signal of interest. The number of sweeps used in the averaging is dependent upon 

how quickly conditions in the sample are changing. If the particles or bubbles are large 

and tend to separate from the mixture quickly, fewer sweeps are used in the averaging of 

the waveform received. Through trial and error it has been determined that 50 sweeps 

allows for smoothing (averaging) of the received signal before the phases of a given 

slurry can separate. An example of a received pulse and its FFT magnitude spectrum 

(used by Panametrics a calibration for a 1 .O MHz transducer) is shown in Figure 3.5. The 

magnitude spectrum generated by the FFT is then saved on a floppy disk as an ASCII 

data file and loaded into a h&4TLABTM code where the attenuation is calculated in a 

manner identical to that described previously in this section. 

The advantage to the Pulse/FFT technique over that of the Toneburst technique is 

that the entire operating frequency range of a given pair of transducers can be covered in 

a single measurement rather than requiring measurements at incremental frequencies over 

the transducer operating range, as is the case of the toneburst measurements. A pulse is 

comprised of the sum of many sinusoidal waves of various frequencies (Ramirez 1985), 

and thus, the FFT of a received pulse of a given amplitude will exhibit magnitude values 

over the entire operational frequency range of a given pair of transducers. The Pulse/FFT 
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technique greatly increases the speed and efficiency of attenuation data acquisition. A 

comparison between results of the two data acquisition techniques is made in Section 3.5 

3.1.3 Photomicrogrphic Video Imaging System: 

In the present study bubble sizes in solid-gas-liquid slurries are estimated through 

the use of a digital photomicrographic video imaging system. This imaging system 

consists of a Company 7 “Questar” QM-100 long distance microscope (identical to that 

used by Bums et al. (1996) and Shin et al. (1997)) providing magnification of 

approximately 152 times at a working distance of 17.8 cm (7”). The microscope is 

coupled to a Cohu Model 48 10 2/3” format monochrome CCD video camera. The CCD 

video camera is synchronized to a strobe light via a Global Specialty Corporation 4001 

Pulse Generator and interfaced in parallel with an Apple Power Macintosh G3 desktop 

computer equipped with a Scion VG-5 PC1 frame-grabber board and an Apple ColorSync 

20 “high resolution” monitor. The strobe light provides backlighting so that the bubbles 

appear as dark images on a light background, and the strobe is synchronized with the 

camera so that the moving bubbles appear as though “frozen” in space. The imaging 

system setup is shown schematically in Figure 3.6. 

Images obtained by the CCD video camera are sent to the computer where 

image analysis is performed. Initially, the image analysis was performed using the Scion 

Image software package provided with the frame-grabber board. However, that software 

package has been replaced by a more advanced, privately distributed, software package 

called Image SXM, version 1.61-7 (Barrett 1998). 
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The most difficult consideration involved with the imaging system is that ofthe 

proper lighting to be used. As was discussed by Bongiovanni et al. (1997), the error in 

photographing spherical particles can be considerable depending upon the relative 

positions of the backlighting, the object, and the objective lens. However, bright field 

backlighting is the most desirable lighting technique (as opposed to, say, dark field 

lighting) in the consideration of possible three phase particle and bubble size 

measurements. In dark field illumination, it is difficult to distinguish between solid 

particles and bubbles. Also, an illumination configuration such as that employed by 

Kirou et al. (1988) is not feasible as the test cell size is too small to accommodate the 

fiber optic apparatus; and, according to Bongiovanni et al. (1997), the relative size and 

close proximity of the light source to the focal distance of the particles or bubbles will 

introduce large errors in the size measurements. Therefore, since the experimental 

measurements and the optical apparati involved are similar, bubble measurements are 

made by the method employed by Burns et al. (1997) and Shin et al. (1997), and a 

calibration is performed using particles of known sizes to determine how much, if any, 

error is present in the size measurements by this method. Back lighting is provided by a 

strobotach placed about 61 cm (24”) behind the test cell. The microscope is placed at a 

working distance of approximately 17.8 cm (7”) from the center of the test cell. As the 

strobotach has a lighting element that is only 4” in diameter, the error in the size 

measurements should be relatively small. The 17.8 cm working distance is chosen 

because it is a working distance which provides for reasonable magnification of the 
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smallest calibration particles while still allowing the largest particles to be photographed 

at the same working distance. 

The calibration is begun by setting the scaling factor for the conversion from pixel 

count to size measurement. This task is performed by photographing a reticle marked 

with circles of various sizes. Diameter measurement is performed on the smallest circle 

on the reticle, which is 0.005” (127 f 2 pm) in diameter. This information is then used 

to make the pixel to length conversion. This calibration is performed before each series 

of measurements or whenever the focus of the microscope is adjusted. Further calibration 

is performed to determine the overall measurement error by photographing NIST 

traceable polystyrene spheres (Duke Scientific Corp., Palo Alto, CA) of certified diameter 

at lighting conditions identical to those to be used in actual bubble measurements. Four 

different sphere diameters are used in the calibration. The sizes (diameters) are, 

respectively, 25.02 Z!I 0.12pm, 50.4 + l.Opm , 103 + 1.8um, and 158 + 3.2 pm. A series 

of photographs is obtained for each particle diameter and an average of 50 diameter 

measurements are made from these photographs at each particle size. The diameter 

measurements for each particle size are averaged, and the average particle diameter is 

plotted versus the known (certified) particle diameter. A best fit least squares line is then 

fitted to these data using the “polyfit” routine in MATLABTM. The least squares fit yields 

the following relationship between the measured and true particle diameters: 

d MeaS = 1.25 d,, - 10.4 , (3.2) 

where dmeas and dtme are the measured and true (known) particle diameters, 

respectively. The calibration curve is shown in Figure B.3 in Appendix B. 
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3.2 Experimental Procedure--Solid-Liquid Slurries: 

3.2.1 Dilute Soda-Lime Glass Slurries: 

The initial solid-liquid attenuation experiments are performed in slurries of soda- 

lime glass beads in distilled water at various solids volume fraction. The soda-lime glass 

beads have been purchased from Cataphote, Inc. and have a density of 2.54 g/cm3. The 

physical properties of these particles are shown in Table 3.2. Particle size distribution 

measurements have been performed on these beads at the Battelle Pacific Northwest 

National Laboratory (PNNL), and it has been determined that the batch of beads used in 

these experiments has a particle mean diameter of 32 pm and standard deviation of 7.6 

pm (Greenwood, private communication 1998). Solids volume fractions of the various 

slurries is confirmed by making mass measurements of known volumes of suspended 

slurry upon completion of experimental runs. The solids volume fraction is determined 

from the following equation: 

4s = 
&my - /‘II20 

holid - pH-20 ’ 
(3.3) 

where @s is the solids volume fraction in the slurry, and pslUrry, psolid, and ~~20 are, 

respectively, the slurry, solid, and water densities. 

Two pairs of transducers are put in place for each experimental series performed 

in the 1.6 L PVC mixing vessel. Before performing each experiment, the separation 

distance between each pair of transducers is measured and recorded, and the vessel is then 

filled with distilled water. The voltage amplitude of monochromatic tonebursts over 

incremental frequencies is measured over the operational range of each pair of tranducers 
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Polystyrene 

Density (gkm3) 1.055 

Thermal Conductivity 1.15 x 10” 

p&--/T 
Thermal Expansion 2.04 x lOA 

1 Coefficient (l/K) 1 

Attenuation Coefficient 1.0 x lo-l5 

per-f (s2/cm) 

Sound Speed (cm/s) 2.3 x 10’ 

Shear Viscosity (g/cms2) _ 

Shear Rigidity (g/cms2) 1.27 x 10” 

Soda-lime 

Glass 

Water 

2.54 1.0 

9.6 x 10” 5.87 x 1O-3 

0.836 

3.2 x 1O-6 

4.19 

2.04 x lOa 

1.0 x lo-l5 2.5 x lo-l6 

5.2 x lo5 1.48 x 10’ 

1.01 x 1o‘2 - 

2.8 x 10” - - 

c _ . 
Table 3.2: Values of physical properties used m fI leoretical ca ulations. The 

values for polystyrene are from Epstein and Car-hart (1953). The 
properties of soda-lime glass are from Kinsler et al. (1982) and 
Bolz (1973). The properties of glycerin are from Perry ‘s Chemical 
Engineer’s Handbook (1984) and the CRC Handbook of Chemistry 
and Physics (1984). 

Glycerin/ 

Water 

Mixture 

1.08 

4.5 x 1o-3 

4.19 

3.22 x lOA 

- 

1.6 x 10’ 

3.2 x 1O-2 
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in the toneburst technique, or an FFT is performed on the received waveform of a 

negative spike pulse input signal for each pair of transducers in the PulseiFFT technique. 

In each case it is important to record the pertinent operating parameters of each particular 

pulse generating apparatus. In the case of the toneburst technique, where the Matec TB- 

1000 digital synthesizer is used, the recorded parameters consist of the frequency, the 

amplifier gain, and attenuator box settings (if necessary). In the case of the Pulse/FFT 

technique the recorded parameters are the pulse repetition rate, the pulse energy, the 

receiver attenuation, the high pass filter setting, the damping, and the receiver gain. The 

digital oscilloscope is set to parameters which are appropriate for the given experimental 

run, and these parameters are either recorded manually or shown in printed “hardcopies” 

of oscilloscope waveform traces. 

After voltages are measured by either technique for the distilled water, the water 

is drained from the vessel and replaced with the slurry to be interrogated. The slurry is 

suspended via agitation by a I,ightnm’ L&master IPTM Model TS 25 10 portable mixer 

fitted with a 5.08 cm diameter marine propeller type impeller. It is important to make 

certain that the impeller and shaft are positioned off center in the mixing vessel so that 

they are not in the travel path of the acoustic signal. The agitation speed is varied as the 

agitation speed employed in each case is the highest speed achievable such that the solids 

are suspended, but there is no vortex “tube” which extends into the acoustic travel path. 

These conditions are usually satisfied by agitation speeds ranging from 300 to 600 rpm. 

Voltage measurements are then made for the slurries in the same fashion as those made 

for the distilled water. 
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The voltage data for both the distilled water and the shn-ries are then entered into 

ASCII data files which are loaded into MATLABTM codes to calculate the attenuation by 

using equation (3.1) after correcting for the receiver gain and receiver attenuation. 

3.2.2 Dilute Polystyrene Slurries: 

Attenuation measurements are also made in dilute suspensions of polystyrene 

beads in water. The polystyrene beads are manufactured by Duke Scientific Corp., Palo 

Alto, CA and are composed of polystyrene with 2 % divinylbenzene (considered pure 

polystyrene in this study). The physical properties of these particles are also given in 

Table 3.2. They are purchased as nominally “monodispersed” 158 pm diameter 

polystyrene spheres, but the calibration information provided by the manufacturer shows 

that spheres actually have a rather narrow size distribution with mean diameter of 158 +_ 5 

urn and standard deviation of 3.6 pm. Due to the very narrow size distribution, the 

spheres are somewhat expensive, and only a small quantity has been purchased which 

come from the manufacturer in a 10 % (by wt.) suspension in water. Since the particles 

have a density of 1.05 g/cm3, weight percent is approximately equal to volume percent. 

The purchased quantity is diluted to a 5 % (by volume) suspension, and there is sufficient 

volume of slurry to perform attenuation measurements in the 5.08 cm test cell. 

Attenuation measurements are performed in this slurry using both the toneburst 

and Pulse/FFT techniques described previously in Section 3.1.2. 
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3.2.3 Concentrated Soda-Lime Glass Slurries: 

Attenuation measurements are also performed in relatively concentrated slurries 

of soda-lime glass beads. These beads are soda-lime glass beads manufactured by 

Potter’s Industries, Inc. (Brownwood, TX) with a specified density of 2.54 g/cm3. The 

physical properties of these particles are shown in Table 3.2. These particles have also 

been subjected to particle size measurements at the Battelle Pacific Northwest National 

Laboratory, and it has been determined that the particles have a mean diameter of 125 pm 

with standard deviation of 19 pm. 

Because these particles are rather large, even concentrated slurries are difficult to 

suspend in a pure water continuous phase. Therefore, the suspending liquid which is 

employed is a mixture of approximately 29 % (by wt.) of glycerin (approximately 99 % 

reagent grade, Sigma Chemical Company) in distilled water. The addition of the glycerin 

increases the liquid phase density to approximately 1.08 g/cm3, and the liquid phase 

viscosity by approximately a factor of three. The liquid phase viscosities of these 

solutions range from 0.0259 g/cm+ to 0.0308 g/cm-s. Thus, the solid particles settle 

much more slowly, and attenuation measurements can be made. It should be noted that 

even with the addition of glycerin, the particles still settle sufficiently quickly that the 

suspension of large volumes of slurry is difficult. Therefore, only small volumes of the 

concentrated slurries are prepared, and all measurements are performed in the various 

“box” geometry test cells. 

Slurries are prepared at 5 %, 10 %, 15 %, 20 %, 30 %, 40 %, 45 %, and 50 % 

solids by volume. These slurries are then subjected to attenuation measurements in the 



35 

various test cells by both the toneburst and Pulse/FFT techniques described previously. It 

should also be noted here that the “pure liquid” reference voltages in these experiments 

are not made in pure distilled water, but rather in the individual glycerin/water mixtures 

in which the solids of each slurry are suspended. Each time a slurry is prepared, a portion 

of the suspending liquid mixture is put aside and saved to be used as the “reference 

liquid” for the attenuation measurements in that slurry. The average physical properties 

for the glycerin/water mixtures are given in Table 3.2. 

