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3. Executive Summary 

The main objective of the project during the first period of funding is to develop an 
acoustic probe for monitoring particle size and volume fraction in slurries in the absence and 
presence of gas bubbles. The goals are to commission and verify the probe components and 
system operation, develop theory for the forward and inverse problems for acoustic wave 
propagation through a three phase medium, and experimentally verify the theoretical analysis. 
The acoustic probe will permit measurement of solid content in gas-liquid-solid waste slurries in 
tanks and pipelines across the Department of Energy complex. Particularly, in the second 
funding period, a prototype probe will be fabricated, commissioned and tested to demonstrate the 
capability to accurately measure slurries of one to five weight percent solids. 

Our research work has established a solid theoretical foundation for predicting 
attenuation and phase speed of acoustic waves propagating through solid-liquid suspensions, 
both in the presence as well as absence of gas bubbles. The theory is based on ensemble 
averaging of the equations of motion in the solid and liquid phases to obtain expressions for the 
“effective properties” of the slurry mixture in terms of coefficients which appear in the equations 
of motion for the solid particle. The attenuation theory accounts for losses due to viscous 
dissipation, nonadiabatic thermal effects, and incoherent scattering, and as a result can cover a 
wide range of frequencies and particle sizes. The theory also applies to polydispersed 
suspensions of spherical particles. The theory agrees with results obtained by previous 
investigations who examined limiting cases of thermal attenuation at small volume fraction 
(Allegra and Hawley, 1972) and viscous attenuation at large frequencies (Sangani, Zhang and 
Prosperetti, 1991). The comprehensive theory developed allows us to interrogate a relatively 
large range of particle sizes and physical properties. The attenuations predicted from theory are 
in generally good agreement with experimental data obtained by Pulse/FFT data acquisition 
methods for solid-liquid slurries of soda-lime glass particles of 14.9 microns and 65 microns 
mean radius and polystyene particles of 79 microns mean radius at concentrations ranging from 5 
to 50 percent solids by volume in water. The primary attenuation mechanisms for the former 
system are due to viscous and scattering losses, whereas, for the latter system, thermal and 
scattering losses dominate. Good comparisons are also obtained for 0.11 micron radius 
polystyrene particles in water from 5 to 50 percent solids by volume (Allegra and Hawley, 1992) 
where attenuation is dominated by thermal affects. 

Another goal of the project was to devise a technique to remove the noise introduced by 
the presence of a small amount of gas bubbles in the suspension to infer the properties of the 
solid-liquid suspension. Experiments and analyses were made for the solid-gas-liquid slurries of 
soda lime glass particles of 14.9 micron mean radius at 5 and 10 percent by volume in water with 
gas bubbles from 25 to 150 micron radius at low volume fractions. The primary conclusion is 
that the noise is significant at low frequencies near the bubble resonance frequencies and the 
noise is minimal at high frequencies. We show it is possible to estimate the effects of bubbles 
and eliminate the slight noise produced by bubbles at higher frequencies to yield the volume 
fraction of the particles. 
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An inverse theory was also developed to determine the concentration and solids particle 
size distribution in a solid-liquid slurry given the attenuation as a function of frequency using 
regularization techniques that have been successful for bubbly liquids. We have found that the 
success of solving the inverse problem is limited since it depends strongly on the physical 
properties of the particles and the frequency range used in the inverse calculations. We have 
determined bounds necessary for determining the particle size distribution. 

The first six months of the new funding period focused on demonstrating the capability to 
accurately measure volume fractions of dilute suspensions in the range of 0.004 to 0.050 percent. 
The Pulse/FFT method accurately measures attenuation for soda lime glass beads (14.9 micron 
radius), clays in water, and a Hanford surrogate salt simulant in this range. A linear relationship 
is obtained for attenuation versus volume fraction, and the theory accurately predicts the 
monodispersed soda-lime glass bead data. The linear relationship should readily permit 
application of the acoustic monitor to dilute slurries. 

The results of this project has relevance to the DOE mission of mobilizing, transporting 
and processing solid-liquid slurries by providing a reliable and safe monitor of percent solids in 
these slurries. Significant impact is expected for application as an accurate, safe and reliable 
monitor which is non-invasive is required to quantify across site transfer of dilute and 
concentrated slurries from storage tanks to processing facilities for high level waste treatment. 
Transfer of this technology to the DOE complex is the primary objective of the second funding 
period of this project whereby a proto-type acoustic monitor will be designed, commissioned and 
demonstrated to accurately measure low weight percent slurries in a flow loop and on a test 
transfer line. 

4. Research Objectives 

The primary objective of the research project during the first funding period was to 
develop an acoustic probe to measure volume percent solids in solid-liquid slurries in the 
presence of small amounts of gas bubbles. This problem was addressed because of the great 
need for a non-invasive, accurate and reliable method for solids monitoring in liquid slurries in 
the presence of radiolytically generated gases throughout the DOE complex. These 
measurements are necessary during mobilization of salts and sediments in tanks, transport of 
these slurries in transfer lines to processing facilities across a site, and, in some instances, during 
high level waste processing. Although acoustic probes have been commonly used for monitoring 
flows in single-phase fluids (McLeod, 1967), their application to monitor two-phase mixtures has 
not yet fully realized its potential. A number of investigators in recent years have therefore been 
involved in developing probes for measuring the volume fractions in liquid solid suspensions 
(Atkinson and Kytomaa, 1993; Greenwood et al., 1993; Martin et al., 1995) and in liquid-liquid 
suspensions (Bonnet and Tavlarides, 1987; Tavlarides and Bonnet, 1988, Yi and Tavlarides, 
1990; Tsouris and Tavlarides, 1993, Tsouris et al., 1995). In particular, Atkinson and Kytomaa 
(1993) showed that the acoustic technique can be used to determine both the velocity and the 
volume fraction of solids while Martin et al. (1995) and Spelt et al. (1999) showed that the 
acoustic probe can also be used to obtain information on the size distribution of the particles. In 
a recent testing of in-line slurry monitors with radioactive slurries suspended with Pulsair Mixers 
(Hylton & Bayne, 1999), an acoustic probe did not compare well with other instruments most 



probably due to presence of entrained gases and improper acoustic frequency range of 
interrogation. 

The work of the investigators cited has established the potential of the acoustic probe for 
characterizing/monitoring two-phase flows in relatively ideal, well-characterized suspensions. 
Two major factors which we judge has prevented its wide-spread use in the processing industry, 
particularly for dilute suspensions, is careful selection of the frequency range for interrogation 
and quantification and removal of the noise introduced by bubbles from the acoustic signal 
obtained from the suspension. 

Our research during the first funding period to develop an acoustic probe for solid-gas- 
liquid suspensions has resulted in a theory, supported by our experiments, to describe small- 
amplitude dilute suspensions (Norato, 1999, Spelt et al., 1999, Spelt et al., 2001). The theory 
agrees well with experimental data of sound attenuation up to 45 ~01% suspensions of 0.11 and 
77 micron radius polystyrene particles in water and 0.4 to 40 vol %, suspensions of 32 micron 
soda-lime glass particles in water. Also, analyses of our attenuation experiments for solid-gas- 
liquid experiments suggest the theory can be applied to correct for signal interference due to the 
presence of bubbles over a selected frequency range to permit determination of the solid-liquid 
volume fraction. Further, we show experimentally that a reliable linear dependency of weight 
percent solids with attenuation is obtained for low weight fractions at high frequencies of 
interrogation where bubble interference is minimal. 

There was a collaborative effort during the first funding period with the Pacific 
Northwest National Laboratories in that Dr. Margaret Greenwood was a co-investigator on the 
project. Dr. Greenwood provided a high level of experimental knowledge and techniques on 
ultrasound propagation, measurement and data processing. During the second funding period the 
slurry test loop at Oak Ridge National Laboratories under the direction of Mr. Tom Hylton will 
be employed to demonstrate the measurement capabilities of the proto-type acoustic monitor. 

5. Methods and Results 

Our research during the last three and one-half years has established a solid theoretical 
foundation for predicting attenuation and phase speed of acoustic waves propagating through 
solid-liquid suspensions, both in the presence as well as absence of gas bubbles (Spelt et al., 
1998; Spelt et al., 2001). The attenuation theory accounts for losses due to viscous dissipation, 
nonadiabatic thermal effects, and incoherent scattering, and as a result can cover a wide range of 
frequencies and particle sizes. The theory also applies to polydisperse suspensions of spherical 
particles. The theory agrees with the results obtained by previous investigators who examined 
limiting cases. For example, our theory agrees with that of Allegra and Hawley (1972) who 
considered only the case of thermal attenuation at small volume fractions and with Sangani, 
Zhang and Proseperetti (199 1) who considered only the case of viscous attenuation at large 
frequencies. The comprehensive theory developed allows us to interrogate a relatively large 
range of particle sizes or particle physical properties. The theory was also tested against the 
experimental data obtained by previous investigators (e.g. (Allegra and Hawley, 1972)) and in 
our laboratory. 
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Demonstration of our theory is accomplished experimentally with the set-up shown in 
Figure 1. An ultrasonic pulse generator (Panametrics 5052 PR) generates an electric pulse and 
sends it to the emitting transducer. The actuated emitting transducer transmits an acoustic pulse 
through the sample actuating the receiving transducer, where the signal is transmitted to and read 
by an oscilloscope (Lecroy 93 1 OA). An FFT analysis of the amplitude is performed on the spike 
pulse, outputting voltage as a function of frequencies of the pulse. This procedure is performed 
on the suspending liquid, and the solid-liquid or solid-gas bubble-liquid slurry. The voltages are 
used to calculate attenuation. 

Comparison between the theory and the experiments is shown in Figures 2-6. Figure 2 
shows attenuation as a function of frequency for glass particles with about 15 micron radius at 5 
and 10 percent volume fractions. For these particles the viscous and scattering losses are the 
primary attenuation mechanisms for the range of frequency considered in the figure. Figure 3 
shows the comparison for about 77 micron radius polystyrene particles in water at 5 percent 
volume fractions. For this system the thermal attenuation is important at smaller frequencies and 
scattering at higher frequencies. The two theoretical curves correspond to assuming that (i) the 
suspension is monodisperse and (ii) the particle size distribution is Gaussian with a standard 
deviation of 1 micron. The peaks seen in the figure correspond to resonances in shape 
oscillations. Figure 4 shows attenuation as a function of volume fraction for 63 micron glass 
particles in water at various frequencies. The viscous and scattering losses are important in these 
relatively dense suspensions. Good agreement here suggests that the theory is reasonably 
accurate in predicting the volume fraction dependence even at high volume fractions. Figure 5 
shows comparison with the data for 0.11 micron polystyrene particles in water obtained by 
Allegra and Hawley (1972). For this system the attenuation is dominated by the thermal effects. 

In Spelt et al. (1999) we investigated in detail the inverse problem so determining the 
particle size distribution of the particles given the attenuation as a function of frequency. We 
devised and compared various analytical techniques for solving the inverse problem and 
determined the conditions, e.g. the particle size and frequency range, necessary for determining 
the particle size distribution. 

As mentioned earlier, one of the aims of our project was to devise a technique whereby 
the noise introduced by the presence of small amount of gas bubbles in the suspension can be 
removed to infer the properties of solid-liquid suspension. We have done detailed analysis of the 
noise introduced by bubbles. The primary conclusion is that the noise is significant at 
frequencies that are not much greater than the resonance frequencies of bubbles. Beyond the 
resonance frequency of the bubbles, the attenuation due to the presence of bubbles decrease with 
the increasing frequency while the attenuation due to solids increase with the increasing 
frequency. Thus the noise is minimal at sufficiently high frequencies. It is possible then to use 
the data at low frequencies to estimate the effects of bubbles and eliminate the slight noise 
produced by the bubbles at higher frequencies to yield volume fraction of the particles. We have 
illustrated this through our experiments on solid-liquid suspensions sparged with bubbles. The 
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Figure 1. Schematic diagram of Pulse/FFT setup used to measure attenuation. A 
spike pulse is generated by the pulser/receiver and is transmitted to the 
transmitting transducer which is in contact with the sample. After 
traveling through the sample and being acquired by the receiving 
transducer the pulse is routed through the pulser/receiver to the 
oscilloscope. 



Figure 2. Comparison between experimental results 
and forward problem theory predictions for 
the attenuation versus frequency curves for 
soda-lime glass slurries at 5% and 10% 
solids by volume. The experimental solids 
size distribution has a mean radius of 14.9 
microns with standard deviation of 3.56 
microns. The forward theory predictions are 
based on a log-normal distribution with a 
mean radius of 14 microns and standard 
deviation of 7 microns. 

Figure 3. Experimental and theoretical results for the 
attenuation in a mixture of polystyrene 
particles (mean radius 79 + 3 micron and 1.8 
micron standard deviation) in water at 0.05 
volume fraction. Circles are experiments, 
solid and broken lines are the theory for 
monodispersed particles of 79 microns and 
77 microns radius, respectively. 



Figure 4. Experimental and theoretical results for the 
attenuation as a function of volume fraction for 
different frequencies, using glass particles (63 + 
8.5 microns radius) and glycerol. Markers: 
experiments, and solid lines: theory for 
monodispersed particles. Frequencies: 2.5 MHz 
(A); 3.5 MHz (0); 4 MHz (+); 4.5 MHz (x); 
5 MHz (0). 

Figure 5. Attenuation as a function of solids volume 
fraction for the data of Allegra and Hawley 
(1972). The symbols represent experimental 
data at 3 MHz (A); 9 MHz (0); 15 MHz (+); 
21 MHz (x); 39 MHz (V). The curves 
represent the results of the effective medium 
approach used in this study. 
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Figure 6. Results of predicting the attenuation due to the presence of bubbles in a solid- 
gas-liquid slurry and simply subtracting that attenuation from the total 
attenuation. The symbols represent experimental data for the solid-liquid and 
solid-gas-liquid slurries and the difference after subtracting the bubble 
attenuation. 
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preliminary results have been presented in the PhD dissertation of the student supported by the 
research (Norato, 1999); a more complete work will be submitted for publication in the near 
future. Figure 6 shows a comparison between theory and experiments for a gas-solid-liquid 
system. Note that the attenuation as a function of frequency goes through a minimum as the 
attenuation due to bubbles diminish while that due to solids increase with increasing frequency. 

The above mentioned work deals with solids weight fraction above 5 percent. Our 
current activities extend the method to dilute suspensions in the weight percent range of l-5 
percent. We have conducted experiments for these low weight percents. The results are shown 
in Figures 7-9. We note from Figure 7 that the experimental data for soda-lime glass beads are 
in a reasonably good agreement with the theory based on monodispersed suspensions with no 
adjustable parameters. Figures 8 and 9 show that attenuation is significant for the entire range of 
volume fractions. Figure 9 shows results for a crystallized salt solution prepared according to 
surrogate protocol procedures for average Hanford supernate containing suspended salt particles 
(Glocar et al., 2000). These results show that with suitable calibration of the particle size, it 
would be possible to determine the volume fraction of particles from such attenuation frequency 
data. In principle only one calibration point would be needed, as a linear relationship appears to 
hold. 

6. Relevance, Impact and Technology Transfer 

The following answers the nine questions posed for this section. 

a. This scientific work has direct application to monitor, in real time, solid-liquid 
slurry suspensions in the presence of gas bubbles at volume fractions of solids from 0.005 to 
0.50. Monitors can potentially be installed both on transfer lines, in a non-invasive manner, or 
in-tanks through riser entry ports. 

b. This new technology has the potential to improve cleanup approaches and 
significantly reduce future costs, schedules and risks and meet DOE compliance requirements in 
the following ways: 

b.1) By assuring uniform suspensions of solids through a tank during mobilization, 
sluicing, or emptying of tank salts and sediments. Time and costs to execute these 
operations will be minimized. 

b.2) Transfer of low weight percent slurries in transfer lines from DOE operated tank 
farms to a contractor staging tanks for processing can be done in an accurate 
manner. This assurance will permit compliance of schedule requirements and 
appropriate guarantee of required and expected material transfers. 

b.3) The monitor can be employed to determine onset of transfer line plugging to 
prevent such occurrences and alert personnel for quick and appropriate response 



10 

1.5x10' 

FREQUENCY (Hz) 

Figure 7. Attenuation versus frequency for slurries of 15 micron glass particles in water at 
various weight percent solids. The comparisons of theory (solid lines) with 
experiments (symbols) are given in ascending order for 1 .O, 2.5, 5.0 and 12.0 weight 
percent solids. 



11 

,’ 
,.’ 

,*” 

/’ 

A. 
1 ” 

_,I’ 

Figure 8. Attenuation versus weight fraction for slurries of 16 micron glass particles in 
water at three frequencies. Data shown with symbols are compared with a linear 
fit shown as solid lines. The curves in ascending order are for frequencies of 8, 
10, and 12 MHz. 
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Figure 9 Attenuation versus weight fraction for the crystallized salt solution 
at three frequencies. The frequencies studied are (0) 12 MHz (x), 
10 MHz, and (f) 8 MHz. 
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b.4) The monitor can be used to assure homogeneous suspensions of a mixture of 
solids in processing vessels during HLW and LAW treatment, for example, to 
guarantee glass former slurries uniformity for feeding melters. 

C. The continuation of the project during the second funding period will result in a 
proto-type monitor which will be demonstrated at the ORNL flow loop. Also, efforts will be 
made to test it at the Hanford site. This effort should be completed by 9-30-03. Rapid 
deployment could follow subsequently pending success and availability of funds. 

d. The project impact at Syracuse University resulted in continuation of this 
scientific effort leading to the proto-type development. The University infrastructure to conduct 
this research has improved through equipment acquisition and laboratory development. We have 
graduated one PhD, one MS and trained during the first funding period. We have had a 
collaboration with Dr. Margaret Greenwood from PNNL during the first funding period and a 
two-way transfer of knowledge was accomplished. We have an agreement with ORNL to test 
the prototype monitor on the ORNL two phase flow loop during the second funding period, and 
this should provide a quality test facility and personnel for this aspect of the project. See section 
c above for answers to the remaining questions. 

e. Larger scale proto-type monitor development and testing are warranted, required 
and in progress with the second funding period of this project. The knowledge attained during 
the first period of funding is the basis for the proto-type monitor development and expected 
success in demonstration and future deployment. 

f. Our collaboration with PNNL scientist Dr. Margaret Greenwood resulted in 
training Dr. Michael Norato (during his Ph.D. thesis work on the project) and transfer of 
knowledge. Our subsequent improvements of the monitor using the Pulse/FFT provides another 
technique PNNL can employ for their acoustic ultrasound investigations. Our particle size 
measurement and estimation techniques from attenuation measurements also should be of benefit 
to PNNL activities in this application. 

g- We have increased out understanding in this area by improving our knowledge to 
monitor (experimental developments) and interpret attenuation signals (theoretical 
developments) heretofore not as accurately possible. These results provide the basis for 
continued development of the acoustic monitor. 

h. 
include: 

The hurdles to overcome are the topics of the current funding period. These 

h.1) Development of software and data acquisition system to determine volume 
fraction of particles. 

h.2) Construct, test and commission in-line/at-tank acoustic monitor. 

h.3) Conduct flow loop tests of monitor at ORNL and refine as needed. 
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h.4) Test refined monitor at Hanford. 

i. Ms. Judith Ann Bamberger (509-37%3898-FON; Judith.bamberger@,pnl.gov) 
offered to collaborate on the project. Should we have success on h.3 above she offered to assist 
in implementation/testing at a Hanford test loop. Dr. Rajiv Srivastava, Florida International 
University, also offered to collaborate in ways yet to be determined. 

7. Project Productivity 

The project accomplished most of the targeted goals. We requested and received a one- 
year no cost extension on the project due to typical delays in progress. We were not able to 
develop a theory to invert the acoustic signal to permit unambiguous prediction of the solid 
particle size distribution, along with the volume fraction. We show regions of physical 
properties and signal interrogation ranges where this may be possible. The results we have 
obtained were, however, quite valuable and are the basis for the continuation as described above. 

