Appendices

Appendix A – WKE Case

Appendix B – TXU Case

Appendix C – BB Power Report on Boiler Penetraions

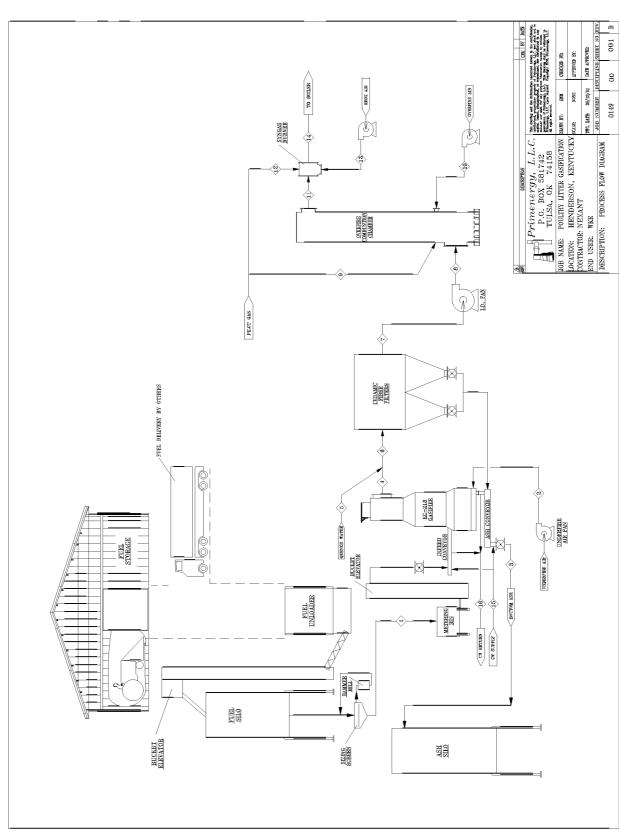


Table A-1 Reid Plant Single KC-18 Material and Energy Balance

Stream ID	1	2	3	4	2	9	7	8	6
Stream	GASIFIER	GASIFIER	GASIFIER	GASIFIER	QUENCH	HGF	HOT GAS	OI	PILOT
Name	FEED	COMB	BOTTOM	SYNGAS	WATER	INLET	FILTER	FAN	GAS
		AIR	ASH			SYNGAS	EXHAUST	EXHAUST	
Pressure, psig ("w.cg)		(20.0)	1	(-0.25)	50	(-0.50)	(-10.0)	(8.0)	30
Temperature, °F	22	08	300	1550	22	1400	1382	1382	27
Molecular Weight (lb/lbmole)	-	28.68	67.17	24.95	18.02	24.69	24.66	24.66	16.04
Component	H/ql	4/qı	lb/h	lb/h	ų/qj	ų/qj	lb/h	lb/h	lb/h
Carbon	4,617		467						
Hydrogen	527								
Nitrogen	463								
Oxygen	3,416								
Sulfur	83								
Chlorine	0								
Fuel Gas									23
Carbon Monoxide				3,819		3,819	3,819	3,819	
Carbon Dioxide				9,207		9,207	9,207	9,207	
Hydrogen				421		421	421	421	
Water (v)		267		5,412		9/2/9	6,576	6,576	
Nitrogen		20,853		21,316		21,316	21,316	21,316	
Oxygen		6,313							
Sulfur Dioxide				166		166	166	166	
Hydrogen Chloride				0					
Ash	3,494		3,961	70		20			
Lime									
Water (I)	4,200				1,164				
TOTAL	16,800	27,433	4,428	40,410	1,164	41,574	41,505	41,505	23

Table A-1 Reid Plant Single KC-18 Material and Energy Balance (contd.)

