Calla Energy Biomass Cofiring Project Final Report

September 30, 2003

Appendix A. Abbreviations

ACFB atmospheric circulating fluidized bed

AF as fed

B&W Babcock & Wilcox

CFD Model computer fluid dynamic model

COE cost of energy DB dry basis

DOE Department of Energy

EPC engineer, procure, and construct
FIR Forced Internal Recirculation
GTI Gas Technology Institute

HHV high heating value
LCV low caloric value gas
LHV low heating value
MF moisture free

NEPA National Environmental Protection Act

NOx nitrogen oxides

O&M operating and maintenance

psia pounds per square inch - absolute

VOC volatile organic carbon

DE-FC26-00NT40899 GTI # 61129

Calla Energy Biomass Cofiring Project Final Report

September 30, 2003

Appendix B List of Specifications Developed

Gasifier (including cyclone and startup heater)

Fuel Feed

Limestone Feed

Gasifier Ash Removal

Process Air

Product Gas Ducting

Product Gas Cooling

Product Gas Filtering

Filter Ash Removal

Flare

High Pressure Cooling Water

Nitrogen Distribution

Biomass Dryer Specification

Biomass Feed Prep

Inert Gas Generation System

Waste Heat Boiler

Startup Gas Supply

Appendix C Analytical Data 1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Analytical Report

Batch #: 011049 March 16, 2001

Prepared for:

Dave Stopek, Process Engineering Phone: (847) 768-0853

Kentucky Co-gasification Project

Project #: 61129-01

Received Date: 2/5/2001

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

In April 2000, the Institute of Gas Technology (IGT) and the Gas Research Institute (GRI) combined to form the Gas Technology Institute (GTI).

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical contact for this report:		
	Alan G. Janos	(847) 768-0603

GAS TECHNOLOGY INSTITUTE

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 011049-002 Date: February 19, 2001

Sample Description: Estill County Saw Mill Dust

Air-Dry Moisture	, %	48.93
------------------	-----	-------

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)	
Moisture, %	50.52	50.52		
Ash, % (550° C)	0.46	0.46		

Ultimate Analysis	(Dry basis)	
		Fusion Temperature of Ash (ASTM D1857), °F
Ash, % (550° C)	0.92	Reducing Oxidizing
Carbon, %	49.07	
Hydrogen, %	6.00	Initial Deformation (IT)
Nitrogen, %	0.27	Softening (ST)
Sulfur, %	0.13	Hemispherical (HT)
Oxygen, %	43.61	Fluid (FT)
(by difference)		

Heating Value	(Dry basis)

BTU/lb. 8,990

Analyst: NJP

20.8 lbs/ft³ **Bulk Density:**

(Per submitter's request, this analysis was performed on the "as-received" sample, which was NOT air-dried, chopped, or ground into any smaller pieces than were originally received. The graduated cylinder used for the volume measurement was approximately 21/4" in diameter. No significant void spaces were noted in the packed sample at the end of the analysis.)

Analyst: AGJ

Login No.: 01-1049-002

Sample ID: Estill County Saw Mill Dust

MAJOR / MINOR OXIDES IN ASH (ASTM D-2795)

% ash at 750 degrees C = 0.74

<u>% E</u>	lement	<u>% O</u> 2	<u>xide</u>	% Oxide, Normalized
Na	0.17	Na_2O	0.23	0.24
Mg	2.35	MgO	3.90	4.12
Al	1.86	Al_2O_3	3.52	3.72
Si	10.3	${ m SiO_2}$	22.0	23.3
P	1.06	P_2O_5	2.43	2.57
S	0.41	SO_3	1.02	1.08
K	12.6	K_2O	15.2	16.1
Ca	31.5	CaO	44.1	46.6
Ti	0.15	TiO_2	0.25	0.26
Fe	1.31	Fe_2O_3	1.87	1.98
		TOTAL	94.53	100.0

Values reported on an ash basis.

Ash concentration calculated on a dry basis with SO_3 correction and no VM cycle. Chloride and/or carbonate may be present, resulting in a total % less than 100.

Analyst: KC

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

Committed To Excellence

March 1, 2001

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN RD. SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900

FAX: (708) 333-3060

INSTITUTE OF GAS TECHNOLOGY 1700 S. Mt. Prospect Road Des Plaines, IL 60018 Attn: Norman J. Petrulis

Sample identification by Institute of Gas Technology

Kind of sample

reported to us Wood Ash

Sample taken at G.T.I.

Sample taken by G.T.I.

Date sampled February 16, 2001

Date received February 27, 2001

Sample ID: 011049-002

Estill County Saw Dust

P.O No. PF8847

Analysis Report No.

71-144427

Page 1 of 1

FUSION TEMPERATURE OF ASH, (OF)

		Reducing	Oxidizing
Initial Deformation	(IT)	2540	2565
Softening	(ST)	2555	2580
Hemispherical	(HT)	2570	2600
Fluid	(FT)	2585	2620

METHOD

Fusion Temperature of Ash: ASTM D 1857

Respectfully submitted,
COMMERCIAL TESTING & ENGINEERING CO.

South Holland Laboratory MEMBER

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING ABEAS, TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES

F-465 Original Watermarked For Your Protection

TERMS AND CONDITIONS ON REVERSE

GAS TECHNOLOGY INSTITUTE

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018 T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 011049-003

Date: February 19, 2001

Sample Description: Estill County Saw Mill Slabs/Bark

Air-Dry	Moisture, %	6
---------	-------------	---

38.33

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)
Moisture, %	40.55	40.55	
Ash, % (550° C)	6.49	6.46	

Ultimate Analysis	(Dry basis)	
		Fusion Temperature of Ash (ASTM D1857), °F
Ash, % (550° C)	10.87	Reducing Oxidizing
Carbon, %	46.34	
Hydrogen, %	5.38	Initial Deformation (IT)
Nitrogen, %	0.40	Softening (ST)
Sulfur, %	0.03	Hemispherical (HT)
Oxygen, %	36.97	Fluid (FT)
(by difference)		

TY	, •	₹ 7	
НΔ	otin	$\alpha \mathbf{v}$	alue
110	аш	22 V	aluc

(Dry basis)

BTU/lb.

7,630

Analyst: NJP

16.5 lbs/ft³

on the "as-received" sample, which was NOT air-dried but was chopped into pieces of < 11/2" in length. The graduated cylinder used for the volume measurement was approximately 3" in diameter. Void spaces were

(Per submitter's request, this analysis was performed

Analyst: AGJ

Bulk Density:

noted which were not removed by additional tapping. Total sample volume measured includes these voids.) T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Login No.: 01-1049-003

Sample ID: Estill County Saw Mill Slabs/Bark

MAJOR / MINOR OXIDES IN ASH (ASTM D-2795)

% ash at 750 degrees C = 7.93

<u>% E</u>	lement		% Oxide	% Oxide, Normalized
Na	0.09	Na_2O	0.12	0.12
Mg	0.68	MgO	1.13	1.15
Al	2.43	Al_2O_3	4.59	4.68
Si	15.6	${ m SiO_2}$	33.4	34.0
P	0.30	P_2O_5	0.69	0.70
S	0.16	SO_3	0.41	0.42
K	2.66	K_2O	3.21	3.3
Ca	37.4	CaO	52.3	53.3
Ti	0.22	${ m TiO_2}$	0.37	0.37
Fe	1.32	Fe_2O_3	1.89	1.92
		TOTAL	98.09	100.0

Values reported on an ash basis.

Ash concentration calculated on a dry basis with SO₃ correction and no VM cycle. Chloride and/or carbonate may be present, resulting in a total % less than 100.

Analyst: KC

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

Committed To Excellence

March 1, 2001

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN RD. SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060

INSTITUTE OF GAS TECHNOLOGY 1700 S. Mt. Prospect Road Des Plaines, IL 60018 Attn: Norman J. Petrulis

Sample identification by Institute of Gas Technology

Kind of sample

reported to us Wood Ash

Sample taken at G.T.I.

Sample taken by G.T.I.

Date sampled February 16, 2001

Date received February 27, 2001

Sample ID: 011049-003

Estill County Bark

P.O No. PF8847

Analysis Report No.

71-144428

Page 1 of 1

FUSION TEMPERATURE OF ASH, (OF)

		Reducing	Oxidizing
Initial Deformation	(ተጥ \	2550	2205
Softening		2560 2560	2385 2410
Hemispherical		2575	2425
Fluid	(FT)	2600	2440

METHOD

Fusion Temperature of Ash: ASTM D 1857

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

South Holland Laboratory

F-465 Original Watermarked For Your Protection

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS, TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES TERMS AND CONDITIONS ON REVERSE

GAS TECHNOLOGY INSTITUTE

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 011049-001

Date: February 19, 2001

Sample Description: Estill County Prep. Plant coal sample

Air-Dry Moisture,	% 6.63		
		(As received)	
Proximate Analysis	(As received)	w/SO3 correction	(Dry basis)
Moisture, %	7.62	7.62	
Volatile Matter, %	32.94	32.94	35.66
Ash, % (750° C)	5.56	5.40	
Fixed Carbon, % (by difference)	53.87	54.04	
Ultimate Analysis	(Dry basis)	Funious Townshatawa	of Ash (ASTM D1857), °F
Ash, % (750° C)	5.85	rusion remperature	Reducing Oxidizing
Carbon, %	78.83		Reducing Oxidizing
Hydrogen, %	5.30	Initial Deformation (I'	<i>T</i> ')
Nitrogen, %	1.83	Softening (S'	•
Sulfur, %	0.96	Hemispherical (H'	
Oxygen, %	7.24	Fluid (F	•
(by difference)			
Heating Value	(Dry basis)		
BTU/lb.	14,140		

Analyst: NJP

45.5 lbs/ft³ **Bulk Density:**

(Per submitter's request, this analysis was performed on the "as-received" sample, which was NOT air-dried, crushed, or ground into any smaller pieces than were originally received. The graduated cylinder used for the volume measurement was approximately P/s" in diameter. No visible void spaces were noted

in the packed sample at the end of the analysis.)

Analyst: AGJ

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Login No.: 01-1049-001

Sample ID: Estill County Prep. Plant coal sample

MAJOR / MINOR OXIDES IN ASH (ASTM D-2795)

% ash at 750 degrees C = 6.29

<u>% E</u>	<u>lement</u>	<u>% Ox</u>	<u>cide</u>	% Oxide, Normalized
Na	0.41	Na_2O	0.55	0.55
Mg	0.85	MgO	1.41	1.40
Al	14.4	Al_2O_3	27.2	27.0
Si	24.6	SiO_2	52.6	52.2
P	0.21	P_2O_5	0.48	0.48
S	1.31	SO_3	3.26	3.24
K	2.13	K_2O	2.57	2.55
Ca	2.59	CaO	3.62	3.60
Ti	1.01	TiO_2	1.68	1.67
Fe	5.14	Fe_2O_3	7.35	7.29
		TOTAL	100.8	100.0

Values reported on an ash basis.

Ash concentration calculated on a dry basis with SO₃ correction and no VM cycle.

Analyst: KC

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

Committed To Excellence

March 1, 2001

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN RD. SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060

INSTITUTE OF GAS TECHNOLOGY 1700 S. Mt. Prospect Road Des Plaines, IL 60018 Attn: Norman J. Petrulis

Sample identification by Institute of Gas Technology

Kind of sample

reported to us Coal Ash

Sample taken at G.T.I.

Sample taken by G.T.I.

Date sampled February 16, 2001

Date received February 27, 2001

Sample ID: 011049-001

Estill County Coal

P.O No. PF8847

Analysis Report No.

71-144426

Page 1 of 1

FUSION TEMPERATURE OF ASH, (OF)

		Reducing	Oxidizing
Initial Deformation		2485	2640
Softening	(ST)	2515	2675
Hemispherical	(HT)	2570	2700+
Fluid	(FT)	2610	2700+

METHOD

Fusion Temperature of Ash: ASTM D 1857

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES

South Holland Laboratory

MEMBER

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS, F-465 Original Watermarked For Your Protection

TERMS AND CONDITIONS ON REVERSE

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018 T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Analytical Report

Batch #: 021478 December 18, 2002

Prepared for:

Andrew Kramer, Process Engineering Phone: (847) 768-0612

Project #: 61129-08

Received Date: 12/4/2002

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical contact for this report:

Alan G. Janos

(847) 768-0603

G A S T E C H N O L O G Y I N S T I T U T E

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 021478-001 Date: December 18, 2002

Sample Description: Activated coconut charcoal, -4+8 mesh, Springfield Scientific #TC4716

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)
Moisture, %	3.28	3.28		
Volatile Matter, %	4.98	4.98	5.15	
Ash (750°F), %	2.06	2.02		
Fixed Carbon, % (by difference)	89.68	89.72		
Ultimate Analysis	(Dry basis)		Screen A	nalysis
Ash (750°F), %	2.09		Retained on	<u>Wt. %</u>
Carbon, %	94.62			
Hydrogen, %	0.23		3	0.0%
Nitrogen, %	0.61		4	5.8%
Sulfur, %	0.04		6	47.6%
Oxygen, %	2.40		8	34.1%
(by difference)			PAN	<u>12.5%</u>
			Total	100.0%
Heating Value	(Dry basis)			
BTU/lb.	14,050			

Analyst: NJP

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

February 6, 2003

INSTITUTE OF GAS TECHNOLOGY 1700 S. Mount Prospect Road Des Plaines, IL 60018 Attn: Norman Petrulis

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAD SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060 www.comteco.com

Sample identification by Institute of Gas Technology

Kind of sample

Activated Coconut Charcoal reported to us

Sample ID: 021478-001

Sample taken at

Activated Coconut Charcoal

Sample taken by

Date sampled -----

Date received February 3, 2003

P.O No. PF00020103

Analysis Report No.