8. Personnel supported: 

8.1. P.I. Prof. Lawrence L. Tavlarides, Syracuse University 
Co-P.I.: Professor Ashok Sangani, Syracuse, University 
Co-Investigator: Dr. Margaret Greenwood 
Post-Doctoral: Dr. Peter Spelt, currently at Imperial College, London, UK 
Ph.D. Student: Dr. Michael A. Norato, currently at Westinghouse SRTC 
M.S. Student: Mr. Mark Hedges, currently at Kionex, Inc. 
Research Associate: Mr. Alexander Shcherbakov, on leave N.T.U. Kiev, Ukraine 
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11. Transitions 

The work is being transitioned through the second funding period. 

12. Patents 

None 

13. Future Work 

Continuation of funding in progress. 
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Ensemble-averaged equations are derived for small-amplitude acoustic wave propaga- 
tion through non-dilute suspensions. The equations are closed by introducing effective 
properties of the suspension such as the compressibility, density, viscoelasticity, heat 
capacity, and conductivity. These effective properties are estimated as a function 
of frequency, particle volume fraction, and physical properties of the individual 
phases using a self-consistent, effective-medium approximation. The theory is shown 
to be in excellent agreement with various rigorous analytical results accounting for 
multiparticle interactions. The theory is also shown to agree well with the exper- 
imental data on concentrated suspensions of small polystyrene particles in water 
obtained by Allegra & Hawley and for glass particles in water obtained in the present 
study. 

1. Introduction 

We consider the problem of predicting the attenuation of sound waves propagating 
through suspensions. When the particle volume fraction in the suspension is very small 
the particle interactions may be neglected and the attenuation can be determined as a 

1 function of the sound wave frequency by examining the interaction of a single particle 
with the incident wave as has been done by a number of investigators in the past. For 
example, Carstensen & Foldy (1947) examined the problem of dilute bubbly liquids 

. while Epstein & Carhart (1953) and Allegra & Hawley (1972) examined, respectively, 
the case of dilute emulsions and dilute slurries. Since the attenuation behaviour is 
strongly dependent on the particle radius, the attenuation-frequency data for dilute 
suspensions may be used for determining the particle size distribution as shown by 
Duraiswami, Prabhukumar & Chahine (1998), who considered the case of bubbly 
liquids. The corresponding problem for dilute suspensions has been examined by 
Spelt et al. (1999). 

The particle interactions can have a significant effect on the acoustic behaviour 
of non-dilute suspensions and at present rigorous calculations accounting for these 
interactions are lacking. Direct attack on the problem, i.e. solving the linearized 

t Present address: Centre for Composite Materials, Imperial College, Prince Consort Road. 
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$ Author to whom correspondence should be addressed: e-mail asangani@syr.edu 



52 P. D. M. Spelt and others 

energy, momentum, and continuity equations for multiparticle systems, appears to be 
a daunting task even with the development of efficient computers. Thus, it is necessary 
to develop a suitable approximate theory and to assess its validity by comparison 
with the experimental data obtained with different kinds of suspensions. 

We use the method of ensemble averaging to derive linearized continuity, mo- 

. 

mentum, and energy equations for the suspensions. These equations are closed by 
introducing effective properties of the suspensions, namely the effective conductivity, 
viscosity (or viscoelasticity), compressibility, and density. To estimate these properties 
as a function of frequency and physical properties and volume fractions of the in- 
dividual phases, we must determine the relation between the conditionally averaged 
temperature and velocity fields inside a test particle and the temperature and velocity 
fields of the suspension. A self-consistent, effective-medium approximation is used for 
this purpose. 

The predictions of the theory are compared with several known rigorous analytical 
calculations accounting for multiparticle interactions in dense suspensions in the 
limiting case of relatively small frequencies for which the acoustic wavelength is large 
compared with the particle radius. At very low frequencies, for which the thermal and 
viscous (Stokes) lengths become large compared with the particle radius, we expect 
the velocity and temperature fields to satisfy, respectively, the Stokes and Laplace 
equations. The effective properties such as the viscosity, conductivity, and permeability, 
for monodisperse suspensions in this limit are well-established (e.g. Ladd 1990; MO 
& Sangani 1994). It is shown that the effective-medium approximation is in excellent 
agreement with these results. For moderate frequencies, at which the Stokes layer is 
very small compared with the particle radius and the wavelength is large compared 
with the radius, the velocity field satisfies the Laplace equation outside the Stokes 
layers. Added mass and Basset force coefficients, which contribute to the effective 
density of the suspension, have been determined by Sangani, Zhang & Prosperetti 
(1991) for this limiting case. Once again, the effective-medium predictions are shown 
to be in excellent agreement with these rigorous calculations. 

We also compare the predictions of the theory with the experimental data on 
attenuation. Probably the best data in the literature are due to Allegra & Hawley 
(1972) who measured attenuation in a polystyrene-water system at frequencies for 
which the thermal effects contribute most significantly to the attenuation. Our theory 
is shown to be in excellent agreement with their data. To test the theory for the 
cases in which the attenuation due to viscous and scattering effects is significant, we 
have measured attenuation in glass-water and glass-water/glycerol systems at small 
to intermediate frequencies. For smaller particles, for which the viscous attenuation 
dominates, the theory and experiments are in very good agreement with each other. 
For larger particles, for which the scattering dominates, the agreement is very good 
only up to about 30% volume fractions. 

. 

The organization of the rest of the paper is as follows. In $2 we derive rigor- 
ous average equations for linear acoustics and introduce effective properties of the 
suspensions. In 5 3 we compare the predictions of the effective-medium theory with 
various analytical results and show how the effective properties vary with the fre- 
quency and particle volume fraction. Section 4 describes the experimental set-up used 
for obtaining attenuation data. Section 5 gives a comparison between the theory 
and various experimental data. In $6 we present some results on the phase speed 
of sound waves, and discuss the possibility of using phase speed measurements for 
measuring particle volume fractions. Finally, 57 summarizes important findings of 
the study. 

_-. - _-._.-___----_____ 
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2.1. Linearized equations 

Let us consider a small-amplitude plane acoustic wave with frequency o propagating 
through a uniform, monodisperse suspension of solid particles of radius a. We write 
the density as p + p’eeiDf, the temperature as T + T’eel”t, and the velocity as rcee”‘*. 
A note regarding the notation: both the equilibrium and small fluctuation values are 
important for the density and temperature and we therefore use primes to denote the 
amplitudes of the fluctuations in these quantities. Only the amplitudes of the velocity 
and the other field variables (stress, heat flux, etc.) will be needed, and we denote the 
amplitudes of these quantities without a prime so that the resulting equations look 
less cluttered. When the amplitudes p’, T’ and u are small, the terms involving the 
products of these quantities can be neglected from the continuity, momentum, and 
energy equations to obtain the following linearized equations: 

-iwp’ + pV . u = 0, (1) 

.- 

.* 

-iopC,. T’ = -2 - pC,p-‘(y - 1)V. U. (3) 

(2) 

In writing the last equation, we have made use of the linearized equation of state to 
eliminate the pressure from the usual energy equation. The stress tensor amplitude 
Dij for a Newtonian fluid is given by 

where d,j is the deviatoric stress amplitude 

(4) 

(5) 

C,: is the constant volume specific heat, “J = C,/C, is the ratio of specific heats, ,U 
and pti are, respectively, the shear and bulk coefficients of viscosity, c is the adiabatic 
sound speed through the fluid, and p is the coefficient of thermal expansion. Note 
that the first and the third terms inside the square brackets on the right-hand side of 
(4) are related to the thermodynamic pressure amplitude: 

Finally, qj = -tidT’/axj in (3) is the heat flux amplitude, K being the thermal 
conductivity. 

Inside the solid particles equations similar to (l)-(3) apply with the stress tensor 
given by (Landau & Lifschitz 1986) 

oij = [{ !+- { p(ij-;‘cu}Tj &j+&j, 

where 1 and p are the Lame constants for the particles which are assumed to be 
perfectly elastic. Note that for solids it is customary to write the stress in terms 
of displacement instead of velocity. For small-amplitude oscillatory motions the 
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amplitudes of the two are, of course, related by a factor of I/(-io), and this fact has 
been used in writing the first term on the right-hand side of the above equation. Note 
also that the factor x+(2/3@ is the bulk modulus of the solid. Thus, the isotropic part 
of the stress tensor represented by the terms inside the square brackets in the above 
equation arises from the density and temperature changes in the solid. The deviatoric 
stress tensor Jli is defined in the manner similar to (5), with the fluid viscosity replaced 
by the ‘particle viscosity’, ,up = p/(-io). Note that the Lame constant ,E is sometimes 
referred to as the shear modulus. 

The above linearized equations must be solved subject to the boundary conditions 
of continuity of velocity, temperature, heat flux, and traction (Oijnj, nj being the unit 
outward normal at the particle surface) at the interface between the particles and the 
fluid. In concentrated suspensions particle interactions are significant and the rigorous 
evaluation of sound speed and attenuation through the suspension would require the 
very difficult task of solving the above set of equations in a domain containing many 
particles. 

The problem as outlined here involves a number of variables. It may be possible to 
simplify it in some limiting cases of small or large frequencies or when the physical 
properties (e.g. density and compressibility) of the two phases are widely different as 
in the case of acoustic propagation in bubbly liquids (Prosperetti 1984). However, 
it is desirable to measure the attenuation over a wide range of frequencies in order 
to characterize the suspension, and for most solid-liquid suspensions the ratio of 
physical properties does not differ significantly from unity. Thus, it is necessary to 
solve the full problem as described above. 

2.2. Ensemble-averaged linearized equations for suspensions 

In this subsection we ensemble-average the equations for the amplitudes of density, 
velocity, and temperature in the fluid and solid phases, and obtain thereby the 
linearized continuity, momentum, and energy equations for the suspension. It will be 
shown that the resulting equations have a form similar to the equations for a single 
phase provided that the suspension is assigned suitable properties, which we refer to 
as the effective properties of the suspensions. An important outcome of the averaging 
process will be that it will yield rigorous expressions for various effective properties of 
the suspension. Unlike the case of single-phase fluids, the effective properties will be 
seen to be functions of the wave frequency, and the equations we derive are therefore 
restricted to small-amplitude sinusoidal acoustic waves. 

Let us denote by g(x) the particle indicator function defined to be unity when the 
point x is inside any of the particles and zero when x is in the fluid. The properties 
and field variables of the liquid and particles will be denoted by subscripts 1 and p, 
respectively. The ensemble-averaged variables will be denoted by angular brackets. 

Multiplying the continuity equation for the liquid by the liquid indicator function 
1 - g and for the particle by g, adding the two, and averaging the resulting equation 
we obtain the continuity equation for the suspension: 

-iw(p’) +pj((l -gg)V.q) +pp(gV.up) = 0. (8) 

The last two terms on the left-hand side of the above equation must now be expressed 
in terms of the divergence of the average velocity, i.e. V. (u), so that the resulting 
equation resembles the continuity equation of a single-phase medium (cf. (1)). We 
begin with the identity 

Pl((l -dV*ur) +PpW’qJ = P/V. (4 f(P, -PdkV*~p) +P/((ur -qJPVgj. (9) 
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The gradient of the indicator function is zero at all points except at the particle-fluid 
interface where it is proportional to the Dirac delta function owing to the step jump 
in g across the particleefluid interface. More specifically, 

. . vg = -n6(x - XJ, (10) 

where x = x,~ represents the surface of the particles, 6 is the Dirac delta function, and 
n is the unit normal vector, pointing into the fluid, at the particle surface. 

Because the velocity is continuous across the solid-fluid interfaces, the last term 
in (9) vanishes; the second term on the right-hand side contains an as yet unknown 
quantity, (gV . up), which is related to the average amplitude of the dilatation rate 
inside the particles. We shall restrict our analysis to the suspensions which are 
isotropic on a macroscale. For such suspensions the above quantity will be expected 
to be proportional to the amplitude of other scalar quantities such as V * (u), the 
average amplitude for the mixture dilatation rate. We therefore introduce the closure 
relation 

(g(x)(V * qJ4) = 4&V * (4bL (11) 

where C$ is the volume fraction of the solids. The passage of a wave will induce 
non-zero amplitudes of other scalar quantities such as (r’) and (~kk) also, and one 
may write a more general expression in which the average particle dilatation rate 
is expressed as a linear combination of all these scalar variables. In that case one 
must determine separately how variation in temperature, pressure and density affect 
separately the dilatation inside the particles. However, since all these scalar variables 
will be related to each other through algebraic relations that depend on the frequency 
and effective wavenumbers for the special case of sinusoidal acoustic waves, it is 
unnecessary to decompose the particle dilatation into various terms. Likewise, the 
dilatation rate for particles may also depend on the higher-order scalar derivatives 
such as V2V * (u). Since the average equations for the suspension are expected to obey 
wave equations, the Laplacian of the average dilatation rate can always be written 
in terms of the dilatation rate and the effective wavenumbers. Thus, it will suffice 
to use (11) for the dilatation rate inside the particles keeping in mind that I.,, must 
be evaluated such that it accounts for not only the first derivative of the suspension 
velocity, but also its higher-order derivatives and temperature and pressure. The 
calculation for A,, to be presented in the next section does account for all these effects. 

We note that in the present study we are interested in deriving a dispersion relation 
for the passage of small-amplitude acoustic waves through a suspension, and not 
a set of average equations valid for all suspension flows. The latter can indeed be 
a daunting task as equations such as (11) will not apply to the general case for 
which, as mentioned above, the effects of temperature, pressure, etc. must all be 
written separately, and the closure relation will possibly also include the higher-order 
derivatives. The procedure, however, is general enough in the sense that it can be used 
to determine the dispersion relation for other small-amplitude acoustic problems. For 
example, it can also be used for determining the dispersion relation for fluid-saturated 
porous media, which are sometimes modelled as fixed beds. Note that for the fixed 
bed case although the average particle velocity (u,) = (gz+,)/4 is zero, the left-hand 
side of (11 j, and hence &, are non-zero. The radial oscillations of the fixed particles 
will contribute to A,, in such a situation. Note that V * (u) is non-zero in all acoustic 
problems. 

Substituting for (gV * u,) from (11) into (9) yields the continuity equation for the 

_.- _-_. -_ 
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suspension given by 
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-k>(p’) + P‘.~>V * (u) = 0, (12) 
with the effective equilibrium density of the suspension to be used in the suspension 
continuity equation, i.e. P(~,~,, given by 

PC,.@ = Pi + (Pp - P/h%. (13) 

Physically, j.,, represents the ratio of average dilatation amplitude in the particle phase 
to that in the fluid-particle mixture or the suspension. This coethcient will depend, in 
addition to wave frequency, on the compressibilities of both phases, volume fraction, 
spatial distribution of the particles. and other variables appearing in the governing 
equations listed in the previous subsection. Thus, we see that, in general, the effective 
equilibrium density of the suspension to be used in the suspension continuity equation 
cannot be given by some arbitrary mixture rule, e.g. the volume-averaged density or 
the mass-averaged density. An approximate scheme for estimating i,,, will be described 
in $2.4. 

We now proceed to derive the momentum equation for the suspension starting 
from (2) and its counterpart for the particles. Using the same procedure as in the 
continuity equation we obtain 

The effective (equilibrium) density of the suspension to be used in the momentum 
equation, p,,,.,, is given by 

Pn1.e = pi + (pp - p,k@, (15) 
with the coefficient L,. defined by 

q%(Z~)(-~, = (gW,(x)). (16) 

Physically, i,. represents the ratio of average velocity amplitude inside the particles 
to that in the suspension. Once again this coefficient, and other such coefficients to 
be introduced in this subsection, will: in general, depend on complex multiparticle 
interactions, and the details of its evaluation will be described later. 

The right-hand side of (14) can be simplified using the identity 

=(8~~~~)+((1-g)~)+((“ij,,,-~jj,,) 8). (17) 

The last term in the above equation, being related to the jump in the traction 
across the interface, vanishes owing to the boundary condition ofj,pnj = gij,/ptj at the 
particle-fluid interface. Thus, we see that the right-hand side of (14) simply equals 
the divergence of the average stress in the suspension, i.e. the momentum equation 
for the suspension is given by 

We must supplement the above momentum equation with an expression for the 
average stress. The linearity of the equations implies that the stress amplitude will be 
linear in the gradient of average velocity amplitude and (T’). 



Attenuation qf sound in concentrated suspensions 57 

Let us first consider the isotropic part of the average stress or, equivalently, the 
stress trace. Multiplying the isotropic part in (4) by 1 - g and that in (7) by g and 
averaging, we obtain 

with 

and 

(c’py-‘je = c’f~,/:‘~ + (PA,, [{I + 2fi,‘3} - cfp,/:‘,] , (20) 

P,:,e = ,&A 1 - 4Q, (21) 

The coefficient A, was defined earlier (cf. (11)). je7, on the other hand, is a new 
coefficient which is defined as the ratio of average temperature amplitude inside the 
particles to that in the mixture, i.e. 

42, (7%) = (g(x) q4). (23) 

Both the effective ?p/y and the bulk viscosity of the suspension depend on the 
coefficient A,,. This is not surprising since both depend on the average dilatation 
amplitude inside the particles. The result that the effective bulk viscosity ,LL[,,~ of the 
suspension depends only on the bulk viscosity of the fluid may appear strange at 
first sight, but it is really a consequence of the way the isotropic part of the stress is 
defined for the liquid and solids (cf. (4) and (7)). The stress arising from the thermal 
expansion or, equivalently, temperature fluctuations depends on p(~j- l)C,./PT of the 
two phases and the relative temperature fluctuations in the two phases. 

Since the deviatoric stress amplitudes in the individual phases depend only on the 
velocity gradient amplitude, we expect the average deviatoric stress to be linear in the 
gradient of average velocity amplitude. It also must be traceless. If we further assume 
that the suspension is macroscopically isotropic, then the average deviatoric stress is 
characterized by a single effective (shear) viscosity, ,np. Thus, we write 

(djj) = pe 
( 
;,‘:! + ?;1:.j’ - gj,v. tu,> 

’ I I (241 

To obtain an expression for the effective viscosity we need to evaluate only one 
component of the average deviatoric stress. We shall take, without loss of generality, 
the mean velocity amplitude to be given by 

(u)(x) = _veikx = -ik,,eikcc’x, (25) 

where k,,, is the effective wavenumber vector for the compressional wave through 
the suspension. We shall choose this vector to be aligned along the xl-axis. The 
11 -component of the deviatoric stress is given by 

(26) 

The last term on the right-hand side of the above equation, being related to the 
dilatation amplitudes, can be readily related to the coefficient i,,, introduced earlier. 
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The first term on the right-hand side can be expressed in terms of a coefficient & 
defined by 

(27) 

With this definition it is straightforward now to relate (dli) to the gradient in velocity 
amplitude : 

@ll) = 2 h + 4Ad (&J - /L,)] tj$ - + [,u, + @,, (pLp - cll)] !!i!!$ (28) 

Substituting for (u) from (25) in (28) and in (24) with i = j = 1 and comparing the 
resulting expressions yields the following expression for the effective viscosity: 

PC’ = PI + $&p - PII (3Ll- &) . (29) 

Finally, the energy equation for the suspension, obtained by averaging 1 - g times 
the energy equation for the liquid plus g times that for the solid, is given by 

-iw(pC,~)r(T’) = -f#$ - (pC,p-‘(7 - l)),,, V - (u). 
‘J 

Here an argument similar to (17) has been used to simplify the energy-flux term 
(thereby using the boundary condition at the particle surface that the heat flux is 
continuous). In (30) the effective heat capacity of the suspension is given by 

bc,>e = d-c,/ + 61-T (&c~,p - !&,i) (31) 

with AT defined by (23). The effective property (pC,(y - l)p-‘)e,, appearing in the last 
term on the right-hand side of (30) is related to A,, and the expression for evaluating 
it is obtained by replacing 1-r in (22) by A,. 

The average heat flux amplitude is written as 

(32) 

with the effective conductivity 

ti, = ti[ + $6, (Kp - q) ) (33) 

where the coefficient A, is the ratio of the average temperature gradient amplitude 
inside the particles to that in the suspension, i.e. 