3.3 Experimental Procedure-Bubble Generation: 

Several different methods have been employed to generate bubbles for attenuation 

measurements in bubbly liquids and solid-gas-liquid systems. Each method has its 

particular advantages and disadvantages with respect to reproducible bubble generation 

rate, bubble size distribution, compatibility with the ultrasound measurement equipment 

and slurry solids, etc. 

The first bubble generation method which has been employed is an electrolysis 

method based on that used by Kol’tsova et al. (1979). Electrolysis has the advantage of 

producing relatively small bubbles (< 100 pm diameter), but it can be difficult to control 

when operated in a continuous mode as the electrolysis causes the electrical properties of 

the water to change with time. These changes cause variations with time in the current 

provided to the electrolyzer which makes reproducible bubble production difficult. Also, 

continuous operation of the electrolyzer over an extended period of time causes 

significant increases in the temperature of the medium under interrogation. As the 
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density of most media changes with temperature, and the attenuation of acoustic energy 

in materials is strongly dependent upon the material density, these temperature changes 

are most undesirable. The possibility of using the electrolytic bubble generation method 

in a non-continuous fashion has also been explored and will be discussed in more detail 

later in this section. Another significant disadvantage to using the electrolytic generation 

technique is that the ultrasonic transducers are grounded. Because of this grounding, the 

safety controls in the DC power supply (Sigma-Aldrich Model PS 4010-l) cause it to 

shut off due to a “ground leak error” fault whenever the transducers are in direct contact 

with the sample under investigation. 

The second bubble generation technique investigated is an electrostatic spraying 

technique based on that used by Tsouris et al. (1995). This technique produces bubbles 

which are approximately the same size as those produced by electrolysis, however, this 

technique has also proven to be difficult to employ reproducibly. Electrostatic spraying 

of air into water requires the use of de-ionized water. As the process is operated, ions 

begin to accumulate in the water, and the technique becomes less effective with time. 

This situation is further exacerbated by the addition of solids, such as soda-lime glass 

beads, which have a fairly high content of ions which will migrate from the solids into the 

liquid phase. The aforementioned factors, coupled with the solids also tending to clog the 

capillary spray nozzle make the electrostatic spraying technique difficult to control, and 

therefore, undesirable as a bubble generation technique. 

The third bubble generation technique which has been explored is the use of air 

pumped through an aquarium aerator stone. The particular aerator used is manufactured 
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by Coralife (Energy Savers Unlimited, Inc., Harbor City, CA) and is made from 

limewood. Limewood has the unique property that it contains a number of small straight 

pores which allow for the production of relatively small bubbles. The aerator is operated 

by interfacing it with a Cole-Parmer Model 74900 syringe pump and pumping air at 

various metered flow rates. This method of bubble generation is quite successful in that 

bubbles are generated fairly consistently over long periods of time even with solids 

present. This technique is the one employed in the initial “proof of principle” solid-gas- 

liquid attenuation measurement experiments. A notable characteristic of this method is 

that the bubbles produced are of fairly large diameter and wide size distribution relative 

to those produced by the other methods, such as electrolysis. The bubbles produced from 

the limewood aerator, when operated in water at an air flow rate of 150 ml/hr, are 

photographed and measured using the photomicrographic imaging system described in 

Section 3.1.3, and the bubble population is determined to have a mean diameter of 14 1 

pm with standard deviation of 67 urn. The bubble volume fraction is estimated to be . 

approximately 0.02. These bubble size characteristics are somewhat undesirable as 

bubbles of these sizes have rather low resonance frequencies; it is, therefore, difficult to 

examine the effects of bubble resonance with bubbles of these sizes. 

As was previously mentioned, the possibility of producing bubbles by electrolysis 

in a non-continuous manner has been explored. It has been determined, by trial and error, 

that if bubbles are generated electrolytically only for a time period which is long enough 

to establish bubble flow, mix the vessel contents, and make an acoustic measurement, 

fairly reproducible electrolyzer performance can be maintained. The other drawback to 
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the electrolytic technique is the recurrence of “ground leak error” faults when the 

transducers are in place which would cause the DC power supply to shut off. This 

problem is rectified by covering the wear plates of the transducers with ParafilmTM, a 

paraffin laboratory covering wrap, and coupling the ParafilmTM to the transducers with 

ultrasound gel. Also, the transducers have to be disconnected from the pulse generator 

until bubble flow is established. Incorporation of these improvements allows for the use 

of electrolysis as a method of bubble generation in the attenuation experiments. 

The electrolytic set up in the test cells is rather simple. The cathode (negatively charged 

electrode) consists of an approximately 30 cm length of 1.3 mm diameter copper 

electrical wire with the insulation shipped away ti-om approximately %” of the wire end 

and the individual wire strands separated, run vertically through an l/8” NPT to 

Swagelok fitting in the bottom of the cell so that it sticks upright perpendicular to the flat 

bottom of the cell. Care is taken to avoid the cathode wire protruding into the acoustic 

path between transducers. The anode (positively charged electrode) is an approximately 

4 cm length of l/8 “ diameter stainless steel rod positioned against the test cell wall with 

approximately one centimeter of its length immersed below the liquid surface. When the 

DC power supply is turned on, bubbles are generated at the cathode and rise upward 

toward the anode. Bubbles are generated in all experiments at 40 V; 4 to 8 mA; and ~1 

W. The bubbles generated in water at these conditions are photographed and measured 

using the photomicrographic imaging system described in Section 3.1.3. These bubbles 

are found to have a mean diameter of 51 pm with standard deviation of 26 pm. The 

bubble volume fraction is estimated to be approximately 0.002. 
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3.4 Experimental Procedure-Solid-Gas-Liquid Slurries: 

The attenuation measurement experiments in solid-gas-liquid slurries are very 

similar in nature and procedure to those performed in solid-liquid slurries. In fact, the 

experimental procedure for the solid-gas-liquid systems actually includes a step where the 

attenuation is measured in a solid-liquid slurry without the presence of gas bubbles. 

Solid-liquid slurries are prepared at 5 % and 10 % solids (by volume) using the same 

soda-lime glass beads which are described in Section 3.2.1. Attenuation measurements 

are performed in these slurries using the Pulse/FFT technique described previously in 

Section 3.1.2. Once attenuation measurements are made in the solid-liquid slurry of 

interest in the particular experiment, bubbles are generated using either electrolysis to 

generate relatively small, narrowly distributed bubbles (approximately 25 to 76 urn in 

diameter) or air pumped at 150 ml&n- through the limewood aerator stone to generate 

larger, more widely distributed bubbles (approximately 74 to 210 pm in diameter). In the 

case where the bubbles are generated electrolytically, the DC power supply is operated at 

40 V; 4 to 8 mA; and < 1 W. When the LCD display on the power supply shows that it is 

operating at the specified conditions, the (now solid-gas-liquid) slurry is mixed 

thoroughly with a glass or plastic stirring rod and a measurement is made. The data are 

recorded as per the procedure described in Section 3.1.2, and “hardcopies” of the 

oscilloscope traces and FFT spectra are entered into the laboratory notebooks. All 

computer files are stored both on the hard drive of the data acquisition computer 

(Gateway 2000 P5-66) and on 3.5” floppy diskette. Also in these experiments, bubbles 

are generated by both methods in the water used to make the reference measurements 
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after the reference measyrements are made. Pulse/FFT measurements are made in these 

bubbly liquids, and the data are recorded in order to calculate bubbly liquid attenuations 

for later comparison with solid-gas-liquid attenuations in an attempt to obtain information 

about any effects the solids may have on the bubble size. 

3.5 Quality of Experimental Results: 

3.5.1 Comparison of Attenuation Measurement Techniques: 

Upon development of the Pulse/FFT technique for obtaining attenuation data in 

the various slurries, one of the most important issues to be addressed is how well the 

attenuation data obtained by this technique compare with those obtained by the Toneburst 

measurement technique. A comparison of attenuation data obtained by both techniques 

in a 5 % (by vol.) slurry of soda-lime glass beads in water is shown in Figure 3.7. From 

this figure is clear that the two methods of obtaining data are equivalent under most 

conditions. It is found, however, that in dilute slurries the Pulse/FFT technique yields 

better results at lower frequencies than the toneburst technique. The results are better for 

the Pulse/PFT technique because the toneburst measurements are made by manually 

moving the horizontal oscilloscope cursors to correspond with the wave peaks and 

troughs in the received toneburst signal. At lower frequencies, the attenuation is small, 

and the error in the measurements becomes large relative to the magnitude of the 

measurements, themselves (on the order of 20 % relative error). In the case of the 

Pulse/FFT technique, the amplitude as a function of frequency is calculated from the 

received pulse waveform by the oscilloscope as part of the FFT algorithm Since 
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Figure 3.7: Comparison of attenuation spectra results obtained in a 5 % soda-lime glass 
slurry by both the Toneburst and the Pulse/FFT Techniques. - El301. 
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Pulse/FFT method is an automated measurement technique, the measurement error at 

lower frequencies is smaller than that observed in the manually performed toneburst 

measurements. 

3.5.2 Reproducibility of Experimental Results: 

In order to examine the reproducibility of experimental results, complete repeat 

experiments have been performed at various times throughout the course of this study. 

These duplicate experiments are performed in addition to collecting data by more than 

one technique (as discussed in the previous section) in order to establish an overall sense 

of the reproducibility of the experimental results. As the acoustic attenuation behavior of 

these various slurries is quite complicated, and the data for these specific systems (e.g. 

particle type and size, and gas phase concentration) are unique, it is difficult to perform a 

rigorous error analysis to determine the absolute accuracy of the results. It is, however, 

possible to investigate the quality of the data with regard to the reproducibility of results 

and their agreement with theoretical predictions. 

Experiments are repeated (total of three experiments) in the attenuation 

measurements made in the soda-lime glass slurries at 5 % solids by volume using the 

Toneburst technique. Also, repeated experiments are performed in the concentrated 

slurry experiments with the Potter’s beads slurries in glycerin/water. Duplicate 

experiments are performed at 50 % (two duplicates), 30 %, and 10 % solids by volume. 

Figure 3.8 shows the average (solid line) attenuation versus frequency curve, with 

error bars, for three experiments using slurries of 5 % (by volume) soda-lime glass beads 
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in water. The error in the measurements is taken to be the mean difference between the 

experimentally determined attenuation value and the mean attenuation value at each 

frequency. It can be seen fi-om Figure 3.8 that the data, except at the lowest frequencies 

where the attenuations are rather small, fall within 5 % (relative error) of the average 

value. Even at the lowest frequencies, the measurement error still permits results which 

are within 20 % of the mean value of the attenuation. These results demonstrate that the 

experimental measurements in these slurries are rather reproducible. 

Similarly, Figures 3.9,3.10 and 3.11 show the average attenuation versus 

frequency curves, with error bars, for 10 %, 30 %, and 50 % (by volume) slurries, 

respectively, of Potter’s Beads in a mixture of glycerin and water. In Figure 3.9, which 

shows the error in the 10 % Potter’s beads slurry measurements, the error in the 

attenuation measurements is relatively small up to, and including, that at 3.0 MHz. At 

3.0 MHz the relative error is 1.7 %, while at 3.5 MHz, the error jumps to 18 %. The error 

in the attenuation measurements at 3.5 MHz is more than 10 times that at 3.0 MHz. The 

error continues to increase with increasing frequency up to 32 % at 5.0 MHz. The error is 

considerably larger at frequencies above 3.0 MHz because these are the frequencies at 

which the operating ranges of the various transducers used in the measurements overlap. 

There often tend to be slight differences in measurements between the individual 

transducer pairs at overlapping frequencies, even though the results should ideally match. 

These differences are usually small enough so as not to present a problem from a 

reproducibility standpoint. However, because of the large particle size and density 

difference between the phases, the Potter’s beads slurries are particularly difficult to 



44 

10" 
IO5 

I I 
IO6 IO7 IO8 

Frequency (Hz) 

Figure 3.8: Mean attenuation versus frequency curve with error bars representing the 
average difference between individual attenuation values and the mean 
value. These data are for a 5 % (by volume) soda-lime glass slurry in 
water. - El 101. 



45 

lo-'1 
IO6 

Frequency (Hz) 
lo7 

Figure 3.9: Mea attenuation versus frequency curve with error bars representing the 
average difference between individual attenuation values and the mean 
value. These data are for a 10 % (by volume) Potter’s beads slurry in 
a mixture of glycerin/water. - ES 182. 
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suspend uniformly. Therefore, any discrepancies between measurements will be 

amplified in the data for these slurries because of differences in the uniformity of the 

suspension. 

A similar situation is seen for the 30 % Potter’s beads slurry data shown in Figure 

3.10. Here the error in the attenuation measurements becomes relatively large at 2.0 

MHz, and at 3.0 MHz and 3.5 MHz. These frequencies also overlap in the operating 

ranges of the transducers used in these experiments. Therefore, as seen previously in 

Figure 3.9, there is an increased error at these frequencies because of differences in the 

results obtained by the different transducers. 