71-198925

Page 1 of 1

FUSION TEMPERATURE OF ASH, (OF)

		Reducing	Oxidizing
Initial Deformation	(IT)	2400	2445
Softening	(ST)	2415	2460
Hemispherical	(HT)	2430	2485
Fluid	(FT)	2450	2505

METHOD

Fusion Temperature of Ash: ASTM D 1857

Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

oth Houand Laboratory

MEMBER

TERMS AND CONDITIONS ON REVERSE

GAS TECHNOLOGY INSTITUTE

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018 T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 021478-002

Date: December 18, 2002

Sample Description: Calla Energy, Mill #1 sawdust, 8/29/02; (air-dried and shredded to <8mm, then

fines <1mm, amounting to 38.3wt% of total, were removed before analysis)

Air-Dry Moisture, % 33.42

(As received)	(As received) w/SO3 correction	(Dry basis)
39.23	39.23	
49.35	49.35	81.20
0.39	0.38	
11.03	11.04	
	39.23 49.35 0.39	(As received) w/SO3 correction 39.23 39.23 49.35 49.35 0.39 0.38

Ultimate Analysis	(Dry basis)	Screen A	nalysis
Ash (750°F), %	0.63	Retained on	<u>Wt. %</u>
Carbon, %	49.51		
Hydrogen, %	5.88	3	0.0%
Nitrogen, %	0.11	4	0.2%
Sulfur, %	0.02	6	4.0%
Oxygen, %	43.85	8	16.3%
(by difference)		10	20.2%
		12	19.4%
		14	25.4%
Heating Value	(Dry basis)	16	8.6%
		PAN	<u>5.9%</u>
BTU/lb.	8,440	Total	100.0%

Analyst: NJP

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9300

Member of the SGS Group (Société Générale de Surveillance)

February 6, 2003

INSTITUTE OF GAS TECHNOLOGY 1700 S. Mount Prospect Road Des Plaines, IL 60018 Attn: Norman Petrulis

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAD SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060 www.comteco.com

Sample identification by Institute of Gas Technology

Kind of sample

Sample taken at

reported to us Sawdust

Sample ID: 021478-002

Wood Mill #1 Sawdust

Sample taken by

Date sampled

Date received February 3, 2003

P.O No. PF00020103

Analysis Report No.

71-198921

Page 1 of 1

looks backingoods

FUSION TEMPERATURE OF ASH, (OF)

Reducing Oxidizing Initial Deformation (IT) 2700+ 2655 Softening (ST) 2700+ 2670 Hemispherical (HT)

Fluid (FT)

2700+ 2700+

2680 2695

Fusion Temperature of Ash: ASTM D 1857

Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

South Holland Laboratory MEMBER

TERMS AND CONDITIONS ON REVERSE

GAS TECHNOLOGY INSTITUTE

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 021478-003 Date: December 18, 2002

Sample Description: Calla Energy, Mill #2 sawdust, 8/29/02; (air-dried and shredded to <8mm, then

fines <1mm, amounting to 18.1wt% of total, were removed before analysis)

Air-Dry Moisture, 9	%	21.83
---------------------	---	-------

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)
Moisture, %	35.96	35.96	
Volatile Matter, %	53.21	53.21	83.09
Ash (750°F), %	0.27	0.26	
Fixed Carbon, % (by difference)	10.56	10.57	
(by difference)			

Ultimate Analysis	(Dry basis)	Screen A	nalysis
Ash (750°F), %	0.41	Retained on	<u>Wt. %</u>
Carbon, %	49.82		
Hydrogen, %	5.84	3	0.0%
Nitrogen, %	0.09	4	0.9%
Sulfur, %	0.01	6	7.2%
Oxygen, %	43.82	8	33.5%
(by difference)		10	19.5%
		12	14.4%
		14	15.9%
Heating Value	(Dry basis)	16	5.4%
		PAN	<u>3.2%</u>
BTU/lb.	8,430	Total	100.0%

Analyst: NJP

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

February 6, 2003

INSTITUTE OF GAS TECHNOLOGY 1700 S. Mount Prospect Road Des Plaines, IL 60018 Attn: Norman Petrulis ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAD SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060 www.comteco.com

Sample identification by Institute of Gas Technology

Kind of sample

reported to us Sawdust

Sample taken at -----

Sample taken by -----

Date sampled -----

Date received February 3, 2003

Sample ID: 021478-003

Mill #2 Sawdust

P.O No. PF00020103

Analysis Report No.

71-198922

Page 1 of 1

FUSION TEMPERATURE OF ASH, (OF)

		Reducing	Oxidizing
			and the second second second
Initial Deformation	(IT)	2655	2560
Softening	(ST)	2670	2575
Hemispherical	(HT)	2680	2590
Fluid	(FT)	2690	2625
		and and an	a recommend

METHOD

Fusion Temperature of Ash: ASTM D 1857

Respectfully submitted, CQMMERCIAL TESTING & ENGINEERING CO.

th Holland Laboratory

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 021478-004 Date: December 18, 2002

Sample Description: Bush Ind. chipboard waste, composite of 2 containers; (shredded to <8mm, then

fines <1mm, amounting to 25.4wt% of total, were removed before analysis)

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis	<u>s)</u>
Moisture, %	5.53	5.53		
Volatile Matter, %	74.85	74.85	79.23	
Ash (750°F), %	0.73	0.67		
Fixed Carbon, % (by difference)	18.89	18.96		
Ultimate Analysis	(Dry basis)		Screen A	nalysis
Ash (750°F), %	0.71		Retained on	<u>Wt. %</u>
Carbon, %	48.90			
Hydrogen, %	6.04		3	0.0%
Nitrogen, %	3.02		4	3.5%
Sulfur, %	0.07		6	19.5%
Oxygen, %	41.27		8	28.5%
(by difference)			10	14.0%
			12	10.1%
			14	13.1%
Heating Value	(Dry basis)		16	6.3%
			PAN	<u>5.0%</u>
BTU/lb.	8,480		Total	100.0%

Analyst: NJP

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

February 6, 2003

INSTITUTE OF GAS TECHNOLOGY 1700 S. Mount Prospect Road Des Plaines, IL 60018 Attn: Norman Petrulis ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAD SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060 www.comteco.com

Sample identification by Institute of Gas Technology

Kind of sample

Sample taken at

reported to us Chipboard Waste

Sample

Sample ID: 021478-004

Chipboard Waste

Sample taken by -----

Date sampled -----

Date received February 3, 2003

P.O No. PF00020103

Analysis Report No. 71-198923

Page 1 of 1

FUSION TEMPERATURE OF ASH, (OF)

		Reducing	Oxidizing
Initial Deformation	(IT)	2460	2560
Softening	(ST)	2470	2570
Hemispherical	(HT)	2485	2585
Fluid	(FT)	2500	2595

METHOD

Fusion Temperature of Ash: ASTM D 1857

Respectfully submitted,
_CQMMERCIAL TESTING & ENGINEERING CO.

South Holland Laboratory

ACIL

TERMS AND CONDITIONS ON REVERSE

GAS TECHNOLOGY INSTITUTE

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 F: 847 768 0501 www.gastechnology.org

Sample Login No: 021478-005

Sample Description: Bush Ind. wood pellets, 8/21/02

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)
Moisture, %	6.89	6.89		
Volatile Matter, %	73.29	73.29	78.71	
Ash (750°F), %	0.84	0.76		
Fixed Carbon, % (by difference)	18.98	19.06		
Ultimate Analysis	(Dry basis)		Screen A	nalysis
Ash (750°F), %	0.82		Retained on	<u>Wt. %</u>
Carbon, %	48.65			
Hydrogen, %	6.03		3/8"	0.0%
Nitrogen, %	3.75		3	89.0%
Sulfur, %	0.08		PAN	<u>11.0%</u>
Oxygen, %	40.66		Total	100.0%
(by difference)				
Heating Value	(Dry basis)			
BTU/lb.	8,540			

Analyst: NJP

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

February 6, 2003

INSTITUTE OF GAS TECHNOLOGY 1700 S. Mount Prospect Road Des Plaines, IL 60018 Attn: Norman Petrulis

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAD SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060 www.comteco.com

Sample identification by Institute of Gas Technology

Kind of sample

reported to us Wood Pellets

Sample taken at

Sample taken by

Date sampled -----

Date received February 3, 2003

Sample ID: 021478-005

Wood Pellets

Bush Industries

P.O No. PF00020103

Analysis Report No.

71-198924

Page 1 of 1

FUSION TEMPERATURE OF ASH, (OF)

		Reducing	<u>Oxidizing</u>
Initial Deformation	(IT)	2400	2380
Softening		2415	2405
Hemispherical	(HT)	2430	2430
Fluid	(FT)	2445	2465
		Total Bridge	a market and

METHOD

Fusion Temperature of Ash: ASTM D 1857

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

6lland Laboratory

GAS TECHNOLOGY INSTITUT

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 F: 847 768 0501 www.gastechnology.org

Sample Login No: 021506-001

Sample Description: Wood pellets (from Menard's)

Date: December 31, 2002

Henord?

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)
Moisture, % Volatile Matter, % Ash (750°F), % Fixed Carbon, % (by difference)	<0.05 80.61 0.46 18.93	<0.05 80.61 0.44 18.95	80.61

Ultimate Analysis	(Dry basis)
Ash (750°F), %	0.44
Carbon, %	47.84
Hydrogen, %	6.14
Nitrogen, %	0.10
Sulfur, %	0.01
Oxygen, %	45.47
(by difference)	,

Heating Value	(Dry basis)
BTU/lb.	8,060

Analyst: NJP

No binler

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

February 6, 2003

INSTITUTE OF GAS TECHNOLOGY 1700 S. Mount Prospect Road Des Plaines, IL 60018 Attn: Norman Petrulis

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAD SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060 www.comteco.com

Sample identification by Institute of Gas Technology

Kind of sample

reported to us Wood Pellets

Sample taken at

Sample ID: 021506-001

Wood Pellets - Menard's

Sample taken by

Date sampled _ _ - - - -

Date received February 3, 2003

P.O No. PF00020103

Analysis Report No. 71-198920

Page 1 of 1

FUSION TEMPERATURE OF ASH, (OF)

	Reducing	Oxidizing
(IT)	2700+	2700+
(ST)	2700+	2700+
(HT)	2700+	2700+
(FT)	2700+	2700+
	(ST) (HT)	(IT) 2700+ (ST) 2700+ (HT) 2700+

METHOD

Fusion Temperature of Ash: ASTM D 1857

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

olland Laboratory

TERMS AND CONDITIONS ON REVERSE

Customer Sample Request Certificate of Analysis

CARBO CERAMICS, INC.

McIntyre Operations 2295 Wriley Rd. McIntyre, GA 31054 U.S.A. ph. (478) 943-6500 fax. (478) 943-6570 972 401 0090

Request To: Alan Conger Steve Canova/Brandi Thayer Request Via: 12/3/2002 Date Rec'd: Date Shipped: 12/3/2002 Product: **CARBOPROP** Size: 30/60 Quantity: 10 - 20 lbs Ship From Loc. : McIntvre Ship To: Andy Kramer Gas Technology Institute 1700 South Mount Prospect Rd Desplaines, IL 60018 **Method of Shipment:** Next day 2nd day Ground 847-768-0612 Phone No. Fax No. Fluidization Bed Media Purpose of use : SIEVE DISTRIBUTION S-1 20 mesh 0.0 S-2 30 mesh 0.0 80.9 S-3 40 mesh S-4 50 mesh 18.6 S-5 60 mesh 0.5 **S-6** 70 mesh 0.0 **S-7** 100 mesh 0.0 Pan 0.0 100.0 Total 3.23 BD (g/cc) 1.84

APPROVAL tue Canora

OTHER

API CRUSH @ 10 Kpsi

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T. 847 768 0500 F: 847 768 0501 www.gastechnology.org

Analytical Report

Batch #: 031306 July 11, 2003

Prepared for:

Andrew Kramer, Process Engineering Phone: (847) 768-0612

Project #: 61129-08

Received Date: 6/26/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

> Submitted by: Karen Crippen, (847) 768-0604

> > Chemical Research Services

Technical contact for this report:

Russell Bora

(847) 768-0693

Major Component Gas Analysis By Gas Chromatography

Report Date: 11-Jul-03 Client Name: 61129-08

GTI Sample Number: 031306-001 Sample Description: Gas Sample 1 6/20/2003

Date Analyzed: 27-Jun-03

Analyst: MAD

Component	Mol %	Det. Limit	Weight %
Helium		0.1%	
Hydrogen	12.7%	0.1%	0.94%
Carbon Dioxide	17.4%	0.03%	28.2%
Oxygen/Argon	0.88%	0.03%	1.05%
Nitrogen	52.6%	0.03%	54.2%
Carbon Monoxide	11.6%	0.03%	11.9%
Methane	3.82%	0.002%	2.25%
Ethane	0.080%	0.002%	0.088%
Ethene	0.689%	0.002%	0.711%
Ethyne		0.002%	***********
Propane		0.002%	
Propene	0.006%	0.002%	0.009%
Propadiene		0.002%	0.002,0
Propyne		0.002%	
i-Butane		0.002%	
n-Butane		0.002%	
1-Butene		0.002%	
i-Butene		0.002%	
trans-2-Butene		0.002%	
cis-2-Butene		0.002%	
1,3-Butadiene	0.003%	0.002%	0.006%
i-Pentane		0.002%	
n-Pentane		0.002%	
neo-Pentane		0.002%	
1-Pentene		0.002%	
Hexane Plus	0.173%	0.002%	0.549%
Hydrogen Sulfide	0.0164%	0.0001%	0.0206%
Carbonyl Sulfide	0.0013%	0.0001%	0.0029%
Total	100.0%		100.0%

Calculated Real Gas Properties per ASTM D3588-98

Temp. (°F) =	60.0	60.0	
Press. (psia) =	14.696	14.73	
Compressibility Factor [z] (Dry) =	0.99924	0.99924	
Compressibility Factor [z] (Sat.) =	0.99903	0.99903	
Relative Density (Dry) =	0.9389	0.9389	
Gross HV (Dry) (Btu/ft^3) =	138.0	138.3	
Gross HV (Sat.) (Btu/ft^3) =	135.6	135.9	
Wobbe Index =	142.4	142.7	
Net HV (Dry) (Btu/ft^3) =	126.3	126.6	
Net HV (Sat.) (Btu/ft^3) =	124.1	124.4	

Notes: All blank values are below detection limit N.A. - Not Analyzed

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

TRACE SULFUR DETERMINATION BY ASTM D6228-98

Report Date: 11-Jul-03 Client Name: 61129-08 GTI Sample Number: 031306-001

Sample Description: Gas Sample 1 6/20/2003

Date Analyzed: 27-Jun-03 Analyst: MAD

Component Name	PPMV	Component Name	PPMV
Hydrogen Sulfide	164	Thiophene	4.40
Sulfur Dioxide		C1-Thiophenes	0.07
Carbonyl Sulfide	13.2	C2-Thiophenes	0.07
Carbon Disulfide		C3-Thiophenes	
Methyl Mercaptan		Benzothiophene	
Ethyl Mercaptan		C1-Benzothiophenes	
i-Propyl Mercaptan		C2-Benzothiophenes	
n-Propyl Mercaptan		•	
t-Butyl Mercaptan		Thiophane	
		Thiophenol	
Dimethyl Sulfide		•	
Methyl Ethyl Sulfide		Individual Unidentified	
Diethyl Sulfide		Sulfur Compounds	
Di-t-Butyl Sulfide		(all as monosulfides)	
Dimethyl Disulfide			
Methyl Ethyl Disulfide			
Methyl i-Propyl Disulfide			
Diethyl Disulfide			
Methyl n-Propyl Disulfide			
Methyl t-Butyl Disulfide			
Ethyl i-Propyl Disulfide			
Ethyl n-Propyl Disulfide			
Ethyl t-Butyl Disulfide			
Di-i-Propyl Disulfide		Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide		Total Identified:	182
Di-n-Propyl Disulfide			102
i-Propyl t-Butyl Disulfide		Total Sulfur Content	
n-Propyl t-Butyl Disulfide		As molar PPM	182
Di-t-Butyl Disulfide		As Grains/100 SCF @ STP	11.4
Dimethyl Trisulfide		As Grains/100 SCF @ 14.73	10.8
Diethyl Trisulfide		psia, 60°F	10.0
Di-t-Butyl Trisulfide		• ′	

Notes:

Component Detection Limit:

1 ppmv for H2S, COS, and SO2

0.05 ppmv for all other compounds per sulfur All blank values are below detection limit.