(34) 

In summary, the continuity, momentum, and energy equations for the suspension 
are given by (8), (18) and (30), the average stress tensor by (19) and (24), and the 
average heat flux by (32). These equations resemble the equations for the single 
phase given in # 2.1 with suitably defined effective properties of the suspension. It 
must be noted that these equations are rigorous for small-amplitude sinusoidal waves 
through any suspension. The effective properties of the suspension will be functions 
of frequency and physical properties of the two phases as well as the microstructure 
of the suspension. Note also that properties such as pc,@, the effective density to 
be used in the suspension continuity equation, will not depend only on the density 
and compressibility of the two phases but also on their thermal properties since its 
determination will require solving all the microscale equations simultaneously. 

.- 
----1 
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2.3. Wave equations ,fiw the suspension 

59 

To find an expression for the attenuation of sound waves in a suspension it is 
necessary to derive wave equations from the linearized acoustic equations for the 
suspension as was done by Epstein & Carhart (1953) for pure liquid. We shall follow 
that derivation closely here. As shown by these investigators the acoustics equations 
permit three waves: a thermal wave, a shear or rotational wave, and a compressional 
wave. The last one is the most significant as far as the attenuation of a plane acoustic 
wave is concerned. The other waves are important in determining the disturbance 
produced by a test particle in the suspension as we shall see in the next subsection. 

We decompose the average velocity amplitude in scalar and vector potentials, given 
by 

(u) = -V@ + v x A. (35) 
Since the curl of a gradient of any scalar function is zero, A can be specified to within 
a gradient of an arbitrary scalar function. To remove this arbitrariness an additional 
restriction is imposed that A be divergence free, i.e. V * A = 0. It may be noted that 
the vorticity amplitude equals -V’A. 

Introducing the decomposition in the momentum equation for the suspension (18), 
and rearranging, we obtain 

= V x [iop,,.,A - p(,V x (V x A)] (36) 

Here, we have used the vector identity V’a = V(V . a) - V x (V x a). The energy 
equation (30) becomes 

-ic0(pC,.),(T’) = K,V’( T’) + (pC,,p-‘(y - l)),,, v?@. (37) 

Both sides of (36) must vanish separately because a rotational vector field cannot 
balance an irrotational field. Hence the right-hand side being zero gives, after using 
the above-mentioned vector identity and V. A = 0, 

V2A + k,f‘,A = 0 (38) 

with k;?, = iwp,,,/pr; k,, is the effective wavenumber for shear waves through the 
suspension. 

The left-hand side of (36) being zero gives an expression for (T’) in terms of the 
velocity potential: 

(T’) = T -iwp,,,@ - 
[ {’ 

,:, VPY7e + (h + &) V’@ > I/ (p(y - l)cJ~‘)III,p. 

(39) 
Eliminating (T’) from the energy equation for the suspension (37) by substituting for 
(T’) from the above yields 

@+((E-F+G)V2@-EFV4@=0, (40) 

with 

(41) 

(42) 
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G = (pc,p-‘(7 - ‘I),., (Pb - WJW,, .’ 

Tpmd bc,,)c, 
(43) 

Equation (40) can be written in the form 

(k,'V" + 1) (k,'V'+ l)@ = 0, 

so that @ = @< + Qr with 

(V' + kf,) Qc = 0, 

(V' + k;,) @, = 0. 

(44) 

(45) 

(46) 
The effective wavenumbers for the compressional and thermal waves are given by, 
respectively, 

k,2 = ;(E -F + G) + ; ((E - F + G)2 + 4EF}“‘, (47) 

ki2 = ;(E -F + G) - ; {(E - F + G)’ + 4EF)“‘. (48) 
As mentioned earlier the compressional wavenumber is the most important one as 
far as the acoustic wave propagation of the plane wave is concerned. The imaginary 
part of k,., gives the attenuation while (u divided by the real part of k,, gives the phase 
speed. 

For future reference we note that the expression (39) for (T’) now can be written 
as 

(T’) = b,.,@, + b,,@,, (49) 
with 

b,, = T [-i<,jpP,,,#, + { ij (c’~v’je + (P,,., + ;A) k:c I I/ (P(:J - WX-‘),,,., . (50) 

The expression for h,, is similar with k,., in the above replaced by k,,. 

2.4. An r~e~tizle-tnedium~~ model 

To determine the attenuation and phase speed we must now estimate various effective 
properties of the suspensions. This requires determining five coefficients: i,,, A,,, AT, id, 
and &. Let us begin with the evaluation of 2,) which represents the ratio of average 
dilatation amplitude inside the particles to that in the suspension. This is defined by 
(1 1 ), which is equivalent to 

Here, we have introduced a conditionally averaged field. Thus, (u)(x~x~) is the 
ensemble-averaged velocity amplitude at point x given a particle centred at xl. 
P(xl) is the probability density for finding a particle with its centre in the vicinity 
of xl. For uniform, monodisperse suspensions P(x,) = n = 34/(4na’), n being the 
number density of the particles and d, the particle volume fraction. 

We shall use an effective-medium approximation for determining the conditionally 
averaged fields: and hence, the integrals such as the one appearing on the right-hand 
side of (51). All effective-medium approximations must satisfy the criterion that far 
from the test particle, i.e. for IX - xl 1 -+ z, the conditionally averaged fields such as 
(u)(x~xl) must approach the corresponding unconditionally averaged fields such as 
(U)(X). On the other hand, for Ix - x1 1 d a, i.e. for a point inside the test particle, 
the conditionally averaged fields must satisfy the equations governing the particle 
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phase. The simplest kind of effective medium approximation then assumes that the 
conditionally averaged equation satisfies the suspending fluid equations for a < r < R 
and the unconditionally averaged equations for the suspension for r > R. Here, 
r E Ix - XI / is the distance from the centre of the particle. Different effective-medium 
approximations differ in their choice of R. Some investigators choose R = a which 
eliminates the fluid region altogether. This makes the subsequent analysis very simple 
but, unfortunately, the estimates obtained with R = a are typically inferior, and in 
some cases unphysical. For example, it may yield negative effective properties at high 
volume fractions. Other investigators choose R = a4-‘i3 with the incorrect reasoning 
that the volumes occupied by the particle and fluid for r .< R must be proportional 
to the volume fractions of the two phases. In the present study we shall choose R to 
be given by 

(52) 

with S(0) the zero-wavenumber limit of the suspension structure factor defined by 

. S(0) = .! [PW) - W] dr, (53) 

where P(rl0) is the probability density for finding a particle with its centre near P 

given that there is a particle with its centre at origin. Note that P(rl0) = C?(P) for 
r < 2a. The above choice of R is such that 

I 
[P(ulO) - P(O)]dr = 

I’ 
P(O)dr. (54) 

. r32u * K<r<2a 

In other words, the excess particle density outside the exclusion region in a suspension 
is distributed over a distance r ranging from R to 2a in the effective medium. 

The structure factor of the suspension can be determined experimentally by a light- 
scattering technique but in the absence of such information one may choose S(0) 
to correspond to that of a hard-sphere molecular system for which the well-known 
CarnahanStarling approximation yields quite accurate estimates of the structure 
factor as a function of the volume fraction: 

(55) 

The effective-medium radius R based on S(0) was first introduced by Dodd et al. 
(1995) who compared the results of rigorous multiparticle interactions for determining 
the short-time self- and gradient-diffusivity of proteins in bilipid membranes with those 
obtained by the effective-medium approximation and found a very good agreement 
between the two. In the problems concerned with determining the collective mobility 
or the sedimentation velocity, where each particle is acted upon with a constant force, 
it was shown in MO & Sangani (1994) that the conditionally averaged velocity has 
the correct leading-order behaviour at large r only when R is chosen according to 
(52). 

For small volume fractions, S(0) given by (55) behaves as 1 - 84 + 0(42), and 
R + 2a. Thus, in ‘well-stirred’ dilute random suspensions the effective medium begins 
at r = 2a according to (52) and the fluid region a < r < 2a corresponds to the 
excluded-volume region. Note that the more usual choice R = a@‘13 would, on the 
other hand, suggest that the effective medium begins at a very large distance from the 
test particle in a dilute suspension, which is unphysical except for the situations such 
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as dilute periodic or ‘well-separated’ random suspensions defined by Jeffrey (1973) 
(For such arrays S(0) is small when 4 is small and (52) also gives R/a = O(c#-‘l’).) 
Thus it is not surprising that R based on (52) will give better estimates of the effective 
properites at small to moderate volume fractions compared to those obtained with 
R = a@‘j3. Indeed, Sangani & MO (1997) have shown that the coefficients of 0(4*) 
corrections to the effective conductivity and elasticity obtained using (52) are much 
closer to the rigorous results for these coefficients obtained by detailed pair interaction 
calculations than those obtained with R = a$-‘/3. 

Before we close this brief review of effective-medium approximations, we should 
perhaps note here one more class of effective-medium approximations made in the 
literature. These involve immersing a pair of particles in the effective medium. Ex- 
amples are the calculations by Kim & Russel (1985) who estimated the permeability 
of a fixed bed of particles and Ju & Chen (1994)‘s calculations for the effective 
viscosity and elasticity of suspensions with a hard-sphere spatial distribution. These 
calculations generally require far greater effort - comparable to direct multiparticle 
calculations - and do not necessarily yield superior estimates compared with the sim- 
ple approximations based on a single particle. On the other hand, the single-particle 
approximations will be inadequate for the suspension problems in which the changes 
in microstructure due to imposed flow and their effects in turn on the suspension 
properties must be addressed. 

Returning now to the problem of estimating the coefficients i,, etc. using the 
effective-medium model consisting of a particle-fluid assembly of radius R immersed 
in a medium with the effective properties of the suspension, we write the velocity inside 
the test particle in terms of scalar and vector potentials as in the previous subsection. 
For the plane wave travelling along the xl-axis with (u)(x) = -ik,., exp(ik,, * x) we 
have, for lx - XI 1 d a, 

@c,p(xIxi) = exp(ik,, * x1) 2 i”(2n + l&,,P&)j,(k,.,r), 
n=O 

(56) 

@,,,(x(xi) = exp(ik,,, . xi) 2 i”(2n + l)BpnP&)jn(ktpr), (57) 
n=O 

&(x1x,) = exp(ik,., * x1) e i”(2n + l)C,,Pi(p)j,(k,,r), (58) 
n=O 

where r = Ix - x11, ,U = cost?, 8 being the angle between x - x1 and k,,, j, is the 
spherical Bessel function of both the first kind (regular at I” = 0), P, is the Legendre 
polynomial of degree n, and P,,’ is the associated Legendre polynomial of degree y1 
and order 1. A, is the only non-zero (azimuthal) component of A. 

Similar expressions can be written for a < r < R for which the relevant wavenum- 
bers in the expressions for @(.I, Qt,, A, are, respectively, k,.l, k,l, and k,s,. The spherical 
harmonics of both the first kind and second kind (corresponding to waves emanating 
from r = 0) must be included in the expression. This leads to a set of six unknowns for 
each mode n describing the motion in the liquid shell. Finally, for Y > R, the potentials 
consist of the plane wave corresponding to the unconditional motion plus outgoing 
waves with wavenumbers k,.,, kt,, and k,,. Thus, a total of 12 unknowns are needed 
in describing the motion for each mode ~1. These are determined from the boundary 
conditions of continuity of velocity, traction, temperature, and heat flux amplitudes at 
r = a and r = R. Note that the conditional density and temperature amplitudes can 
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be determined from the expressions for QC, Qr, and A using the expressions given in 
the previous subsection. We keep a total of N modes (typical calculation used N = 5) 
and solve the resulting 12N equations numerically. 

.- We return now to the calculation of ii,. We use V * up = -V’@, = k:,,Qcp + k&Qtp 
to convert the integral in (51) to integrals over @,,. Let us introduce a coefficient Q 
given by 

+I~~@&) = 
.I’ 

~~,(xlxl)P(xl)dl/(xl). (59) 
lx--XI l<a 

Similarly, a coefficient qt is introduced with @JxIxi) in the above replaced by 
@,,,(x(x~). The coefficient A,) is related to these two coefficients by 

Z(f‘,/$ = Z,z,flc + z~pf~p. (60) 

The integration in (59) must be carried out over all x1 such that /x - x1 / d a. To 
convert this to an integration over r we use the identity 

exp [ik,., * xi] = exp [ik,., * x] exp [-irk,.,p] 
‘X 

= exp [ik,., - x] c i”(-1)“(2m + l)j,(k,,,r)P,,(p). 
nz=O 

(61) 

Now using P(x,) = ~1, substituting for GC,, from (56) into (59), making use of the 
above identity, and carrying out the integration, we obtain 

“I< = ;2- - $ k(2n + l)A,, [z,.,jlI-,(=,,p)jn(z~p) - z,.,j,,(z,,,)jn-I(zce)] , (62) "& 'P II=0 

where zCp = kcpa and z,,, = kc,u. In the above expression jji should be taken to 
be COS(Z)/Z. In deriving the above expression use has been made of the identity 
(Gradshteyn & Ryzhik 19944note that there is a sign error in their 5.54( 1)) 

(63) 

(recall that j,(z) = (~/~z)‘~‘J,+~~~(z)). 
The expression for q, is similar to (61) with A,,? in that expression replaced by BP, 

and zCp by z(,,. Now A,, can be evaluated by substituting for vC and qr in (60). 
The coefficient AT, which represents the ratio of average temperature amplitude 

inside the test particle to that in the suspension, is also related to ~1~ and qt. Inside the 
particle the temperature amplitude is a linear combination of the potentials as given 
by (Ti)(x]xi) = b,,,,Qc.,, + b,,@,,, where b,., and b,, are given by expressions similar to 
that for b,, given earlier (cf. (50)). N ow, since the unconditionally averaged thermal 
potential, Qt(x), is zero, the average temperature amplitude is given by (T’)(x) = b,.,@,., 
and therefore 

I-T = (bcplbw) ‘I< + (h,lb,.,) rlt. (64) 

The other 1, coefficients can be evaluated in a similar manner and are inter- 
connected. To determine &., we need to calculate the average of the xl-component of 
the velocity amplitude inside the test particle at x1. Decomposing this velocity into 

-__. . . 
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three parts corresponding to contributions from the three potentials, we write 

i”,, = hz, a4c +A> +A& (65) 

where 2: and JUf are the irrotational and rotational field contributions, respectively: 
It can be shown that 

(66) 

The expression for ;1: is similar with qc, z~,,, and A,, in the above expression replaced 
by, respectively, yt, ztp, and B,,l. In deriving (66) use has been made of (61) and 

exp [-ik,, - r] V,@(v) = V, (exp [-ik,., * v] @j(r)) + ik,., exp [-ik,, * r] Q(r), (67) 

with r = x - x1. The divergence theorem is used to evaluate the integral of the first 
term on the right-hand side of (67); the second term on the right-hand side is related 
to qc in (66). 

To evaluate the rotational contribution to 2,. we use the identity 

exp [-ik,, * v] V, x A(v) = V, x [exp [-ik,, * r.] A(v)) + exp [-ik,., * r] ik,,, x A(r). (68) 

The last term on the right-hand side of the above expression does not contribute to 
the x,-component of the velocity, and the contribution from the first term can be 
readily evaluated to give 

(69) 

The result for I., can be used to determine other /z coefficients as well. Thus, it can 
be shown that 

Finally, %d, defined by 

where we again made 

n r 

A, = (b,.Jb,,,) I.: + (bt,,/b,.,) 3.f’. (70) 

(27), is written as 

&/=&+A~ +A?+)$ (71) 

use of (67), with @ replaced by K. The result for 3.9 is 

(n + L)(n + 2) n(n- 1) . 
2n + 3 

.6+2(k) -~Iij,t-~(4 

+(n+l)P+l). 
2n + 3 -.hA,) {(n + 2h+2(z,J -(n + l)j&,.,)} 

I 
(72) 

An expression for j.F is obtained from i: by replacing A,, by BP,, and z,,, by zlP. The 
contribution from A is given by 

n(n+21X n(2n + 1) 
-‘- WI+2 - ~ 2n + 3 x,, + ;-+x&-2 

(2n + 3)(2n - 1) I 

(73) 

- 
-----I 
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Polystyrene 

Density (g cm-‘) 1.055 
Thermal conductivity (J K-’ m s) 1.15 x 10-l 
Specific heat (J g-’ K) 1.19 
Thermal expansion coefficient (K-’ ) 2.04 x lop4 
Sound speed (cm SC’) 2.3 x 105 
Shear viscosity (g cm-’ s’) 
Bulk viscosity (g cm -’ s2) 
Shear rigidity (g cm-’ s’) 1.27 x;O” 

Glass Water 

2.3 1.0 
9.6 x 10-l 5.87 x lo-’ 
0.836 4.19 
3.2 x 10-h 2.04 x 10-4 
5.2 x 10’ 1.48 x 10’ 

1.01 x lo-? 
3 x 10-l 

2.8 x 10” 

Glycerol/water 

1.08 
4.5 x 10-I 
4.19 
3.22 x lO-4 
1.6 x lo5 
3X2X 10-Z 
9.6 x lop2 

TABLE 1. The values of the physical properties used in the present study 

with the short-hand notation 

XL, = -~~n(z.,,Mzc,) - ; [z,j:,(z,,,)jm(z,.,) + &&(?Yj7,j~(4] (74) 

The scheme for estimating various effective properties and attenuation is as follows: 
(i) Assume initially that the effective properties of the suspension are the same as 
that of pure liquid. (ii) Determine the coefficients Apn, Bpn, etc. by solving the twelve 
equations resulting from the application of boundary conditions at r = a and r = R 
for each mode n up to n = 5. (iii) Estimate A,,, i,,, A,., etc. using the expressions given 
in this section. (iv) Estimate the effective properties of the suspension. (v) Repeat 
steps (ii)- until all the effective properties have converged to within a specified 
limit. The attenuation of the wave is given by the imaginary part of k,.,. 

3. Comparison with known analytical results 

We shall assess the effective-medium approximation in two steps. In the first, we 
consider various limiting situations where we expect some of the effective properties 
to be dominated by multiparticle interactions in Stokes or Laplace fields for which 
rigorous results have been obtained in recent years through direct numerical solution 
of the multiparticle system with hard-sphere spatial configurations. The second step 
will be to compare the theory with the experimental data available in the literature 
and some new data generated in our laboratory. This will be done in 5 5. 

As we have seen the acoustic problem has many variables. This makes it meaningless 
to present results in terms of one or two non-dimensional numbers. We shall instead 
choose a particular solid-liquid system and then vary either the radius of the particle 
or the frequency. The relevant physical properties for glass-water and polystyrene- 
water systems to be considered in the present study are given in table 1. In some 
calculations we shall vary the thermal conductivity or density of the particles without 
varying other physical properties to explore the effect of these properties. In some 
limiting cases it may be possible to solve a simplified set of equations instead of the 
12N set of equations required by our scheme. However, since our primary purpose is 
to assess the effective-medium approximation and the computer program written for 
this purpose we use the same program in all the comparisons shown here. 