Figure 3.11 shows the error in the attenuation measurements in a 50 % (by 

volume) Potter’s beads slurry. The error in the measurements in the 50 % slurry appears 

to be more uniform relative to that in the 10 % and 30 % slurries in that there are no data 

points where the error band is exceptionally large. It is not clear why the error is more 

uniform for this slurry. One possible explanation could be that the data for the 50 % 

Potter’s beads slurry are obtained in the test cell with the shortest acoustic path length 

(2.54 cm). It is possible that the slurry volume between the transducers in this test cell is 

small enough that there is more consistency in the slurry mixing conditions and solids 

concentration which are interrogated by the different transducer pairs. 

In general it can be said that the experimental error is larger in the Potter’s Beads 

slurries than in the soda-lime glass slurries. The largest relative error in the soda-lime 

glass beads slurries data is 19 % at 0.3 MHz where the attenuation is extremely small; 

while the 30 % Potter’s Beads slurry measurements display an error as high as 32 % at 
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Figure 3.10: Mean attenuation versus frequency curve with error bars representing the 

average difference between individual attenuation values and the mean 
value. These data are for a 30 % (by volume) Potter’s beads siuny in 
a mixture of glycerin/water. - E6 192. 
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Figure 3.11: Mean attenuation versus frequency curve with error bars representing the 
average difference between individual attenuation values and the mean 
value. These data are for a 50 % (by volume) Potter’s beads slurry in 
a mixture of glycerin/water. - E6112. 
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5.0 MHz. This larger error is, again, most likely due to variations in the mixing 

conditions in the Potter’s Beads slurries caused by the combination of relatively large 

particle size and the density difference between the solid and liquid phases. 
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Chapter 4: Theory and Experiments for Dilute 
Solid-Liquid Suspensions 

4.1 Theory for the Attenuation of Sound in Dilute Solid-Liquid 
Suspensions: 

The determination of the acoustic response of a slurry given a priori details of its 

microstructure is referred to as the forward problem. When the total volume fraction of 

. 

the solids is small, the problem is relatively simple since one only needs to understand the 

interactions between a single particle and an incident sound wave. This phenomenon has 

been studied by a number of investigators in the past with notable contributions from 

Epstein and Carhart (1953) and Allegra and Hawley (1972), who considered suspensions 

of particles as well as drops. Allegra and Hawley (1972) also reported experimental 

results verifying the theory for relatively small particles for which the acoustic 

wavelength is large compared with the particle radius. The theory developed by these 

investigators is quite general and accounts for attenuation by thermal, viscous, and 

scattering effects. This theory is briefly described in this chapter, and its predictions are 

compared with experimental data for dilute systems of polystyrene particles in water and 

soda-lime glass beads in water. A more complete description of the governing equations 

is given in Chapter 6, where a theory is developed for concentrated suspensions. 

The wave equations for both the interior and exterior of the solid particles were 

initially derived by Epstein and Carhart (1953). These investigators first linearized the 

conservation equations for mass, momentum, and energy. The pressure and internal 
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energy are eliminated by introducing the linearized equations of state to yield equations 

in terms of density, velocity, and temperature. Next, the time dependence of all quantities 

is expressed by the factor exp(-iot), which is henceforth suppressed. The velocity vector, 

v, can always be represented in terms of a scalar potential, a), and a vector potential, A, as 

V = -V@+VxA (4.1) 

with V l A = 0. With this form of v it is possible to eliminate the temperature and 

density from the governing equations to yield a fourth-order partial differential equation 

for CD and a second-order equation in A. The former can be split in two second-order 

wave equations upon substitution of @ = oC + (#IT (where $C and 4~ represent the scalar 

potentials of the compressional and thermal waves, respectively) to finally yield three 

wave equations: 

(V’ +k,2)& = 0, (4.2) 

(V’ +k+ = 0, (4.3) 

(V2 .k,2)A = 0, (4.4) 

The wavenumbers in the above equations are given by 

/kz =$[ l-i(e+f)+((l-i(e+f))2 +4f(i+ye))1’2 
I 

, (4-5) 

1-i(e+f) - ((l-i(e+jf))2 +4f(i+~e))l’~ , 1 (4.6) 
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ks = (l+i)(op/2p) l/2 , 

with 

e-(4p/3+-K)til/(pc2); f sDlil/C2. 

(4.7) 

Here, c is the phase speed in the pure liquid; p is the density; K and p are, respectively, 

the compressional and dynamic viscosities; y = CdCv is the ratio of specific heats at 

constant pressure and volume; z is the thermal conductivity; and o = zlpCp is the thermal 

diffusivity. 

Inside the particles similar equations hold with the dynamic viscosity replaced by 

p/(- iw) and the wave speed by ((;i + 2p/3)/$i2, - where p and 2 are the Lame 

constants, and the compressional viscosity is left out. Henceforth, a tilde refers to the 

inside of the particles. 

At small values of e andf(such as in water), the above expressions for kc and kT 

simplify to 

and kT = (1+ i)(t3/20)1’2 . (4.10) 

Equation (4.2) and its counterpart inside the particles describe the sound wave 

propagation through the suspension. Note that the wavenumber has an imaginary part; 

sound waves in pure fluid are attenuated by viscous and thermal energy dissipation 

(Lighthill 1956); the term inside the square brackets in equation (4.9) is commonly 
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referred to as the ‘diffusivity of sound’. The total attenuation coefficient in both the 

liquid and in the solid particle will henceforth be treated as additional physical properties. 

The other two wave equations describe waves that arise from thermal conduction and 

finite viscosity: we note that the modulus, ky in equation (4. lo), is inversely proportional 

to the thermal penetration depth, JO/W , and that of k, to the viscous penetration depth, 

J,,%/pW . The thermal (4~) and shear (A) waves have generally very high attenuation 

and are unimportant in acoustic applications. 

Applying the boundary conditions of continuity of temperature, heat flux, 

velocity, and traction at the surface of the particles, and solving the resulting boundary 

problem numerically, it is possible to, in principle, determine the phase speed and 

attenuation at arbitrary volume fraction using the above formulation. 

The potential, bC, outside a particle at x, can be expressed as 

(#c)(x)= exp(ik, l x) + exp(ik, l x1) fin (2n + l)A,h, (k,r)P, (p), (4.11) 

n=O 

where r = Ix - x,1, u = case, 8 being the angle between x - x, and k,, hn is the spherical 

Bessel function of the third kind (or Hankel function) corresponding to an outgoing 

scattered wave, and Pn is the Legendre polynomial of degree of n. 

Inside the particle centered at x, we have 

(&)(xjxl)=exp(ik, l ~1) gi”(2n + 1)znjn(k”,r)P,(P), 
n=O 

(4.12) 
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where& is the is the spherical Bessel function of the first kind. Similar expressions are 

written for 4~ and A. This results in expressions with a set of six unknowns for each 

mode n. Application of the boundary conditions of continuity of velocity, traction, 

temperature, and heat flux yield six equations in six unknowns for each n. There were 

some typographical errors in the equations given by Epstein and Carhart (1953) and 

Allegra and Hawley (1972); the correct equations are given in Appendix A. Although it 

is possible to solve for the unknowns analytically in certain limiting cases, it is best to 

solve them numerically since we are interested in covering a wide frequency range for 

later inverse calculations. 

Once the coefficients are determined, the attenuation can be calculated using the 

result for the attenuation per unit length given by Allegra and Hawley (1972) as 

34 O” a=-- c (2n + l)%eA, . 
2z2a n=() 

(4.13) 

The above analysis can be extended in a straightforward manner to account for the 

particle size distribution when the total volume fraction of the particles is small. One 

may write the attenuation by the particles of radius between a and a+& as an attenuation 

density &(f , a) (wherefis the frequency of the wave, f = 0/(2x)) times the volume 

fraction of those particles, $(a)&. Here $(a) is the particle volume fraction distribution. 

At low volume fractions these contributions can be “summed” over all particle sizes to 

give the total attenuation a&): 
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(4.14) 

It should be noted that it is customary to express the particle size distribution in terms of 

its number density distribution P(a). The volume fraction distribution is related to p(a) 

by qfa) = (4im 3/3)p(a), 

-4.2 Attenuation Measurements in Dilute Solid-Liquid Systems: 

4.2.1 Attenuation in Soda-Lime Glass Bead Slurries: 

Attenuation data plotted as a ftmction of frequency for soda-lime glass beads at 5 

% and 10 % by volume are shown in Figure 4.1. These data are collected in the 1.6 L 

PVC vessel by the Toneburst measurement technique. These experimental results are 

plotted along with results of the forward problem calculation based on the theory of 

Allegra and Hawley (1972) for log-normal distribution of particle sizes. The fonvard 

problem calculation used a particle radius of 14 pm with a standard deviation of 7 pm. 

The actual solids radii range from 0.5 pm to 18 pm, with mean radius at 9 pm. It is clear 

from this figure that the agreement between theory and experiment is excellent. 

It is interesting to note in this figure the pronounced change in the slope of the 

attenuation curve. This change in slope occurs where the dominant attenuation regime 

changes from the inertial regime (Kytomaa 1995) to the geometric scattering regime. 

The theory predicts that the slope of the attenuation curve should be % ,before the 

transition and four afterwards. That is, the attenuation should scale asf”’ before the 
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Figure 4.1: Comparison between experimental results and forward problem theory 
predictions for the attenuation versus frequency curves for soda-lime 
glass shies at 5 % (lower curve) and 10 % solids by volume. The 
experimental solids size distribution has a mean radius of 14.9 pm with 
standard deviation of 3.56 pm. The forward theory predictions are based on 
a log-normal distribution with a mean radius of 14 pm and standard 
deviation of 7 pm. - El 101. 
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transition andf4 afterwards. However, if one examines the experimental data it can be 

seen that the data in the inertial regime do scale asf*‘* , but the data in the scattering 

regime scale with frequency more likef3 . At first it was thought that this difference 

occurred because the soda-lime glass particles are polydispersed, but this behavior is seen 

in theoretical calculations even for monodispersed particles. This behavior is actually 

due to contributions from more than one mode of resonance, which shall be discussed in 

more detail in the next section. 

4.2.2 Attenuation in Polystyrene Bead Slurries: 

Figure 4.2 shows the attenuation as a function of frequency for 79 pm radius 

“monodispersed” polystyrene beads. These data are obtained in the 2.54 cm nominal 

path length Plexiglas test cell using both the Toneburst and the PulseLFFT measurement 

techniques. These data are also compared with several different results of the forward 

problem theory using different input particle size distributions. Good agreement is seen 

between experiments and the theory except near the resonance frequencies where small 

differences appear. The differences were initially thought to possibly be due to finite 

volume fraction effects, but when the attenuation is calculated using an effective medium 

approach, shown by a dash-dot line in Figure 4.2, the attenuation actually shifts in a 

direction which increases the differences . Therefore, the differences probably occur 

because the particles are not exactly monodispersed. The theory for a monodispersed 

dispersion, shown by the solid line in Figure 4.2, also shows a difference from 

experimental data. However, when the theory calculations are performed using a particle 
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Figure 4.2: Comparison of forward theory with experimental data for the attenuation as 
a function of frequency. These data are for polystyrene particles of radius a 
= 79 pm, at 5 % by volume. 0, experimental data; -, theory for 
monodispersed particles; -.-.- , theory for monodispersed particles with 
effective medium correction for finite volume fraction effertc. - - - 

. A~“.“, 

theoretical result with a particle size distribution with a mean radizs of 79 
pm and standard deviation of 2.5 pm (this is the particle size range specified 
by the particle manufacturer). - E2363. 
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size distribution with a mean diameter of 154 pm with a standard deviation of 5 pm, 

(which lies within the manufacturer’s specifications) the result for the attenuation, which 

is shown as a dashed line in Figure 4.2, shows excellent agreement with the experimental 

data. Thus, it can be concluded that the small observed differences are due to the 

polydispersity of the dispersion. 

It is important to note the several peaks and troughs in the plot at frequencies 

above approximately 3 MHz. These peaks and troughs are caused by the various modes 

of resonance which the particles undergo. Each peak corresponds to-dominance by a 

different mode of resonance. 

These transitions to dominance by the different modes of resonance are also 

responsible for the slope in the scattering regime never truly achieving anf4 dependence. 

The Lengendre polynomials in the equations for the potential describe the contributions 

to the attenuation from the various modes of oscillation which the particles can undergo. 

The n = 0 mode corresponds to radial (volume) oscillations. The n = 1 mode corresponds 

to translational oscillations. The n = 2 mode corresponds to ellipsoidal P,-shape 

oscillations, and so on. Figure 4.3 shows the contributions to the total attenuation as 

calculated for the polystyrene particles used in the experiments from the forward problem 

theory. The density of polystyrene particles is essentially the same as that of water, and 

so the translational oscillations of the particles are small. Therefore, the viscous 

attenuation is small, and the low frequency behavior is governed by the thermal 

attenuation of the n = 0 mode (volume oscillations). At higher frequencies the n = 0 

mode increases first asf4 due to scattering losses, but the contribution from the n = 2 
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Firmre 4.3: Contributions of the first five modes of resonance (n =l through 5) to the 
total attenuation (the imaginary part of I&) for 79 pm radius polystyrene 
particles in water. 
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mode (ellipsoidal oscillations) soon becomes important as it undergoes resonance at 

about 3 MHz. In the figure we see that the n = 3 and n = 1 modes undergo resonance 

next, etc. Therefore, the attenuation never really achieves the f 4 dependence that would 

be predicted by the scattering theory; but rather, it displays the combined behavior shown 

in Figure 4.4. Thus, it can be said that the resonance frequencies of the various modes of 

oscillations cause the high frequency behavior of the polystyrene particles to become 

quite complicated. 