STP= 14.696psia, 0°C

Major Component Gas Analysis By Gas Chromatography

Report Date: 11-Jul-03
Client Name: 61129-08

GTI Sample Number: 031306-002

Sample Description: Gas Sample 2 6/20/2003

Date Analyzed: 27-Jun-03

Analyst: MAD

Component	Mol %	Det. Limit	Weight %
Helium		0.1%	
Hydrogen	11.8%	0.1%	0.86%
Carbon Dioxide	17.9%	0.03%	28.7%
Oxygen/Argon	1.07%	0.03%	1.25%
Nitrogen	55.9%	0.03%	56.8%
Carbon Monoxide	9.37%	0.03%	9.53%
Methane	3.21%	0.002%	1.87%
Ethane	0.065%	0.002%	0.071%
Ethene	0.503%	0.002%	0.512%
Ethyne		0.002%	
Propane		0.002%	
Propene	0.004%	0.002%	0.006%
Propadiene		0.002%	
Propyne		0.002%	
i-Butane		0.002%	
n-Butane		0.002%	
1-Butene		0.002%	
i-Butene		0.002%	
trans-2-Butene		0.002%	
cis-2-Butene		0.002%	
1,3-Butadiene		0.002%	
i-Pentane		0.002%	
n-Pentane		0.002%	
neo-Pentane		0.002%	
1-Pentene		0.002%	
Hexane Plus	0.122%	0.002%	0.383%
Hydrogen Sulfide	0.0137%	0.0001%	0.0169%
Carbonyl Sulfide	0.0012%	0.0001%	0.0026%
Total	100.0%		100.0%

Calculated Real Gas Properties per ASTM D3588-98

Temp. (°F) =	60.0	60.0	
Press. (psia) =	14.696	14.73	
Compressibility Factor [z] (Dry) =	0.99925	0.99924	
Compressibility Factor [z] (Sat.) =	0.99903	0.99903	
Relative Density (Dry) =	0.9515	0.9515	
Gross HV (Dry) (Btu/ft^3) =	116.0	116.3	
Gross HV (Sat.) (Btu/ft^3) =	114.0	114,3	
Wobbe Index =	118.9	119.2	
Net HV (Dry) (Btu/ft 3) =	105.8	106.0	
Net HV (Sat.) (Btu/ft^3) =	104.0	104.2	

Notes: All blank values are below detection limit N.A. - Not Analyzed

TRACE SULFUR DETERMINATION BY ASTM D6228-98

Report Date: 11-Jul-03 Client Name: 61129-08 GTI Sample Number: 031306-002

Sample Description: Gas Sample 2 6/20/2003

Date Analyzed: 27-Jun-03 Analyst: MAD

Component Name	PPMV	Component Name	PPMV
Hydrogen Sulfide	137	Thiophene	3.18
Sulfur Dioxide		C1-Thiophenes	0.05
Carbonyl Sulfide	11.7	C2-Thiophenes	
Carbon Disulfide		C3-Thiophenes	
Methyl Mercaptan		Benzothiophene	
Ethyl Mercaptan		C1-Benzothiophenes	
i-Propyl Mercaptan		C2-Benzothiophenes	
n-Propyl Mercaptan		-	
t-Butyl Mercaptan		Thiophane	
		Thiophenol	
Dimethyl Sulfide		-	
Methyl Ethyl Sulfide		Individual Unidentified	
Diethyl Sulfide		Sulfur Compounds	
Di-t-Butyl Sulfide		(all as monosulfides)	
Dimethyl Disulfide			
Methyl Ethyl Disulfide			
Methyl i-Propyl Disulfide			
Diethyl Disulfide			
Methyl n-Propyl Disulfide			
Methyl t-Butyl Disulfide			
Ethyl i-Propyl Disulfide			
Ethyl n-Propyl Disulfide			
Ethyl t-Butyl Disulfide			
Di-i-Propyl Disulfide		Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide		Total Identified:	152
Di-n-Propyl Disulfide			
i-Propyl t-Butyl Disulfide		Total Sulfur Content	
n-Propyl t-Butyl Disulfide		As molar PPM	152
Di-t-Butyl Disulfide		As Grains/100 SCF @ STP	9.50
Dimethyl Trisulfide		As Grains/100 SCF @ 14.73	9.01
Diethyl Trisulfide		psia, 60°F	,. 1
Di-t-Butyl Trisulfide		•	

Notes: Component Detection Limit:

1 ppmv for H2S, COS, and SO2

0.05 ppmv for all other compounds per sulfur All blank values are below detection limit.

STP= 14.696psia, 0°C

Chemical Research Services

Analytical Report

Batch #: 031307.doc Date: July 18, 2003

Prepared for:

Andrew Kramer

X5612

Gas Technology Institute 1700 S. Mt Prospect Rd. Des Plaines, IL 60018

Project # 61129-08

Received Date: 6/26/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

In April 2000, the Institute of Gas Technology (IGT) and the Gas Research Institute (GRI) combined to form the Gas Technology Institute (GTI).

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical Contact:

Alan G. Janos, (847)/768-0603

Analytical Report

Batch #: 031307.doc Date: July 18, 2003

Liquid Sample #1, 6/20/03 (031307-001)

Phase separation:

Organic phase (oil) recovered: 0.3 g 0.07 wt%
Aqueous phase recovered: 414.4 g 98.41 wt%
Solid phase recovered: 0.3 g 0.07 wt%
Loss (by difference): 6.1 g 1.45 wt%

Total sample received: 421.1 g

Analyst: AGJ

Oil phase analyses (031307-003): (GC work only per A.K.)

Water phase analyses (031307-002):

Total Carbon: 2.41 wt%

Kjeldahl Nitrogen: 4.82 wt% Ammonia: 5.52 wt%

Analyst: NJP, JS, AGJ

T: 847 768 0500 F: 847 768 0501 www.gastechnology.org

Hydrocarbon Analysis in Oil Phase

GTI Sample Number: 031307-003

Sample Description: Liquid #1 6/20/03 Oil Phase

Tentative Component ID	Estimated mg recovered	Tentative Component ID	Estimated mg recovered
Hydroxymethylpentanone	0.548	Methoxypropenylphenol/Dimethylnaphthalenes	0.670
Ethylbenzene	0.083	Ethenylnaphthalene	0.836
m,p-Xylene	0.338	Acenaphthylene	5.39
o-Xylene	0.221	Methyl-1,1'-biphenyl	0.309
Phenol	0.815	Naphthalenecarbonitriles	1.03
Benzeneamine	0.077	Acenaphthene	0.402
Benzonitrile	0.357	Dibenzofuran	0.867
Methyl phenols/Indene	0.977	Phenalene	0.430
Methylbenzonitriles	0.161	Fluorene	1.73
Tetramethylpiperidinone	<0.020	Methyldibenzofuran	0.212
Methylbenzofuran	0.112	Methylfluorenes	0.535
Dimethylphenols	0.178	Fluorenone	0.370
Methylindenes	0.246	Phenanthrene	3.47
Methylbenzaldehydes	0.228	Anthracene	0.804
Naphthalene	5.18	Carbazole	0.130
Quinoline	2.01	Benzoquinoline	0.212
Isoquinoline	1.04	Phenylnaphthalenes	0.542
Indole	1.16	Benzo[c]cinnoline	0.198
2-Methylnaphthalene	1.40	Methylphenanthrene or Methylanthracene	0.192
l-Methylnaphthalene	1.07	Methylphenanthrene or Methylanthracene	0.198
Methylquinolines	0.200	4H-Cyclopenta[d,e,f]phenanthrene	0.517
Methylindoles	0.075	Fluoranthene	0.568
1,1'-Biphenyl	1.39	Pyrene	0.592
Ethylnaphthalenes	0.221	Methylpyrenes	0.282
Dihydroacenaphthylene	0.147		
Indazole	<0.020	Additional Unidentified Components	6.29
		Total :	45.0

Notes: Detection Limit = 0.020 mg

All components were tentatively identified by comparing the mass spectra of each component to a mass spectral reference library.

Estimated concentrations of all components were calculated as naphthalene by GC-FID.

Chemical Research Services

Analytical Report

Batch #: 031307.doc Date: July 18, 2003

Liquid Sample #2, 6/20/03 (031307-004)

Phase separation:

Organic phase (oil) recovered: 0.2 g 0.04 wt%
Aqueous phase recovered: 548.9 g 98.74 wt%
Solid phase recovered: 0.3 g 0.05 wt%
Loss (by difference): 6.5 g 1.17 wt%

Total sample received: 555.9 g

Analyst: AGJ

Oil phase analyses (031307-006): (GC work only per A.K.)

Water phase analyses (031307-005):

Total Carbon: 2.18 wt%

Kjeldahl Nitrogen: 4.24 wt% Ammonia: 4.93 wt%

Analyst: NJP, JS, AGJ

Total:

59.1

Hydrocarbon Analysis in Oil Phase

GTI Sample Number: 031307-006

Sample Description: Liquid #2 6/20/03 Oil Phase

Tentative Component ID	Estimated mg recovered	Tentative Component ID	Estimated mg recovered
Hydroxymethylpentanone	0.213	Methoxypropenylphenol/Dimethylnaphthalene	1.14
Ethylbenzene	0.231	Ethenylnaphthalene	1.26
m,p-Xylene	0.923	Acenaphthylene	7.69
o-Xylene	0.507	Methyl-1,1'-biphenyl	0.483
Phenol	0.501	Naphthalenecarbonitriles	1.70
Benzeneamine	0.076	Acenaphthene	0.617
Benzonitrile	0.575	Dibenzofuran	1.28
Methyl phenols/Indene	1.08	Phenalene	0.686
Methylbenzonitriles	0.191	Fluorene	2.47
Tetramethylpiperidinone	<0.020	Methyldibenzofuran	0.329
Methylbenzofuran	0.098	Methylfluorenes	1.14
Dimethylphenols	0.163	Fluorenone	0.531
Methylindenes	0.410	Phenanthrene	5.02
Methylbenzaldehydes	0.194	Anthracene	1.19
Naphthalene	9.02	Carbazole	0.215
Quinoline	3.46	Benzoquinoline	0.310
Isoquinoline	1.63	Phenylnaphthalenes	1.02
Indole	1.74	Benzo[c]cinnoline	0.302
2-Methylnaphthalene	2.40	Methylphenanthrene or Methylanthracene	0.297
1-Methylnaphthalene	1.78	Methylphenanthrene or Methylanthracene	0.324
Methylquinolines	0.296	4H-Cyclopenta[d,e,f]phenanthrene	0.836
Methylindoles	0.110	Fluoranthene	0.737
1,1'-Biphenyl	2.06	Ругепе	0.711
Ethylnaphthalenes	0.350	Methylpyrenes	0.346
Dihydroacenaphthylene	0.185		
Indazole	<0.020	Additional Unidentified Components	10.9

Notes: Detection Limit = 0.020 mg

All components were tentatively identified by comparing the mass spectra of each component to a mass spectral reference library.

Estimated concentrations of all components were calculated as naphthalene by GC-FID.

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 031307-007 Date: July 15, 2003

Sample Description: Solids, 6/20/03

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)
Moisture, %	5.58	5.58	
Volatile Matter, %	16.82	16.82	17.81
Ash, %	45.91	45.84	
Fixed Carbon, % (by difference)	31.71	31.77	

Ultimate Analysis	(Dry basis)	
Ash, %	48.54	
Carbon, %	43.76	
Hydrogen, %	0.46	
Nitrogen, %	0.74	
Sulfur, %	0.05	
Oxygen, %	6.44	
(by difference)		

Analyst: NJP

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Analytical Report

Batch #: 031308 August 06, 2003

Prepared for:

Andrew Kramer, Process Engineering Phone: (847) 768-0612

Project #: 61129-08

Received Date: 6/26/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical contact for this report:

Russell Bora

(847) 768-0693

Analyst: MAD

Major Component Gas Analysis By Gas Chromatography

Report Date: 11-Jul-03

Client Name: <u>61129-08</u> GTI Sample Number: 031308-001

Sample Description: Gas Sample 1 6/24/2003

Date Analyzed: 27-Jun-03

Component	Mol %	Det. Limit	Weight %
Helium		0.1%	
Hydrogen	9.5%	0.1%	0.68%
Carbon Dioxide	17.9%	0.03%	28.0%
Oxygen/Argon	0.80%	0.03%	0.92%
Nitrogen	57.4%	0.03%	57.1%
Carbon Monoxide	9.47%	0.03%	9.41%
Methane	3.49%	0.002%	1.99%
Ethane	0.185%	0.002%	0.197%
Ethene	0.895%	0.002%	0.891%
Ethyne	0.021%	0.002%	0.019%
Propane	0.009%	0.002%	0.014%
Propene	0.105%	0.002%	0.157%
Propadiene		0.002%	
Propyne	0.008%	0.002%	0.011%
i-Butane		0.002%	
n-Butane		0.002%	
1-Butene		0.002%	
i-Butene	0.005%	0.002%	0.011%
trans-2-Butene	0.004%	0.002%	0.007%
cis-2-Butene	0.002%	0.002%	0.004%
1,3-Butadiene	0.031%	0.002%	0.059%
-Pentane		0.002%	
n-Pentane		0.002%	
neo-Pentane		0.002%	
Pentenes	0.004%	0.002%	0.011%
Hexane Plus	0.160%	0.002%	0.490%
Hydrogen Sulfide	0.0082%	0.0001%	0.0099%
Carbonyl Sulfide	0.0009%	0.0001%	0.0020%
Total	100.0%		100.0%