The effective viscosity of the suspension will be in general complex with the 
imaginary part multiplied by frequency being the elasticity of the suspension. Results 
of rigorous multiparticle computations are available in the literature for the case when 
inertia is negligible (Stokes flow) and a uniform strain rate is applied to suspensions 
of rigid particles in an incompressible, Newtonian fluid. The spatial distribution 
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U U.’ U./L U.3 u.4 0.3 u.6 

Volume fraction 

FIGURE 1. Ratio of effective viscosity to liquid viscosity as a function of volume fraction. Limiting 
values for wavelengths large compared to particle size and viscous boundary layers much larger 
than the particles. Solid line is theory; squares are numerical simulation results from Sangani & 
MO (1997). 

of the particles corresponded to the hard-sphere molecular systems for which S(0) 
given by (55) applies. Ladd (1990) obtained the results with volume fractions (#) 
in the range O-0.45. MO & Sangani (1994) and Sangani & MO (1997) repeated and 
confirmed his results and also obtained an additional result for 4 = 0.6. Their results 
are shown in figure 1. To see how well the effective-medium model developed in 
the present study approximates these values we must pick frequencies for which the 
quasi-steady Stokes flow approximation will be expected. The ratio of unsteady to 
viscous terms in the momentum equation for the liquid is ploa2/p,. For a = lop5 cm 
and f = w/2n = lo6 Hz this number equals 6 x 10d3 (we have taken water as 
the suspending liquid but multiplied the viscosity by 10). The wave nature of the 
governing equations depends on the ratio kcla which equals 271 times the ratio of 
particle radius to the wavelength in pure liquid. When this number is small the liquid 
may be treated as essentially incompressible. For a and f listed above, kcla for water 
equals 4.2 x 10-4. Finally, our calculations account for small deformations of the 
particles. For particles to be treated as rigid, their shear modulus ,Z divided by the 
frequency must be much larger than the viscosity of the water. At o = 106/2n; s-l, 
the ratio jI/(op,) equals 2 x lo7 and therefore the glass particles may be treated as 
rigid. 

The solid curve in figure 1 represents the estimates of the effective viscosity obtained 
by the effective medium model for the aforementioned conditions. The ratio Re&)/pr 
varies from unity to about 20 as 4 is varied from 0 to 0.6. At high volume fractions 
significant viscous dissipation occurs in the narrow gap regions between the pairs 
of particles in close proximity and this dominates the effective viscosity behaviour 
at high #. This phenomenon cannot be expected to be modelled accurately by the 
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‘“106 10’ 

Frequency (Hz) 

FIGURE 2. Real part minus its limiting value at large wavelengths (-) and minus imaginary part 
(- - -) of the ratio of effective viscosity to liquid viscosity as a function of frequency. Particle 
volume fraction is 0.3. The viscous boundary layers at the lowest frequencies are small compared 
to the particle size (at 1 MHz, (p,/(p,w’a’))“’ = 0.01). 

single-particle approximation used here and therefore the excellent agreement found 
here for C$ = 0.45 and 0.6 may be regarded as fortuitous. It should also be noted 
that the particles in highly concentrated suspensions may begin to be supported by 
the other particles through the formation of a continuous network such that the 
suspension behaves like a fluid-filled porous medium, The present analysis should not 
be applied to such suspensions. 

Figure 2 shows that the real and imaginary parts of the effective viscosity increase 
with frequency in the range where the unsteady term begins to become comparable 
to the viscous term in the liquid momentum equation. The results for the real part of 
the effective viscosity may be rationalized as follows. At relatively large frequencies 
we expect the viscous effects to be confined to small Stokes layers of thickness 
6 = O((,~,/plw)‘/~) surrounding each particle. The effective viscosity is the rate of 
energy dissipation per unit volume of the suspension divided by the square of mean 
velocity gradient 9 = O(k,.,(u)). At high frequencies the dominant contribution to 
dissipation arises from the Stokes layers whose volume per unit suspension volume 
is 0(6azn), u being the number density of particles, and the velocity gradient in 
these layers is O(pa/S). The effective viscosity must therefore roughly scale as a/8 or 
4wf hd ‘I2 for frequencies at which 6 is small compared with a. The observation that 
the real part of effective viscosity should increase with frequency as o’i2 is consistent 
with the results of figure 2. The ratio (/~~/p~oa~)‘l’ is about 0.01 for f = 1 MHz 
indicating that indeed the Stokes layers are thin at these frequencies (note that we 
have replaced ,uL by its value for water divided by 1000). 

The imaginary part of the effective viscosity is also seen to increase with increasing 
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frequency in figure 2. This elastic nature of the suspension is expected at higher 
frequencies. 

We now compare the effective-medium results for il, with the known results. Recall 
that & represents the ratio of the velocity amplitude in the particle phase to that in 
the suspension. At lower frequencies for which k,.,a is small and the scattering losses 
are small, the attenuation will be dominated by the imaginary part of iL, as suggested 
by Sangani et al. (1991) who evaluated the real and imaginary parts of &, for a special 
case when the frequency is large enough for the Stokes layers to be small compared 
with the particle radius but small enough for k,,a to be small, i.e. for the suspension 
to be essentially incompressible. We shall compare the results of effective-medium 
approximation with their results next. 

Sangani et al. gave their results in terms of added mass, Basset, and viscous drag 
coefficients. The force balance on a particle in the suspension was written as 

(F(t)) = plY(ic) + ~p,Y‘C,(ic--ti) +6a’mC,, 
.I 

t (&il)(z) dz - +6xap,Cd(u-u) 
-m vit - z 

(75) 

where F is the force on the particle, v is the velocity of the particle, C,, C,, and Cd 
are the added mass, Basset and viscous drag coefficients and V the volume of a 
particle. Dots above variables denote time derivatives. Noting that F(t) = pPY/‘ti and 
(u) = i,(u), and taking the time-dependence of variables to be e-““‘, the force balance 
(75) gives 

c, + 9QCd + 9Q2Cd = 2(p*i, - 1) 
1 - I”,, ’ 

with 52 = (&,/(yl(tia2)‘j2 and p* = pP/p,. Sangani et al.‘s analysis is valid when the 
magnitude of Q is small compared with unity, and the terms of O(Q”) or smaller are 
neglected in (76). For small R, A, can be expanded in a series 1, = )$,O) + Q$,‘) + . . 
to yield the relations 

c 2/l”‘(p* - 1) 
a 

= qp*JL$’ - 1) 
1 - $0’ -.’ 

Cb = ~ -1 

9 (1 -q2 
(77) 

The coefficients Al,‘) and ,I[,‘) were evaluated from the effective-medium theory results 
for AU at small kcla and small IQ1 by extrapolating to Q = 0 and numerically 
differentiating the results with respect to 0, respectively. Figures 3 and 4 show 
a comparison with the rigorous multiparticle calculations of Sangani et al. who 
determined C,,, C,,, and Cd as a function of 4 and p* for periodic as well as random 
arrays of spheres. The results for C, for the body-centred cubic and random arrays 
were very close to each other while that for the simple cubic arrays differed by 
about 12% at 4 = 0.5. It was also found that the dependence on p* was rather 
weak, typically variations within 5% occurred as p* was varied from zero to infinity. 
The results of Sangani et ul. shown in figures 3 and 4 correspond to p* = 0 while 
the effective-medium results correspond to glass particles in water with p* = 2.55. 
We see an excellent agreement between the added mass coefficient obtained by 
the effective-medium approximation and for random or body-centred cubic arrays. 
The effective-medium approximation for Cb deviates systematically from the random 
arrays result with the maximum deviation of about 20% at 4 = 0.5. The theory in 
this case is much closer to the results for the simple cubic arrays. 

Next we consider the case when Q is very large, i.e. frequencies at which the 

----- _.“. I- --.- .._. - --. . .-- --_- 
-T- 
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Volume fraction 

FIGURE 3. Added mass coefficient C, as a function of volume fraction. Solid line is the theoretical 
result for wavelengths and viscous boundary layers much larger than particle size. Broken line and 
squares are the random array and simple cubic array results of Sangani et (II. (1991). Particle to 
liquid density ratio is 2.55. 

viscous drag coefficient makes the leading contribution to A,. The results in this 
case can be compared with the results of multiparticle Stokes flow calculations by 
Ladd (1990) and MO & Sangani (1994). Two kinds of results are available in the 
Stokes flow literature. The first is the hindrance factor in sedimentation in which the 
average velocity of the particles is determined for the case when the forces acting 
on all the particles are the same. The second is the calculation of the permeability 
of a fixed bed of particles. There the average force on the particles is calculated for 
particles that all have the same (zero) velocity, different from the mean velocity of 
the suspension. Neither situation applies to oscillatory flows but one expects that 
the results for the fixed bed resistivity would be most applicable for large p* and 
those of the hindrance factor for very small p*. Figure 5 compares the results of 
Ladd and MO & Sangani for these two quantities with the results obtained using 
the effective-medium approximation with p’ = 10. These results were obtained with 
Is21 = 22 and k,,a = 0.001. The results for the sedimentation-hindrance factor were 
obtained only up to 4 = 0.45 in the present investigation while MO & Sangani had 
obtained an additional value for the fixed bed resistivity at 4 = 0.6. Their result for 
4 = 0.6 was in excellent agreement with the well-known Carman-Kozney correlation. 
We see that at least up to 4 = 0.45, the hindrance factor and the fixed-bed resistivity 
are not too different from each other, and that the effective-medium results are in 
excellent agreement for the entire range of 4. 

Next, we compare the results for the effective conductivity. When k,,a is small the 
viscous and thermal effects contribute most to the total attenuation. When the density 
ratio is close to unity the translational oscillations and hence viscous attenuation are 
small and the thermal effects become the primary source of attenuation. The effective 
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Volume fraction 

FIGURE 4. Basset coefficient C,, as a function of volume fraction. Solid line is the theoretical result for 
wavelengths and viscous boundary layers much larger than particle size. Broken line and squares 
are the random array and simple cubic array results of Sangani et al. (1991). Particle to liquid 
density ratio is 2.55. 

Volume fraction 

FIGURE 5. Cd as a function of volume fraction. Lines are theoretical results obtained for wavelengths 
much larger and viscous boundary layers much smaller than particle size. Squares are numerical 
simulation results for the fixed-bed resistivity by MO & Sangani (1994), circles are numerical 
simulation results for the hindrance factor by Ladd (1990). 
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Volume fraction 

FIGURE 6. Ratio of effective conductivity to liquid conductivity as a function of volume fraction. 
Lines are theory for wavelengths large compared to particle size, symbols are experimental data 
from Turner (1976). Results are shown for ~,/ti, = 0.01 (+), 0.51 (A), 10.8 (0) and 160 (0). 

conductivity as a function of $J and the conductivity ratio tiip/rcl was determined 
experimentally by Turner (1976) who used liquid fluidized beds of nearly monodisperse 
spheres. Sangani & Yao (1988) and Bonnecaze & Brady (1991) have carried out 
multiparticle calculations for the same cases and found generally good agreement 
between the simulations results and the experimental data of Turner. Figure 6 shows 
the comparison between the effective-medium approximation and the data of Turner. 
Calculations were made with the polystyreneewater system with f = 1 MHz for which 
kc/a equals 4.2 x lop4 and the ratio of unsteady term to the steady conduction term 
P1CP,loa2/kl equals 0.05. The thermal conductivity of the particles was varied keeping 
other parameters fixed to determine the effect of conductivity ratio. Agreement is 
generally very good except for the highest particle-to-liquid conductivity ratio of 
160 and 4 = 0.5 for which the effective-medium approximation underpredicts the 
effective conductivity by about 30%. At such high conductivity ratios the narrow 
gap regions between pairs of particles in dense suspensions contribute siginificantly 
to the overall heat flux and this is not captured accurately by the effective-medium 
approximation. The spatial distribution of the particles could also affect significantly 
the results at high 4. For low-conductivity particles we see an excellent agreement 
between the experiments and the effective-medium approximation. It may be noted 
that the well-known Maxwell relation 

& 1+2a4 -=- 
1 -aqi (78) 

k’l 

with & = (JC~ - rcI)/(rcP + 2~~) also gives accurate estimates of the effective conductivity 
for rcP/rc, = 0. 

Figure 7 shows the results for the real and imaginary parts of the effective con- 
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FIGURE 7. Real and imaginary part of the ratio of effective conductivity to liquid conductivity as 
functions of frequency. Particle volume fraction is 0.3; k,,u = 4 x lop2 at 10 MHz for all cases. Solid 
line (real part) and dashed line (imaginary part), K~/K, = 2 x 10-3; dashed-dotted line (real part) 
and dotted line (imaginary part), R”,/K~ = 20. 

ductivity as a function of frequency for two particle-to-liquid conductivity ratios. For 
K~/K, > 1 the real part of the conductivity is seen to increase with the frequency. 
This result is similar to the one discussed for the effective viscosity (cf. figure 2). 
The opposite is true for the particles whose conductivity is smaller than the fluid 
conducitivity. The imaginary part of the conductivity is seen to reach a maximum at 
frequencies for which the thermal layer thickness is comparable to particle radius. 

In summary, we have shown in this section that the effective-medium approximation 
yields very accurate estimates of the coefficients & (effective viscosity), Ati (added mass, 
Basset force, and viscous drag), and d, (conductivity) for the monodisperse, random 
suspensions in the limits in which the results of exact multiparticle interactions are 
available. 

The two coefficients for which no exact results are available are 1, and llr but 
the computed results for these coefficients show expected trends. For example, figure 
8 shows results for the real and imaginary parts of iT which represents the ratio 
of average temperature amplitude inside the particles to that in the suspension. 
The results are shown for polystyrene-water mixture with a = 0.11 pm, a system 
which was studied by Allegra & Hawley (1972). When the thermal diffusion length, 
(%l~P,G,p) 3 ‘I2 becomes much larger than the particle radius, the temperature inside 
the particle will be the same as the suspension temperature and AT will approach 
unity. This is the situation for frequencies less than 1 MHz. At frequencies that are 
large enough so that the thermal layer inside the particles is thin compared with 
the radius but small enough to keep the wavelength large compared with the radius, 
we expect the particle temperature amplitude to be governed by the temparature 
variations in the adiabatic case. A simple calculation shows that in this limit A7 and 
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FIGURE 8. Real and imaginary parts of ;LT as a function of frequency for polystyrene particles 
(0.11 pm radius) in water at 0.3 volume fraction. Solid line (real part) and dashed line (imaginary 
part) are the full results; the dashed-dotted line (real part) and the dotted line (imaginary part) are 
the adiabatic result (79). 

R, are related by 

(79) 

The dot-and-dashed curve in figure 8 is obtained by first computing $ using the 
effective-medium approximation and then using (79) to estimate AT. We see that at 
high frequencies the result for llT obtained in this manner approaches that obtained 
from the direct evaluation using the effective-medium approximation, The imaginary 
part of AT is seen to vanish in the limits of high and low frequencies as one approaches, 
respectively, the adiabatic and isothermal limits. 

All the results discussed in this section correspond to the limit of small kc/a for 
which the scattering losses are insignificant. Since all indications suggest that the 
effective-medium approximation is very accurate, we expect the theory to predict the 
thermal and viscous attenuations for small k,.,a very accurately. Rigorous calculations 
are not available for k,.,a = O(1) and we shall mostly depend on the experimental 
data to assess the effective-medium theory in this regime. 

4. Experimental set-up 

The experimental set-up for measuring attenuation is shown in figure 9. The 
suspension is hand-stirred in a vessel with transmitting and receiving transducers 
mounted flush with the inner walls. The distance between the transducers in a typical 
vessel was 5 cm, the width and the height of the vessel being 8 and 13 cm, respectively. 
In dense suspensions for which greater attenuation is expected, the experiments were 
carried out with smaller vessels with the acoustic path lengths as small as 1.3 cm. 
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FIGURE 9. The schematic of the experimental set-up. 

The transducers were of piezoelectric videoscan immersion type manufactured by 
Panametrics Inc. To cover a relatively broad range of frequencies, we used transducers 
with centre frequencies of 1.0, 2.25, 5.0, 7.5 and 10.0 MHz. The first two were 1.3 cm 
in radius while the other two were 1 cm in radius. 

A Matec TB-1000 digital synthesizer card installed in a desk-top computer was used 
to generate monochromatic tonebursts that propagated through the suspension and 
were received by the receiving transducer. The signal was then sent to a LeCroy Model 
9310A digital oscilloscope where its amplitude was measured. Attenuation data were 
obtained for six to eight frequencies for each transducer pair. Thus, the measurements 
were typically carried out at frequencies between 1 and 12 MHz. The suspension was 
hand-stirred before each measurement. To calculate the excess attenuation caused by 
the presence of particles, we also measured the amplitude of the signal received by 
the transducer for the pure liquid case. The excess attenuation for a given particle 
concentration is then determined using 

where V,,, and I’, are the voltage amplitudes of the received signals in the mixture 
and pure liquid, respectively, and L is the distance between the transducers. 

Further details about the experimental set-up can be found in Norato (1999). 

5. Comparison with experiments 

Several experimental results have been presented for dense slurries in the literature. 
In this section we shall compare with these data as well as with results obtained in our 
laboratory. Allegra & Hawley (1972) measured attenuation for nearly monodisperse 
polystyrene particles of radius 0.11 urn in water. The acoustic frequency range used by 
these investigators was roughly 5-50MHz. This corresponds to the non-dimensional 
wavenumbers kc/a in the range of 0.002-0.02. At such small wavenumbers the scat- 
tering losses are negligible, and since the density of polystyrene (1.07 gem-3) is close 
to that of water, the translational oscillations of the particles and hence the vis- 
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cous attenuation are negligible. Thus, the thermal effects dominate the attenuation 
in Allegra & Hawley’s experiments. The difference in thermal expansion coefficients 
between the particles and the suspending liquid causes the temperature amplitude 
inside the particles to differ from that in the liquid. This causes a heat flux through 
the surface of the particles that is out of phase with the sound wave and leads to 
thermal attenuation. 

Allegra & Hawley showed that when the thermal boundary layers as well as the 
wavelength are much greater than the particle radius and the suspension is dilute (i.e. 
when til/(p,CP,lwaz) >> 1, /+,a << 1, and 4 << 1 ), the attenuation is given by 

The attenuation increases as f2 in this limit. On the other hand, when the boundary 
layers are much smaller than the particles while k,,a is still small, their analysis 
predicts that the attenuation will increase with frequency as f”‘. 

Allegra & Hawley (1972) compared their data with a theory for dilute suspensions 
and found good agreement between the two for dilute suspensions. Since the effective- 
medium theory reduces to their theory for dilute suspensions as 4 + 0, we also expect 
a very good agreement at small volume fractions. Allegra & Hawley compared the 
two in several of their figures but did not specify the volume fraction of the particles 
used in obtaining the data except for one in which they show the attenuation as 
a function of 4 at several frequencies. We show their data for the lowest volume 
fraction, 4 = 0.058, in figure 10. The asymptotic expression (81) is also shown in the 
figure; it is seen that the experiments were carried out at frequencies for which the 
thermal layers are comparable to particle radius. 

As noted by Allegra & Hawley, the attenuation is sensitive to the thermal properties 
of polystyrene particles. If we take these properties to be the same as given by these 
investigators and reported in table 1, we find that the predicted attenuation is slightly 
greater than the experimental values as indicated by the solid line in figure 10. 
However, there is some uncertainty about the values of the physical properties as 
given by Allegra & Hawley. In their paper they show that their results depend 
quite strongly on the equilibrium temperature - because the physical properties do 
- and that there is a significant discrepancy between the theory and experiments 
in this temperature dependence. Especially, the attenuation at temperatures < 20” C 
is overpredicted. Allegra & Hawley mentioned that the factor flP/(p,,C,,.,,) (cf. (81)) 
introduces the uncertainty. To be able to have a fair comparison between the dense 
slurry data and the effective-medium theory we have therefore changed the value of 
p for polystyrene somewhat (decreased by 11%) to get the best fit at low volume 
fractions, which is seen to be excellent. 

Figure 11 compares the effective-medium approximations with the attenuation data 
as a function of volume fraction of the particles at different frequencies. We see an 
excellent agreement at all volume fractions. (Slight differences seen are within the 
error introduced in reading the data from Allegra & Hawley’s figures or due to small 
temperature variations that could occur during the experiments.) Note that simply 
using the dilute theory of Allegra & Hawley (1972) would have overpredicted the 
attenuations at 0.5 volume fraction by as much as 50%. 

The scattering attenuation was small in the experiments by Allegra & Hawley 
(1972) since /+,a for their experiments was much less than unity. To extend the range 
of &la over which the theory can be tested against experiments we have conducted 
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FIGURE 10. Comparison with experimental dilute-slurry results by Allegra & Hawley (1972) for the 
attenuation in a mixture of polystyrene particles of 0.11 pm radius in water at 0.05 volume fraction. 
Squares are experiments, solid line is the theoretical result. The broken line is the theoretical result 
when the thermal expansion coefficient is changed from 2.04 x 10P4 to 1.82 x lo-” K-‘. The dotted 
line is the asymptotic result (81). 
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FIGURE 11. Comparison with experimental dense-slurry results by Allegra & Hawley (1972) for 
the attenuation for polystyrene particles of 0.11 Frn at different frequencies. LI, 3 MHz; 0, 9 MHz; 
+. 15 MHz; x, 21 MHz; q , 27 MHz and V, 39 MHz. 