It should be noted that the reason why the peaks appear truncated, in the region 

where the theory predicts very high peaks in the attenuation, is because in those regions 

the attenuation increases dramatically to levels which are beyond the measuring 

capabilities of the instrumentation used in this study. 

In contrast, these peaks and troughs do not appear in the attenuation behavior 

predicted by the theory of Allegra and Hawley (1972) for soda-lime glass particles. This 

behavior is shown in Figure 4.5. Unlike the polystyrene data, the attenuation data for the 

soda-lime glass particles do not peak at several different frequencies. Rather, for each 

mode n we see broad “hills” separated by narrow “valleys”. The total attenuation does 

not appear to go through several resonances, but instead has one broad “overall” peak 

which is a mean contribution, of sorts, of all the individual resonance behaviors. The 

difference between the behavior for the polystyrene and soda-lime glass particles at the 

higher frequencies seems to arise mainly from the different elastic properties of the two 

materials. Also, the density of the soda-lime glass particles is significantly different from 

that of water. The soda-lime glass particles exhibit significant translational oscillations. 
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Figure 4.4: Example of the dependence of attenuation on fkequency,f, for a slumy of 
polystyrene particles in water. Dashed lines are asymptotic slopes of the 
attenuation for low and high frequencies. 



Figure 4.5: Contributions of the first three modes of resonance (n =l through 3) to the 

total attenuation (the imaginary part of k,,) for 79 pm radius 
monodispersed glass particles in water. 
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As a result, the low frequency behavior is completely governed by the viscous effects and 

the n = 1 mode. It should be noted that small frequency attenuation is about two orders of 

magnitude greater for the soda-lime glass particles than for the polystyrene particles. 
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Chapter 5: Inverse Problem for Determination of 
Particle Size Distributions 

5.1 Inverse Problem Theory: 

Determining the particle size distribution of a solid-liquid suspension is of great 

practical interest. It has been suggested in the literature that this distribution may be 

determined by measuring the attenuation of a sound wave propagating through the 

suspension as a function of the frequency of the wave. The main premise is that the 

attenuation caused by a particle as a function of frequency depends on its size; and, 

therefore, the attenuation measurements can be inverted to determine the particle size 

distribution -- at least when the total volume fraction of the solids is small enough such 

that particle interactions and detailed microstructure of the suspension play an 

insignificant role in determining the acoustic response of the suspension. Indeed, this 

general principle has been exploited successfully to determine the size distribution of 

bubbles in bubbly liquids (Commander and McDonald (199 1); Duraiswami (1993); and 

Duraiswami et al. (1998)). Commercial “particle sizers” based on acoustic response are 

in the process of being developed/marketed for characterizing solid-liquid mixtures (Oja 

/ and Alba (1997)). The main objective of this chapter is to investigate under which 

circumstances such a problem can be solved for solid-liquid systems, The attenuation is 

predicted in the calculations from the linear theory of Allegra and Hawley (1972). It will 

be shown that the success of the acoustic method for determining detailed particle size 
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distributions is limited, depending on the nature of the particles and the frequency range 

over which the input (attenuation) data are available. 

We now consider the inverse problem. That is, given only the total attenuation a,, 

as a function off, it is desirable to determine +(a) using equation (4.13). Inverse 

techniques have been explored by many investigators with regard to the acoustic 

evaluation of dispersed phase systems. 

Duraiswami (1993), after exploring a number of possible regularization strategies 

such as truncated singular value expansion, moment collocation techniques, and 

Tikhonov regularization and optimization, employed a Tikhonov regularization scheme 

and optimization to solve the inverse problem of determining the size distribution of 

bubbles in bubbly liquids from measurements of attenuation and change in phase speed. 

The basic idea behind the Tikhonov regularization technique is that the problem is 

formulated in such a way that the norm of the solution and the norm of the residual error 

are sought to be minimized. This technique also takes advantage of the fact that the 

bubble size distribution function is generally a smooth function. Further details of this 

technique will be discussed later in this chapter. 

This type of straightforward method of solving the integral equations, i.e., 

discretizing the integral domain into a number of elements and converting the integral 

equation into a system of linear equations in unknowns @(ak) at a selected number of 

points ak in the domain, cannot be used in the solid-liquid slurry inverse problem since 

the resulting equations will be ill-posed, Figures 5.la & b illustrates the ill-posed nature 

of the problem. Figure 5.1 a shows two very different particles size distributions 
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Figure 5.1 a: Two significantly different particle volume fraction distributions 
which yield similar attenuation spectra. 
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Figure 5.1 b: Attenuation spectra obtained from the volume fraction distributions in 
Figure 5.la. The circles correspond to the results obtained when using 
the distribution shown by a dashed line in Figure 5.1 a, and the crosses 
correspond to the result obtained when using the distribution shown by 
the solid line in Figure 5.1 a. 
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whose attenuation spectra, shown in Figure 5.lb, are seen to be essentially the same. 

These two curves were obtained by starting with a smooth, log-normal particles size 

distribution (dashed curve in Figure 5.1 a) and generating the attenuation versus frequency 

data using the forward theory (circles in Figure 5.lb). A random noise of 1 % was then 

added to the data, and equation (5.2) with E = 0 (which is equivalent to integral equation 

(4.13)) was subsequently solved to yield the particle size distribution indicated by the 

solid line in Figure 5. la. The crosses in Figure 5.lb correspond to the attenuation 

spectrum determined from the forward theory using the new particle size distribution. It 

should be noted that the attenuation is evaluated with a smaller frequency increment than 

the one used for the original distribution. It is seen that the attenuation from the two 

distributions agree with each other to within 1 % for the frequencies marked by the 

circles. The attenuation spectrum for the latter particle size distribution does exhibit an 

oscillatory behavior in between the frequency increments, particularly at 10 MHz, but 

these oscillations occur only for a very narrow frequency range and would have been 

missed altogether had the attenuation been determined at only the input frequencies. 

Since the true particle size distribution is expected to be smooth, only solutions 

which are reasonably smooth can be permitted. This restriction may be imposed in 

several ways. In the present study, the primarily used regulatization technique is that due 

to Tikhonov (Kress 1989) which was successfully used for bubbly liquids by Duraiswami 

(1993). An alternative method is presented at the end of this section. Accordingly, 

equation (4.13), which is based on the theory of Allegra and Hawley (1972) is multiplied 
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with &(f , a)df and integrated over the frequency range to obtain a simpler integral 

equation in which the right-hand side is only a function of a: 

fm~am~c;(f,a)ci(f,a’)~a’)da’df =b(a)=fmra,ot(f)&(f,a)df, 

f rnin amin f min 

(5.1) 

where (amin, amax) and (fmin,fa are the radius and frequency ranges. The above integral 

equation is now regularized as explained below by adding a small term 

~(4 - 12ft)( w h ere primes denote derivatives) to its left-hand side. Thus, 

E[ e(a) - l2 @‘(a)] + amjYk(a, a ‘>q+ ‘p ’ = b(a), 

amin 

(5.2) 

is obtained, where 1 is a suitably chosen length scale and K(a,a ‘) is a kernel defined by 

f max 

+,a')= 1 ~(f,+(fd)df. (5.3) 

f min 

Equation (5.2) is an integro-differential equation and needs two boundary conditions. 

Usual practice is to take the derivative of $(a) to be zero at the two end points: 

41(amin > = 4’(amax) = O. (5 4 

It should be noted that amin and amax are not, in general, known a priori. One expects $ to 

also be zero at the two end points. Thus, the range (amin - amax ) must be determined by trial 
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and error so that both 4 and its derivatives are approximately zero at the extreme values of 

a. 

Now it can be shown that the solution of equation (5.2) subject to the boundary 

conditions given by equation (5.4) minimizes 

amax 
E+E 5 [{tia,)’ •t I2 1,,(a)]2jay (5.5) 

amin 

where E is the measure of error between the actual attenuation and the computed 

attenuation: 

f 
2 

max %-rin 

E = 1 j b(f ,@(a& - atot (f) df . (5.6) 

f min arnin 

Since both E and the second term in equation (5.5), i.e., the integral, are non-negative, 

minimization of equation (5.5) ensures that the solution of equation (5.2) will be free from 

large oscillations in 4. In other words, highly oscillatory distributions such as the one 

shown in Figure 5. la. are rendered inadmissible when equation (5.2) is solved with finite, 

positive E in place of the original integral equation (5.1). Thus, we have regularized the 

problem of determining 4. 

If a large E is chosen, then the oscillations in 4 decrease, but increase the error in 

$(a) increases since then the equation solved is significantly different from the original 

integral equation. Small E, on the other hand, yields unrealistic $(a) having large 

oscillations when the data CX,,~) are not exact. An optimum choice of E, therefore, depends 

on the magnitude of the uncertainty or error in the measured attenuation versus frequency 



72 

data. 

5.2 Inverse Problem Calculation Results: 

The theoretical calculations which accompany the experimental results in this 

dissertation are performed by Dr. Peter D.M. Spelt and Professor Ashok S. Sangani at 

Syracuse University. Both the theoretical study and computations are performed by these 

individuals as part of the overall Acoustic Probe Development Project being funded by 

the US DOE Environmental Management Science Program Grant # DE-FG07- 

96ER14729. A formal presentation of the theoretical and computational work presented 

herein may be found in Spelt et al. (1998). 

As mentioned in the previous section, an optimum choice of parameter, E, 

depends on the magnitude of the uncertainty or error in the attenuation versus frequency 

data. This concept is tested by first determining the exact atot (f) using the forward 

theory for a given $(a) with a small random noise of about 1 % magnitude added to it 

before the inverse calculations are performed. This random noise is introduced to 

simulate the error which would be present in experimentally obtained attenuation versus 

frequency data. To obtain the optimum value of s, equation (5.2) is solved for several 

different E’S, and the error E is plotted versus E to find a minimum value of E. This 

minimum value of E, however, may lead to volume fraction distributions in which $(a) 

may have physically unrealizable negative values for some values of a. To prevent the 

realization of this possibility, the constraint Q(a) 2 0 for all a is satisfied a posreriori by 
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setting +(a) = 0 for all a’s for which the solution of equation (5.2) yields negative values 

of +(a). Thus, the computed value of E is based on $(a) 2 0. 

The integro-differential equation (5.2) was solved in the following manner. After 

discretizing the domain (amin to amax) into N - 1 equal segments and the frequency domain 

into A4 - 1 logarithmically equal segments the kernel K(ai, aj), is first evaluated for i, j = 

1, 2,..., N (cf. equation 5.3) using a trapezoidal rule for the integration over the frequency 

range. As was indicated by Duraiswarni (1993) it is important to calculate the integral 

over the particle radius rather accurately. Thus, it was assumed that $(a) varied in a 

piecewise continuous manner in each segment, and a 12-point Gauss-Legendre 

quadrature was used to evaluate the integral in equation (5.2). A second-order central 

difference formula was used to evaluate @‘(a) at all points except the endpoints a,in and 

a max- The boundary conditions 4’(amin) = 0 and 4’(amax) = 0 were approximated 

using, respectively, second-order forward and backward difference formulae. Application 

of equation (5.2) at all the discretization points together with the boundary conditions can 

be expressed with the above scheme as a system of linear equations: 

i = 1,2,...,N 7 (5.7) 
j=l 

where @j = aj 
4 1 

and bi =b(ai). Th e a b ove set of equations was then normalized 

by dividing all the equations by the greatest element of the kernel, K(ai, aj), Km for all i, 

j, times the segment length, Aa = (amax - amin)/( N - 1). This set of equations was 

subsequently solved using a standard IMSL subroutine for linear equations. 



74 

Once the b are determined for a selected value of E, the constraint +j 2 0 is 

satisfied by setting, as was mentioned previously, all $j = 0 for all negative values of $j. 

The error, E, as given by equation (5.6), was subsequently evaluated using a trapezoidal 

rule for integration over the frequency range. The optimum value of E was determined by 

stepping logarithmically through several values of E and plotting E versus E. 

A typical result (N = 30, M = 112, fin = 0.1 MHz, fmx = 17 MHz, amin = 15 pm, 

and a,, = 35 pm) for the error in the resulting attenuation as a function of s is shown in 

Figure 5.2. It should be noted that here E is actually the value of s divided by K,Aa. 

Upon examining Figure 5.2, one can see a clearly defined optimum value of c. 

Computations were also made with larger M to confirm that the resulting volume fraction 

distribution was not affected by the further refinement in the integration over the 

frequency range. 

It should be noted that both E and I are parameters which were chosen so as to 

minimize the error E. The value for I was taken as / = (a,,, - a kn)/n, and E was 

computed by varying both E and n. The value of n was varied from 1 to N. It was found 

that when E was plotted versus n and E, E was much more sensitive to E than it was to n. 