Calculated Real Gas Properties per ASTM D3588-98

	-		
Temp. (°F) =	60.0	60.0	
Press. (psia) =	14.696	14.73	
Compressibility Factor [z] (Dry) =	0.99919	0.99918	
Compressibility Factor [z] (Sat.) =	0.99896	0.99896	
Relative Density (Dry) =	0.9730	0.9730	
Gross HV (Dry) (Btu/ft') =	126.2	126.5	
Gross HV (Sat.) (Btu/ft^3) =	124.0	124.3	
Wobbe Index =	127.9	128.2	
Net HV (Dry) (Btu/ft^3) =	115.9	116.1	
Net HV (Sat.) (Btu/ft 3) =	113.9	114.1	

Notes: All blank values are below detection limit

N.A. - Not Analyzed

TRACE SULFUR DETERMINATION BY ASTM D6228-98

Report Date: 11-Jul-03 Client Name: 61129-08 GTI Sample Number: 031308-001

Sample Description: Gas Sample 1 6/24/2003

Date Analyzed: 27-Jun-03 Analyst: MAD

Component Name	PPMV	Component Name	PPMV
Hydrogen Sulfide	81.6	Thiophene	3.20
Sulfur Dioxide		C1-Thiophenes	0.40
Carbonyl Sulfide	9.34	C2-Thiophenes	
Carbon Disulfide		C3-Thiophenes	
Methyl Mercaptan	1.11	Benzothiophene	
Ethyl Mercaptan		C1-Benzothiophenes	
i-Propyl Mercaptan		C2-Benzothiophenes	
n-Propyl Mercaptan			
t-Butyl Mercaptan		Thiophane	
		Thiophenol	
Dimethyl Sulfide			
Methyl Ethyl Sulfide		Individual Unidentified	
Diethyl Sulfide		Sulfur Compounds	
Di-t-Butyl Sulfide		(all as monosulfides)	
Dimethyl Disulfide			
Methyl Ethyl Disulfide			
Methyl i-Propyl Disulfide			
Diethyl Disulfide			
Methyl n-Propyl Disulfide			
Methyl t-Butyl Disulfide			
Ethyl i-Propyl Disulfide			
Ethyl n-Propyl Disulfide			
Ethyl t-Butyl Disulfide			
Di-i-Propyl Disulfide		Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide		Total Identified:	95.7
Di-n-Propyl Disulfide			
i-Propyl t-Butyl Disulfide		Total Sulfur Content	
n-Propyl t-Butyl Disulfide		As molar PPM	95.7
Di-t-Butyl Disulfide		As Grains/100 SCF @ STP	5.98
Dimethyl Trisulfide		As Grains/100 SCF @ 14.73	5.67
Diethyl Trisulfide		psia, 60°F	
Di-t-Butyl Trisulfide			

Notes: Component Detection Limit:

1 ppmv for H2S, COS, and SO2

0.05 ppmv for all other compounds per sulfur All blank values are below detection limit.

STP= 14.696psia, 0°C

Major Component Gas Analysis By Gas Chromatography

Report Date: 11-Jul-03

Client Name: 61129-08

GTI Sample Number: 031308-002 Sample Description: Gas Sample 2 6/24/2003

Date Analyzed: 27-Jun-03 Analyst: MAD

Component	Mol %	Det. Limit	Weight %
Helium		0.1%	
Hydrogen	10.5%	0.1%	0.76%
Carbon Dioxide	18.5%	0.03%	29.1%
Oxygen/Argon	0.79%	0.03%	0.91%
Nitrogen	54.9%	0.03%	55.1%
Carbon Monoxide	9.72%	0.03%	9.74%
Methane	3.98%	0.002%	2.28%
Ethane	0.232%	0.002%	0.249%
Ethene	0.945%	0.002%	0.949%
Ethyne	0.016%	0.002%	0.015%
Propane	0.011%	0.002%	0.017%
Propene	0.128%	0.002%	0.192%
Propadiene	0.002%	0.002%	0.003%
Propyne	0.008%	0.002%	0.012%
i-Butane		0.002%	
n-Butane		0.002%	
1-Butene	0.002%	0.002%	0.004%
i-Butene	0.007%	0.002%	0.013%
trans-2-Butene	0.004%	0.002%	0.008%
cis-2-Butene	0.003%	0.002%	0.005%
1,3-Butadiene	0.037%	0.002%	0.071%
i-Pentane		0.002%	
n-Pentane		0.002%	
neo-Pentane		0.002%	
Pentenes	0.005%	0.002%	0.013%
Hexane Plus	0.180%	0.002%	0.554%
Hydrogen Sulfide	0.0119%	0.0001%	0.0145%
Carbonyl Sulfide	0.0010%	0.0001%	0.0022%
Total	100.0%		100.0%

Calculated Real Gas Properties per ASTM D3588-98

Temp. (°F) =	60.0	60.0	
Press. (psia) =	14.696	14.73	
Compressibility Factor [z] (Dry) =	0.99916	0.99916	
Compressibility Factor [z] (Sat.) =	0.99893	0.99893	
Relative Density (Dry) =	0.9654	0.9654	
Gross HV (Dry) (Btu/ft^3) =	138.7	139.1	
Gross HV (Sat.) (Btw/ft^3) =	136.3	136.7	
Wobbe Index =	141.2	141.5	
Net HV (Dry) (Btu/ft^3) =	127.2	127.5	
Net HV (Sat.) (Btu/ft') =	125.0	125.3	
	Press. (psia) = Compressibility Factor [z] (Dry) = Compressibility Factor [z] (Sat.) = Relative Density (Dry) = Gross HV (Dry) (Btu/ft') = Gross HV (Sat.) (Btu/ft') = Wobbe Index = Net HV (Dry) (Btu/ft') =	Press. (psia) = 14.696 Compressibility Factor [z] (Dry) = 0.99916 Compressibility Factor [z] (Sat.) = 0.99893 Relative Density (Dry) = 0.9654 Gross HV (Dry) (Btu/ft²) = 138.7 Gross HV (Sat.) (Btu/ft²) = 136.3 Wobbe Index = 141.2 Net HV (Dry) (Btu/ft²) = 127.2	Press. (psia) = 14.696 14.73 Compressibility Factor [z] (Dry) = 0.99916 0.99916 Compressibility Factor [z] (Sat.) = 0.99893 0.99893 Relative Density (Dry) = 0.9654 0.9654 Gross HV (Dry) (Btu/ft²) = 138.7 139.1 Gross HV (Sat.) (Btu/ft²) = 136.3 136.7 Wobbe Index = 141.2 141.5 Net HV (Dry) (Btu/ft²) = 127.2 127.5

Notes: All blank values are below detection limit

N.A. - Not Analyzed

TRACE SULFUR DETERMINATION BY ASTM D6228-98

Report Date: 11-Jul-03
Client Name: 61129-08
GTI Sample Number: 031308-002

Sample Description: Gas Sample 2 6/24/2003

Date Analyzed: 27-Jun-03 Analyst: MAD

Component Name	PPMV	Component Name	PPMV
Hydrogen Sulfide	119	Thiophene	3.23
Sulfur Dioxide		C1-Thiophenes	0.47
Carbonyl Sulfide	10.4	C2-Thiophenes	
Carbon Disulfide		C3-Thiophenes	
Methyl Mercaptan	1.85	Benzothiophene	
Ethyl Mercaptan		C1-Benzothiophenes	
i-Propyl Mercaptan		C2-Benzothiophenes	
n-Propyl Mercaptan			
t-Butyl Mercaptan		Thiophane	
		Thiophenol	
Dimethyl Sulfide			
Methyl Ethyl Sulfide		Individual Unidentified	
Diethyl Sulfide		Sulfur Compounds	
Di-t-Butyl Sulfide		(all as monosulfides)	
Dimethyl Disulfide			
Methyl Ethyl Disulfide			
Methyl i-Propyl Disulfide			
Diethyl Disulfide			
Methyl n-Propyl Disulfide			
Methyl t-Butyl Disulfide			
Ethyl i-Propyl Disulfide			
Ethyl n-Propyl Disulfide			
Ethyl t-Butyl Disulfide			
Di-i-Propyl Disulfide		Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide		Total Identified:	135
Di-n-Propyl Disulfide			
i-Propyl t-Butyl Disulfide		Total Sulfur Content	
n-Propyl t-Butyl Disulfide		As molar PPM	135
Di-t-Butyl Disulfide		As Grains/100 SCF @ STP	8.44
Dimethyl Trisulfide		As Grains/100 SCF @ 14.73	8.00
Diethyl Trisulfide		psia, 60°F	
Di-t-Butyl Trisulfide			

Notes:

Component Detection Limit:

1 ppmv for H2S, COS, and SO2

0.05 ppmv for all other compounds per sulfur All blank values are below detection limit.

STP= 14.696psia, 0°C

Total:

12,815

Hydrocarbon Analysis in Xylene Wash

GTI Sample Number: 031308-003

Sample Description: Xylene Cleanout 6/24/2003

Tentative Component ID	Estimated mg recovered	Tentative Component ID	Estimated mg recovered
Hydroxymethylpentanone	4.83	Indazole	<2.12
i-Propylbenzene	2,820	Methoxypropenylphenol/Dimethylnaphthalenes	74 .9
Phenol/n-Propylbenzene	1,750	Ethenylnaphthalene	95.9
Benzeneamine	<2.12	Acenaphthylene	323
Benzonitrile/1-Ethyl-3-methylbenzene	1,900	Methyl-1,1'-biphenyl	26.2
1-Ethyl-4-methylbenzene	501	Naphthalenecarbonitriles	91.0
1-Ethyl-2-methylbenzene	162	Acenaphthene	35.7
Trimethylbenzenes	319	Dibenzofuran	69.0
Methyl phenols/Indene	367	Phenalene	45.7
Methylbenzonitriles	27.1	Fluorene	164
Tetramethylpiperidinone	<2.12	Methyldibenzofuran	21.2
Methylbenzofuran	20.8	Methylfluorenes	101
Dimethylphenols	22.3	Fluorenone	41.1
Methylindenes	28.4	Phenanthrene	557
Methylbenzaldehydes	56.1	Anthracene	127
Naphthalene	632	Carbazole	17.3
Quinoline	57.8	Benzoquinoline	26.8
Isoquinoline	41.2	Phenylnaphthalenes	72.3
Indole	67.5	Benzo[c]cinnoline	22.1
2-Methylnaphthalene	210	Methylphenanthrene or Methylanthracene	22.0
1-Methylnaphthalene	149	Methylphenanthrene or Methylanthracene	25.4
Methylquinolines	14.4	4H-Cyclopenta[d,e,f]phenanthrene	71.6
Methylindoles	9.84	Fluoranthene	128
1,1'-Biphenyl	86.2	Pyrene	124
Ethylnaphthalenes	28.3	Methylpyrenes	39.1
Dihydroacenaphthylene	19.3	Additional Unidentified Components	1,200

Total Filtered Solids (Dry Weight): 1.2 g (0.13% wt.)

Notes: Detection Limit = 2.12 mg

All components were tentatively identified by comparing the mass spectra of each component to a mass spectral reference library.

Toluene and Ethylbenzene were found in large quantities but not calculated, based on the assumption that the source of these components were from the Xylene solvent.

Due to the lack of a solvent blank to identify additional solvent impurites, all additional components found have been reported.

Estimated concentrations of all components were calculated as naphthalene by GC-FID.

Results are based on a total volume of 1060 mLs.

Chemical Research Services

Analytical Report

Batch #: 031309.doc Date: July 18, 2003

Prepared for:

Andrew Kramer

X5612

Gas Technology Institute 1700 S. Mt Prospect Rd. Des Plaines, IL 60018

Project # 61129-08

Received Date: 6/26/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

In April 2000, the Institute of Gas Technology (IGT) and the Gas Research Institute (GRI) combined to form the Gas Technology Institute (GTI).

Submitted by:

Karen Crippen, (847) 768-0604

Chemical Research Services

Technical Contact:

Alan G. Janos, (847) 768-0603

Chemical Research Services

Analytical Report

Batch #: 031309.doc Date: July 18, 2003

Liquid Sample #1, 6/24/03 (031309-001)

Phase separation:

Organic phase (oil) recovered: 1.1 g 0.16 wt%
Aqueous phase recovered: 703.5 g 99.31 wt%
Solid phase recovered: 0.3 g 0.04 wt%
Loss (by difference): 3.5 g 0.49 wt%

Total sample received: 708.4 g

Analyst: AGJ

Oil phase analyses (031309-003): (GC work only per A.K.)

Water phase analyses (031309-002):

Total Carbon: 2.80 wt%

Kjeldahl Nitrogen: 4.69 wt%

Ammonia: 5.67 wt%

Analyst: NJP, JS, AGJ

Hydrocarbon Analysis in Oil Phase

GTI Sample Number: 031309-003

Sample Description: Liquid #1 6/24/03 Oil Phase

Tentative Component ID	Estimated mg recovered	Tentative Component ID	Estimated mg recovered
	0.18	Methoxypropenylphenol/Dimethylnaphthalenes	8.78
Ethylbenzene	<0.09	Ethenylnaphthalene	10.7
n,p-Xylene	0.29	Acenaphthylene	34.8
o-Xylene	0.12	Methyl-1,1'-biphenyl	3.25
Phenol	27.9	Naphthalenecarbonitriles	12.7
Benzeneamine	0.82	Acenaphthene	4.08
Benzonitrile	1.26	Dibenzofuran	8.14
Methylphenols/Indene	24.3	Phenalene	5.30
Methylbenzonitriles	2.26	Fluorene	20.1
Tetramethylpiperidinone	<0.09	Methyldibenzofuran	2.40
Methylbenzofuran	1.39	Methylfluorenes	5.62
Dimethylphenols	2.80	Fluorenone	3.57
Methylindenes	3.52	Phenanthrene	56.7
Methylbenzaldehydes	6.53	Anthracene	10.6
Naphthalene	36.4	Carbazole	1.65
Quinoline	6.94	Benzoquinoline	2.39
Isoquinoline	5.20	Phenylnaphthalenes	6.98
Indole	8.16	Benzo[c]cinnoline	1.71
2-Methylnaphthalene	18.0	Methylphenanthrene or Methylanthracene	2.06
1-Methylnaphthalene	13.6	Methylphenanthrene or Methylanthracene	2.36
Methylquinolines	2.07	4H-Cyclopenta[d,e,f]phenanthrene	6.19
Methylindoles	1.36	Fluoranthene	7.84
1,1'-Biphenyl	9.12	Pyrene	7.14
Ethylnaphthalenes	3.11	Methylpyrenes	2.32
Dihydroacenaphthylene	1.99		
Indazole	0.53	Additional Unidentified Components	102

Notes: Detection Limit = 0.09 mg

All components were tentatively identified by comparing the mass spectra of each component to a mass spectral reference library.