--. 
I 



Attenuation of sound in concentrated suspensions 77 

Frequency (Hz) 

FIGURE 12. Experimental and theoretical results for the attenuation in a mixture of polystyrene 
particles (mean radius 79 + 3 urn and 1.8 urn standard deviation) in water at 0.05 volume fraction. 
Circles are experiments, solid and broken lines are the theory for monodisperse particles of 79 urn 
and 77 urn radius, respectively. 

experiments for much larger polystyrene particles. The particles were specified by 
the manufacturer to have a mean radius of 79 f 3 urn with a standard deviation 
of 1.8 urn; kcla in our experiments varied between 0.5 and 2.6. The comparison 
between the theory and experiments is shown in figure 12. At small frequencies (or 
small k,,la) the attenuation due to scattering is expected to increase in proportion 
to f4. This behaviour is observed roughly for k,,a < 1.3. At higher frequencies the 
resonance effects due to various shape deformations of the particles become important 
as discussed in more detail by Spelt et al. (1999) who examined the problem of 
determining size distributions for dilute suspensions. The first three peaks seen in 
figure 12 correspond to the resonances in IZ = 2,3, and 4 modes (cf. (56)). 

As we can see from figure 12, the agreement between the theory and the experiments 
is very good. A possible explanation for the slight differences observed near the 
resonance peaks is the uncertainty in the mean particle size as specified by the 
manufacturer. Changing the size of the particles from 79 to 77um radius (which is 
within the specifications) is seen in figure 12 to improve the comparison. Alternatively, 
an excellent agreement can also be observed by accounting for the size distribution 
of particles. 

Most of the data shown in figure 12 were taken for a suspension with 4 = 0.05. 
High attenuation near the resonance peaks is not measurable and this explains the 
gaps seen in the data near those frequencies. We repeated some experiments with 
r/~ = 0.025 and with smaller vessels which decreased the acoustic path length between 
the two transducers and obtained a few data points near the resonances but additional 
measurements with very low volume fractions appeared unnecessary. 

Since the volume fraction used in this measurement is rather small (4 = 0.05), an 
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excellent comparison between the theory and experiments should not be regarded 
as a true test of the effective-medium approximation. Rather, it shows that the data 
taken in our laboratory are reliable and that our analysis and the computer program 
for the effective-medium approximation gives correct results over a wide range of 
frequencies. To test the effective-medium theory higher volume fractions must be used 
but we encounter two problems. First, the monodisperse polystyrene particles in this 
size range are extremely expensive and secondly the range of frequencies for which 
the attenuation at higher volume fractions would be measurable will be rather narrow 
to provide a good test of the effective-medium approximation. 

Experiments on dense slurries in the frequency range that is dominated by scattering 
effects before the resonance peaks were done by Atkinson (1991) and Atkinson & 
Kytiimaa (1992). We have compared their data for the dilute suspensions with the 
present theory and found that, although the agreement at the lower half of their 
frequency range is reasonable, at higher frequencies the experimental results for the 
attenuation were consistently lower than the theoretical results (at 0.045 volume 
fraction and 0.7MHz frequency the difference was a factor two). It was found that 
the differences could not be resolved by changing the physical properties, the size of 
the particles or by allowing for a size distribution of the particles. Since we do not 
see any reason for the theory to be inapplicable at such low volume fractions, we did 
not pursue further comparison at higher volume fractions. Instead, we shall compare 
the theory with the experiments we have conducted for the glass-water system. 

Since the large glass particles are difficult to keep suspended in water, we added 
glycerol to increase the viscosity and density of the suspending medium. Soda-lime 
glass particles were used. The volume fraction size distribution was measured using a 
light scattering instrument and gave a mean radius of 63 urn and a standard deviation 
of 8.5 pm (the volume fraction distribution is related to the size distribution P(a) by 
$(a) = (4/3)xa’P(a)). The distribution is shown in figure 13 together with a fit used 
in calculations discussed below (a lognormal size distribution for P(a) was used). The 
instrument could measure the particle radius up to about 240um. It was estimated 
that about 1.5% of the particles by volume had radius that exceeded this value. 

We first discuss results for a dilute suspension. Figure 14 shows the attenuation as 
a function of frequency at 4 = 0.05. At the frequency of 1 MHz, the non-dimensional 
wavenumber kcla based on mean radius is about 0.25. Thus, throughout the frequency 
range we expect the scattering losses to be the most significant. At low frequencies, 
the attenuation is approximately proportional to f4. Note that at very low frequencies 
the viscous attenuation will become more significant, and if the Stokes layers are 
small compared with the particle radius, then the attenuation will be proportional 
tof . ‘j* At higher frequencies the attenuation appears to level off, unlike the case 
of polystyrene particles which exhibited distinct resonance peaks. This qualitative 
difference arises due to different shear moduli of glass and polystyrene (Spelt et al 
1999). 

The solid curve in figure 14 is obtained by using the size distribution shown in 
figure 13 which ignores the particles larger than 240 urn. We see that the agreement 
between the theory and the experiments is very good at frequencies above 2MHz. 
Significant discrepancy exists, however, at lower frequencies. This may be due to the 
presence of larger particles. If we assume that, in addition to the size distribution 
shown in figure 14 we had 1.5% by volume of particles with a radius of 540 urn, 
then we obtain the dashed curve shown in figure 14. These larger particles contribute 
most to the attenuation for smaller frequencies. Alternatively, it is possible that some 
of the assumed physical properties of the water-glycerol system (cf. table 1) may 
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FIGURE 13. Volume-fraction distribution of the glass particles used in figure 14. Circles are 
measurements, the solid line is a fit using a log-normal size distribution. 

be inaccurate and this may lead to the observed discrepancy at lower frequencies. 
The density and viscosity were measured in our laboratory but the other properties 
(sound speed and attenuation) were estimated using a volume-average mixture rule. 
In view of these uncertainties we shall only compare the experimental data for dense 
suspensions for frequencies greater than 2 MHz where the agreement for dilute 
suspensions is good. 

Since the size distribution is somewhat broad, we must modify the effective-medium 
theory to account for polydispersity. The coefficients &, etc. to be used in determining 
the effective properties of the suspension are now replaced by CE, 4(ai)/l,(ai), etc. 
where M is the number of particle size bins. Here, lP(ai) represents the ratio of 
average dilatation amplitude inside the particle of radius ai to that in the suspension. 
To estimate such coefficients we assume that the particle of radius ai is surrounded 
by the liquid up to r = Ri and the effective medium for r > Ri. We take Ri/ai to be 
the same for all particle sizes and given by the same expression as in the case of 
a monodisperse suspension (cf. (52)). This is probably not a good estimate of Rj/ai 
since one would expect &/a; for larger particles to be smaller than for monodisperse 
suspensions as the volume exclusion for larger particles is smaller when smaller 
particles are present in the suspension. However, since there are no known analytical, 
rigorous solutions for polydisperse suspensions, a more complicated scheme for 
estimating Ri/ai would be difficult to justify. 

The dense-slurry data for the glass-water/glycerol suspensions are shown in fig- 
ure 15. The frequency range is 2.5-5 MHz for which the comparison at C#I = 0.05 
shown in figure 14 was good. The agreement is seen to be very good up to C$ = 0.3. 
At higher volume fractions, however, we observe significant discrepancy. The theory 
predicts the attenuation to be a monotonically increasing function of 4 while the 
experiments exhibit maxima near r$ = 0.3. The measurements were made two or 
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FIGURE 14. Experimental and theoretical results for the attenuation in a mixture of glass particles 
(mean radius 63 urn and 8.5 pm standard deviation) in glycerol at 0.05 volume fraction. Circles are 
experiments, solid and broken lines are the theoretical predictions. 

Volume fraction 

FIGURE 15. Experimental and theoretical results for the attenuation as a function of volume fraction 
for different frequencies, using the same glass particles and glycerol as in figure 11. Symbols are 
experiments, solid lines theory for monodisperse particles and broken lines theory for polysdisperse 
particles. A, 25MHz; 0, 3.5MHz; +: 4MHz; x, 4.5MHz; 0, 5MHz. 
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FIGURE 16. Liquid-shell to particle radius ratio as a function of volume fraction. Solid line is (52). 
Symbols are the values that would have to be used to get very good agreement with the experimental 
data shown in figure 15 at high volume fractions. 0, 2.5 MHz data; +, 5 MHz. 

three times for each f at 4 = 0.3 and 0.5. At smaller volume fractions the data 
were quite reproducible and the error bars were typically smaller than the size of 
the symbols shown in figure 15. However, larger variations were observed at higher 
volume fractions as exemplified by the vertical bars around the data points. Although 
these error bars are quite significant, we see that the theory consistently overpredicts 
the attenuation for C#J > 0.3. 

As mentioned earlier, there is some concern about the proper choice of Ri/ai to 
be used in the effective-medium approximations for polydisperse suspensions. To see 
how the choice of Ri/ai affects the results, we calculated the values of Ri/a; (assumed 
to be independent of the particle radius) at which the theory and experiments would 
coincide for 4 3 0.3 at 2.5 and 5 MHz. The results are shown in figure 16. The solid 
line in that figure corresponds to the value used in the results presented in figure 15. 
We see that only slight changes in R/a are needed to make the theory predictions 
coincide with the experimental data. In other words, the results for the attenuation 
are very sensitive to the choice of R/a in very dense suspensions. Finally, the fact that 
the scatter in the attenuation data is significant at higher volume fractions suggests 
that the attenuation might be quite sensitive to the manner in which the suspension 
is stirred. As noted earlier we used hand-stirring just before taking the attenuation 
measurement. Perhaps using a fluidized bed would have produced different attenuation 
data at high volume fractions. 

The comparisons shown so far were dominated by the thermal and scattering effects. 
Experiments in which the viscous losses are significant were carried out by Hampton 
(1967) but those were for clay particles which are highly non-spherical. To assess the 
theory for the viscous regime, we have measured attenuation for a suspension of small 
glass particles in water. The size distribution for these particles is shown in figure 
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FIGURE 17. Volume-fraction distribution of the glass particles used in figure 18. Circles are 
measurements, the solid line is a fit using a log-normal size distribution. 

17 together with the fit used in the calculations. The mean radius is 15 urn and the 
standard deviation is 3.5 urn. These particles have a very small terminal velocity and 
it is not necessary to add glycerol to keep them suspended. For the frequency range 
over which we could measure attenuation, i.e. for 0.7-lOMHz, the non-dimensional 
wavenumber kCla varies from 0.03 to 0.5. The particle-to-liquid (pure water) density 
ratio in this case is 2.55, and the viscous attenuation dominates the lower part of 
the frequency range, while the scattering attenuation becomes important at higher 
frequencies. 

The results for volume fractions 0.05,0.2,0.3, and 0.4 are shown in figure 18. We see 
that the measured attenuation is proportional to f ‘1’ in the viscous range, which is to 
be expected for the case when the Stokes layers are thin compared with the particle 
radius (see, e.g., Allegra & Hawley 1972). We see an excellent agreement between 
the theory and experiments. It may be noted that the attenuation does not vary 
linearly with the volume fraction, indicating that the effective-medium approximation 
represents a significant improvement over the dilute theory. We also note that, unlike 
the case of larger particles, the attenuation increases monotonically with the volume 
fraction for the entire range of frequencies over which the measurements are made. 

6. Phase speed 

While the physics of acoustics is very interesting, it appears that the determination 
of the particle volume fraction from acoustic measurements will be, in general, 
difficult because of the sensitive dependence of the acoustics on physical properties 
of the particles and liquid and the particle size distribution. Since the phase speed is 
relatively less sensitive to the particle size, it might be more advantageous to measure 
the phase speed. The scattering regime can lead to large attenuation and resonance 
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FIGURE 18. Experimental and theoretical results for the attenuation as a function of frequency at 
different volume fractions, using glass particles in water. Symbols are experiments, solid lines are 
theory. Volume fractions are A, 0.05; 0. 0.2; +, 0.3 and x, 0.4. 

behaviour sensitive to the mechanical properties of particles. The phase speed near 
the resonance frequencies can vary significantly. Thus, it is desirable to carry out 
measurements at low frequencies where the scattering effects will be insignificant. 

When kc,a is small the phase speed can be measured for cases for which the Stokes 
layers are much smaller than the particle radius. In this limit the speed is nearly 
independent of the particle radius. Figure 19 shows the phase speed as a function of 
volume fraction in this limit for a glass-water system with two different sizes. Note 
that the speed is essentially the same for both particle sizes. The attenuation under 
these conditions would be proportional to a -’ (Allegra & Hawley 1972). Figure 19 
also shows results for the case when the Stokes layers are much thicker than the 
particle radius. Once again, in this limit the phase speed is nearly independent of the 
particle radius while the attenuation would vary significantly with the particle radius 
as a2. Note that the phase speed as a function of volume fraction goes through a 
minimum in the low-frequency limit. The monotonic increase at high frequency might 
be more suitable for determining the volume fraction. Thus, the ideal frequency for 
measuring the phase speed corresponds to the one for which the Stokes layers are 
thin compared with the particle radius and kC,a is small. 

7. Summary 

We have derived equations for describing small-amplitude acoustic wave propa- 
gation through a suspension. The equations are similar to those for a single-phase 
medium but require closures for estimating the effective properties of the suspension. 
We used an effective-medium model to solve for the conditionally averaged temper- 
ature, density, and velocity fields inside a test particle, and estimated thereby the 
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FIGURE 19. Wave speed as a function of volume fraction for two limiting cases. Solid line, 
a2~p,/pl = 3 x lo3 and k,ia = 8 x 10e4; long-dashed line the same, but with the particle radius in- 
creased by a factor of 5; dashed-dotted line, a’wp,/pi = 3 x 10m4 and k,,a = 8 x 10P4; short-dashed 
line the same but with the particle radius increased by a factor of 5. 

effective properties such as the density, heat capacity, conductivity, viscoelasticity, and 
compressibility in a self-consistent manner. When the wavelength is large compared 
with the particle radius the multiparticle interactions in the suspension can be approx- 
imated by Stokes or Laplace equations for which a number of effective properties 
have been determined in recent years through rigorous multiparticle calculations. 
We show that the estimates obtained using the effective-medium approximation for 
various properties are in excellent agreement with these rigorous calculations. The 
theory is also shown to be excellent agreement with the experimental data for the 
polystyrene-water system by Allegra & Hawley (1972). The ratio of particle radius 
to wavelength was small in these experiments. To test the theory for larger particles 
we have conducted experiments both for polystyrene particles and glass particles in 
water. The agreement with the data for the polystyrene-water system which exhibits 
several resonances due to shape oscillations is excellent. However, the comparison was 
limited to dilute suspensions because of the unavailability of concentrated monodis- 
perse suspensions in the particle size range of interest. The glass-water system had 
significant polydispersity but covered a broad range of volume fractions. The agree- 
ment between the theory and experiments for small particles in which the viscous 
attenuation dominates is excellent while for large particles for which the scattering 
losses dominate the agreement is good only up to 4 = 0.3. At higher volume fractions 
the attenuation measured in our laboratory decreased, in contrast with the theory 
prediction. 

In view of the remarkable success of the effective-medium approximation in pre- 
dicting the attenuation in solid-liquid systems, it seems that the procedure used here 
may also find applications in other acoustic problems, e.g. in the electroacoustics of 
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colloidal suspensions (O’Brien 1990) and in acoustics of fluid-saturated porous media 
(Burridge & Keller 1981). 
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The wave equations for the interior and exterior of the particles are ensemble averaged and 
combined with an analysis by Allegra and Hawley [J. Acoust. Sot. Am. 51, 1545 (1972)] for the 
interaction of a single particle with the incident wave to determine the phase speed and attenuation 
of sound waves propagating through dilute slurries. The theory is shown to compare very well with 
the measured attenuation. The inverse problem, i.e., the problem of determining the particle size 
distribution given the attenuation as a function of frequency, is examined using regularization 
techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, 
the success of solving the inverse problem is limited since it depends strongly on the nature of 
particles and the frequency range used in inverse calculations. 0 1999 American Institute of 
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1. INTRODUCTION 

Determining the particle size distribution of a solid- 
liquid mixture is of great practical interest. It has been sug- 
gested in the literature that this distribution may be deter- 
mined by measuring the attenuation of a sound wave 
propagating through the mixture as a function of the fre- 
quency of the wave. The main premise is that the attenuation 
caused by a particle as a function of frequency depends on its 
size and therefore the attenuation measurements can be in- 
verted to determine the particle size distribution-at least 
when the total volume fraction of the solids is small enough 
so that the particle interactions and detailed microstructure of 
the slurry play an insignificant role in determining the acous- 
tic response of the slurry. Indeed, this general principle has 
been exploited successfully to determine the size distribution 
of bubbles in bubbly liquids.le3 Commercial “particle siz- 
ers” based on acoustic response are in the process of being 
developed/marketed for characterizing solid-liquid mix- 
tures.4 The main objective of this paper is to investigate un- 
der what circumstances such a problem can be solved for 
solid-liquid systems. It will be shown that the success of the 
acoustic method for determining detailed particle size distri- 
butions is limited, depending on the nature of the particles 
and the frequency range over which input data (attenuation) 
are available. 

The problem of determining the acoustic response of a 
slurry given its particle size distribution is referred to as the 
forward problem. When the total volume fraction of the par- 
ticles is small, the problem is relatively simple since then one 
only needs to understand the interaction between a single 
particle and the incident sound wave. This has been exam- 
ined by a number of investigators in the past with notable 
contributions from Allegra and Hawley’ and Epstein and 
Carhat? who considered suspensions of particles as well as 
drops. The former investigators also reported experimental 

results verifying the theory for relatively small particles for 
which the acoustic wavelength is large compared with the 
particle radius. The theory developed by these investigators 
is quite general and accounts for attenuation by thermal, vis- 
cous, and scattering effects as described in more detail in 
Sets. II and III. The case of monodisperse nondilute suspen- 
sions has been examined by Varadan et al.’ who used an 
effective medium approximation to account for particle in- 
teractions, but their analysis was concerned only with the 
attenuation due to scattering. In Sec. II we present the theory 
for the forward problem with the main aim of reviewing the 
important physical effects causing the attenuation. The deri- 
vation for the attenuation proceeds along different lines than 
that followed by Epstein and Carhart or Allegra and Hawley 
in the way the one particle analysis is used to predict the 
attenuation of the suspension. These investigators calculated 
the energy dissipation per one wavelength to estimate the 
attenuation while we use the method of ensemble averages to 
determine both the phase speed and attenuation of waves. 
The method of ensemble averages will be more convenient 
for developing a suitable expression for attenuation in non- 
dilute suspensions, if desired, using either an appropriate 
effective-medium approximation or direct numerical simula- 
tions. 

In Sec. III we present new experimental data for nearly 
monodisperse polystyrene particles whose radii are compa- 
rable to the wavelength and validate the theory described in 
Sec. II over a nondimensional frequency range much broader 
than examined by previous investigators. We also summarize 
in that section the different physical mechanisms that cause 
attenuation in suspensions. The attenuation as a function of 
frequency is shown to undergo several peaks owing to the 
resonances in shape oscillations in agreement with the theory 
prediction. It also gives some indication of the range of fre- 
quency and attenuation measurable with our acoustic device. 