In general, it was found that the results where n was close to N were slightly better than 

those where n was close to unity. Therefore, n was chosen to equal 30. For larger values 

of N (N > 40), it was found that choosing R = N led to more oscillatory behavior for $j. 

This behavior is to be expected since choosing a larger value of n, and hence, a smaller 

value of I will permit larger values of @‘(a). 



10" f 

5 10' 

loo y 

lo"l- 

lo-* : 

10” r 

1 

Error in the attenuation as a function of E. Fieure 5.2: 
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. In order to obtain the results for the volume fraction distribution using the above 

mentioned regularization technique, the forward theory was used to first generate 

attenuation data for an assumed volume fraction distribution. Small random noise was 

added to the generated data to mimic experimental error in measured attenuation data. If 

the procedure fails for the generated data with small amount of noise added, it would 

certainly fail for any real experimentally obtained data. 

The calculation is initially performed for a frequency range of 0.1 to 15 MHz in 

order to investigate the success and limitations of the technique. This range roughly 

coincides with the range of frequency employed in the attenuation measurement 

experiments. Also considered is a larger range of frequency to determine if better 

estimates of the particle volume fraction distribution could be achieved if the attenuation 

data at higher frequencies were available. The examination of higher frequency results is 

important because there are commercially available acoustic probes which can operate at 

tiequencies up to 150 MHz. 

The particle sizes first considered are those which are of the same order of 

magnitude as the wavelength of the sound waves somewhere in the above mentioned 

frequency range. This requirement is satisfied for particles of size about 10 to 100 urn in 

radius. It should be noted that particles of larger sizes would merely shift the observed 

behavior to the left in an attenuation versus frequency plot. The smooth particle volume 

fraction distribution (dashed line) in Figure 5.la shows an example of a log-normal 

particle size distribution which is employed because it is a commonly used and smooth 

distribution. As in the forward problem calculations, the inverse problem calculations are 
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performed for polystyrene and soda-lime glass particles. These two types of particles 

form a good basis for examination of the capabilities and limitations of the inverse 

problem technique because the polystyrene particles are almost neutrally buoyant with 

respect to water and deformable, while the soda-lime glass particles are much more dense 

than water and quite rigid. The physical properties of these two materials are shown in 

Table 3.2 in Chapter 3. 

The first volume fraction distribution results obtained from the inverse problem 

are shown in Figure 5.3. These results are for polystyrene particles with a narrow size 

distribution in the range of 20 to 30 urn in radius. However, the particle size range 

initially employed was somewhat larger, ranging from 5 to 100 pm in radius; and the 

frequency range was 0.1 to 17 MHz. The results for this particle size range are shown in 

Figure 5.3, and it is clear that the volume fraction distribution, evaluated from the inverse 

technique, is in very good agreement with the original input particle volume fraction 

distribution. The result for the particle volume fraction distribution can be further 

improved by making the particle size range smaller (a close-up of the improved result is 

shown as a dashed line in Figure 5.4). 

In Figure 5.5 a more complicated, bimodal, volume fraction distribution is 

considered for the polystyrene particles. This distribution has a particle radius range of 

20 to 45 pm with peaks at approximately 25 and 38 pm. The attenuation as a function of 

frequency for this volume fraction distribution is shown in Figure 5.6. The maximum 

frequency used in the inverse calculation is indicated in the figure by a square. It is seen 

that the frequency range includes the first two resonance peaks of the attenuation curve. 
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Figure 5.3: Inverse problem solution for polystyrene particles in water. The solid 
curve is the volume fraction distribution used to generate the attenuation 
curve shown in Figure 5.7a (withf,, indicated by a square)* and the 
dashed curve is the solution to the inverse problem for partidle radius 
range of 1 to 100 pm and using 50 ‘bins’ of particle sizes. 
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Figure 5.4: Solution of the inverse problem when a random noise of 5 % standard 
deviation is introduced in the attenuation (input) data. The solid line is 
the exact result; the dashed curve is the result when no noise is introduced; 
the dash-dotted curve is the result after the introduction of the noise. These 
calculations are for polystyrene in water. 
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Figure 5.5: Solution of the inverse problem for a bimodal distribution of polystyrene 
particles, using 30 particie size bins. The solid curve is the exact result, 
and the markers represent the inverse problem solution when using a value 
offmnx indicated by a square in Figure 5.6. 
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Fieure 5.6: Attenuation versus frequency curve for polystyrene particle volume 
fraction distribution shown in Figure 5.5. 
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From the results shown in Figure 5.5 we can see, once again, that the inverse procedure 

recovers this distribution quite well. 

As has been discussed previously, one of the difficulties in solving inverse 

problems is that they tend to be ill-posed. That is, small errors in the input (attenuation) 

data can lead to large changes in the solution (volume fraction distribution). Of course, 

there is always a certain amount of error present in experimentally obtained attenuation 

data. The inverse problem results presented so far were obtained with no noise added to 

the input attenuation data. To imitate the practical situation, a random noise of 5 % 

standard deviation was added to the input data. It turns out this error is approximately of 

the same order of magnitude as the error in the experimentally obtained attenuation data 

for polystyrene shown in Figure 4.2. The resulting volume fraction distribution is shown 

in Figure 5.4 (dash-dot line). The calculations were repeated with a noise of 10 % 

standard deviation (not shown), and the computed volume fraction distribution was 

considerably different form the input distribution, but the main features of the distribution 

were still preserved by the inverse computations. 

The results which have so far been presented would suggest that the inverse 

technique can be employed with reasonable success. There are, however, limitations. 

The inverse problem technique yielded erroneous volume fraction distributions for 

smaller particles when the above mentioned frequency range (0.1 MHz to 17 MHz) was 

used in the computations. In order for the size of the particles to be determined there 

must be at least one transition in the attenuation versus frequency curve, namely the 

transition from the thermal attenuation dominated regime to the scattering dominated 
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regime which occurs when the dimensionless wavenumber becomes approximately O( 1). 

If the particles are very small this transition may not occur over a fixed frequency range. 

However, it will be shown that the results are quite sensitive to the frequency range which 

is chosen for the calculations, even when the transition is included in the frequency range. 

Figures 5.7a & b illustrate the effect of varying the maximum frequency,f,,, on 

the computed volume fraction distribution. As seen in Figure 5.7a the resonance in the 

shape oscillations of the polystyrene particles leads to a change in the slope of the curve 

just before the first resonance. This transition occurs just before the point marked with a 

circle in Figure 5.7a. There appears to be a marked improvement in the results shown in 

Figure 5.7b whenf,, is chosen corresponding to a point marked by a cross in Figure 5.7a 

over those obtained with the point corresponding to a circle, which does not include the 

second change in slope. The point marked with a cross corresponds to a frequency 

greater than the frequency at which the second change in slope occurs for larger particles 

but less than that for smaller particles. This gives rise to a solution of the inverse 

problem (cf. Figure 5.7b) which is reasonably accurate for larger particles but not as 

accurate for smaller particles. Also shown in Figure 5.7b are the results whenf,,, is 

chosen to coincide with the end of the first resonance peak in the attenuation versus 

frequency plot. This is the point marked with a square in Figure 5.7a. The resulting 

volume fraction distribution shows that when the first resonance peak is included in the 

attenuation data, the resulting volume fraction distribution predicted from the inverse 

problem solution is quite accurate. 
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JSzure5.7a: 

FREQUENCY (Hz) 

Input attenuation data for four different upper bounds on frequency to 
determine the influence of the frequency range over which the attenuation 
is specified on the solution of the inverse problem. This attenuation curve 
is for polystyrene in water. The solid curve is the exact result; Cl, cutting 
off the frequency range after the first attenuation peak; +, cutting off the 
frequency range just after the second change in slope in the attenuation 
curve; 0, cutting off the frequency range just before the second change in 
slope in the attenuation curve; and 0, cutting off the frequency range just 
after the third attenuation peak. 
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Figure 5.7b: Results of the inverse problem solution for four different frequency 
ranges using the same marker types as in Figure 5.7a. 
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It should, however, be noted that one cannot alleviate all the diffkulties 

mentioned above by merely choosing a wide enough frequency range of interrogation. 

Figure 5.8 shows results of the inverse problem calculations for three different values of 

f-. The dashed curve corresponds to terminating the frequency range at the end of the 

first resonance peak, as in Figure 5.7a. The dash-dot curve corresponds to terminating 

the frequency range at the end of three resonance peaks; and the dotted curve corresponds 

to terminating the frequency range at lo9 Hz, a frequency which is approximately fifty 

times greater than the first resonance frequency. Figure 5.8 shows that the results of the 

inverse calculation actually deteriorate from those calculated after the first resonance 

peak if a much larger range of frequency is employed. The deterioration of results is due 

to the different modes of oscillation which may undergo resonance. As is shown in 

Figure 4.4, a monodisperse suspension will exhibit several resonance frequencies 

corresponding to various shape oscillation Pn (n =2, 3, . . .) modes. Therefore, a second 

peak in the attenuation versus frequency curve for polystyrene particles could, for 

example, correspond either to a Pj mode for a larger particle, or it could correspond to a 

Pz mode for smaller particle. The inverse calculations performed in this work used only 

the first six modes (n I 5), but in practice the acoustic response may be further 

complicated by the higher modes of oscillation for frequencies of the order of 1 O9 Hz 

considered here. 

Since including an extremely wide frequency range with several resonance peaks 

seems to adversely affect the inverse calculations, one may consider terminating the 

attenuation data just beyond the first resonance peak. This strategy may not be successful 
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Figure 5.8: Using too large of a frequency range over which the attenuation data are 
available for polystyrene particles in water can deteriorate the results. The 
solid curve is the exact result; the dashed curve is the inverse problem 
result when using the data of Figure 5.7a below the point marked by a 
‘0‘ the dash-dotted curve represents the results when this endpoint is 
shifted to the point marked by ‘0‘; and the dotted curve is the result 
when this endpoint is shifted to 1000 MHz. 
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if the volume fraction distribution is truly bimodal as was seen earlier in Figure 5.5. If 

the second resonance peak is omitted from the attenuation data by considering a 

frequency range with a maximum that is less than the frequency marked with a square in 

Figure 5.6, for example let the maximum be the frequency marked with the triangle; then 

the inverse calculation yields rather poor results as shown in Figure 5.9. It is interesting 

to note that the inverse technique computes rather accurately the volume fraction 

distribution of the larger particles, whose resonance behavior was included in the data; 

but it fails to accurately predict the volume fraction distribution for the smaller particles, 

whose resonance behavior is not included in the attenuation data. 

Figures 5.1 Oa & b show the inverse technique results for a very broad unimodal 

distribution for polystyrene particles, The resonance peaks of the different particles 

overlap in this case, resulting in the absence of peaks in the attenuation versus frequency 

curve (cf. Figure 5.1Oa). Figure 5. lob shows the results of the inverse calculation for 

three different cut-off frequencies. The largest frequency, marked by a square in Figure 

5.1 Oa, is larger than the second transition frequency of small as well as large particles, 

and this appears to produce excellent results. 

We note that in the cases shown so far where the inverse calculations yielded poor 

results the failure is particularly severe for smaller particles. This phenomenon may be 

explained when one considers that the total error, E, will be dominated by the errors at 

large frequencies, since the attenuation there is quite large. When I?,+,~, < 1 in the 

frequency domain that is considered, the small particles’ volume fraction appears in 

Figures 5.7b and 5.9 to be underestimated, while the large particles’ volume fraction is 
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Figure 5.9: Inverse problem solution for a bimodal distribution of polystyrene particles 
(same distribution as in Figure 5.5) when cutting off the frequency range 
over which the attenuation was given between the first and second 
attenuation peaks. 
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Fleure 5.1 Oa: Attenuation versus frequency curve for the same inverse calculation for 
polystyrene particles in water whose results are shown in Figures 5.7a 
& b, but with a broader size distribution. 
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FieureS. 1 Ob: Resulting volume fraction distribution for the broader distribution 
attenuation data shown in Figure 5.1 Oa. 
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slightly overestimated. This problem was addressed in some calculations by dividing 

both the attenuation and 6 byf*. However, only small improvements were realized by 

modifying the attenuation data in this manner. It should be noted that the inverse 

calculation results presented in Figure 5.9 were obtained in this manner. 

Figures 5.1 la, b, & c provide some insight into why the choice offmax can greatly 

affect the results of the inverse calculation. These figures show three-dimensional plots 

of the kernel, K (for the same values offmu considered in Figures 5.7a & b) plotted 

against particle radius, ai and aj . We see that whenf& = 10.4 MHz, corresponding to 

the circle in Figure 5.7a, the kernel has a maximum for ai = uj = amaX. The kernel for 

smaller particles is rather small in comparison; and as a consequence, the inverse 

technique could determine the larger size particle volume fraction correctly but failed for 

the smaller particles. In contrast, the kernel forf- = 17.1 MHz, corresponding to the end 

of the first peak in Figure 5.7a, shows significant variations for a wide range of values of 

ai and uj (cf. Figure 5.1 lb). This behavior of the kernel apparently leads to a much more 

accurate inverse solution. Finally, the kernel forfmx = 30.4 MHz, corresponding to the 

end of the third resonance peak in Figure 5.7a, shows a less pronounced structure 

(cf. Figure 5.1 lc) which explains the fact that the inverse results actually deteriorated 

when using such a wide frequency range. 