Estimated concentrations of all components were calculated as naphthalene by GC-FID.

GAS TECHNOLOGY INSTITUTE

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 031309-004

Sample Description: Solids, 6/24/03

Date:	July	15,	2003
-------	------	-----	------

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)
Moisture, % Volatile Matter, % Ash, % Fixed Carbon, % (by difference)	3.44 12.99 33.38 50.19	3.44 12.99 33.18 50.39	13.45
Ultimate Analysis	(Dry basis)		
Ash, % Carbon, % Hydrogen, % Nitrogen, % Sulfur, % Oxygen, % (by difference)	34.36 60.79 1.04 1.28 0.14 2.38		

Analyst: NJP

Analytical Report

Batch #: 031324 August 06, 2003

Prepared for:

Andrew Kramer, Process Engineering Phone: (847) 768-0612

Project #: 61129-08

Received Date: 7/2/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical contact for this report:

Russell Bora

(847) 768-0693

Major Component Gas Analysis By Gas Chromatography

Report Date: 17-Jul-03 Client Name: <u>61129-08</u>

GTI Sample Number: 031324-001

Sample Description: Gas Sample #1 6/26/2003 15:35

Date Analyzed: 15-Jul-03 Analyst: MAD

Component	Mol %	Det. Limit	Weight %
Helium		0.1%	
Hydrogen	7.0%	0.1%	0.50%
Carbon Dioxide	16.2%	0.03%	25.1%
Oxygen/Argon	1.37%	0.03%	1.56%
Nitrogen	56.5%	0.03%	55.7%
Carbon Monoxide	12.5%	0.03%	12.3%
Methane	4.52%	0.002%	2.55%
Ethane	0.160%	0.002%	0.169%
Ethene	1.30%	0.002%	1.28%
Ethyne	0.057%	0.002%	0.052%
Propane		0.002%	0.00270
Propene	0.033%	0.002%	0.048%
Propadiene		0.002%	010 10 70
Propyne	0.004%	0.002%	0.006%
i-Butane		0.002%	0.000,0
n-Butane		0.002%	
1-Butene		0.002%	
i-Butene		0.002%	
trans-2-Butene		0.002%	
cis-2-Butene		0.002%	
1,3-Butadiene	0.015%	0.002%	0.029%
i-Pentane		0.002%	0.02570
n-Pentane		0.002%	
neo-Pentane		0.002%	
1-Pentene		0.002%	
Hexane Plus	0.220%	0.002%	0.665%
Hydrogen Sulfide	0.00225%	0.00005%	0.00270%
Carbonyl Sulfide		0.00005%	0.002/070
Total	100.0%		100.0%

Calculated Real Gas Properties per ASTM D3588-98

Temp. (°F) =	60.0	60.0	
Press. (psia) =	14.696	14.73	
Compressibility Factor [z] (Dry) =	0.99918	0.99918	
Compressibility Factor [z] (Sat.) =	0.99895	0.99895	
Relative Density (Dry) =	0.9824	0.9824	
Gross HV (Dry) (Btu/ft^3) =	145.0	145.3	
Gross HV (Sat.) (Btu/ft^3) =	142.5	142.8	
Wobbe Index =	146.3	146.6	
Net HV (Dry) (Btu/ft^3) =	134.5	134.8	
Net HV (Sat.) (Btu/ft^3) =	132.2	132.5	

Notes: All blank values are below detection limit N.A. - Not Analyzed

TRACE SULFUR DETERMINATION BY ASTM D6228-98

Report Date: 17-Jul-03
Client Name: 61129-08

GTI Sample Number: 031324-001

Sample Description: Gas Sample #1 6/26/2003 15:35

Date Analyzed: 2-Jul-03
Analyst: MAD

Component Name	PPMV	Component Name	PPMV
Hydrogen Sulfide	22.5	Thiophene	1.38
Sulfur Dioxide		C1-Thiophenes	0.05
Carbonyl Sulfide		C2-Thiophenes	0.03
Carbon Disulfide		C3-Thiophenes	
Methyl Mercaptan		Benzothiophene	
Ethyl Mercaptan		C1-Benzothiophenes	
i-Propyl Mercaptan		C2-Benzothiophenes	
n-Propyl Mercaptan			
t-Butyl Mercaptan		Thiophane	
		Thiophenol	
Dimethyl Sulfide		1	
Methyl Ethyl Sulfide		Individual Unidentified	
Diethyl Sulfide		Sulfur Compounds	
Di-t-Butyl Sulfide		(all as monosulfides)	
		Compound #1	0.04
Dimethyl Disulfide		ompound "	0.04
Methyl Ethyl Disulfide			
Methyl i-Propyl Disulfide			
Diethyl Disulfide			
Methyl n-Propyl Disulfide			
Methyl t-Butyl Disulfide			
Ethyl i-Propyl Disulfide			
Ethyl n-Propyl Disulfide			
Ethyl t-Butyl Disulfide			
Di-i-Propyl Disulfide		Total Unidentified:	0.04
i-Propyl n-Propyl Disulfide		Total Identified:	23.9
Di-n-Propyl Disulfide		2 star (activities).	23.9
i-Propyl t-Butyl Disulfide		Total Sulfur Content	
n-Propyl t-Butyl Disulfide		As molar PPM	24.0
Di-t-Butyl Disulfide		As Grains/100 SCF @ STP	24.0
Dimethyl Trisulfide		As Grains/100 SCF @ 14.73	1.50
Diethyl Trisulfide		psia, 60°F	1.42
Di-t-Butyl Trisulfide		Pola, oo I	

Notes:

Component Detection Limit:

0.5 ppmv for H2S, COS, and SO2

0.05 ppmv for all other compounds per sulfur Underlined numbers are below standard detection limits, and are included for information only. All blank values are below detection limit.

STP= 14.696psia, 0°C

8210 Mosley Rd. Houston, TX 77075 713 943-9776 Telephone 713 943-3846 Facsimile

CORE LABORATORIES

KAREN CRIPPEN
GAS TECHNOLOGY INSTITUTE
1700 S MOUNT PROSPECT RD
DES PLAINES, IL 60018

Sample Number: 132956-001

Sample Date: 6/26/03 3:35:00 PM

Date Reported: 7/24/03 Date Received: 7/18/03

Sample # 1 (06-26-03)

Description:

Analytical Report

Test	Result	Units	Method	Date	Analyst
Nitrogen Compounds,Compre	hensive				
Ammonia	1	ppm v / v	GC-Chemiluminesci	7/24/03	JВ
Nitric Oxide	< 1	ppm v / v			
Nitrous Oxide	< 1	ppm v / v			
Hydrogen Cyanide	< 1	ppm v / v			
Methyl amine	< 1	ppm v / v			
Dimethyl amine	< 1	ppm v / v			
Acetonitrile	< 1	ppm v / v			
Acrylonitrile	< 1	ppm v / v			
Ethyl amine	< 1	ppm v / v			
Diethyl amine	< 1	ppm v / v			
Isopropyl Amine	< 1	ppm v / v			
Propionitrile	2	ppm v / v			
Tert-Butyl Amine	< 1	ppm v / v			
Isobutyl nitrile	< 1	ppm v / v			
Butyl nitrile	< 1	ppm v / v			
Pyridine	< 1	ppm v / v			
Pyrrole	< 1	ppm v / v			
Pentane nitrile	< 1	ppm v / v			
2-Methyl pyridine	< 1	ppm v / v			
2-Methyl pyrrole	< 1	ppm v / v			
3-Methyl pyrrole	< 1	ppm v / v			
3 & 4-Methyl pyridine	< 1	ppm v / v			
2,6-Dimethyl pyridine	< 1	ppm v / v			
2-Ethyl pyridine	< 1	ppm v / v			
2-Ethyl pyrrole	< 1	ppm v / v			
2,4-Dimethyl pyridine	< 1	ppm v / v			
2,4 Dimethyl pyrrole	< 1	ppm v / v			

The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations or profitableness of any oil, gas, coal, or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.

8210 Mosley Rd. Houston, TX 77075 713 943-9776 Telephone 713 943-3846 Facsimile

CORE LABORATORIES

KAREN CRIPPEN

GAS TECHNOLOGY INSTITUTE 1700 S MOUNT PROSPECT RD DES PLAINES, IL 60018 Sample Number:

132956-001

Sample Date:

6/26/03 3:35:00 PM

Date Reported:

7/24/03

Date Received:

7/18/03

Sample ID:

Sample # 1 (06-26-03)

Description:

Analytical Report

Test	Result	Units	Method	Date	Analyst
2,3-Dimethyl pyridine	< 1	ppm v / v			· · · <u></u>
4-Ethyl pyridine	< 1	ppm v / v			
3,5-Dimethyl pyridine	< 1	ppm v / v			
Aniline	< 1	ppm v / v			
Unidentified Nitrogen	< 1	ppm v / v			

Approved By:

The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations or profitableness of any oil, gas, coal, or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.

Major Component Gas Analysis By Gas Chromatography

Report Date: 17-Jul-03

Client Name: <u>61129-08</u> GTI Sample Number: 031324-002

Sample Description: Gas sample #2 6/26/2003 17:25 Date Analyzed: 15-Jul-03 Analyst: MAD

Component	Mol %	Det. Limit	Weight %
Helium		0.1%	
Hydrogen	8.1%	0.1%	0.58%
Carbon Dioxide	16.4%	0.03%	25.7%
Oxygen/Argon	1.42%	0.03%	1.63%
Nitrogen	56.2%	0.03%	55.8%
Carbon Monoxide	12.0%	0.03%	11.9%
Methane	4.57%	0.002%	2.60%
Ethane	0.11%	0.002%	0.12%
Ethene	0.92%	0.002%	0.92%
Ethyne	0.021%	0.002%	0.019%
Propane		0.002%	0.01270
Propene	0.007%	0.002%	0.010%
Propadiene		0.002%	0.010 /0
Propyne		0.002%	
i-Butane		0.002%	
n-Butane		0.002%	
1-Butene		0.002%	
i-Butene		0.002%	
trans-2-Butene		0.002%	
cis-2-Butene		0.002%	
1,3-Butadiene	0.005%	0.002%	0.010%
i-Pentane		0.002%	0.01070
n-Pentane		0.002%	
neo-Pentane		0.002%	
1-Pentene		0.002%	
Hexane Plus	0.216%	0.002%	0.661%
Hydrogen Sulfide	0.00176%	0.00005%	0.001 %
Carbonyl Sulfide		0.00005%	0.00213 /0
Total	100.0%		100.0%

Calculated Real Gas Properties per ASTM D3588-98

60.0	60.0	
14.696	14.73	
0.99920	0.99920	
0.99898	0.99898	
0.9735	0.9735	
138.7	139.0	
136.3	136.6	
140.5	140.9	
128.1	128.4	
125.9	126.2	
	14.696 0.99920 0.99898 0.9735 138.7 136.3 140.5 128.1	14.696 14.73 0.99920 0.99920 0.99898 0.99898 0.9735 0.9735 138.7 139.0 136.3 136.6 140.5 140.9 128.1 128.4

Notes: All blank values are below detection limit

N.A. - Not Analyzed

TRACE SULFUR DETERMINATION BY ASTM D6228-98

Report Date: 17-Jul-03 Client Name: 61129-08

GTI Sample Number: 031324-002

Sample Description: Gas sample #2 6/26/2003 17:25

Date Analyzed: 2-Jul-03
Analyst: MAD

Component Name	PPMV	Component Name	PPMV
Hydrogen Sulfide	17.6	Thiophene	0.90
Sulfur Dioxide		C1-Thiophenes	0.90
Carbonyl Sulfide		C2-Thiophenes	
Carbon Disulfide		C3-Thiophenes	
Methyl Mercaptan		Benzothiophene	
Ethyl Mercaptan		C1-Benzothiophenes	
i-Propyl Mercaptan		C2-Benzothiophenes	
n-Propyl Mercaptan		oz zenzoumophenes	
t-Butyl Mercaptan		Thiophane	
		Thiophenol	
Dimethyl Sulfide		imophonor	
Methyl Ethyl Sulfide		Individual Unidentified	
Diethyl Sulfide		Sulfur Compounds	
Di-t-Butyl Sulfide		(all as monosulfides)	
		Compound #1	0.03
Dimethyl Disulfide		Compound #1	<u>0.03</u>
Methyl Ethyl Disulfide			
Methyl i-Propyl Disulfide			
Diethyl Disulfide			
Methyl n-Propyl Disulfide			
Methyl t-Butyl Disulfide			
Ethyl i-Propyl Disulfide			
Ethyl n-Propyl Disulfide			
Ethyl t-Butyl Disulfide			
Di-i-Propyl Disulfide		Total Unidentified:	0.02
i-Propyl n-Propyl Disulfide		Total Identified:	0.03
Di-n-Propyl Disulfide			18.5
i-Propyl t-Butyl Disulfide		Total Sulfur Content	
n-Propyl t-Butyl Disulfide		As molar PPM	18.5
Di-t-Butyl Disulfide		As Grains/100 SCF @ STP	
Dimethyl Trisulfide		As Grains/100 SCF @ 14.73	1.16
Diethyl Trisulfide		psia, 60°F	1.10
Di-t-Butyl Trisulfide		L, 00 X	

Notes:

Component Detection Limit:

0.5 ppmv for H2S, COS, and SO2

0.05 ppmv for all other compounds per sulfur Underlined numbers are below standard detection limits, and are included for information only.All blank values are below detection limit.