In Sec. IV we consider the inverse problem, i.e., the 
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problem of determining the particle size distribution given 
the total attenuation as a function of frequency and the physi- 
cal properties of the particles and the suspending liquid. At 
small particle volume fractions, this amounts to solving a 
linear integral equation for the unknown size distribution. 
This is an ill-posed problem: small changes/errors in the at- 
tenuation data can cause large changes in the size distribu- 
tion. Thus, for example, several very different particle distri- 
butions could give rise to essentially the same attenuation- 
frequency curve. This, of course, is a rather well-known 
difficulty in most inverse problems which involve solving a 
Fredholm integral equation of the first kind with a smooth 
kernel. Techniques have been developed to “regularize” the 
problem. We use the well-known Tikhonov regularization 
techniques,’ which replaces the ill-posed original problem 
with another well-posed problem involving an integro- 
differential equation whose solution minimizes the fluctua- 
tions in the particle size distribution. Minimizing of the fluc- 

tuations is rationalized on the grounds that in most practical 
situations the particle size distribution is smooth. This regu- 
larization technique has been shown to work very well for 
the inverse problem in bubbly liquids.2 

We apply the above technique to suspensions of polysty- 
rene and glass particles. We find that the technique works 
well for the polystyrene particles but not for all glass par- 
ticles. We also find that for polystyrene particles the tech- 
nique works only when the attenuation is given over an ap- 
propriate frequency range-a frequency range that is too 
narrow or too broad may give erroneous estimates of the 
distribution. An alternative inverse technique based on linear 
programing also failed to produce the correct particle size 
distribution for the cases for which the Tikhonov scheme 
failed. This suggests that the prospects for determining the 
detailed particle size distribution from acoustic measure- 
ments are somewhat limited. (In situations where more might 
be known about the nature of particle size distribution, e.g., 
unimodal with a Gaussian or log-normal distribution, one 
might be able to determine the size distribution through ap- 
propriate curve fitting as has been done, for example, by 
McClements and Coupland,s but this is not addressed here.) 

The reasons why the size distributions for some particle 
suspensions are not recovered by the inverse techniques 
while the same techniques were found to be quite successful 
for bubble suspensions can be given in terms of differing 
resonance nature of these suspensions. In the case of bubbles 
in most typical applications, the resonance occurs at frequen- 
cies for which the wavelength is relatively large compared 
with the bubble radius. This resonance is due to volume os- 
cillations; the shape-dependent resonances are unimportant 
and, as a consequence, there is effectively one resonance 
frequency for each bubble size. Thus, the peaks in the 
attenuation-frequency curve give a reasonable indication of 
the bubble sizes. The situation with the particles is different 
as their resonance behavior is governed by shape oscilla- 
tions. For polystyrene particles, several resonance peaks cor- 
responding to different shape oscillations arise even for 
monodisperse particles, and, as a result, it is difficult to de- 
termine whether a given resonance peak arises from a differ- 
ent shape oscillation mode of the same particle or from a 
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particle of different size. For glass particles, on the other 
hand, there are no significant resonance peaks even for 
monodisperse particles, and the attenuation behavior for dif- 
ferent sizes is not significantly different to allow accurate 
results for the size distribution. 

II. THE FORWARD PROBLEM 

The wave equations for both the interior and exterior of 
particles have been derived by Epstein and CarharL6 They 
were interested in the attenuation of sound waves in fog and 
therefore their analysis was concerned with drops instead of 
particles. The stress tensor for a viscous fluid used by them 
for the interior of the drops was subsequently replaced by 
Allegra and Hawley’ by that of an elastic solid to determine 
the attenuation of sound waves in a solid-liquid suspension. 
In this section we shall ensemble average a resulting wave 
equation to obtain the effective wave number of the suspen- 
sion at arbitrary volume fraction, the real and imaginary 
parts of which give the wave speed and attenuation. Thus, 
the attenuation is not calculated by means of an energy dis- 
sipation argument,5v6 but directly from averaging the relevant 
wave equation. The result contains certain coefficients that 
remain to be evaluated for a given microstructure. In the 
present study, since we are primarily concerned with deter- 
mining the size distribution, we shall evaluate the coeffi- 
cients in the limit of small volume fractions. In a separate 
study, where we shall present experimental results for non- 
dilute suspensions, we shall extend the theory to treat nondi- 
lute suspensions. 

A. Theory 

Epstein and Carhart first linearized the conservation 
equations for mass, momentum, and energy. The pressure 
and internal energy were then eliminated by introducing 
the linearized equations of state to yield equations in terms 
of density, velocity, and temperature. Next, the time depen- 
dence of all quantities were expressed by the factor 
exp( - @-which is henceforth suppressed-and the veloc- 
ity was expressed as 

v=-V@+VxA, 

with V . A= 0. With this form of v it is possible to eliminate 
the temperature and density from the governing equations to 
yield a fourth-order partial differential equation for @ and a 
second-order equation in A. The former, in turn, can be split 
into two second-order wave equations upon a substitution 
Cp = 4,+ & to finally yield three wave equations: 

(v2+k,2)&=0, (1) 

(V2+k&=0, (2) 

(V2+#A=0. (3) 

The wave numbers in the above equations are given by 

C2 
~=I;I[l-L(e+yf)+((1-L(e+yf))2 

+4f(L+ r4)'"17 (4) 
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+4f(~+ re))‘“l, 

k,= (1+ ‘)(wp/2/.L)ly 

with 

(5) 

(6) 

e=(4p/3+K)ol(pc2); f=:dc2. (7) 

Here, c is the phase speed in pure liquid, p is the density, K 

and p are, respectively, the compressional and dynamic vis- 
cosity, y= CP lC, is the ratio of specific heats at constant 
pressure and volume, 7 is the thermal conductivity, and 
I+= T/PC, is the thermal diffusivity. 

Inside the particles similar equations hold with the dy- 

namic viscosity replaced by $( - LW) and the wave speed 

by ((x+2,&/3)l;)1’2, where ,& and K are the Lame constants, 
while the compressional viscosity is left out. Henceforth a 
tilde refers to the interior of particles. 

At small values of e and f (such as in water), the above 
expressions for k, and k, simplify to 

k,=dc+ ;[(4@3+ K)/P+(y- l)a]w2/c3, 

kT= (1 + L)( w/2a)u2. 

Equation (1) and its counterpart inside the particles de- 
scribe the sound wave propagation through the suspension. 
Note that the wave number has an imaginary part; sound 
waves in pure fluid are attenuated by viscous and thermal 
energy dissipation;” the term inside the square brackets in 
(8) is commonly referred to as the “diffusivity of sound.” 
The total attenuation coefficient in both liquid and in the 
solid particle will henceforth be treated as additional physi- 
cal properties. The other two wave equations describe waves 
that arise from thermal conduction and finite viscosity: we 
note that the modulus of kT in Eq. (8) is inversely propor- 
tional to the thermal penetration depth 6 and that of k, 
to the viscous penetration depth ds. The thermal (&) 
and shear (A) waves have generally very high attenuation 
and are unimportant in acoustic applications. 

We now proceed to ensemble average the wave equation 
(1) to find an expression for the effective wave number of a 
wave propagating through a solid-liquid suspension. Intro- 
ducing an indicator function g, defined to be unity inside the 
particles and 0 outside, the ensemble-averaged value of 4, is 

b#4=(g&+(l -gb#d. 

To obtain a wave equation for (4,) we first take the gradient 
of the above equation to yield 

W,)=Wic+(1 -g)W,)+((W(&- 4,)). (9) 

As argued by Sangani,” upon assuming that the particles’ 
spatial distribution is homogeneous on a macroscale, the last 
term in (9), being a vector, can only depend on quantities 
such as V( 4,) and VV2( 4,). Anticipating that (4,) will 

satisfy a wave equation we express the last term on the right- 
hand side of the above equation in terms of V( 4,), i.e., we 
write 

((Vg>(~,,-~,))=X1V(~,), 
where X1 depends on the parameters such as the volume 

fraction, k, , and k’, . The divergence of (9) is given by 

v2~~c)=(gv2&+u -g)v2~c)+(m) 

w&b%))+w2GPc) 

= -k~(~,)-(~-k,2)(g~,)+((Vg) 

.(v~,-v~,))+~lv2~~c~. (10) 

Writing 

((vg).(v~,-v~,)>=x,k(~~), (&)=~3(~,)~ 

we find that (r#~,) satisfies a wave equation 

(V2+k:,,H4d=0 01) 

with the effective wave number given by 

k2 =k:+Wk7-kf)-b~ 
eff l-X1 . 02) 

The real part of the effective wave number is the frequency 
divided by the phase speed in the mixture and the imaginary 
part the attenuation. 

Up to this point the analysis is rigorous and without any 
assumption. Applying the boundary conditions of continuity 
of temperature, flux, velocity, and traction at the surface of 
the particles, and solving the resulting boundary value prob- 
lem numerically, it is possible, in principle, to determine the 
phase speed and attenuation at arbitrary volume fraction us- 
ing the above formulation. Special simplifications can be 
made when the wavelength is large compared with the par- 
ticles and when the viscous and thermal depths are small 
compared with the particle radius for which numerical com- 
putations using the multipole expansions developed in recent 
years (see, e.g., Ref. 12) can be readily used for determining 
the attenuation at arbitrary volume fractions. Alternatively, 
one may use a suitable effective-medium approximation to 
account for the particle interactions in nondilute suspensions 
using the above framework. We shall pursue this further in a 
separate study13 devoted to nondilute suspensions where we 
shall also present experimental data. Since our interest in the 
present study is in determining size distributions, it is neces- 
sary to consider only the simplest case of dilute suspensions. 

In dilute suspensions the particle interactions can be ne- 
glected, and the coefficients A I -3 can be evaluated from the 
solution for 4, for a single particle given by Allegra and 
Hawley.5 Accordingly, the conditionally averaged 
( +c)(x(xl) given a particle centered at x1 is given by 
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where F = Ix- x1 1, p= cos 13, B being the angle between x 
-x1 and k, , h, is the spherical Bessel function of the third 
kind (corresponding to an outgoing scattered wave), and P, 
is the Legendre polynomial of degree n. The first term on the 
right-hand side of the above expression is the uncondition- 
ally averaged ( I$,)( ) x w h ose amplitude is taken to be unity 
with no loss of generality. 

Inside the particle centered at x1 we have 

Xk.jn(&~,r)P,(CL)~ (14) 

where j, is the spherical Bessel function of the first kind. 
Similar expressions are written for the conditionally aver- 
aged $~r and A. This results in expressions with a set of six 
unknowns for each mode n. Application of the aforemen- 
tioned boundary conditions of continuity of velocity, trac- 
tion, temperature, and heat flux yield six equations in these 
six unknowns for each n. There were some typographical 
errors in the equations given by Epstein and Carhat? and 
Allegra and Hawley;’ the correct equations are given in the 
Appendix. Although it is possible to solve for the unknowns 
analytically in certain limiting cases, it is best to solve them 
numerically since we are interested in covering a wide be- 
quency range for inverse calculations. 

We now return to the calculations of the coefficients 
Xtm3. Upon using the identity 

Vg= -ns(X-Xi), 

with xi being a point on solid-liquid interface and n the unit 
normal vector at the point, At is given by 

hlV(4Jc)(x)= - Jxpx ,= ~[(d,)<~I~1)-(9c>(~I~1>1 
1 0 

X P(x,)dAl. (15) 

Here, P( x,) is the probability density for finding a particle in 
the vicinity of x1. Similarly, we have for A2 and A3 

A2~(4&4= - 1.. ,= n-V[(iWxlxl) 
1 a 

and 

b(#d(x)= 1 g(x)(~,>(xlxl)P(xl)dV1. (17) 

The above integrals must be evaluated while keeping in mind 
that the integration variable is x1 . Thus, for example, in (15) 
and (16) we must consider all particles whose surfaces pass 
through the point x. To carry out these integrals we use the 
identity 

e LkC. x, = e Lk,. xe - uk,p 

=eLkc’xmio L~(- 1)“(2m+ l)j,(k,r)P,(p) 08) 

and the orthogonality of the Legendre polynomials over 
spherical surfaces. The resulting expressions are 

x [X,,j,,(?l -j,(z) -A,Mz)l~ 

AZ= - ynTo (2n+ l)j,(z) 

(19) 

X x,,jA(?l- !j:(z) - A,ih,(z) , 
I I 

(20) 
2 

A3,?t~, _ - 
i 

sin(Gz) sin(Z+z) 

222 1 
+ 

z-z z+z 
$$sl (2n+l) 

XAl,[~jj,-l(~)j,(z)-zj,(~))j,-l(~)l, (21) 

where in the expression for A I the j, - t-term in the n = 0 
contribution is to be left out. Here, 4 is the volume fraction 

of the solids, z = k,a and ?=zca are the nondimensional 
wavenumbers, and primes denote derivatives. Expressions 
(19)-(21), together with the expression for the effective 
wave number (12), complete the description of a solid-liquid 
mixture at low volume fractions. 

In the above we have derived expressions for the attenu- 
ation and wave speed by calculating the effective wave num- 
ber directly. An alternative derivation of the attenuation co- 
efficient is to calculate the energy dissipation per wavelength 
in the mixture and divide the result by the energy per wave- 
length. The result for the attenuation per unit length is then5T6 

aZ-zio (2n+l)ReA,. (22) 

It can be shown that the two methods give essentially the 
same result for the attenuation in the limit &-+O with 
z- 2 Re A, in the above replaced by Re(A, /z)/Re(z) in the 
ensemble-averaging method presented here. 

The above analysis may be extended to account for the 
effect of finite volume fraction through a suitable effective- 
medium approximation. Sangani” showed that the first cor- 
rection of 0( 43’2) to the dilute 0( 4) approximation for 
bubbly liquids can be simply derived through an effective- 
medium approximation. This correction is most significant 
near the resonance frequency of bubbles, and to correctly 
capture the behavior near resonance it is important to replace 
the pure liquid wave number (k, in the above analysis) by 
the effective wave number. Thus, in the present context, 
z=k,a in (19)-(21) for Alv3, is replaced by zeff=keEa, 
while the wave number in pure liquid in the expression for 
keK, (12) has to be retained. The latter expression is then 
iterated to obtain a converged solution for k,ff. The 
effective-medium approximations have been found to be 
quite useful in the related study of light scattering by suspen- 
sions (see, e.g., Ref. 14). For very high volume fractions the 
@her physical properties of the so-called effective medium 
must also be modified. In a separate study,t3 where we shall 
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report experimental data for dense slurries, we shall examine 
several different versions of effective-medium approxima- 
tions in more detail. 

Finally, the above analysis can be extended in a straight- 
forward manner to account for the particle size distribution 
when the total volume fraction of the particles is small. Let 
us write the attenuation by particles of radius between a and 

a + da as an attenuation density &Cf,a) [where f is the fre- 
quency of the wave, f= wl(27r)] times the volume fraction 
of those particles &a)da; we shall refer to +(a) as the 
volume fraction distribution. At low volume fractions these 
contributions can be “summed” over all particle sizes to 
give for the total attenuation atotCf): 

g %x(f) = I hf&iWda. a=0 
It is customary to express the particle size distribution in 
terms of its number density distribution P(a). The volume 
fraction distribution is related to P(u) by +(a) 
=(4m3/3)P(u). 

The effective-medium approach described earlier can 
also be readily extended to account for the particle size dis- 
tribution. The coefficients Xre3 are first determined as func- 
tions of a for an assumed value of the effective wave number 
and these are integrated after multiplying by &u)du to yield 
estimates for the average values of hle3 for the suspension. 
These are substituted in (12) to determine k,n. If this esti- 
mate of &f is different from the the assumed value, then 
A, -3 are estimated for the new value of /~,a, and the process 
is repeated until the assumed and estimated values of the 
effective wave numbers agree with each other. 

Ill. DISCUSSION AND COMPARISON WITH 
EXPERIMENTAL DATA 

Figures 1 and 2 show the predictions for the attenuation 
and wave speed as a function of frequency f for ‘79 pm radius 
polystyrene particles at a volume fraction of 0.05. The fre- 
quency f in Hz is related to o by w = 277f. The physical 
properties used in the computations are given in Table I.15 
We note that the wave speed only changes if the frequency 
becomes very large and that these changes coincide with 
strong changes in the attenuation as well. Hence we expect 
that the measurement of the phase speed will not provide 
significantly new information over that obtained from the 
attenuation measurements alone as far as the problem of de- 
termining the size distribution is concerned. On the other 
hand, since the phase speed at low frequencies is nearly in- 
dependent of the frequency or k,a, it might be possible to 
use the low frequency speed data to determine the total vol- 
ume fraction of the particles regardless of its size distribu- 
tion. We shall focus in the present study on the results for 
attenuation as they are the most sensitive to the particle size 
distribution. 

The attenuation of sound waves in a suspension is dif- 
ferent from that in pure liquid because of four effects. First, 
the attenuation of sound in pure solid is different from that in 
pure liquid, and hence simply the presence of the particles 
changes the attenuation from that of pure liquid. Second, 

1U6l 
IO4 lo5 lo6 

FREQUENCY (Hz) 

.I 
1c I’ 

FIG. 1. Example of the dependence of attenuation on frequency f for a 
mixture of monodispersed polystyrene particles in water. Dashed lines are 

asymptotic slopes of the attenuation for small and large frequencies. 

changes in temperature are different in a solid than in a liq- 
uid, and this causes a heat flux through the surface of the 
particles. This heat flux is out of phase with the sound wave 
passage and this leads to attenuation referred to as the ther- 
mal attenuation. Third is the viscous energy dissipation 
caused due to the motion of the boundary of the suspended 
particles. Finally, the fourth effect is the attenuation due to 
scattering. 

Allegra and Hawley’ showed that when the particle size 
is much smaller than the wavelength and much greater than 
the thermal and viscous penetration depths ( er/lw)ln and 

1 1,561 
156- 

1.54 

1.42- 

1.4’ A 

lo4 i05 lo6 10’ 
FREQUENCY (Hz) 

FIG. 2. Example of the dependence of wave speed on frequency f for a 
mixture of monodispersed polystyrene particles in water. 
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TABLE I. The values of the physical properties that are used in this paper. The properties of water and 

polystyrene were taken from Ref. 6; the properties of glass from various sources, most notably Ref. 15. 

density (g/cm3) 

thermal conductivity (J/K.cm.sec) 

specific heat (J/g.K) 

thermal expansion coefficient (l/K) 

attenuation coefficient per freq’ (sec2/cm) 

sound speed (cmfsec) 

shear viscosity (gkm.sec2) 

shear rigidity (g/cm. sec2) 

Polystyrene 

1.055 

1.15x10-3 

1.19 

2.04X 1O-4 

lo-‘5 

2.3~10~ 
. 

1.27X10’” 

Glass 

2.3 

9.6X 1O-3 

0.836 

3.2X 1O-6 

lo-‘5 

5.2x 105 
. 

2.8X 10” 

Water 

1.0 

5.87X1O-3 

4.19 

2.O4X1O-4 

2.5X10-I6 

1.48X105 

1.01x10-2 
. 

(v/o) 1 1’2 the resulting viscous and thermal attenuations in- 
crease as fin. On the other hand, when the penetration 
depths are much greater than the particles, both attenuation 
contributions increase as f2. This transition occurs at very 
low frequencies-about 2 Hz for 100 p radius particles in 
water-and will not be considered here. Attenuation due to 
scattering becomes important when the nondimensional 
wave number z= k,a becomes comparable to unity. For 
small but finite z the scattering losses increase as f”. Thus, 
one expects that the change in the attenuation behavior from 
f”2 at low frequencies to f” at high frequencies will provide 
an important indication of the particle size. These asymptotic 
ranges are indicated in Fig. 1. We see that the transition to 
the f” behavior does not fully occur for the particles consid- 
ered here. As the frequency is increased particles undergo 
several resonances as described in more detail below, and 
this is responsible for the several peaks seen in Fig. 1. 

Figure 3 shows the contributions to the total attenuation 
from each P, mode. The n = 0 mode corresponds to radial 
(volume) oscillations of the particles, n= 1 to the transla- 
tional oscillations, n = 2 to the ellipsoidal P2-shape deforma- 

i // 4l=2 / , ,‘I’ ,’ 
1o4' /'/ 

/ 
;:) ,I 

" '/ 
--- / 

I 

,'7' I 
- -"Go' / 

,' / 
10'5 /__--- -7 

--&< i /I 
: ! 