Inverse problem calculations were also performed to determine the kernel, volume 

fraction distribution, and attenuation in the bubbly liquids examined by Duraiswami 

(1993). The inverse procedure worked quite well for bubbly liquids as is shown in 

Figures 5.12a, b, & c. Figure 5.12a shows the input and computed bubble volume 
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Figure 5.1 b: The kernel, K(a, aj ) for polystyrene particles in water when using for 
fmar the value of frequency indicated by a ‘0’ in Figure 5.7a. 
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Fieure 5.1 lb: The kernel, K(ai, aj ), for polystyrene particles in water when using for 
f,, the value of frequency indicated by a ‘+’ in Figure 5.7a. 
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j3Pure 5.1 lc: The kernel, K(a, aj ), for polystyrene particles in water when using for 
fmar the value of frequency indicated by a ‘El’ in Figure 5.7a. 
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Figure5.12a: Results of the inverse problem solution for air bubbles in water. Bubble 
volume fraction distribution for a total gas phase volume fraction equal 
to 0.004. 
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Figure 5.12b: The kernel, &a,, ai ), for air bubbles in water at a total gas phase volume 
fraction of 0.004. 
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Figure 5.12~: The attenuation spectrum for air bubbles in water at a total gas phase 
volume fraction of 0.004. 
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fraction distributions to be in excellent agreement. The kernel, as shown in Figure 5.12b, 

has smooth variations over a wide range of bubble radii. The resulting attenuation as a 

function of frequency is shown in Figure 5.12~. The main reason why the inverse 

technique appears to be somewhat more successful for bubbly liquids is that there is only 

one resonance frequency for bubbles of each size. Therefore, so long as the frequency 

range is wide enough to cover the resonance frequency of all the bubbles, it is possible to 

accurately determine the volume fraction distribution. 

If one recalls the notable difference between the attenuation data for polystyrene 

and that for soda-lime glass particles, it was the absence of the multiple resonance peaks 

for the soda-lime glass particles (cf. Figure 4.5). Along with this fact, it was found that 

the inverse calculation results for the soda-lime glass particles were generally poor. 

Figure 5.13a shows an inverse problem result for small soda-lime glass particles which is 

still reasonable; however, that shown for larger particles in Figure 5.13b is quite poor. 

The reason for this result lies in the shape of the kernel, which is shown for the 

latter case in Figure 5.13~. When this kernel is compared with those for polystyrene 

particles (cf. Figure 5.1 lb) and for bubbles (cf. Figure 5.12b), it can be seen that the 

kernel for the soda-lime glass particles is relatively flat. This behavior is indicative of an 

inverse problem which is rather hard to solve. 

Based on the above discussion, it can be said that the success of the Tikhonov 

regularization in solving the inverse problem is somewhat limited. Although reasons are 

given as to why this method worked well for bubbly liquids and not as well for slurries, 

other techniques were examined to investigate whether they might be more generally 
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Figure 5.13~ An inverse problem result for small glass particles. 
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Fkre 5.13~ The kernel, &, Qj >, for the larger glass particles whose results are shown 
jn Figure 5.13b. 
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successful. With that in mind, an alternative method based on linear programming was 

attempted. 

The constraint +(a) 2 0 was satisfied only a posteriori in the Tikhonov scheme. 

To ensure that the error was minimized while satisfying this constraint, the original 

inverse problem is reformulated as an optimization problem. The simplest scheme is that 

to minimize the error 

fin ax amax 

I pxf Y +++a - atot (f) df Y (5.8) 

fminl %in I 

instead of the integral of the square of the quantity enclosed by the two vertical bars at 

each frequency. Constraints on the solution are used a priori in optimization via linear 

programming; here $(a) 2 0 is used. Imposing an upper limit on the total volume fraction 

(maximum packing) can also be incorporated but is not essential. After discretizing the 

frequency range by M and $(a) by N discrete values, one can write 

5 Bu4(nj) - atot (fi) = % - vi UiyVi 20 i=1,2 ,..., M . 

j=l 

(5.9) 

Here, Bi,j is the discretized form of the integral operator in equation (5.8); and ui and vi 

are, as yet, unknown, non-negative variables. It can be shown (Delves 1985) that 

minimizing the absolute value of equation (5.9) is equivalent to minimizing 

M 

C(“i + vi) 
i=l 

(5.10) 
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with equation (5.9) as a constraint together with the constraints Ui, Vi 2 0 (i = l,, . .&I) 

and 4(ai) 2 0 (i = 1,. . .,IV). It is essential here that at the optimum ui vi = 0 for each i, 

which makes the solutions of the two minimization problems, equations (5.8) and (5.9), 

identical. 

Although the above linear programmin g scheme is a completely different method 

for solving the inverse problem, the results obtained from it were found to be very similar 

to those obtained from the Tikhonov method. It was shown earlier that the Tikhonov 

regularization fails when the frequency range over which the attenuation data are 

provided is made too small. In Figures 5.14a & b linear programming results are 

presented for the same problem solved by the Tikhonov method in Figures 5.7a & b. The 

Tikhonov method results are also presented in Figure 5.14b (open square markers) for 

comparison. From these figures it is clear that there is no improvement. In fact, there is 

actually a deterioration of results. Similarly, it was found that increasing the frequency 

range cut-off beyond the point marked with a square in Figure 5.14a actually made the 

results worse, as it had in the solution in Figure 5.7a. The other problem where the ’ 

Tikhonov regularization failed was in the case of relatively large soda-lime glass particles 

(cf. Figures 5.13a & b). The linear programming technique also failed to yield good 

inverse results for this case 
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Fieure 5.14a: Attenuation spectrum for polystyrene particles in water where the data are 
used in the linear programming results shown in Figure 5.14b. 
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Fieure 5.14b: Inverse problem results using the linear programming method. The 
linear programming results (..V..) are compared with results of the 

Tikhonov method (--Cl--) and the exact solution (solid curve). 
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Chapter 6: Effective Medium Theory and 
Experiments for Concentrated Slurries 

6.1 Effective Medium Theory: 

As mentioned earlier, the measurement of the attenuation of acoustic waves through 

a suspension of solid or fluid particles can be used to infer the suspension properties. 

When the particle volume fi-action in the suspension is very small the particle interactions 

may be neglected, and the attenuation as a function of the sound wave frequency can be 

determined by examining the interaction of a single particle with the incident wave as has 

been done by a number of investigators in the past and in Chapter 4. As mentioned 

earlier, Foldy (1945) examined the problem of scattering in dilute bubbly liquids. Epstein 

and Carhart (1953) and Allegra and Hawley (1972) examined, respectively, the case of 

dilute emulsions and dilute slurries. Since the attenuation behavior is strongly dependent 

upon particle radius, the attenuation versus frequency data for dilute suspensions may be 

used to determine particle size distributions, as was shown by Duraiswami (1998) for the 

case of bubbly liquids. The corresponding problem for dilute slurries has been examined 

in Chapter 5. 

In many processes it is desirable to monitor continuous flow of non-dilute 

suspensions. The particle interactions can have significant effects on the acoustic 

behavior of non-dilute suspensions, and at the present, rigorous calculations accounting 

for their effects are lacking. Direct attack on the problem, i.e. solving the linearized 
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energy, momentum, and continuity equations for multiparticle systems, appears daunting 

even with the development of efficient computers. Thus, it is necessary to develop a 

suitable approximate theory and to assess its validity by comparison with the 

experimental data obtained from different kinds of suspensions. 

Two approximate theories commonly used for predicting effective properties of 

non-dilute suspensions are the cell theory and the effective medium theory. The cell 

theory models particle interaction effects by assuming that each particle is surrounded by 

a spherical shell of fluid. This particle-cell assembly is assumed to interact with the rest 

of the suspension in the least possible manner by requiring, for example, that the 

tangential stress and the heat flux at the boundary between the cell and the surrounding 

suspension are zero. The cell theory has been used for predicting the average force on a 

particle in a fixed bed of particles by Happel and Brenner (1973) and for determining the 

attenuation of sound waves in slurries by Strout (199 1). The main criticism of the cell 

theory is its ad-hoc nature. It is not clear, in general, what conditions must be applied at 

the cell boundary to ensure the minimal interaction between the cell and the rest of the 

suspension. Furthermore, it is not even clear that the interaction between the cell and the 

surrounding suspension must be minimal. 

Kuwabara (1959) proposed another model for determining the force on a particle in 

a fixed bed that assumed that the fluid vorticity, and not the tangential stress, vanishes at 

the fluid-particle boundary and obtained estimates of the force that are different from 

those given by Happel and Brenner (1973). 



109 

In the effective medium theory the particle-cell assembly is assumed to be 

immersed in a uniform suspension with properties which are determined by requiring that 

the governing equations in the particle-cell assembly are consistent with the averaged 

equations for the suspension. Semi-theoretical reasoning is used to select proper 

boundary conditions at the interface between the cell and the effective suspension. This 

selection of boundary conditions renders the effective medium theories somewhat less 

ad-hoc than the cell theory. As a result, the effective medium theory is the approximate 

theory of choice whenever rigorous calculations involving multiparticle interactions are 

not feasible or are to time consuming to be practical. 

In recent years, the effective medium theory has proven to yield reasonably accurate 

estimates in a number of cases for which the detailed multiparticle interaction 

calculations are carried out with the help of high performance computers. This includes 

the calculations of the force on a particle in fixed beds, effective viscosity and elasticity 

of random suspensions (Ladd 1990), the Nusselt number for heat transfer from an array of 

cylinders (Wang and Sangani 1997), and the diffusivity of proteins in bilipid membranes 

(Dodd et al. 1995). The effective medium theory is also applied to the light scattering 

problem, a problem which is quite similar to the acoustic problem of interest here; and its 

predictions are shown to compare well with experiments on the light scattered by 

suspensions (Ma et al. (1990)). 

In this chapter an effective medium theory is developed to predict the attenuation of 

sound waves in non-dilute monodispersed suspensions. The accuracy of the theory is 
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assessed by comparing its predictions against the experimental data available in the 

literature and with new data obtained in this study. 

6.1 .l Linearized Equations: 

Consider a small amplitude plane acoustic wave with frequency, o, propagating 

through a uniform, monodisperse suspension of solid particles of radius, a. Let us write 

the density as po + pe-‘O’ , the temperature as To + Te-‘” , and the velocity as 

ue -‘OX. When the amplitudes of p, u, and Tare small, the terms involving the products 

of these quantities can be neglected from the continuity, momentum, and energy 

equations to obtain the following linearized equations: 

. -iup+pgV@u=O, (6-l) 

ao,, 
- iU&Ui = - 

Lkj ’ 
F-2) 

and -iupoC,,T= @j -~-pocJ?-l(y - l)V*u. (6.3) 
j 

In writing equation (6.3), we have made use of the linearized equation of state to 

eliminate the pressure from the usual energy equation. The stress tensor amplitude, og,, 

for a Newtonian fluid i 

oij = [I C2P0 
-+I$ 
- iwy 

(6.4) 
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where do is the deviatoric component of the rate of strain tensor amplitude 

dij 
[ 

& ++i zg Veu =pF --g-3 ij . (6.5) 
j i 1 

In the above equations Cv is the constant volume heat capacity and y = CP / C,, is the 

ratio of specific heats, p and CL,, are the shear and bulk coefficients of viscosity, c is the 

speed of sound through the fluid, and l3 is the coefficient of thermal expansion. It should 

be noted that the first and third terms inside the square brackets on the right-hand side of 

equation (6.4) are related to the thermodynamic pressure amplitude by 

Finally, qj = - kZ/&j in equation (6.3) is the heat flux, k being the thermal 

conductivity. 

Inside the solid particles equations similar to equations (6.1) through (6.3) apply 

with the stress tensor, in this case given by Landau and Lifshitz (1986) as 

where A and p are the Lame constants for the particles, which are assumed to be 

perfectly elastic. Note that for solids it is customary to write the stress in terms of 

displacement and not velocity. For small amplitude oscillatory motions the amplitudes of 

the two are, of course, related by a factor of l/(- iw) , and this fact has been used in 
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writing the first term on the right-hand side of the above equation. Note also that the 

factor x + (2/3)jT ’ th b lk is e u modulus of the solid. Thus, the isotropic part of the stress 

tensor represented by the terms inside the square brackets in the above equation arises 

from the density and temperature changes in the solid. The deviatoric stress tensor, 2~ , 

is defined in manner similar to equation (6.5), but with the fluid viscosity replaced by 

pp = ii/(- iw) . T hi s term may be thought of as a “particle viscosity*‘. It should be 

noted that the Lame constant, p, is sometimes referred to as the shear modulus. 

The above equations must be solved subject to the boundary conditions of 

continuity of velocity, temperature, heat flux, and traction ( Ognj, nj being the unit 

outward normal at the particle surface) at the interface between the particles and the fluid. 

In concentrated suspensions particle interactions are significant and the rigorous 

evaluation of sound wave speed and attenuation through the suspension would require a 

very difficult task of solving the above set of equations in a domain containing many 

particles. We shall introduce suitable approximations to convert this multiparticle 

problem to a single particle problem in Section 6.1.4. But first, we shall derive 

ensemble-averaged equations for the suspension and show how their solutions can be 

related to the overall speed and attenuation of waves through the suspension. 