STP= 14.696psia, 0°C

CORE LABORATORIES

KAREN CRIPPEN
GAS TECHNOLOGY INSTITUTE
1700 S MOUNT PROSPECT RD
DES PLAINES, IL 60018

Sample Number: 132956-002

Sample Date: 6/26/03 5:25:00 PM

Date Reported: 7/24/03 Date Received: 7/18/03

Sample ID: Sample # 2 (06-26-03)

Description:

Analytical Report

Test	Result	Units	Method	Date	Analyst
Nitrogen Compounds, Compreh	iensive				
Ammonia	1	ppm v / v	GC-Chemiluminesci	7/24/03	JВ
Nitric Oxide	< 1	ppm v / v			
Nitrous Oxide	< 1	ppm v / v			
Hydrogen Cyanide	< 1	ppm v / v			
Methyl amine	< 1	ppm v / v			
Dimethyl amine	< 1	ppm v / v			
Acetonitrile	< 1	ppm v / v			
Acrylonitrile	< 1	ppm v / v			
Ethyl amine	< 1	ppm v / v			
Diethyl amine	< 1	ppm v / v			
Isopropyl Amine	< 1	ppm v / v			
Propionitrile	< 1	ppm v / v			
Tert-Butyl Amine	< 1	ppm v / v			
Isobutyl nitrile	< 1	ppm v / v			
Butyl nitrile	< 1	ppm v / v			
Pyridine	< 1	ppm v / v			
Pyrrole	< 1	ppm v / v			
Pentane nitrile	< 1	ppm v / v			
2-Methyl pyridine	< 1	ppm v / v			
2-Methyl pyrrole	< 1	ppm v / v			
3-Methyl pyrrole	< 1	ppm v / v			
3 & 4-Methyl pyridine	< 1	ppm v / v			
2,6-Dimethyl pyridine	< 1	ppm v / v			
2-Ethyl pyridine	< 1	ppm v / v			
2-Ethyl pyrrole	< 1	ppm v / v			
2,4-Dimethyl pyridine	< 1	ppm v / v			
2,4 Dimethyl pyrrole	< 1	ppm v / v			

The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations or profitableness of any oil, gas, coal, or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.

8210 Mosley Rd. Houston, TX 77075 713 943-9776 Telephone 713 943-3846 Facsimile

CORE LABORATORIES

KAREN CRIPPEN GAS TECHNOLOGY INSTITUTE 1700 S MOUNT PROSPECT RD DES PLAINES, IL 60018 Sample Number: 13295

132956-002

Sample Date:

6/26/03 5:25:00 PM

Date Reported:

7/24/03

Date Received:

7/18/03

Sample ID:

Sample # 2 (06-26-03)

Description:

Analytical Report

Test	Result	Units	Method	Date	Analyst
2,3-Dimethyl pyridine	< 1	ppm v / v			
4-Ethyl pyridine	< 1	ppm v / v			
3,5-Dimethyl pyridine	< 1	ppm v / v			
Aniline	< 1	ppm v / v			
Unidentified Nitrogen	< 1	ppm v / v		,	

Approved By:

The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations or profitableness of any oil, gas, coal, or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.

Hydrocarbon Analysis in Xylene Wash

GTI Sample Number: 031324-003

Sample Description: Xylene Wash 6/26/2003

Tentative Component ID	Estimated mg recovered	Tentative Component ID	Estimated mg recovered
Hydroxymethylpentanone	6.73	Indazole	<3.52
i-Propylbenzene	4,860	Methoxypropenylphenol/Dimethylnaphthalenes	66.2
Phenol/n-Propylbenzene	2,430	Ethenylnaphthalene	131
Benzeneamine	<3.52	Acenaphthylene	757
Benzonitrile/1-Ethyl-3-methylbenzene	3,930	Methyl-1,1'-biphenyl	36.5
1-Ethyl-4-methylbenzene	127	Naphthalenecarbonitriles	45.1
l-Ethyl-2-methylbenzene	260	Acenaphthene	53.9
Trimethylbenzenes	605	Dibenzofuran	99.6
Methyl phenols/Indene	319	Phenalene	59.8
Methylbenzonitriles	3.94	Fluorene	267
Tetramethylpiperidinone	<3.52	Methyldibenzofuran	25.0
Methylbenzofuran	13.6	Methylfluorenes	81.0
Dimethylphenols	6.16	Fluorenone	62.1
Methylindenes	44.3	Phenanthrene	625
Methylbenzaldehydes	22.8	Anthracene	174
Naphthalene	1,900	Carbazole	15.9
Quinoline	22.0	Benzoquinoline	21.3
soquinoline	15.0	Phenylnaphthalenes	96.2
ndole	20.1	Benzo[c]cinnoline	19.4
-Methylnaphthalene	274	Methylphenanthrene or Methylanthracene	30.8
-Methylnaphthalene	181	Methylphenanthrene or Methylanthracene	34.0
Methylquinolines	4.89	4H-Cyclopenta[d,e,f]phenanthrene	107
Methylindoles	<3.52	Fluoranthene	133
,1'-Biphenyl	184	Pyrene	136
thylnaphthalenes	18.3	Methylpyrenes	65.6
hydroacenaphthylene	20.9	Additional Unidentified Components	2,045
		Total:	20,456

Total Filtered Solids (Dry Weight): 1.0 g (0.066% wt.)

Notes: Detection Limit = 3.52 mg

All components were tentatively identified by comparing the mass spectra of each component to a mass spectral reference library.

Toluene and Ethylbenzene were found in large quantities but not calculated, based on the assumption that the source of these components were from the Xylene solvent

Due to the lack of a solvent blank to identify additional solvent impurites, all additional components found have been reported.

Estimated concentrations of all components were calculated as naphthalene by GC-FID.

Results are based on a total volume of 1760 mLs.

Chemical Research Services

Analytical Report

Batch #: 031326.doc Date: July 22, 2003

Prepared for:

Andrew Kramer

X5612

Gas Technology Institute 1700 S. Mt Prospect Rd. Des Plaines, IL 60018

Project # 61129-08

Received Date: 7/2/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

In April 2000, the Institute of Gas Technology (IGT) and the Gas Research Institute (GRI) combined to form the Gas Technology Institute (GTI).

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical Contact:

Alan G. Janos, (847)/768-0603

Analytical Report

Batch #: 031326.doc Date: July 22, 2003

Liquid Sample #1, 6/26/03 (031326-001)

Phase separation:

Organic phase (oil) recovered: 3.5 g 0.60 wt%
Aqueous phase recovered: 568.9 g 98.51 wt%
Solid phase recovered: 0.3 g 0.05 wt%
Loss (by difference): 4.8 g 0.83 wt%

Total sample received: 577.5 g

Analyst: AGJ

Oil phase analyses (031326-003): (GC work only per A.K.)

Water phase analyses (031326-002):

Total Carbon: 0.38 wt%

Kjeldahl Nitrogen: 0.49 wt% Ammonia: 0.28 wt%

Analyst: NJP, JS, AGJ

Total:

1665

Hydrocarbon Analysis in Oil Phase

GTI Sample Number: 031326-003

Sample Description: Liquid #1 6/26/03 Oil Phase

Tentative Component ID	Estimated mg recovered	Tentative Component ID	Estimated mg recovered
Hydroxymethylpentanone	<0.317	Methoxypropenylphenol/Dimethylnaphthalenes	19.5
Ethylbenzene	<0.317	Ethenylnaphthalene	42.4
m,p-Xylene	<0.317	Acenaphthylene	235
o-Xylene	<0.317	Methyl-1,1'-biphenyl	11.5
Phenol	8.72	Naphthalenecarbonitriles	14.2
Benzeneamine	<0.317	Acenaphthene	16.5
Benzonitrile	<0.317	Dibenzofuran	32.9
Methylphenols/Indene	10.2	Phenalene	17.5
Methylbenzonitriles	0.564	Fluorene	97.8
Tetramethylpiperidinone	<0.317	Methyldibenzofuran	6.51
Methylbenzofuran	0.577	Methylfluorenes	18.8
Dimethylphenols	1.62	Fluorenone	8.88
Methylindenes	2.52	Phenanthrene	261
Methylbenzaldehydes	5.95	Anthracene	75.2
Naphthalene	234	Carbazole	3.12
Quinoline	6.01	Benzoquinoline	3.96
Isoquinoline	4.61	Phenylnaphthalenes	20.1
Indole	5.19	Benzo[c]cinnoline	3.40
2-Methylnaphthalene	72.2	Methylphenanthrene or Methylanthracene	6.52
1-Methylnaphthalene	49.4	Methylphenanthrene or Methylanthracene	6.87
Methylquinolines	3.18	4H-Cyclopenta[d,e,f]phenanthrene	21.9
Methylindoles	0.729	Fluoranthene	24.2
1,1'-Biphenyl	58.0	Pyrene	25.6
Ethylnaphthalenes	5.94	Methylpyrenes	11.4
Dihydroacenaphthylene	6.67		
Indazole	<0.317	Additional Unidentified Components	204

Notes: Detection Limit = 0.317 mg

All components were tentatively identified by comparing the mass spectra of each component to a mass spectral reference library.

Estimated concentrations of all components were calculated as naphthalene by GC-FID.

Analytical Report

Batch #: 031326.doc Date: July 22, 2003

Liquid Sample #2, 6/26/03 (031326-005)

Phase separation:

Organic phase (oil) recovered: 2.7 g 0.29 wt%
Aqueous phase recovered: 924.0 g 98.70 wt%
Solid phase recovered: 0.2 g 0.02 wt%
Loss (by difference): 9.3 g 0.99 wt%

Total sample received: 936.2 g

Analyst: AGJ

Oil phase analyses (031326-007): (GC work only per A.K.)

Water phase analyses (031326-006):

Total Carbon: 0.28 wt%

Kjeldahl Nitrogen: 0.30 wt% Ammonia: 0.21 wt%

Analyst: NJP, JS, AGJ

Total:

1321

Hydrocarbon Analysis in Oil Phase

GTI Sample Number: 031326-007

Sample Description: Liquid #2 6/26/03 Oil Phase

Tentative Component ID	Estimated mg recovered	Tentative Component ID	Estimated mg recovered
Hydroxymethylpentanone	<0.238	Methoxypropenylphenol/Dimethylnaphthalenes	13.9
Ethylbenzene	<0.238	Ethenylnaphthalene	29.4
m.p-Xylene	<0.238	Acenaphthylene	170
o-Xylene	<0.238	Methyl-1,1'-biphenyl	8.06
Phenol	7.53	Naphthalenecarbonitriles	11.0
Benzeneamine	<0.238	Acenaphthene	11.5
Benzonitrile	0.501	Dibenzofuran	22.4
Methylphenois/Indene	16.3	Phenalene	11.7
Methylbenzonitriles	0.518	Fluorene	66.0
Tetramethylpiperidinone	<0.238	Methyldibenzofuran	4.14
Methylbenzofuran	0.997	Methylfluorenes	13.2
Dimethylphenols	1.02	Fluorenone	9.45
Methylindenes	2.94	Phenanthrene	187
Methylbenzaldehydes	4.05	Anthracene	50.4
Naphthalene	295	Carbazole	2.06
Quinoline	4.27	Benzoquinoline	2.55
Isoquinoline	3.13	Phenylnaphthalenes	12.6
Indole	4.00	Benzo[c]cinnoline	2.20
2-Methylnaphthalene	56.1	Methylphenanthrene or Methylanthracene	4.29
1-Methylnaphthalene	37.5	Methylphenanthrene or Methylanthracene	4.50
Methylquinolines	2.07	4H-Cyclopenta[d,e,f]phenanthrene	14.5
Methylindoles	0.565	Fluoranthene	16.6
1,1'-Biphenyl	41.6	Ругепе	17.3
Ethylnaphthalenes	4.59	Methylpyrenes	9.57
Dihydroacenaphthylene	4.51		
Indazole	<0.238	Additional Unidentified Components	139

Notes: Detection Limit = 0.238 mg

All components were tentatively identified by comparing the mass spectra of each component to a mass spectral reference library.

Estimated concentrations of all components were calculated as naphthalene by GC-FID.

qt

T: 847 768 0500 **F**: 847 768 0501 www.gastechnology.org

Sample Login No: 031326-008 Date: July 15, 2003

Sample Description: Carbon ash fines, 6/26/03

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)
Moisture, %	5.92	5.92	
Volatile Matter, %	15.02	15.02	15.96
Ash, %	25.64	25.57	
Fixed Carbon, % (by difference)	53.43	53.49	

Ultimate Analysis	(Dry basis)
Ash, %	27.18
Carbon, %	65.09
Hydrogen, %	0.52
Nitrogen, %	0.23
Sulfur, %	0.02
Oxygen, %	6.96
(by difference)	

Analyst: NJP

Analytical Report

Batch #: 031327 August 06, 2003

Prepared for:

Andrew Kramer, Process Engineering Phone: (847) 768-0612

Project #: 61129-08

Received Date: 7/2/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical contact for this report:

Russell Bora

(847) 768-0693

Major Component Gas Analysis By Gas Chromatography

Report Date: 17-Jul-03

Client Name: 61129-08

GTI Sample Number: 031327-001

Sample Description: Gas sample #1 6/30/2003 16:00
Date Analyzed: 15-Jul-03
Analyst: MAD

Component	Mol %	Det. Limit	Weight %
Helium		0.1%	
Hydrogen	11.4%	0.1%	0.83%
Carbon Dioxide	18.9%	0.03%	30.0%
Oxygen/Argon	1.23%	0.03%	1.43%
Nitrogen	51.2%	0.03%	51.8%
Carbon Monoxide	10.8%	0.03%	10.9%
Methane	4.64%	0.002%	2.69%
Ethane	0.24%	0.002%	0.26%
Ethene	1.14%	0.002%	1.16%
Ethyne	0.010%	0.002%	0.009%
Propane	0.010%	0.002%	0.016%
Propene	0.123%	0.002%	0.187%
Propadiene		0.002%	
Propyne	0.006%	0.002%	0.008%
i-Butane		0.002%	
n-Butane		0.002%	
1-Butene	0.003%	0.002%	0.006%
i-Butene	0.006%	0.002%	0.012%
trans-2-Butene	0.005%	0.002%	0.010%
cis-2-Butene	0.003%	0.002%	0.007%
1,3-Butadiene	0.030%	0.002%	0.058%
i-Pentane		0.002%	
n-Pentane		0.002%	
neo-Pentane		0.002%	
Pentenes	0.003%	0.002%	0.009%
Hexane Plus	0.199%	0.002%	0.617%
Hydrogen Sulfide	0.00232%	0.00005%	0.00285%
Carbonyl Sulfide		0.00005%	
Total	100.0%		100.0%

Calculated Real Gas Properties per ASTM D3588-98

Temp. (°F) =	60.0	60.0	
Press. (psia) =	14.696	14.73	
Compressibility Factor [z] (Dry) =	0.99913	0.99913	
Compressibility Factor [z] (Sat.) =	0.99890	0.99890	
Relative Density (Dry) =	0.9580	0.9580	
Gross HV (Dry) (Btu/ft^3) =	155.4	155.8	
Gross HV (Sat.) (Btu/ft^3) =	152.8	153.1	
Wobbe Index =	158.8	159.2	
Net HV (Dry) (Btu/ft^3) =	142.5	142.8	
Net HV (Sat.) (Btu/ ft^3) =	140.1	140.4	