_.-- 
_/-- 

/--- / 
/ / / 

/ n=3 ./ .‘n=4 

IO41 
/: / / 

IO4 lo5 IO6 IO’ 
FREQUENCY (Hz) 

FIG. 3. Contributions from the first five modes n in (19)-(21) to the total 

attenuation [the imaginary part of kcrt. which is given by (12)]. Polystyrene 

particles in water. 

tion oscillations, and so on. The density of polystyrene par- 
ticles is essentially the same as that of water, hence the 
particles’ translational oscillations are very small. As a con- 
sequence, the viscous attenuation is small and the small fre- 
quency behavior is governed by the thermal attenuation of 
the n = 0 mode. At higher frequencies the n = 0 mode begins 
to increase first as f” due to scattering losses but the contri- 
bution from the n=2 mode soon becomes important as it 
undergoes a resonance at about 3 MHz frequency. The 
n = 3 and n = 1 modes undergo resonances next, and so on. 
We see that the n = 0 mode undergoes a broad maximum 
around 9 MHz. Although not shown here, it too undergoes a 
resonance with a sharp downward peak at about 21 MHz. 
Thus, we see that the attenuation varies with frequency in a 
rather complicated manner at high frequencies owing to vari- 
ous resonances. We should note here that the behavior of this 
kind for polystyrene particles has also been reported by other 
investigators in the past. For example, Anson and Chivers16 
and Ma, Varadan, and Varadan,14 who restricted their analy- 
sis to scattering losses only, found essentially the same be- 
havior, and in earlier investigations17,18 mainly focusing on 
the determination of waves reflected by immersed objects, 
high-amplitude reflected waves were found at certain reso- 
nance frequencies. 

Figure 4 shows attenuation as a function of nondimen- 
sional wave number k,a for particles of radii 50 and 79 
microns. We see that the curves for these two radii are es- 
sentially the same, indicating that, at least for polystyrene 
particles, the thermal or viscous effects have negligible in- 
fluence on the resonance frequency. The first resonance cor- 
responding to n= 2 appears at k,a= 1.4. 

Allegra and Hawley’ tested (22) extensively against their 
experiments and found very good agreement. However, their 
particles were always smaller than 1 w radius, so that the 
wavelength was always much greater than the particle size. 
No resonance behavior was observed in their experiments. 
Although the above-mentioned paper by Ma, Varadan, and 
Varadan14 presents experimental data on light scattering in 
the small-wavelength regime, no data on attenuation of 
sound waves by particles were presented. To test how well 
the theory works for larger particle sizes, we carried out an 
experiment that will be described in detail (along with more 
experiments on concentrated slurries) elsewhere.13 In this ex- 
periment the attenuation of sound waves was measured in a 
frequency range of 1 - 10 MHz in a solid-liquid mixture of 
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FIG. 4. Attenuation divided by wave number as a function of the wave 
number times the particle radius in the scattering regime for monodispersed 

polystyrene particles (-, a = 79 pm; ---, a = 50 pm). The volume fractions 

of the particles in both cases are the same and equal to 0.05. 

polystyrene particles with 79-+3,u mean radius and 1.8 p 
standard deviation at 0.05 volume fraction. Monochromatic 
tonebursts, at incremental frequencies, were transmitted by a 
transducer on one side of a small vessel in which the mixture 
was being stirred; a second transducer received the signal 
and sent it to a LeCroy 9310A digital oscilloscope. The am- 
plitude of the signal for pure water was measured, as was 
that for the solid-liquid mixture. The excess attenuation was 
determined by 

l i Vmir \ 

where d is the distance between the transducers and Vii, and 
Vn,o are the voltage amplitudes of the received signals in the 

mixture and pure water, respectively. The distance between 
the transducers was 2 in. at low frequencies and 1 in. at 
higher frequencies; this was necessary because the attenua- 
tion at higher frequencies was too large to produce signifi- 
cant signal-to-noise ratio in the larger vessel. 

Figure 5 shows the comparison between theory and ex- 
periment. At the two gaps in the frequency domain (where 
the theory predicts very high peaks) the attenuation became 
again so large that the signal-to-noise ratio vanished even in 
the smallest vessel. Good agreement is found between ex- 
periments and the theory except near resonance frequencies 
where small differences are seen. There are two possible 
reasons for these small differences. The first is concerned 
with the finite volume-fraction effect. To investigate this we 
have also plotted in Fig. 5 a result from an effective-medium 
approach described in the previous section. The resulting at- 
tenuation changes, but in the wrong direction. The second 
reason is that the particles were not exactly monodispersed. 
Using the method described in the previous section, a log- 

-17 
FREQUENCY (Hz) 

FIG. 5. Comparison with experimental data for the attenuation as a function 

of frequency. Polystyrene particles of radius a=79 pm and 0.05 volume 
fraction. 0, experiments; -, theory for monodispersed particles; 

-.-.-., theory for monodispersed particles with effective medium correction 
for finite volume fraction effects; ---, theoretical result with a particle sire 

distribution with a mean particle radius of 77 pm and standard deviation of 
2.5 pm (this is within the range specified by the manufacturer). 

normal particle size distribution was introduced with a mean 
radius of 77 and 2.5 pm standard deviation, which lies 
within the manufacturers’ specifications. The result for the 
attenuation, the dashed curve in Fig. 5, shows close agree- 
ment with the data. Thus, we conclude that the agreement 
between the theory and experiment is excellent, and that the 
small observed differences are due to small polydispersity of 
the suspension. 

The attenuation behavior displayed by polystyrene par- 
ticles is not generic, as can be seen from Fig. 6 which shows 
the attenuation behavior for glass particles. Since the density 
of the glass particles is significantly different from that of 
water, the glass particles execute significant translational os- 
cillations. As a consequence, the low-frequency behavior is 
completely governed by the viscous effects and the n = 1 
mode. Note that the small frequency attenuation is about two 
orders of magnitude greater for glass particles than for the 
polystyrene particles. Also we see a considerably different 
behavior at higher frequencies. The attenuation does not 
seem to peak at several frequencies. Rather, for each n we 
see broad “hills” separated by narrow “valleys.” The total 
attenuation does not appear to go through several resonances. 
The difference in the behavior for the glass and polystyrene 
particles at these high frequencies seems to arise mainly 
from the different elastic properties of the two materials. 

IV. THE INVERSE PROBLEM 

We now consider the inverse problem: given the total 
attenuation atot as a function off we wish to determine &a) 
using (23). The straightforward method of solving the inte- 
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FIG. 6. Attenuation by monodispersed glass particles (of 79 pm radius) in 
water as a function of frequency and the contributions from the first three 

modes n in (19)-(21) to the total attenuation [the imaginary part of k,rr, 
which is given by (12)]. 

gral equations, i.e., discretizing the integral domain into a 
number of elements and converting the integral equation into 
a system of linear equations in unknowns c,@ak) at a selected 
number of points uk in the domain, cannot be used since the 
resulting equations will be ill conditioned. Figure 7 illus- 
trates the ill-posed nature of the problem. Figure 7(a) shows 
two very different particle distributions whose attenuation 
versus frequency curves are seen in Fig. 7(b) to be essen- 
tially the same. These curves were obtained by starting with 
a smooth, log-normal particle size distribution [the dashed 
curve in Fig. 7(a)] and generating the attenuation versus he- 
quency data using the forward theory [the circles in Fig. 
7(b)]. A 1% random noise was then added to the data and 
(25) with E=O, which is equivalent to the integral equation 
(23), was subsequently solved to yield the particle size dis- 
tribution indicated by the solid line in Fig. 7(a). The pluses in 
Fig. 7(b) correspond to the attenuation determined from the 
forward theory using the new particle distribution. Note that 
the attenuation is evaluated with a smaller frequency incre- 
ment than the one used for the original distribution. We see 
that the attenuation from the two distributions agree with 
each other to within 1% for the frequencies marked by 
circles. The highly oscillatory particle distribution does show 
an oscillatory behavior in between the frequency increments, 
particularly at 10 MHz, but these oscillations occur only for 
a very narrow frequency range and would have been missed 
altogether had the attenuation been determined only at the 
input frequencies. 

A. Method 

Since the true particle distribution is expected to be 
smooth, we must only allow solutions that are reasonably 
smooth There are several ways of accomplishing this. In the 

i 
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FIG. 7. Influence of fluctuations superimposed on the volume fraction dis- 

tributions (a) on attenuation data (b). In (b) the circles correspond to the 
result when using the dashed distribution of (a) and the pluses when using 

the solid line in (a). 

present study, we shall use primarily a regularization tech- 
nique due to Tikhonov* which was successfully used for 
bubbly liquids by Duraiswami.2 An alternative method is 
presented at the end of this section. Accordingly, we multi- 

ply (23) with &,a)df and integrate over the frequency 
range to obtain a simpler integral equation in which the 
right-hand side is only a function of a: 

=b(u)= I jm’.atot(f)4f,4df7 04) 

where (uen ,uJ and (fti,,f-) are the radius and fre- 
quency ranges. The above integral equation is now regular- 
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ized as explained below by adding a small term ~(4 
- Z*#‘) (where primes denote derivatives) to its left-hand 
side. Thus, we obtain 

Gw-ww1+ I 
am”K(u,u’)~(u’)du’=b(u), (25) 
%lin 

where I is a suitably chosen lengthscale and K(u,u ’ ) is a 
kernel defined by 

I 

f 
K(u,u’) = max&f,u) &,a ‘)df. (26) 

fmin 

Equation (25) is an integro-differential equation and needs 
two boundary conditions. Usual practice is to take the de- 
rivative of +(a) to be zero at the two end points: 

qh’(a~n)=#(um)=O. (27) 

Note that amin and amax are not known a priori in general. 
One expects 4 to be zero also at the two end points. Thus, 
the range (atin-%,) must be determined by trial and error 
so that both 4 and its derivatives are approximately zero at 
the extreme values of a. 

Now it can be shown that the solution of (25) subject to 
the boundary conditions given by (27) minimizes 

E+e 
I 

"m~[{~(u)}~+z~{~'~u~}~l~u, (28) 
Gin 

where E is the measure of error between the actual attenua- 
tion and the computed attenuation: 

2 

E= amax;r(f,u)&u)du- a&f) df. (29) 

Since both E and the second term in (28), i.e., the integral, 
are non-negative, minimization of (28) ensures that the solu- 
tion of (25) will be free from large oscillations in 4. In other 
words, highly oscillatory distributions such as the one shown 
in Fig. 7(a) are rendered inadmissible when (25) is solved 
with finite, positive E in place of the original integral equa- 
tion (24). Thus, we have regularized the problem of deter- 
mining 4. 

If we choose a large e, then we decrease the oscillations 
in 4 but increase the error in &a) since then the equation 
solved is significantly different from the original integral 
equation. Small E, on the other hand, yields unrealistic +(a) 
having large oscillations when the data (Y&) are not exact. 
An optimum choice of 6 then depends on the magnitude of 
uncertainty/error in the attenuation-frequency data. In the 
calculations we shall present here the exact at&) is first 
determined using the forward theory for a given &a) and a 
small random noise of about 1% magnitude is added to it 
before the inverse calculations are made (the effect of noise 
magnitude is discussed below). Thus, we have an estimate of 
the error in the data but in general this estimate may not be 
known reasonably accurately. To determine the optimum 6, 
we solve (25) for several different E)s and plot E versus E to 
find a minimum in E. This, however, may lead to distribu- 
tions in which 4(u) may have unphysical negative values 
for some a. The constraint #(a) 30 for all a is satisfied a 
posteriori by setting +(a) = 0 for all u’s for which the solu- 

tion of (25) gave negative values of 4. The computed value 
of E for a given E is then based on $(u)aO. 

The integro-differential equation (25) was solved as fol- 
lows. After discretizing the domain (urnin-urnax) into N- 1 
equal segments and the frequency domain into M - 1 loga- 
rithmically equal segments we first evaluate the kernel 
K(Ui ,Uj) for i,j= 1,2,...,N [cf. (26)] using a trapezoidal rule 
for the integration over the frequency range. As pointed out 
by Duraiswami,* it is essential to calculate the integral over 
particle radius very accurately. We assume that +(a) varied 
in a piecewise linear manner in each segment and use a 12- 
point Gauss-Legendre quadrature to evaluate the integral in 
(25). A second-order central difference formula was used to 
evaluate &‘(a) at all points except the end points amin and 
urnax. The boundary conditions +‘(utin)=O and $‘(a,,& 
=0 were approximated using, respectively, second-order for- 
ward and backward difference formulas. Application of (25) 
at all the discretization points together with the boundary 
conditions can be expressed with the above scheme as a sys- 
tem of linear equations: 

,il Aij+j=bi 9 i= 1,2 ,..., N, (30) 

where ~j= I and bi=b(ui). The above set of equations 
was normalized by dividing all the equations with the great- 
est element of the kernel K(ui ,Uj), K, for all ij, times the 
segment length Au = ( amax -u,&/(N-1). This set of equa- 
tions was subsequently solved using a standard IMSL sub- 
routine for linear equations. 

Once +j are determined for a selected value of E, we 
satisfy the constraint ~j~0 by setting, as mentioned earlier, 
+j= 0 for all negative ~j. The error E as given by (29) WAS 

subsequently evaluated using a trapezoidal rule for integra- 
tion over the frequency range. The optimum value of l was 
determined by stepping logarithmically through several val- 
ues of E and plotting E versus E. 

A typical result (N=30, M= 112, fti,=O.l MHz, f,, 
=17MHz, uti,=15~mandu~=35~m)fortheerrorEin 
the resulting attenuation as a function of E is shown in Fig. 8. 
Note that E here is the actual E divided by K,Au. We see a 
clearly defined optimum value of E. Computations were also 
made with larger M to confirm that the resulting volume 
fraction distribution was not affected by the further refine- 
ment in the integration over the frequency range. A remark 
should also be made of the choice for the length 1 in (25). We 
may regard both E and 1 as parameters to be chosen so as to 
minimize the error E. Taking Z = ( amax -ati& we computed 
E by varying both E and n with n varied from 1 to N. The 
three-dimensional plot of E versus n and e showed that E 
was much more sensitive to the choice of E than it was to n. 
In general, the results with n close to N were slightly better 
than with those near n = 1. Based on this observation we 
chose n = 30. For larger values of N(N>40) we found that 
choosing II = N led to more oscillatory behavior for +i . This 
is to be expected since choosing larger n, and, hence, smaller 
1, permits larger values of 4’ (a). 
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FIG. 8. Typical dependence of the error in the attenuation for the solved 
volume fraction distribution as a function of the regularization parameter E. 
The (small) parameter l should be chosen such that this error is minimized. 

The minimum was always found to be well-defined. 

B. Results and discussion 

We now present results for the volume fraction distribu- 
tion obtained using the above technique. As mentioned ear- 
lier, we used the forward theory to generate attenuation data 
for an assumed volume fraction distribution. Small random 
noise can be added to the data thus generated to mimic pos- 
sible errors arising in the attenuation measurement. This is 
satisfactory since we are primarily interested in assessing the 
procedure for solving the inverse problem. If the procedure 
gives erroneous results even for this case, it will certainly 
break down in practice using the experimentally generated 
data. 

The frequency range over which the attenuation mea- 
surements are carried out in our laboratory is 0.1-15 MHz. 
We shall choose here the same range to investigate the suc- 
cess and limitations of the above technique to solve the in- 
verse problem although we shall also consider cases with a 
larger frequency range to inquire if better estimates of #~(a) 
could be achieved if the attenuation data at higher frequen- 
cies were to be made available. This is important since the 
acoustic instruments operating up to 150 MHz are available. 

We consider first particle sizes that are of the same order 
of magnitude as the wavelength somewhere in this frequency 
range, which is the case for particles of about lo-100 p 
radius (for larger particles observed behavior of the attenua- 
tion is shifted to lower frequencies). A particle size distribu- 
tion that is often used is a log-normal distribution, which 
results in volume fraction distributions such as the smooth 
one shown in Fig. 7(a). We attempt therefore to recover that 
distribution from the corresponding attenuation data. As in 
the forward problem, we shall investigate polystyrene par- 
ticles and glass particles in water, as the first are almost 
neutrally buoyant and deformable while the latter are very 
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FIG. 9. Solving the inverse problem for polystyrene particles. The solid line 
is the volume fraction distribution used to generate attenuation data [shown 

in Fig. 12(a), with f,, as indicated by a square]; the dashed line is the 

solution of the inverse problem when taking the particle radius range to be 

l-100 m and using 50 “bins” of particle sizes. 

rigid and much heavier than water; the physical properties 
used in the present calculations are listed in Table I. 

We begin with the results for polystyrene particles with 
a narrow size distribution in the range of 20-30 pm. The 
particle size range for the inverse calculations is first taken to 
be much greater-5- 100 pm; the frequency range was 
0. l- 17 MHz. Figure 9 shows that the volume fraction distri- 
bution as evaluated from the inverse technique is in very 
good agreement with the input distribution. The result for the 
size distribution can be improved further by making the par- 
ticle size range smaller (a close-up of the improved result is 
shown in Fig. 11). 

In Fig. 10 we consider a more complicated, bimodal size 
distribution in the range of 20-45 pm with peaks at about 25 
and 38 ,um. The attenuation as a function of frequency for 
this distribution is shown in Fig. 10a. The maximum fre- 
quency used for inverse calculations is indicated by a square; 
it is seen that the frequency range includes the first two reso- 
nance peaks of the attenuation curve. From Fig. 10(b) we see 
once again that the inverse procedure recovers this distribu- 
tion very well. 

One of the difficulties in solving an ill-posed problem is 
that small errors in the input (attenuation) data can cause 
large changes in the solution. Of course, errors are always 
present in the experimentally obtained attenuation data. The 
calculations presented so far were made with no added noise. 
To mimic the practical situation, we added random noise of 
5% standard deviation to the input data; this is about the 
same as the order of magnitude of the errors present in the 
experimental results shown in Fig. 5. The resulting volume 
fraction distribution, shown in Fig. 11, does confirm that 
small fluctuations in the input data only cause small devia- 
tions in the output. When the calculations were repeated with 
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FIG. 10. Attenuation (a) and the solution of the inverse problem (b) for a 

bimodal distribution of polystyrene particles, using 30 particle size bins. In 

(b), the solid line is the exact result, markers represent the inverse problem 

solution when using for f, the value indicated by a square in (a). Results 

when cutting of the frequency range at the point marked by a triangle are 

discussed along with Fig. 14. 

a noise of 10% standard deviation, the computed particle size 
distribution was found to be considerably different from the 
input distribution, although the main features of the size dis- 
tribution were preserved by the inverse computations. 

Figure 12 shows the effect of varying fmax on the com- 
puted distribution. As seen in the figure the resonance in the 
shape oscillations of the (polystyrene) particles leads to a 
change in the slope of the curve just before the first reso- 
nance. This transition occurs just beyond the point marked 
by a circle in Fig. 12(a). We see a marked improvement in 
the results in Fig. 12(b) when f,, is chosen corresponding 
to a point marked plus in Fig. 12(a) over those obtained with 
a point corresponding to the circle which does not include 
the second change in slope. The point marked plus corre- 
sponds to a frequency greater than the frequency at which the 
second change in slope occurs for larger particles but smaller 
than that for smaller particles. This seems to give rise to an 
inverse solution which is reasonably accurate for larger par- 
ticles but not for smaller particles. Also shown in Fig. 12(b) 
are the results when f,, is chosen to coincide with the end 
of first peak, the point marked square in Fig. 12(a). This is 
seen to yield very accurate results for the size distribution. 