6.1.2 Ensemble Averaged Linearized Equations for Suspensions: 

In this section we ensemble average the equations for the amplitudes of density, 

velocity, and temperature in the fluid and solid phases, and obtain, thereby, the linearized 
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continuity, momentum, and energy equations for the suspension. It will be shown that 

the resulting equations have a form similar to the equations for a single phase, provided 

that the suspension is assigned suitable properties, which we refer to as the effective 

properties of the suspension. An important outcome of the averaging process will be that 

it will yield rigorous expressions for various effective properties of the suspension. 

Let g(x) be the particle indicator function defined to be unity when the point, x, is 

inside any of the particles and zero when x is in the fluid. The properties of the liquid and 

particles are denoted by the subscripts, L and P, respectively. The ensemble averaged 

variables are denoted by angular brackets. 

Multiplying the continuity equation for the liquid by the liquid indicator function, 

(l-g); and that for the solid particle by g; adding the two; and averaging the resulting 

equation yields the continuity equation for the suspension 

- ‘w(P) + POL ((I- .dv l uL)+POP(gV@UP)=O. 68) 

The last two terms on the left-hand side of equation (6.8) must now be expressed in terms 

of the divergence of the average velocity, i.e. (V l U) , so that the resulting equation 

resembles the continuity equation of a single phase medium (cf. equation (6.1)). We 

begin with the identity 
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The gradient of the indicator function is zero at all points except at the particle-fluid 

interface, where it is proportional to the Dirac delta function owing to the step jump in g 

across the particle-fluid interface. 

More specifically, vg=- n+-xs), (6.10) 

where x = xs represents the surface of the particles; 6 is the Dirac delta function; and n is 

the unit normal vector pointing into the liquid, at the particle surface. At the particle- 

liquid interface it is required that the velocity be continuous. Because the velocity is 

continuous across the solid-liquid interfaces, the last term in equation (6.9) vanishes. The 

second term on the right-hand side of equation (6.9) still contains as an unknown the 

quantity, (gV l Up). S’ mce the equations of small amplitude acoustics are linear, it is 

expected that this quantity depends linearly on (V l U) . Therefore, one can write this 

term as 

(6.11) 

where 4 is the volume fraction of the solid particles. Substituting (gv l up ) from 

equation (6.11) into equation (6.9) yields the continuity equation for the suspension 

(equation (6.8)) to be given by 

(6.12) 

with the effective equilibrium density of the suspension to be used in the suspension 

continuity equation, i.e. (PO), is given by 
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Physically, Xv , represents the ratio of the average velocity amplitude inside the particles 

to that in the suspension. Once again, this coefficient, and such other coefficients to be 

introduced in this section will, in general, depend on complex multiparticle interactions; 

and details of its evaluation will be described later. 

The right-hand side of equation (6.14) can be simplified by using the identity 

The last term in the equation (6.17), is related to the jump in traction across the interface 

and vanishes owing to the boundary condition that Oonj be continuous at the particle- 

fluid interface. Thus, it follows that the right-hand side of equation (6.14) simply equals 

the divergence of the average stress in the suspension, i.e. the momentum equation for the 

suspension is given by 

a( > -iW(/70)m(Ui) = i’ . 
i 

(6.18) 

We must now supplement the above momentum equation with an expression for the 

average stress. The linearity of the equations implies that the stress amplitude will be 

linear in the gradient of the average velocity amplitude and (T) . 
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Let us first consider the isotropic part of the stress, or equivalently, the stress trace. 

Multiplying the isotropic part in equation (6.4) by (l-g) and that in equation (6.7) by g 

and averaging, we obtain 

with 

= CZPOLIYL + @p (6.20) 

and 

(6.2 1) 

(6.22) 

The coefficient h, was defined earlier (cf. equation (6.11)). The parameter, AT, , on the 

other hand, is a new coefficient which is defined as the ratio of the average temperature 

amplitude inside the particles to that in the mixture, that is 

@AT(T)(x) = (g(x)TP(x)). (6.23) 

Both the effective c2p0 I y and the bulk viscosity of the suspension depend on the 

coefficient, h,. This dependence is not surprising since both depend on the average 

dilatation amplitude inside the particles. The result that the effective bulk viscosity, 
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h,ef , of the suspension depends only on the bulk viscosity of the fluid may seem 

strange at first sight, but it is really a consequence of the way the isotropic part of the 

stress is defined for the liquid and solids (cf. equations (6.4) and (6.7)). The stress arising 

from thermal expansion or, equivalently, temperature fluctuations depends on 

~0 (y - l)/flo of the two phases and the relative temperature fluctuations in the two 

phases. 

Since the deviatoric stress amplitudes in the individual phases depend only on the 

velocity gradient amplitude, it is expected that the average deviatoric stress is linear in the 

gradient of average velocity amplitude. It must also be traceless. If it is assumed that the 

suspension is macroscopically isotropic, then the average deviatoric stress is 

characterized by a single effective (shear) viscosity, ,U Ed . Thus, we may write 

(6.24) 

To obtain the effective (shear) viscosity, uefi one must evaluate only one component of 

the average deviator-k stress. We can take, without loss of generality, the mean velocity 

amplitude to be given by 

( u x =e >( > ‘k,efs”l 
e1, (6.25) 

where e, is the unit vector along the x,-axis, taken to be in the direction of propagation of 

the plane wave, and k, ef , is the effective wave number for the compressional wave 

through the suspension. The 1 l-component of the deviatoric stress is given by 
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h)= 2(,2)-+$). (6.26) 

The last term on the right-hand side of equation (6.26), being related to the dilatation 

amplitudes, can be readily related to the coefficient, h,, introduced earlier. The first term 

on the right-hand side can be expressed in terms of a coefficient, hd,, defined by 

(6.27) 

With this definition, it is straightforward now to relate (dl 1) to the gradient in the 

velocity amplitude: 

&l) 2 +k > 
(4,)=+-q + @d(pP -pL)]i-$L + @&P -pL)] dzk 3 

(6.28) 

Substituting for (u) fi om equations (6.25) into (6.28) and also into (6.24) with i = j =l 

and comparing the resulting expressions yields the following expressions for the effective 

viscosity: 

p - p, )( 3& - A/J) > (6.29) 

Finally, the energy equation for the suspension, obtained by averaging (1 -g) times 

the energy equation for the liquid, plus g times the energy equation for the solid to yield 

-qPoG)e(q=- ~ -(Poc,p-l(Y - l))ev+) (6.30) 

j 
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Here, an argument similar to the one used for equation (6.17) has been used to simplify 

the energy flux term (thereby using the boundary condition at the particle surface that the 

heat flux is continuous). It should be noted that in equation (6.30), the effective heat 

capacity of the suspension is given by 

(pOcV>e =pOLcvL + &T(p,PcvP -POLcvL)y (6.3 1) 

with hy defined by equation (6.23). The effective property, (~0 C,, pm’ ( y - 1)) 
e’ 

appearing in the last term in the right-hand side of equation (6.30) is related to A,, and the 

expression for evaluating it is obtained by replacing hy in equation (6.22) by A,. 

The average heat flux is given by 

( > 4j = 
d(T) 

-Kefl ’ 
% 

with the effective conductivity given by 

(6.32) 

(6.33) 

where the coefficient, h, is the ratio of the average temperature gradient amplitude inside 

the particles to that in the suspension, i.e., 

In summary, the continuity, momentum, and energy equations for the suspension 

(6.34) 

are given by equations (6.8), (6.18), and (6.30). The averaged stress tensor is given by 

equations (6.19) and (6.24). The averaged heat flux is given by equation (6.32). These 
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equations resemble the equations for the single phase given in Section 6.1.1 with suitably 

defined effective properties of the suspension. 

6.1.3 Wave Equations for the Suspension: 

In order to find an expression for the attenuation of sound in the suspension, it is 

necessary to derive wave equations for the suspension, as was done by Epstein and 

Carhart (1953) for a pure liquid. The derivation of those authors is followed closely. As 

shown by these investigators the acoustics equations permit three waves: a thermal wave, 

a shear or rotational wave, and a compressional wave. The last one is the most significant 

one as far as the attenuation of a planes acoustic wave is concerned. The other waves are 

important in determining the disturbance produced by a test particle in the suspension as, 

we shall see in the next section. 

We decompose the average velocity amplitude in scalar and vector potentials as 

given by 

( > u =-VQ>+VxA. (6.35) 

Since the curl of a gradient of any scalar function is zero, A can be specified to within a 

gradient of an arbitrary scalar function. To remove this arbitrariness, an additional 

restriction is imposed that A be divergence free, i.e., V*A = 0. It may be noted that the 

vorticity amplitude equals -V 2 A. 

Introducing this decomposition in the momentum equation for the suspension 

(equation (6.18)) and rearranging yields 
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(6.36) 

Here, the vector identity, V2 a = V(V l a) - V x (V x a), is employed. Similarly, the 

energy equation (equation (6.30)) becomes 

-iw(pgC,)e(~)=reffV2(~)+(pgC,P-1(Y -1)) V2Q- 
e 

(6.37) 

In equation (6.36) both sides must vanish separately because a rotational vector field 

cannot balance an n-rotational field. Hence, with the right-hand side being zero, using the 

previously mentioned vector identity and VaA = 0 yields 

(6.38) 

with kfEM = 
iw(PO)m 

48- 

being the effective wavenumber for shear waves through the 

suspension. The subscript, EM, refers to the effective medium. 

The left-hand side of equation (6.36) being zero gives an expression for (T) in 

terms of the velocity potential: 
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[ - ‘w(Po), a- 
( > T= 

{;(c~Po/Y)m +(&?8? +$?f)}V2@] 

. ( Pok-09G)m ’ 

(6.39) 

Eliminating (T) f? om the energy equation for the suspension (equation (6.37)) by 

substituting the above result gives 

Q+(E-F+G)V2@-EFV4@=0, 

with 

E = (c2po’y)m i ( 4 - 

( > PO mm2 PO mu ( > 
Pv,eff + Tj Pefl 

) 

. 

F= 
lKeff 

@(PoCv >e 

(6.40) 

(6.41) 

(6.42) 

G= (p~c,B-‘(y - l))e( p”(ypFd)cv) 
/((Pg)m”l(pgcv)e). (6.43) 

m 

Equation (6.40) can be written in the form 

k;-MV2 + 1 
I( 

ktgMV2 , (6.44) 

so that @ = <DC + a, with 

V2 +kzEM oc = 0, (6.45) 
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V2 +k& at =O. (6.46) 

The effective wavennmbers for the compressional and thermal waves are given by, 

respectively, 

k-2 
l/2 

cEA4 =++G)++ (E-F+G)2 +4EF , 

k-2 
l/2 

tEM =+(E-F+G)-+((E-F+G)2 +4EF 
I 

. 

(6.47) 

(6.48) 

As mentioned earlier, the compressional wavenumber is the most important one as far as 

the propagation of the acoustic plane wave is concerned. The imaginary part of &EM 

gives the attenuation while o divided by the real part of kcEM gives the phase speed. 

6.1.4 An Effective-Medium Model: 

To determine the attenuation and phase speed, we must now estimate the various 

effective properties of the suspension. This requires determining the five coefficients: h,, 

I,,, XT, hd, and h,. Let us begin with h,, which represents the ratio of the average 

dilatation amplitude inside the particles to that in the suspension. 

The coefficient, h,,, is defined by equation (6.1 l), which is equivalent to 

(6.49) 

Here, we have introduced the conditionally averaged field. Thus (u) (XI X 1) the 

ensemble averaged velocity amplitude at point x, given that in all the ensembles used in 

the averaging a test particle is centered at x 1. I’( x 1) is the probability density for 
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finding a particle with its center in the vicinity of x1. For uniform, monodisperse 

suspensions P(X) = n = 34 , n being the number density of the particles and 4 

the particle volume fraction. 

We shall use an effective medium approximation for determining the conditionally 

averaged fields, and, hence, the use of the integrals, such as the one appearing on the 

right-hand side of equation (6.49). All effective medium approximations must satisfy the 

criterion that far from the test particle, i.e., for Ix-xl1 + a, the conditionally averaged 

fields,such as(u) (~1x1) must approach the corresponding unconditionally averaged 

fields, such as (u) (x) . On the other hand, for Ix-xl1 _ < a, i.e., for a point inside the test 

particle, the conditionally averaged fields must satisfy the equations governing the 

particle phase. The simplest kind of effective medium approximation, then, assumes that 

the conditionally averaged equation satisfies the suspending fluid equations for Q I r I R 

and the unconditionally averaged equations for the suspension for r 2 R. Here, r = Ix-xl/ 

is the distance from the center of the particle. Different effective medium approximations 

differ in their choice of R. Some investigators choose R = a, which eliminates the fluid 

region altogether. This makes the subsequent analysis very simple; but, unfortunately, 

the estimates obtained with R = a are typically inferior, and in some cases unphysical. 