Notes: All blank values are below detection limit N.A. - Not Analyzed

TRACE SULFUR DETERMINATION BY ASTM D6228-98

Report Date: 17-Jul-03 Client Name: 61129-08 GTI Sample Number: 031327-001

Sample Description: Gas sample #1 6/30/2003 16:00

Date Analyzed: 2-Jul-03 Analyst: MAD

Component Name	PPMV	Component Name	PPMV
Hydrogen Sulfide	23.2	Thiophene	1.17
Sulfur Dioxide		C1-Thiophenes	0.13
Carbonyl Sulfide		C2-Thiophenes	
Carbon Disulfide		C3-Thiophenes	
Methyl Mercaptan		Benzothiophene	
Ethyl Mercaptan		C1-Benzothiophenes	
i-Propyl Mercaptan		C2-Benzothiophenes	
n-Propyl Mercaptan		-	
t-Butyl Mercaptan		Thiophane	
		Thiophenol	
Dimethyl Sulfide			
Methyl Ethyl Sulfide		Individual Unidentified	
Diethyl Sulfide		Sulfur Compounds	
Di-t-Butyl Sulfide		(all as monosulfides)	
Dimethyl Disulfide			
Methyl Ethyl Disulfide			
Methyl i-Propyl Disulfide			
Diethyl Disulfide			
Methyl n-Propyl Disulfide			
Methyl t-Butyl Disulfide			
Ethyl i-Propyl Disulfide			
Ethyl n-Propyl Disulfide			
Ethyl t-Butyl Disulfide			
Di-i-Propyl Disulfide		Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide		Total Identified:	24.5
Di-n-Propyl Disulfide			
i-Propyl t-Butyl Disulfide		Total Sulfur Content	
n-Propyl t-Butyl Disulfide		As molar PPM	24.5
Di-t-Butyl Disulfide		As Grains/100 SCF @ STP	1.53
Dimethyl Trisulfide		As Grains/100 SCF @ 14.73	1.45
Diethyl Trisulfide		psia, 60°F	
Di-t-Butyl Trisulfide			

Notes:

Component Detection Limit:

0.5 ppmv for H2S, COS, and SO2

 $0.05\ \mathrm{ppmv}$ for all other compounds per sulfur All blank values are below detection limit.

STP= 14.696psia, 0°C

8210 Mosley Rd. Houston. TX 77075 713 943-9776 Telephone 713 943-3846 Facsimile

CORE LABORATORIES

KAREN CRIPPEN
GAS TECHNOLOGY INSTITUTE
1700 S MOUNT PROSPECT RD
DES PLAINES, IL 60018

Sample Number: 132956-003

Sample Date: 6/30/03 4:00:00 PM

Date Reported: 7/24/03 Date Received: 7/18/03

Sample ID: Sample # 1 (06-30-03)

Description:

Analytical Report

Test	Result	Units	Method	Date	Analyst
Nitrogen Compounds, Comprehensi	ve				
Ammonia	I	ppm v / v	GC-Chemiluminesci	7/24/03	ЈВ
Nitric Oxide	< 1	ppm v / v			
Nitrous Oxide	< 1	ppm v / v			
Hydrogen Cyanide	< 1	ppm v / v			
Methyl amine	< 1	ppm v / v			
Dimethyl amine	< 1	ppm v / v			
Acetonitrile	1	ppm v / v			
Acrylonitrile	< 1	ppm v / v			
Ethyl amine	< 1	ppm v / v			
Diethyl amine	< 1	ppm v / v			
Isopropyl Amine	< 1	ppm v / v			
Propionitrile	2	ppm v / v			
Tert-Butyl Amine	< 1	ppm v / v			
Isobutyl nitrile	<]	ppm v / v			
Butyl nitrile	< 1	ppm v / v			
Pyridine	< 1	ppm v / v			
Pyrrole	<	ppm v / v			
Pentane nitrile	< 1	ppm v / v			
2-Methyl pyridine	< 1	ppm v / v			
2-Methyl pyrrole	< 1	ppm v / v			
3-Methyl pyrrole	< I	ppm v / v			
3 & 4-Methyl pyridine	< 1	ppm v / v			
2,6-Dimethyl pyridine	< 1	ppm v / v			
2-Ethyl pyridine	< 1	ppm v / v			
2-Ethyl pyrrole	< 1	ppm v / v			
2,4-Dimethyl pyridine	< 1	ppm v / v			
2,4 Dimethyl pyrrole	< 1	ppm v / v			

The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratories, Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations or profitableness of any oil, gas, coal, or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.

8210 Mosley Rd. Houston, TX 77075 713 943-9776 Telephone 713 943-3846 Facsimile

CORE LABORATORIES

KAREN CRIPPEN

GAS TECHNOLOGY INSTITUTE 1700 S MOUNT PROSPECT RD DES PLAINES, IL 60018 Sample Number:

132956-003

Sample Date:

6/30/03 4:00:00 PM

Date Reported:

7/24/03

Date Received:

7/18/03

Sample ID:

Sample # 1 (06-30-03)

ervising Chemist

Description:

Analytical Report

Test	Result	Units	Method	Date	Analyst
2,3-Dimethyl pyridine	< 1	ppm v / v			
4-Ethyl pyridine	< 1	ppm v / v			
3,5-Dimethyl pyridine	< 1	ppm v / v			
Aniline	< 1	ppm v / v			
Unidentified Nitrogen	< 1	ppm v / v			

Approved By:

The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations or profitableness of any oil, gas, coal, or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.

Major Component Gas Analysis By Gas Chromatography

Report Date: 17-Jul-03 Client Name: <u>61129-08</u>

GTI Sample Number: 031327-002

Sample Description: Gas sample #2 6/30/2003 16:45

Date Analyzed: 15-Jul-03

Analyst: MAD

Component	Mol %	Det. Limit	Weight %
Helium		0.1%	
Hydrogen	10.9%	0.1%	0.79%
Carbon Dioxide	18.8%	0.03%	29.7%
Oxygen/Argon	1.13%	0.03%	1.31%
Nitrogen	52.6%	0.03%	52.8%
Carbon Monoxide	10.4%	0.03%	10.4%
Methane	4.44%	0.002%	2.55%
Ethane	0.22%	0.002%	0.24%
Ethene	1.10%	0.002%	1.11%
Ethyne	0.018%	0.002%	0.017%
Propane	0.009%	0.002%	0.014%
Propene	0.116%	0.002%	0.176%
Propadiene	0.002%	0.002%	0.003%
Propyne	0.007%	0.002%	0.011%
i-Butane		0.002%	
n-Butane		0.002%	
1-Butene	0.002%	0.002%	0.004%
i-Butene	0.006%	0.002%	0.011%
trans-2-Butene	0.004%	0.002%	0.007%
cis-2-Butene	0.003%	0.002%	0.005%
1,3-Butadiene	0.033%	0.002%	0.064%
i-Pentane		0.002%	
n-Pentane		0.002%	
neo-Pentane		0.002%	
Pentenes	0.004%	0.002%	0.010%
Hexane Plus	0.204%	0.002%	0.630%
Hydrogen Sulfide	0.00242%	0.00005%	0.00296%
Carbonyl Sulfide		0.00005%	
Total	100.0%		100.0%

Calculated Real Gas Properties per ASTM D3588-98

Temp. (°F) =	60.0	60.0	
Press. (psia) =	14.696	14.73	
Compressibility Factor [z] (Dry) =	0.99913	0.99913	
Compressibility Factor [z] (Sat.) =	0.99891	0.99890	
Relative Density (Dry) =	0.9626	0.9626	
Gross HV (Dry) (Btu/ft^3) =	149.8	150.2	
Gross HV (Sat.) (Btu/ft 3) =	147.3	147.6	
Wobbe Index =	152.7	153.1	
Net HV (Dry) (Btu/ft^3) =	137.4	137.7	
Net HV (Sat.) (Btu/ft^3) =	135.0	135.4	

Notes: All blank values are below detection limit N.A. - Not Analyzed

TRACE SULFUR DETERMINATION BY ASTM D6228-98

Report Date: 17-Jul-03 Client Name: 61129-08 GTI Sample Number: 031327-002

Sample Description: Gas sample #2 6/30/2003 16:45

Date Analyzed: 2-Jul-03 Analyst: MAD

Component Name	PPMV	Component Name	PPMV
Hydrogen Sulfide	24.2	Thiophene	1.03
Sulfur Dioxide		C1-Thiophenes	0.10
Carbonyl Sulfide		C2-Thiophenes	
Carbon Disulfide		C3-Thiophenes	
Methyl Mercaptan	0.05	Benzothiophene	
Ethyl Mercaptan		C1-Benzothiophenes	
i-Propyl Mercaptan		C2-Benzothiophenes	
n-Propyl Mercaptan			
t-Butyl Mercaptan		Thiophane	
		Thiophenol	
Dimethyl Sulfide			
Methyl Ethyl Sulfide		Individual Unidentified	
Diethyl Sulfide		Sulfur Compounds	
Di-t-Butyl Sulfide		(all as monosulfides)	
Dimethyl Disulfide			
Methyl Ethyl Disulfide			
Methyl i-Propyl Disulfide			
Diethyl Disulfide			
Methyl n-Propyl Disulfide			
Methyl t-Butyl Disulfide			
Ethyl i-Propyl Disulfide			
Ethyl n-Propyl Disulfide			
Ethyl t-Butyl Disulfide			
Di-i-Propyl Disulfide		Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide		Total Identified:	25.4
Di-n-Propyl Disulfide			
i-Propyl t-Butyl Disulfide		Total Sulfur Content	
n-Propyl t-Butyl Disulfide		As molar PPM	25.4
Di-t-Butyl Disulfide		As Grains/100 SCF @ STP	1.59
Dimethyl Trisulfide		As Grains/100 SCF @ 14.73	1.50
Diethyl Trisulfide		psia, 60°F	
Di-t-Butyl Trisulfide			

Notes:

Component Detection Limit:

0.5 ppmv for H2S, COS, and SO2

 $0.05~\mbox{ppmv}$ for all other compounds per sulfur All blank values are below detection limit.

STP= 14.696psia, 0°C

8210 Mosley Rd. Houston, TX 77075 713 943-9776 Telephone 713 943-3846 Facsimile

CORE LABORATORIES

KAREN CRIPPEN GAS TECHNOLOGY INSTITUTE 1700 S MOUNT PROSPECT RD DES PLAINES, IL 60018 Sample Number: 132956-004

Sample Date: 6/30/03 4:45:00 PM

Date Reported: 7/24/03 Date Received: 7/18/03

Sample ID: Sample # 2 (06-30-03)

Description:

Analytical Report

Test	Result	Units	Method	Date	Analyst
Nitrogen Compounds, Compreh	iensive				
Ammonia	1	ppm v / v	GC-Chemiluminesci	7/24/03	JВ
Nitric Oxide	< 1	ppm v / v			
Nitrous Oxide	< 1	ppm v / v			
Hydrogen Cyanide	< 1	ppm v / v			
Methyl amine	< 1	ppm v / v			
Dimethyl amine	< 1	ppm v / v			
Acetonitrile	< 1	ppm v / v			
Acrylonitrile	< 1	ppm v / v			
Ethyl amine	< 1	ppm v / v			
Diethyl amine	< 1	ppm v / v			
Isopropyl Amine	< 1	ppm v / v			
Propionitrile	2	ppm v / v			
Tert-Butyl Amine	< 1	ppm v / v			
Isobutyl nitrile	< 1	ppm v / v			
Butyl nitrile	< 1	ppm v / v			
Pyridine	< 1	ppm v / v			
Pyrrole	< 1	ppm v / v			
Pentane nitrile	< 1	ppm v / v			
2-Methyl pyridine	< 1	ppm v / v			
2-Methyl pyrrole	< 1	ppm v / v			
3-Methyl pyrrole	< 1	ppm v / v			
3 & 4-Methyl pyridine	< 1	ppm v / v			
2,6-Dimethyl pyridine	< 1	ppm v / v			
2-Ethyl pyridine	< 1	ppm v / v			
2-Ethyl pyrrole	< 1	ppm v / v			
2,4-Dimethyl pyridine	< 1	ppm v / v			
2.4 Dimethyl pyrrole	< 1	ppm v / v			

The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied of any type, and expressly disclaims same as to the productivity, proper operations or profitableness of any oil, gas, coal, or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories

8210 Mosley Rd. Houston, TX 77075 713 943-9776 Telephone 713 943-3846 Facsimile

CORE LABORATORIES

ervising Chemist

KAREN CRIPPEN GAS TECHNOLOGY INSTITUTE 1700 S MOUNT PROSPECT RD DES PLAINES, IL 60018 Sample Number: 132956-004

Sample Date: 6/30/03 4:45:00 PM

Date Reported: 7/24/03 Date Received: 7/18/03

Sample # 2 (06-30-03)

Description:

Analytical Report

Test	Result	Units	Method	Date	Analyst
2,3-Dimethyl pyridine	< 1	ppm v / v			
4-Ethyl pyridine	< 1	ppm v / v			
3,5-Dimethyl pyridine	< 1	ppm v / v			
Aniline	< 1	ppm v / v			
Unidentified Nitrogen	< 1	ppm v / v		4	

Approved By:

The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations or profitableness of any oil, gas. coal, or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.

Hydrocarbon Analysis in Xylene Wash

GTI Sample Number: 031327-003

Sample Description: Xylene Wash 6/30/2003

Tentative Component ID	Estimated mg recovered	Tentative Component ID	Estimated mg recovered
Hydroxymethylpentanone	7.07	Indazole	<1.84
i-Propylbenzene	5,380	Methoxypropenylphenol/Dimethylnaphthalenes	41.5
Phenol/n-Propylbenzene	2,740	Ethenylnaphthalene	57.7
Benzeneamine	<1.84	Acenaphthylene	356
Benzonitrile/1-Ethyl-3-methylbenzene	4,290	Methyl-1,1'-biphenyl	19.4
1-Ethyl-4-methylbenzene	206	Naphthalenecarbonitriles	16.6
1-Ethyl-2-methylbenzene	284	Acenaphthene	44.4
Trimethylbenzenes	632	Dibenzofuran	55.5
Methyl phenols/Indene	202	Phenalene	30.5
Methylbenzonitriles	<1.84	Fluorene	140
Tetramethylpiperidinone	<1.84	Methyldibenzofuran	11.7
Methylbenzofuran	12.6	Methylfluorenes	34.1
Dimethylphenols	15.7	Fluorenone	20.7
Methylindenes	35.1	Phenanthrene	368
Methylbenzaldehydes	23.0	Anthracene	85.9
Naphthalene	739	Carbazole	6.33
Quinoline	8.54	Benzoquinoline	7.99
Isoquinoline	7.25	Phenylnaphthalenes	48.0
Indole	11.2	Benzo[c]cinnoline	8.85
2-Methylnaphthalene	175	Methylphenanthrene or Methylanthracene	15.7
1-Methylnaphthalene	120	Methylphenanthrene or Methylanthracene	16.4
Methylquinolines	<1.84	4H-Cyclopenta[d,e,f]phenanthrene	52.8
Methylindoles	<1.84	Fluoranthene	97.6
1,1'-Biphenyl	101	Pyrene	111
Ethylnaphthalenes	20.3	Methylpyrenes	48.0
Dihydroacenaphthylene	9.02	Additional Unidentified Components	1,566
		Tota	l: 18,279

Total Filtered Solids (Dry Weight): 0.2 g (0.013% wt.)