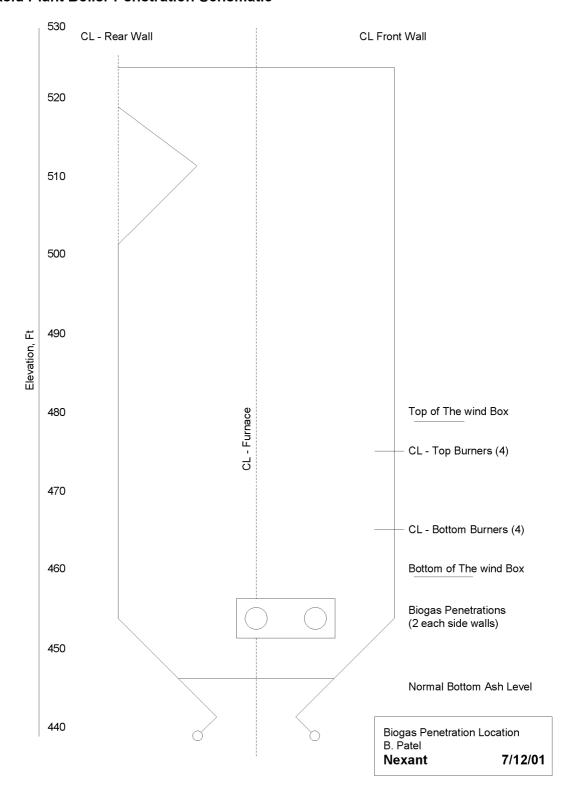
Stream ID	1	2	ε	4	5	9	2	8	6
Stream	GASIFIER	GASIFIER	GASIFIER	GASIFIER	QUENCH	HGF	HOT GAS	al	PILOT
Name	FEED	COMB	BOTTOM	SYNGAS	WATER	INLET	FILTER	FAN	GAS
		AIR	ASH			SYNGAS	EXHAUST	EXHAUST	
Pressure, psig ("w.cg)		(20.0)		(-0.25)	50	(-0.50)	(-10.0)	(8.0)	30
Temperature, °F	77	80	300	1550	77	1400	1382	1382	77
Molecular Weight (Ib/Ibmole)		28.68	67.17	24.95	18.02	24.69	24.66	24.66	16.04
Component	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	y/al	lb/h	lb/h
TOTAL	16,800	27,433	4,428	40,410	1,164	41,574	41,505	41,505	23
AVAILABLE ENERGY VALUE (LHV-Hv), Btu/lb	4,196		14,100.0	953.9		927.1	928.7	928.7	21,502
AVAILABLE ENERGY, MMBtu/h	70.50		9.9	38.5	0.0	38.5	38.5	38.5	0.5
FLOW RATE, scfm (gpm)		6,050		10,243	(2.33)	10,652	10,644	10,644	6
FLOW RATE, acfm		6,283		39,593		38,100	37,701	37,701	6

Table A-1 Reid Plant Single KC-18 Material and Energy Balance (contd.)

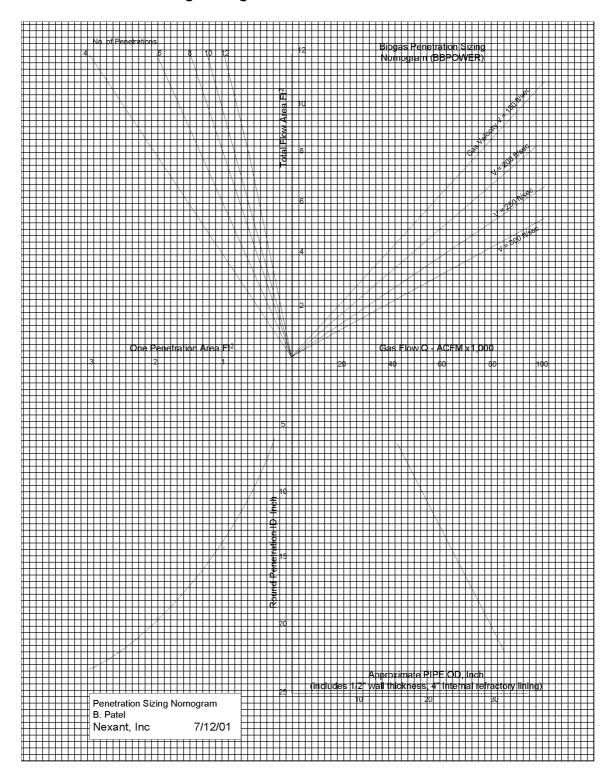
Stream ID	10	11	12	13	14	15	16
Stream	OVERFIRE	OVERFIRE	PILOT	REOX	COMB	GASIFIER	GASIFIER
Name	COMB	SYNGAS	GAS	COMB	PROD TO	COOLING	CW
	AIR			AIR	BOILER	WATER	RETURN
Pressure, psig ("w.cg)	(13.0)	(7.0)	30	(13.0)	(6.0)	09	10
Temperature, °F	80	2400	scfm	80	2330	110	165
Molecular Weight (Ib/Ibmole)	28.68	26.96	16.04	28.68	28.02	18.02	18.02
Component	lb/h	h/dl	lb/h	y/q	h/dl	lb/h	lb/h
Carbon							
Hydrogen							
Nitrogen							
Oxygen							
Sulfur							
Chlorine							
Fuel Gas			23				
Carbon Monoxide		633					
Carbon Dioxide		14,276			15,335		
Hydrogen		200					
Water (v)	157	8,756		245	10,844		
Nitrogen	12,257	33,574		19,099	52,673		
Oxygen	3,711			5,782	3,737		
Sulfur Dioxide							
Hydrogen Chloride							
Ash							
Lime							
Water (I)						26,738	26,738
TOTAL	16,125	57,440	23	25,125	82,588	26,738	26,738

Table A-1 Reid Plant Single KC-18 Material and Energy Balance (contd.)