For example, it may yield negative effective properties at high volume fractions. Other 

investigators choose R = a@ l/3 with incorrect reasoning that the volumes occupied by 



126 

the particle and fluid for T I R must be proportional to the volume fractions of the two 

phases. In the present study, we shall choose R to be given by 

R l- s(0) 1’3 
-= 
a ( 1 4 ’ 

(6.50) 

with S(0) the zero-wavenumber limit of the suspension structure factor, defined by 

S(O) = n I[ +-lo) - p(O)p, (6.51) 

where P(rj0) is the probability density for finding a particle near r given that there is a 

particle with its center at the origin. (Note that P( r[o) = 6(r) for Y I a.) The structure 

factor of the suspension can be determined experimentally by a light scattering technique; 

but in the absence of such information, one may choose S(0) to correspond to that of a 

hard-sphere molecular system for which the well-known Camahan-Starling 

approximation yields quite accurate estimates of the structure factor as a function of the 

volume fraction, 

s(0) = (hg4 
1+4~+4~2-4#3+#4’ 

(6.52) 

The effective medium radius, R, based on S(0) was first introduced by Dodd et al. 

(1995), who compared the results of rigorous multiparticle interactions for determining 

the short-time self- and gradient diffusivity of proteins in bilipid membranes with those 

obtained by the effective medium approximation and found very good agreement 

between the two. In the problems concerned with determining the collective mobility or 

the sedimentation velocity, where each particle is acted upon with a constant force, it was 
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shown in Sangani and MO (1997) that the conditionally averaged velocity has the correct 

leading order behavior at large r only when R is chosen according to equation (6.50). 

For small volume fractions, S(0) given by equation (6.52) behaves as 

and R + 2a. Thus, in “well-stirred” dilute random suspensions, the 

effective medium begins at r = 2a according to equation (6.50) and the fluid region a < r 

< 2a corresponds to the excluded region vohnne region. Note that the more usual choice 

ofR=a@ -l/3 would, on the other hand,?suggest that the effective medium at a very 

large distance from the test particle in a dilute suspension which is unphysical except for 

the situations such as dilute periodic or “well-separated” random suspensions defined by 

Jeffrey ( ) (For such arrays S(0) is small when 4 is small and equation (6.50) also gives 

.) Thus it is not surprising that R based on equation (6.50) will give 

better estimates of the effective properties at small to moderate volume fractions 

compared to those obtained with R = a4 -l/3 . Indeed, Sangani and MO (1997) have 

shown that the coefficients of corrections to the effective conductivity and 

elasticity obtained using equation (6.50) are much closer to the rigorous results for these 

coefficients obtained by detailed pair interaction calculations than those obtained with 

Before closing this brief review of effective medium approximations, we should 

perhaps note here one more class of effective medium approximations in the literature. 
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These approximations involve immersing a pair of particles in the effective medium. 

Examples are the calculations by Kim and Russel(l995) who estimated the permeability 

of a fixed bed of particles, calculations for the effective viscosity of suspensions with 

hard-sphere spatial distributions, and Ma et al. (1990) for the attenuation due to 

scattering. These calculations generally require far greater effort, comparable to direct 

multiparticle calculations, and do not necessarily yield superior estimates compared with 

the simple approximations based on a single particle. On the other hand, the single 

particle approximations will be inadequate for the suspension problems in which the 

changes in microstructure due to imposed flow and their effects, in turn, on the 

suspension properties must be addressed. 

Returning now to the problem of estimating coefficients h,, etc. using the effective 

medium model consisting of particle-fluid assembly of radius, R, imrnersed in a medium 

with the effective properties of the suspension, we write the velocity inside the test 

particle in terms of scalar and vector potentials as in the previous section. For the plane 

wave traveling along thex,-axis with (U)(X) = exp(ik,EM l x)el we have for Jx-xl1 

I a, 

(@cP)(~I~~) = exp(ikcEM l Xl)?inc2n+ l)APnPn(p)in(kcPr). (6.53) 

n=O 

(%P)(xlxl) = exp(ikcEA4 l X 1)Cin(2n+ 
n=O 

l)BPn Pn (L+n (ktPr) 3 (6.54) 
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(AP)(XI x1) = exp(ikcEA4 l Xl)~in(2n+l)CPnP,1(~)in(k,pr), (6.55) 
n=O 

where r =I- I X X 1 , p = co&l, 8 being the angle between x - x 1 and kcEM, j, is the 

spherical Bessel function of the first kind (regular at r = 0), and Pn is the Legendre 

polynomial of degree n (P’n is associated Legendre polynomial of degree n). Ap is the 

only nonzero (azimuthal) component of A. 

Similar expressions can be written for a < r < R for which the relevant 

wavenumbers in the expressions for <D,L, <D TV, and AL are, respectively, kcL , ktL , 

and ksL . Both the spherical harmonics of the first kind and second kind (corresponding 

to waves emanating from r = 0) must be included in the expression. This leads to a set of 

six unknowns for each mode n describing the motion in the liquid shell. Finally, for r > 

R, the potentials consist of the plane wave corresponding to the unconditional motion 

plus the outgoing wave with wavenumbers kcEM, ktEM, and ksEM . Thus a total of 

12 unknowns are needed in describing the motion for each mode n. These unknowns are 

determined from the boundary conditions of continuity of velocity, traction, temperature, 

and heat flux amplitudes at r = a and r = R. Note that the conditional density and 

temperature amplitudes can be determined from the expressions for (DC, Qt , and A 

using the expressions given in the previous section. We keep a total of Nmodes (typical 

calculation uses N = 5) and solve the resulting 12N equations numerically. 
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We now return to the calculation of h,. One must first substitute for 

Vwlp =- V2Qp = k,ZpcDcp + k2 CD rp rp in equation (6.49). One may now define 

the coefficient, qc, as 

&7c(@c)(x) = n !xBxll<a (%P)(xlxl)qxl)~ (6-W 

Similarly a coefficient, qt, is defined with 0, replaced by at . The integration in the 

above must be carried out over all x, such that (x-x1( I a. To convert this to an 

integration over r, we use the identity 

eXp[ikcEM l XI] = eXp[ikcEM l x]exp[- irk,+] 

= exp[ik,EM l x]fim(- l)m(2m + l)jm(kcr)Pm(,u)’ (6’57) 
= 

Now substituting acp form equation (6.53) into (6.56) to give, with zcEM 3 kcEMa, 

3 
vc= 2 2 2 (2n + l)APn [ZcP-h-l (z=P)jn (zcEM) 

zcE~ -zcp n=o 
(6 58) 

- GEMjn (zcP)jn-l (zcEM)] 

In the special case of n = 0, in-1 (z) should be replaced by cos(z)/z. Here we have used 

the solution of equation (6.53); the integral over the radius of the product of two spherical 

Bessel functions and ? is given by Gradshteyn and Ryzhik (1994). Using this result, one 

can simply write 
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Equation (6.39) shows that the temperature field is linear in @, and @ I . Following the 

notation of Epstein and Carhart (1953) and Allegra and Hawley (1972), where the 

temperature field is written as T = b,<D c + b, @ t, one finds that AT, as defined by 

equation (6.23), is given by 

AT = cbcP hEA )% + cbtf’ /bEAd h * (6.60) 

Note that the unconditionally averaged ( T> = bcEM (<D ,- ) because the unconditionally 

averaged (CD t ) = 0. 

The other h’s are evaluated in a similar manner and are inter-connected. The 

definition of 4 is first written as an integral similar to that in equation (6.49) for the 

component of the velocity inside the particle in the direction of the wave. The velocity 

inside the particles can now be split up into three parts (two velocity potentials and a 

rotational contribution), so that one can write 

Av =flc +/I?’ +n,A, (6.61) 

where e and e are the n-rotational and rotational field contributions, respectively. 

The h-rotational contributions to & are 

(6.62) 

and a similar expression for 1, @‘(j t pl us re ace zCp by ztp and Apn by Bp, ), where 

terms that give a spherical Bessel function of negative order are omitted. In deriving 

equation (6.62) use has been made of equation (6.57) and 
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exp[- ik,EM l s]V,(a(s) = V, {[- ikcEM l s]@(s)} 

+ ik cEMexp[- &EM l s]@(s) ’ 
(6.63) 

with s = x - x,. The divergence theorem is used to evaluate the integral of the first term 

on the right-hand side of equation (6.63); the second term is seen to simply lead to qC in 

equation (6.62). The rotational contribution to hv is 

ti = -?- 2 + 
zcEM n=~ 

+ l)CPnjn (ZsP)(jn+l (zcEM) + h-1 (zcEM)). (6.64) 

Here, a similar relation to equation (6.63) is used 

exp[ - ik,EM l s]V, x A(S) = V, x ([- ik,EM l s]A(s)} 

+ eXp[- ik,EM l S]ikcEM x A(S)’ 
(6.65) 

Recognizing’that the second term on the right-hand side does not contribute to the 

component in the wave direction of the velocity inside the particle, this term is left out in 

the evaluation of *. 

The result for hv can be used to determine other h’s as well. We notice that 

Ak = (bcP ibcEA&tc + (b,p /bcEM)A:f . 

Finally, hd, defined by equation (6.27), equals 

(6.66) 

ad =;1, +itf’+i+ +$, (6.67) 

where we have, again, made use of equation (6.63), with <D replaced by u. The result for 
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. 

(6.68) 

Qt. Again, Ad 1s obtained from ec by replacing Apn by Bpn , and zcp by ztp . Those 

terms which would give a spherical Bessel function of negative order at n I 1 are omitted 

from this formula. The evaluation of Ad is complete with 

a* d 

n(2n + 1) n(n - 1) 1 
(6.69) 

- (2n + 3)(2n - 1) XnJ + 2n - 1 xnP-2 ’ 

with the short hand notation 

x n,m G 
(6.70) 

+ %34 jn (ZSP >ih (GEM ))+ 

Again, the terms which give a spherical Bessel function of negative order at n = 1 are to 

be omitted. 

This completes the calculation of the attenuation. The attenuation is the real part of 

kc,??M, given by equation (6.47), the right-hand side of which contains the effective 



134 

medium properties that have been expressed in the unknown parameters, ;lp , etc. These 

parameters are calculated from the above expressions by solving first, at each n, for the 

coefficients, Apn , etc., from the boundary conditions at the particle and shell interfaces. 

. 

In the boundary conditions the effective medium properties show up as well (e.g., the 

effective viscosity and conductivity), so that this procedure is repeated until the h’s have 

converged. 

6.2 Attenuation Measurements in Concentrated Solid-Liquid 
Systems: 

In order to test the effective medium theory for concentrated slurries (solids 

volume fractions greater than about 10% by volume), attenuation measurements are 

performed in slurries of Potter’s beads in mixtures of glycerin in distilled water. 

The first set of measurements is actually performed on a dilute (5 % by volume) 

slurry over the entire experimental frequency range. Although this is not a concentrated 

slurry, these data are necessary in order to test the theoretical effective medium 

calculations. Any effective medium approach to the forward problem theory should 

reduce to the theory of Allegra and Hawley (1972) for small solids volume fraction. 

Having data at lower volume fractions, such as 5 %, allows for “tuning” the effective 

medium approach by providing a basis for comparison between the results of the Allegra . 

and Hawley (1972) theory, the effective medium approach, and experimental data. If the 

effective medium approach is correctly formulated, the attenuation spectra generated in 

all three cases should be essentially the same. Data are collected using both the 
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Toneburst and PulseLFFT techniques. The experimentally obtained attenuation spectrum 

is shown, together with results predicted by the theory, in Figure 6.1. 

Attenuation measurements are then made in slurries of 10 %, 15 Yo, 20 %, 30 %, 

40 %, 45 %, and 50 % solids by volume. Figures 6.2 & 6.3 show attenuation as a 

function of solids volume fraction in the Potter’s Beads slurries for several different 

frequencies. In this figure, the experimental data (markers) are also compared with 

results of theoretical calculations (solid curves) employing the effective medium 

approach using a mean particle diameter of 130 pm with standard deviation of 22 pm. 

The results for lower frequencies (1.5, 1.75, 2.0,2.25, and 2.75 MHz) are shown in 

Figure 6.2, and the agreement between theory and experiment is rather good up to a 

solids volume fraction of approximately 0.30. Agreement is better at frequencies above 

2 MHz than for those below. The experimental data at all frequencies appear to go 

through a maximum at solids volume fraction of approximately 0.30. It should be noted 

that similar behavior was seen by Atkinson (1991) who also observed a maximum at a 

solids volume fraction of approximately 0.30, in the attenuation versus concentration 

curves he obtained for 1 .O mm diameter glass beads in a fluidized bed. The attenuation 

data from this study then go through a minimum at a volume fraction of approximately 

0.4 or 0.5, and then the attenuation begins to increase again. This behavior is interesting 

in that the attenuation curves predicted by the effective medium theory show 

monotonically increasing behavior. There is definitely a change in the apparent slope of 

the theoretical curves, but there are no local maxima or minima. Nevertheless, it can be 

said that there is fairly good agreement between the effective medium theory and 
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Fi ure g 6.2: Attefluation as a function of solids volume fraction at various frequencies in 

shrrxes of Potter’s beads in glycerin/water. Data are shown for 1 5 MH~ 

(A); 1.75 bfHz (0); 2.0 MHz (+); 2.25 MHz (x); 2.5 MHz (0). ad 2.75 
MHz (V). The solid curves represent the results of the effectiv; medium 
cakulations using a particle size distribution with 65 pm mean radius and 
standard deviation of 11 pm. - E4172. 