The results discussed so far suggest that the inverse One might suppose that covering a broad enough fre- 
problem can be solved with reasonable success. We now quency range will alleviate the difficulties seen above. This, 
illustrate some limitations. The inverse method gave errone- unfortunately, is not the case. Figure 13 shows the results for 
ous particle size distributions for smaller particles when the three different f,, . The dashed curve corresponds to cutting 
same frequency range as the above was used. Of course, in off the frequency range at the end of first peak as in Fig. 12, 
order that the size of the particles be determined there must the dashed-dotted line to the end of three peaks, and the 
be at least one transition-from the thermal attenuation dotted line to lo9 Hz, a frequency about 50 times greater 
dominated regime to the scattering dominated regime which than the first resonance frequency. We see that the results of 
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FIG. 11. Solution of the inverse problem when random noise of 5% stan- 

dard deviation is introduced in the attenuation (input) data. Solid line is the 
exact result; the broken line is the result when no noise is introduced (al- 
ready shown in Fig. 8); and the dash-dotted curve is the result after intro- 

duction of the noise. Polystyrene particles in water. 

occurs roughly speaking at k,a = 0( 1) _ If the particles are 
very small, then this transition may not occur over a fixed 
frequency range. However, as we shall presently see, the 
results are very sensitive to the frequency range chosen for 
computations even when this transition is included in the 
range. 
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FIG. 12. Influence of the size of the frequency range over which attenuation 

is specified on the solution of the inverse problem. Polystyrene particles. (a) 
Input-attenuation data and four different upper bounds on the frequency. (b) 

Results from the inverse problem from these different ranges, using the 

same marker type. The solid line is the exact result; 0, result when cutting 
off the frequency range just at the end of the first peak in the attenuation; +, 
result when cutting of the frequency range after the second change in slope 

of the attenuation; and 0, result when cutting off before the second change 
in slope. Cutting off the frequency range at the point marked “ 0 ” is dis- 
cussed along with Fig. 13. 

inverse calculations actually deteriorate if a much larger 
range of frequency is employed, notwithstanding the fact that 
measurements over such a broad frequency range could itself 
be a very challenging task. One may rationalize this result as 
follows. As seen in Fig. 1 a monodisperse suspension will 
exhibit several resonance frequencies corresponding to vari- 
ous shape oscillation P, (n = 2,3,...) modes. Thus, a second 
peak in the attenuation-frequency curve for polystyrene par- 
ticles may correspond either to say, a P3 mode of a larger 

J 
5 

FIG. 13. Too big a frequency range over which the attenuation is available 

for polystyrene particles also deteriorates the result: the solid line is the 
exact result; the dashed line is the inverse problem result when using attenu- 

ation data of Fig. 12(a) below the point marked by “[7,” the dashed-dotted 

line represents the result when this end point is shifted to the point marked 
by “ 0 ” and the dotted line is the result when this end point is shifted to 

1000 MHz. 

particle, or may correspond to a Pz mode of a smaller par- 
ticle. In our calculations we used only up to the first six 
modes (n< 5), but in practice the acoustic response may be 
further complicated by the higher-order modes for frequen- 
cies of order lo9 Hz considered here. 

Since including a wide frequency range with several 
resonance peaks seems to adversely affect the inverse calcu- 
lation, one may consider cutting off the attenuation data be- 
yond first peak. This, however, may not work if the distribu- 
tion is truly bimodal as was the case considered earlier in 
Fig. 10. If we omit the second resonance peak from the at- 
tenuation data by considering a maximum frequency that is 
less than the point marked square in Fig. 10(a), say, that 
marked by the circle, we get a poor inversion as shown in 
Fig. 14. The inverse technique computes accurately the vol- 
ume fraction distribution of larger particles whose resonance 
was included in the data but fails to predict that for smaller 
particles. 

Figure 15 shows results for a broad, unimodal distribu- 
tion. The resonance peaks of different particles overlap in 
this case resulting in the absence of peaks in the attenuation- 
frequency curve [Fig. 15(a)]. Figure 15(b) shows the results 
of inversion for three different cut-off frequencies. The larg- 
est frequency, marked by a square in Fig. 15(a), is larger than 
the second transition frequency of small as well as large 
particles, and this seems to produce excellent inverse results. 

In most of the inverse calculations shown so far which 
yielded poor results, we note that the failure is particularly 
severe for smaller particles. One may rationalize this by ob- 
serving that the total error E will be dominated by the errors 
at large frequencies since the attenuation there is very large. 
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FIG. 14. As in Fig. 10(b), but after cutting off the frequency range over 

which the attenuation was given between the tirst and second (attenuation) 
peak, indicated by a triangle in Fig. 10(a). 

When k,atin<l in the frequency domain that is considered, 
the small particles’ volume fraction is seen from Figs. 12(b) 
and 14 to be underestimated, while the large particles’ vol- 
ume fraction is overestimated. To decrease the relative im- 
portance of the attenuation at high frequencies, we solved a 
slightly different inverse problem in which both the attenua- 

tion and & were divided by f2. However, only small im- 
provements were found by modifying the attenuation data 
this way. The inverse-problem result shown in Fig. 14 was in 
fact obtained in this way. 

Some insight into why the choice off,, drastically af- 
fects the results may be gained from Fig. 16, which shows 
the three-dimensional plots for the kernel K(ai ,aj) for the 
same values of f,, as considered in Fig. 12. We see that 
when fmar= 10.4MHz, corresponding to the circle in Fig. 
12(a), the kernel has a maximum for ai= aj= amax. The ker- 
nel for smaller particles is very small and, as a consequence, 
the inverse technique could determine the larger particle size 
volume fraction correctly but failed for smaller particles. In 
contrast to this the kernel forf-= 17.1 MHz, corresponding 
to the end of first peak, shows significant variations for a 
wide range of values of ai and aj , and this apparently leads 
to a much better inverse solution. Finally, the kernel for 
f-=30.4 MHz, corresponding to the end of the third reso- 
nance peak, shows a less pronounced structure. 

It is also instructive to examine the kernel and the results 
of inverse calculations for the problem of determining 
bubble-size distribution in bubbly liquids examined by 
Duraiswami.2 The inverse procedure works very well for 
bubbly liquids as can be seen from Fig. 17(a) which shows 
the input and computed bubble size distributions to be in 
excellent agreement. The kernel for this case has smooth 
variations over a wide range of bubble radii as seen in Figure 
17(b). The attenuation as a function of frequency is shown in 
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FIG. 15. As Fig. 12, but with a broader size distribution. 

Fig. 17(c). The main reason for the success of the inverse 
technique for bubbly liquids seems to be that there is one 
resonance frequency for bubbles of each size. As long as the 
frequency range is broad enough to cover the resonance fre- 
quency of all the bubbles, it is possible to determine the size 
distribution. 

The results presented so far were for polystyrene par- 
ticles. We have also carried out inverse calculations for glass 
particles. As indicated earlier (cf. Fig. 6) there is no clear, 
sharp resonance frequency peak for glass particles. As a con- 
sequence, the inverse calculations for the glass particles did 
not show, in general, good agreement with the input size 
distribution. 

The results presented so far show that the success of 
Tikhonov regularization to solve the inverse problem is lim- 
ited. Although we have given plausible reasons for why the 
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FIG. 16. The kernel K(a, ,aj) for polystyrene particles when using forf,,,, 

the value indicated in Fig. 12(a) by a 0 (a), + (b), and 0 (c). 

method works well for bubbles but not for all particles, it is 
possible that other techniques for solving the inverse prob- 
lem may be more successful. For that reason we have at- 
tempted an alternative method2*3V’9 based on linear program- 
ing that we shall briefly describe here. 

The constraint +(a)>0 for all a was satisfied only a 
posterior-i in the Tikhonov scheme. To ensure that the error 
is minimized while satisfying this constraint, we reformulate 

the original inverse problem as an optimization problem. The 
simplest scheme is to minimize the error 

f ma?. 

1 /I 

%nax ~ 
4fya)4(a)da-df) df. (31) 

fmin %in 

instead of the integral of the square of the quantity enclosed 
by two vertical bars at each frequency. Constraints on the 
solution are used a priori in optimization via linear program- 
ming; here we use that +(a) Z- 0. Imposing an upper bound 
on the total volume fraction (maximum packing) can also be 
incorporated but is not essential. After discretizing the fre- 
quency range by M and &a) in N discrete values we write 

,il Bij~(aj)-a,,(fi)=ui-Ui, ui,UiaOy i= 1,2,. . . ,M. 

(32) 

Here, Bij is the discretized form of the integral operator in 
(31) and Ui and ni are, as yet, unknown, non-negative vati- 
ables. Now, it can be shown” that minimizing the absolute 
value of (32) is equivalent to minimizing 

i (“i+ui) (33) 

with (32) as a constraint together with the constrains ai, ui 
20 (i= l,..., M) and +(ai)>O (i= l,..., N). Essential here is 
the notion that at the optimum uiu i= 0 for each i, which 
makes the solutions of the two minimization problems (31) 
and (33) identical. 

The above scheme was applied to a number of cases that 
were also examined using the Tikhonov method. It was 
found that, in general, the linear programing scheme pro- 
duced inferior results. A typical example is shown in Fig. 18 
where the Tikhonov method is seen to yield far better results 
for the size distributions. This technique also did not yield 
good inverse results for the case of glass particles. 

V. CONCLUSION 

A theory for the attenuation and wave speed of solid- 
liquid suspensions at low particle volume fractions is de- 
scribed. The theory is shown to be in excellent agreement 
with the experimental data measured in our laboratory. 
Tikhonov regularization and linear programing techniques 
are employed to solve the inverse problem of determining 
the particle size distribution from the attenuation-frequency 
data. Although these techniques are successful in solving the 
inverse problem in several cases, we have also shown that 
the results are very sensitive to the choice of frequency 
range, the physical properties of the particles, and the nature 
of particle size distribution (unimodal, bimodal, etc.). Since 
the same techniques worked very well for bubbly liquids, we 
attribute the failure in solving the inverse problem satisfac- 
torily to the complex resonance behavior of slurries. We con- 
clude therefore that the prospects of using acoustic probes 
for on-line monitoring of particle size distribution of slurries 
are somewhat limited unless some additional information on 
the particle size distribution (e.g., unimodal) is available. 
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APPENDIX: EQUATIONS FOR A, 

In this appendix we give the set of linear equations for 
unknowns that include the coefficients A, required to calcu- 
late the attenuation from (12) and (19)-(21) or (22). These 
equations are derived from the boundary conditions on the 
surface of a test particle. In addition to the coefficients A,, 

A,, of the solution of (1) outside and inside the particle, re- 
spectively, similar coefficients arise due to the solution of (2) 
and (3), denoted by B, and C, . Note that (3) is an equation 
for the vector A rather than a scalar velocity potential, but 
only the azimuthal component of A is nonzero, hence only a 
scalar coefficient C, . In the following, we use the notation 
zr= k,a, zT= k+, and zs= k,a: 

lo3 

IO2 

? 
i 
u z 
@ 10' 
3 
5 
5 

IO0 

10 

(4 

/ 

1 

lo5 IO6 
FREQUENCY (Hz) 

zJ;(z,) +A,z,h;(z,) +&zT~:(zT) - C,& + 1 h(zs) 

=A,Ycj;(irc) +B”&j;(&) - c”n(n + 1 ,j”(z,)? (Al) 

j,(z,) +A&n(zc) +B,h,(zd- Gh(z,) +z,%s)) 

=Aj”(&)+sJ”(z,)- c”t.j,(z,>+~s.j~ca>~ 642) 

b,[j,(z,)+A,h,(z,)l+B,b,h,(z~) 

=~,6j,(~~)+Bngrjn(ZT), (A3) 

dz,b,[jA(z,) +A,h~(z,)l +BJwT~~(zT)), 

= G(A,6,i$j~(Z,) +B&F~j~(ZT)), 644) 

(- ‘WtL)([(zs2-2z~)jn(zc>-2z~j~(z,)l+A.[(z~ 

- 2z91,(z,) -2z~h~(z,)l +&Hz:- 2z$h(zd 

- 2z;qz4 + C,2n(n + 1 )[z,g(z,) -Udl) 

=A,[(02pa2-2~~)j,(z,)-2~~j~(z,)l 

+B,[(w2pa2-2CL~*2,)j,(zT)-2~~~j~(ZT)1 

+ C,2&n+ l)[FJj~(Z,)- jn(Z,>17 645) 
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FIG. 18. Comparison of the results for the inverse problem of polystyrene 
particles (exact solution is the solid line) using the linear programming 

method (..V..) and the Tikhonov method (--Cl--). In both cases the attenua- 
tion was cut off at the same frequency, indicated by the square in Fig. 12(a). 

( - mp)(zcjA(zc) -j,(z,) +A,[z$k-h,(z,)1 

+ Bn[z~h;(zd - h,(zdl- W2)[z,2~3z,) 

+b2+n-w4z,)l) 

= &~,[~cj~(~c) - jnGc>l +fi,tFTjA(Zr) -j&T>1 

-(C,/2)[~j~(z,)+(n2+n-2)j,(2,)l). W) 

Here, b, and bT are given by 

b =(1-y)02, 
c 

PC2 

b =- T -&[ u2-($- %),;I, (A7) 

with p the thermal expension coefficient and cr the liquid- 
equivalent of the speed of sound for spherical compressional 

waves in an elastic isotropic solid cl = $-- (A +2~/3)lp. The 

Lame constant x is not really needed when the speed of 
sound (c) of longitudinal compressional waves is specified, 

as we can also write c:=c2(1-4&(3pc2)). The above 
equations have also been given by Epstein and Carhart’ and 
Allegra and Hawley.6 However, in both there are typographi- 

cal errors: in Ref. 5, the last jA(FS) in (A2) is erroneously 

Spelt et a/. 

replaced by hA(z,); in Ref. 6 the signs of both 
(n2+ n - 2)-terms are wrong, while the last h,(z,) on the 

left-hand side of (A6) has the argument y instead and the first 

z, after C, is replaced by FS. Not correcting the typographi- 
cal errors in Ref. 6 would have altered the results signifi- 
cantly. 
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The United States is encumbered with a huge amount of liquid radioactive waste 

as a result of the nuclear weapons program. The waste is stored in underground tanks, all 

of which need to be emptied and many of which are leaking. In order to process the 

waste it must be transported by pipeline to the treatment centers. The waste contains 

suspended solids so plugging of the pipeline is a major concern. There is a need to 

characterize the waste during transfer in order to reduce the risk of plugging. 

Ultrasound is an attractive choice for this application. It has the ability to 

penetrate optically dense liquids and its non-intrusive nature protects operators from the 

harmful effects of radiation. 

Previous work on using ultrasound to characterize slurries examined relatively 

ideal systems of monodispersed particles in water. No work was done on systems with 

volume fractions less than 0.05. Theory is available which accurately predicted 

attenuation at low volume fractions but it was not known if reliable experimental data 

could be collected under these conditions. 



Attenuation measurements are performed on systems of soda-lime glass beads 

(radius = 16 n ) m in water, clay in water, and a nuclear waste simulant consisting of 

precipitated salts in saturated supemate. Solids volume fraction studied range from 0.004 

to 0.05. Both a Pulse/FFT and a Toneburst method are used to measure attenuation. The 

Pulse/FFT method is found to be more accurate. As expected the relationship between 

attenuation and volume fraction is found to be linear, and it is found that reliable 

attenuation measurements can be made in all three systems even at solids volume fraction 

of under 0.01. 

Sound speed is measured in systems of soda-lime glass beads (radius 16 pm) and 

Potter’s beads (radius 60 pm). Volume fraction ranged from 0 to 0.4. Experiments 

indicate that particle size has little effect on sound speed. Experimental data of sound 

speed in soda-lime glass slurries agrees well with theory. Experiments performed at low 

volume fraction showed that with very precise monitoring of temperature it is possible to 

use speed to characterize slurries, however, practical considerations weigh against this. 

Future work involves automating the procedure to measure attenuation and 

creating an on-line monitor on a spoolpiece that can be installed in a flow loop. The 

system will monitor slurry and the suspending liquid simultaneously and give data in real 

time. 
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1. Introduction 

The cold war era nuclear arms race has left the United States encumbered with a 

large amount of radioactive waste. Currently hundreds of millions of gallons of 

radioactive waste are stored at several sites across the country. The waste, contained in 

underground tanks, is a non-uniform mixture of sludge, supemate, and salt cake. 

Generally, the major components are sodium nitrate and sodium nitrite. Additional ions 

present include aluminate, hydroxide, and carbonate. The supemates are basic, with pH 

ranging from 10 to greater than 14. Radioactive components in the supemate and 

dissolved salt cake are materials such as 99Tc, 13’Cs, 23sPu, 237Np, and 9oSr (Golcar 2000). 

Production of new weapons grade radioactive material in the United Stated has 

stopped and the cleanup phase has been in progress for a number of years. The fact that 

many of the storage tanks are leaking only increases the urgency to deal with the 

problem. 

In order to treat the waste it must first be removed from the storage tanks and 

transported to treatment centers located on site. The tanks are located some distance from 

the treatment centers, some as far as six miles away (Hylton, 2000). For safety reasons, it 

is often desirable to transfer the materials by pipeline, rather than tanker truck. Plugging 

is a major concern when transferring slurries by pipeline. If a pipeline becomes plugged 

there are major costs in money and time, as a new pipeline has to be laid, and the old 

pipeline remediated. As of 1996 five of the six cross-site pipelines at the Hanford Site 

were unusable due to plugging (Hudson 1996). The risk of plugging can be reduced by 
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careful monitoring of the slurry properties (suspended solids levels, density, and 

viscosity). 

The treatment of nuclear waste is a complicated process, consisting of many 

different operations run in series and in parallel. Many of these operations involve 

handling of liquid/solid systems. For example, one of the methods for treating 

radioactive tank supemate involves using an adsorbent such as crystalline silica titanate to 

remove the radioactive cesium ions and then imprisoning the now radioactive absorbent 

in a glass frit. This disposal method largely involves the handling of solid/liquid systems 

and some method of characterizing the flowing stream is needed. 

Ultrasound has several properties which make it an attractive choice for 

characterizing radioactive slurry. It has the ability to penetrate optically dense slurries. 

When used properly it can give accurate information even in the presence of small 

amounts of gas bubbles. It is nonintrusive, protecting the operator from the effects of 

radiation. It also is a very sensitive technique and can give accurate readings at very low 

solid concentrations. 

Two different kinds of information that can be obtained from ultrasound are 

attenuation and speed. Attenuation is the absorbency of sound by the material. It is 

almost always highly dependent on the frequency of the ultrasonic signal and the size and 

physical properties of the particles. Attenuation is highly sensitive to the presence of 

solids particles and gas bubbles, and is somewhat tolerant of changes in temperature. In 

theoretical terms, attenuation is the imaginary part of the wave number. 

The three modes of attenuation are viscous, thermal, and scattering. The 

nondimensional number k,,a, which is the product of particle radius and wavenumber, can 
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be used to determine which modes are significant. The viscous energy dissipation results 

from translational, volume, and shape oscillations of particles. Thermal attenuation arises 

as a result of non-adiabatic changes in temperature of the particles, as the particles expand 

and contract due to the passage of a sound wave. Viscous and thermal attenuation are 

most significant at small values of k,,a. Thermal attenuation is particularly significant at 

low k,,a when the densities of the particles and liquid are similar. Attenuation due to 

scattering is the major source of attenuation at higher frequencies, i.e. when kc,a = 0( 1). 

Other kind of information that can be obtained using ultrasound is sound speed. 

In many materials (such as water) speed is nearly independent of frequency. However, in 

some systems such as suspensions, speed is dependent on the frequency of the ultrasonic 

signal. Such systems are termed highly dispersive. Speed is not very dependent on 

particle size and is not as sensitive to the presence of solid particles as is attenuation, 

particularly when the speed of sound in the solid phase is close to the speed of sound in 

the liquid phase. Speed is strongly dependent on temperature. 

There are several methods currently being evaluated for the characterization of 

radioactive slurries. A study was conducted which evaluated 12 in-line or in-tank 

monitoring systems. Based on this study, two systems were selected for testing with 

radioactive slurries (Hylton and Bayne, 1999). One method, studied by Hylton (2000) 

uses Coriolis meters, which measure density of a material. Two meters are used, one 

measuring the density of the slurry and another the density of the supernate. Solids 

loading is calculated assuming a constant solids density. The other method given 

consideration is an ultrasonic probe developed by Argonne National Laboratory (Hylton 