Notes: Detection Limit = 1.84 mg

All components were tentatively identified by comparing the mass spectra of each component to a mass spectral reference library.

Toluene and Ethylbenzene were found in large quantities but not calculated, based on the assumption that the source of these components were from the Xylene solvent.

Due to the lack of a solvent blank to identify additional solvent impurites, all additional components found have been reported.

Estimated concentrations of all components were calculated as naphthalene by GC-FID.

Results are based on a total volume of 1840 mLs

Chemical Research Services

Analytical Report

Batch #: 031328.doc Date: July 18, 2003

Prepared for:

Andrew Kramer

X5612

Gas Technology Institute 1700 S. Mt Prospect Rd. Des Plaines, IL 60018

Project # 61129-08

Received Date: 7/2/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

In April 2000, the Institute of Gas Technology (IGT) and the Gas Research Institute (GRI) combined to form the Gas Technology Institute (GTI).

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical Contact:

Alan G. Janos, (847) 768-0603

Chemical Research Services

Analytical Report

Batch #: 031328.doc Date: July 18, 2003

Liquid Sample #1, 6/30/03 (031328-001)

Phase separation:

Organic phase (oil) recovered: 7.6 g 1.26 wt%
Aqueous phase recovered: 581.6 g 96.78 wt%
Solid phase recovered: 0.5 g 0.08 wt%
Loss (by difference): 11.3 g 1.88 wt%

Total sample received: 601.0 g

Analyst: AGJ

Oil phase analyses (031328-003): (GC work only per A.K.)

Water phase analyses (031328-002):

Total Carbon: 0.61 wt%

Kjeldahl Nitrogen: 0.23 wt%

Ammonia: 0.25 wt%

Analyst: NJP, JS, AGJ

Hydrocarbon Analysis in Oil Phase

GTI Sample Number: 031328-003

Sample Description: Liquid 6/30/03 Oil Phase

Tentative Component ID	Estimated mg recovered	Tentative Component ID	Estimated mg recovered
Hydroxymethylpentanone	< 0.670	Methoxypropenylphenol/Dimethylnaphthalenes	74.4
Ethylbenzene	<0.670	Ethenylnaphthalene	101
m,p-Xylene	< 0.670	Acenaphthylene	571
o-Xylene	<0.670	Methyl-1,1'-biphenyl	36.2
Phenol	18.9	Naphthalenecarbonitriles	26.2
Benzeneamine	<0.670	Acenaphthene	77.6
Benzonitrile	<0.670	Dibenzofuran	96.8
Methylphenols/Indene	46.1	Phenalene	45.5
Methylbenzonitriles	1.29	Fluorene	242
Tetramethylpiperidinone	<0.670	Methyldibenzofuran	18.8
Methylbenzofuran	2.63	Methylfluorenes	43.3
Dimethylphenols	14.6	Fluorenone	28.3
Methylindenes	14.5	Phenanthrene	713
Methylbenzaldehydes	19.9	Anthracene	154
Naphthalene	403	Carbazole	5.58
Quinoline	12.9	Benzoquinoline	6.65
Isoquinoline	11.4	Phenylnaphthalenes	43.4
Indole	13.4	Benzo[c]cinnoline	5.81
2-Methylnaphthalene	221	Methylphenanthrene or Methylanthracene	14.6
1-Methylnaphthalene	161	Methylphenanthrene or Methylanthracene	14.7
Methylquinolines	5.61	4H-Cyclopenta[d,e,f]phenanthrene	46.9
Methylindoles	1.64	Fluoranthene	66.5
1,1'-Biphenyl	183	Pyrene	70.4
Ethylnaphthalenes	35.7	Methylpyrenes	24.3
Dihydroacenaphthylene	14.4		
Indazole	< 0.670	Additional Unidentified Components	477
		Tota	l: 4185

Notes: Detection Limit = 0.670 mg

All components were tentatively identified by comparing the mass spectra of each component to a mass spectral reference library.

Estimated concentrations of all components were calculated as naphthalene by GC-FID.

(Dry basis)

Sample Login No: 031328-004

Proximate Analysis

Sample Description: Carbon ash fines, 6/30/03

San	npie	e Lo	gın	INC): U	313	528 - (JU4		Date	July 15, 2003
	_	_				_		_	~		

(As received) w/SO3 correction

	Moisture, %	4.64	4.64	
	Volatile Matter, %	26.47	26.47	27.75
	Ash, %	37.46	37.32	
	Fixed Carbon, % (by difference)	31.44	31.58	
Ultimate	Analysis	(Dry basis)		
	Ash, %	39.13		
	Carbon, %	49.67		
	Hydrogen, %	0.61		
	Nitrogen, %	0.24		
	Sulfur, %	0.12		
	Oxygen, %	10.24		
	(by difference)			

(As received)

Analyst: NJP

 1700 South Mount Prospect Road
 Des Plaines, Illinois
 60018

 T: 847 768 0500
 F: 847 768 0501
 www.gastechnology.org

Analytical Report

Batch #: 031303 July 15, 2003

Prepared for:

Andrew Kramer, Process Engineering Phone: (847) 768-0612

Project #: 61129-08

Received Date: 6/26/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical contact for this report:

Alan G. Janos

(847) 768-0603

GAS TECHNOLOGY INSTITUTE

1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 | F: 847 768 0501 | www.gastechnology.org

Sample Login No: 031303-001

Sample Description: 6/12/03 Carbon Ash Fines

Date:	July	15.	2003
	,	,	

Proximate Analysis	e Analysis (As received) (As received) w/SO3 co			
Moisture, %	6.98	6.98		
Volatile Matter, %	16.08	16.08	17.29	
Ash, %	41.58	41.46		
Fixed Carbon, % (by difference)	35.36	35.48		

Ultimate Analysis	(Dry basis)
Ash, %	44.57
Carbon, %	47.46
Hydrogen, %	0.51
Nitrogen, %	1.05
Sulfur, %	0.05
Oxygen, %	6.36
(by difference)	

Analyst: NJP

Analytical Report

Batch #: 031305 July 15, 2003

Prepared for:

Andrew Kramer, Process Engineering Phone: (847) 768-0612

Project #: 61129-08

Received Date: 6/26/2003

Disclaimer:

Neither GTI nor any person acting on behalf of GTI assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

Submitted by: Karen Crippen, (847) 768-0604

Chemical Research Services

Technical contact for this report:

Alan G. Janos

(847) 768-0603

G A S T E C H N O L O G Y I N S T I T U T E 1700 South Mount Prospect Road | Des Plaines, Illinois | 60018

T: 847 768 0500 F: 847 768 0501 www.gastechnology.org

gtis

Sample Login No: 031305-001

Sample Description: Test #14, Solids, 6/18/03

Date: July 15, 2003

Proximate Analysis	(As received)	(As received) w/SO3 correction	(Dry basis)
Moisture, %	5.27	5.27	
Volatile Matter, %	14.25	14.25	15.04
Ash, %	25.64	25.50	
Fixed Carbon, % (by difference)	54.85	54.98	

Ultimate Analysis	(Dry basis)
Ash, %	26.92
Carbon, %	65.44
Hydrogen, %	1.16
Nitrogen, %	0.60
Sulfur, %	0.10
Oxygen, %	5.78
(by difference)	

Analyst: NJP

DE-FC26-00NT40899 GTI # 61129

Calla Energy Biomass Cofiring Project Final Report

September 30, 2003

Appendix D Typical Material & Energy Balance

Calla Energy Biomass Cofiring Project Final Report – Appendix D

Material & Energy Balance - Test Run 15, April 15, 2003

In	put		Lbs/hr	С	Н	0	N	S	Ash	Total	Btu	Adj Value	Origina	al values
Biomass (Mer	nard)			1.37	0.18	1.30	0.00	0.000	0.01	2.87	23,132	3		
Moisture					0.00	0.00				0.00				
Steam					0.10	0.84				0.94	1,371			g/min
Air						1.41	4.65			6.06	1,907	35	35.5	l/min
Nitrogen (purg	ge)						0.66			0.66		2.9	4	l/min
Total Input				1.37	0.28	3.56	5.31	0.00	0.01	10.54	26,411			
Ou	ıtput			С	Η	0	Ν	S	Ash	Total	Btu			
Solids				0.02					0.01	0.03	379			
Oils/Tars				0.01						0.015	225			
Condensate					0.14	1.10				1.23	2,216	1019	840	
Product Gas C	Compositio	n									0			
Lbs/hr	0.34	1261											2.057	cfm
	.95% 10.2		13.700%		0.08					0.08				
		320%	11.600%	0.42		0.55				0.97				
	.00% 16.2	200%	17.800%	0.70		1.86				2.56				
		310%	4.570%	0.15	0.05					0.20				
		120%	0.509%	0.04	0.01					0.04				
		76%	0.148%	0.01	0.00					0.01				
)15%	0.020%	0.00	0.00					0.00				
		35%	0.120%	0.03	0.00					0.03				
	.45% 60.5		50.400%				5.32			5.32	6,840			
		.34%	0.56%			0.05				0.05				
	154% 0.01		0.0149%		0.0001			0.0017		0.0018				
	0.00 0.00	008%	0.0009%	0.0000		0.0000		0.0001		0.0002				
Total Gas	age Sam	ple	Sample 2	1.34	0.14	2.47	5.32	0.00	0.00	9.28	20,358			
_	Total Outp	ut		1.38	0.28	3.57	5.32	0.00	0.01	10.56	30,019			
	e (Output/I		, %	-0.16%		-0.28%				-0.18%	, -			

Material & Energy Balance - Test Run 27, June 26, 2003

Input	Lbs/hr	С	Н	0	N	S	Ash		Total	Btu	Adj Value	Origin	al values
Biomass (Menard)		1.65	0.21	1.56	0.00	0.0003	0.0151		3.44	27,726	3.3		
Moisture			0.00	0.00					0.00				
Steam			0.09	0.73					0.82	1,202		6.23	g/min
Air				1.55	5.11				6.65	2,096	35	39	l/min
Nitrogen (purge)					0.35				0.35		2.3	2.1	l/min
Total Input		1.65	0.30	3.85	5.46	0.0003	0.02		11.27	31,023			
Output		С	Н	0	N	S	Ash	NH3	Total	Btu			
Solids		0.04		0.00			0.0151		0.06	663			
Oils/Tars		0.05	0.00	0.00	0.00				0.055	824	0		
Condensate		0.01	0.16	1.29				0.0041	1.46	2,612	577	770	
Product Gas Composition										0			
Lbs/hr	0.345507											2.075	cfm
H2	7.000%		0.05						0.05				
CO	12.500%	0.52		0.69					1.21				
CO2	16.200%	0.67		1.79					2.46				
CH4	4.520%	0.19	0.06						0.25				
C2H4	1.300%	0.11	0.02						0.13				
C2H6	0.160%	0.01	0.00						0.02				
C3H8	0.033%	0.00	0.00						0.01				
C6H6 plus	0.220%	0.05	0.00						0.06				
N2	56.500%				5.47				5.47	7164			
O2	0.65%			0.07					0.07				
H2S	0.0023%		0.0000			0.0002			0.0003				
COS									0.0000				
Total Gas	Sample 1	1.56	0.14	2.55	5.47	0.0002	0.00		9.71	20,531			
Total Outp	ut	1.65	0.30	3.85	5.47	0.0002	0.02		11.28	31,793			
Balance (O	utput/Input), %	-0.07%	-0.07%	-0.04%	-0.14%		0.00%		-0.05%				

Material & Energy Balance - Test Run 29, June 30, 2003

Input		Lbs/hr	С	Н	0	N	S	Ash		Total	Btu	Adj Value	Origina	values	
Biomass	3			1.46	0.19	1.39	0.0031	0.000	0.01		3.05	24,583	3.2		
Moisture	;				0.00	0.00					0.00				
Steam					0.09	0.72					0.81	1,179		6.1143	g/min
Air						1.29	4.26				5.54	1,746	28	32.5	l/min
Nitrogen (purge)							0.12				0.12		2.3	0.75	l/min
Total Input				1.46	0.28	3.40	4.38	0.00	0.01		9.54	27,508			
	Output			C	Н	0	Ν	S	Ash	NH3	Total	Btu			
Solids			0.017		0.004		0.0000	0.01		0.034	408				
Oils/Tars				0.055	0.005	0.00					0.062	934	0.01		
Condensate				0.007	0.13	1.01	0.076			0.0029	1.14	2,048	582	690	gms
Product Gas Composition											0				
Lbs/hr		0.301099												1.8083	cfm
H2	11.15%	11.40%	10.90%		0.07						0.07				
CO	10.60%	10.80%	10.40%	0.383		0.51					0.89				
CO2	18.85%	18.90%	18.80%	0.681		1.82					2.50				
CH4	4.54%	4.64%	4.44%	0.164	0.05						0.22				
C2H4	1.120%	1.140%	1.10%	0.081	0.01						0.09				
C2H6	0.230%	0.240%		0.017	0.00						0.02				
C3H8	0.120%	0.123%	0.12%	0.013	0.00						0.02				
C6H6 plus	0.20%	0.20%	0.20%	0.044	0.00						0.05				
N2	51.90%	51.20%					4.38				4.38	6,106			
O2	0.51%	0.57%	0.46%			0.05					0.05				
H2S	0.0024 %	0.0023 %			0.0000			0.0002			0.0002				
COS															
Gas	Average	Sample 1	Sample 2	1.382	0.15	2.38	4.38	0.0002	0.00		8.28	17,892			
Total Ou	Total Output			1.462	0.28	3.40	4.45	0.0003	0.01		9.52	27,389			
Balance (Output/Input), %			-0.002	-0.20%	0.15%	-1.49%	13.17%	0.00%		0.19%	-				