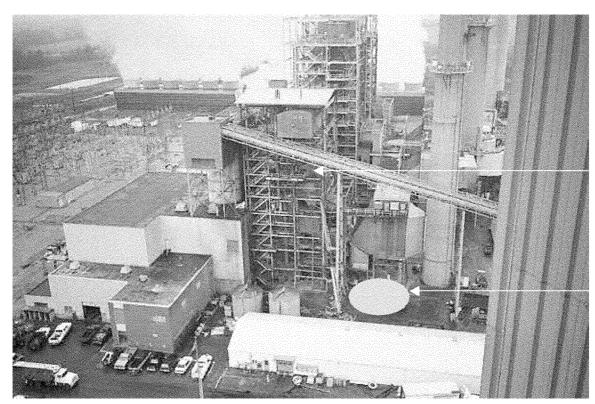
Stream ID	10	11	12	13	14	15	16
Stream	OVERFIRE	OVERFIRE	PILOT	KEOX	COMB	GASIFIER	GASIFIER
Name	COMB	SYNGAS	GAS	COMB	PROD TO	COOLING	CW
	AIR			AIR	BOILER	WATER	RETURN
Pressure, psig ("w.cg)	(13.0)	(7.0)	30	(13.0)	(0.9)	09	10
Temperature, °F	80	2400	scfm	80	2330	110	165
Molecular Weight (Ib/Ibmole)	28.68	26.96	16.04	28.68	28.02	18.02	18.02
Component	lb/h	h/dl	lb/h	4/ql	y/ql	lb/h	lb/h
TOTAL	16,125	57,440	23	25,125	82,588	26,738	26,738
AVAILABLE ENERGY VALUE (LHV-Hv), Btu/lb		229.0	21,502			0.0	1.0
AVAILABLE ENERGY, MMBtu/h		13.2	0.5			0.0	1.5
FLOW RATE, scfm (gpm)	3,556	13,478	6	5,541	18,642	(53.5)	(53.5)
FLOW RATE, acfm	3,693	74,129	8	5,754	100,031		
							1


Table B-2 Reid Plant Cost Sensitive Analysis

Case		Base Case	7	က	4	2	9	2	∞
Litter Cost	\$/ton	\$ 12	8 \$	\$ 10	\$ 12	9 \$	\$ 8	\$ 10	\$ 12
Ash Credits	\$/Ton	(9) \$	(9) \$	\$ (8)	\$ (10)	\$ (12)	\$ (12)	\$ (14)	\$ (16)
Capital Cost		000'005'6 \$	\$	\$ 9,500,000	000'0006'8 \$ 000'006'8 \$ 000'006'8 \$ 000'006'8 \$ 000'005'6 \$ 000'006'8	000'006'8 \$	\$ 8,900,000	000'006'8 \$	\$ 8,900,000
WKE Cost		\$ 4,750,000	\$ 4,750,000	\$ 4,750,000	4,750,000 \$ 4,750,000 \$ 4,750,000 \$ 4,450,000 \$ 4,450,000 \$ 4,450,000 \$ 4,450,000	\$ 4,450,000	\$ 4,450,000	\$ 4,450,000	\$ 4,450,000
Interest	%	7.5%	7.5%	7.0%	7.0%	%0'.	7.5%	7.0%	%0.7
Period	Years	10.0	10.0	15.0	15.0	15.0	10.0	10.0	10.0
Power Cost									
Fuel	c/kwh	1.74	1.12	1.35	1.58	0.56	0.87	1.10	1.33
O&M	c/kwh	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
Capital	c/kwh	2.39	2.39	1.80	1.80	1.69	2.24	2.19	2.19
Total	c/kwh	5.17	4.54	4.18	4.41	3.28	4.14	4.32	4.55


Table A-2 Electrical Power Consumption

SYSTEM MOTOR LIST &	ELECTR	RICAL RI	EQUIREN	/IENT	
	MOTOR				ELEC.
	SIZE	QTY	QTY	OPR	USAGE
ITEM	Нр	SUPL.	OPRTG	FACTOR	Kw
Fuel Receiving Hopper	15	1	1	0.40	4.5
Fuel Receiving Hopper Discharge Conveyor	15	1	1	0.40	4.5
Storage Silo Bucket Elevator	20	1	1	0.40	6.0
Separation Screen	5	1	1	0.40	1.5
Hammermill	50	1	1	0.40	14.9
Hammermill Air System	15	1	1	0.40	4.5
Silo Unloader	15	1	1	0.40	4.5
Silo Discharge Conveyor	10	1	1	0.40	3.0
Metering Bin Discharge Screw	5	1	1	0.50	1.9
Bucket Elevator	5	1	1	0.50	1.9
Fuel Feed Rotary Valve	5	1	1	0.50	1.9
Fuel Infeed Auger	5	1	1	0.50	1.9
Agitator	5	1	1	0.50	1.9
Ash Discharge Auger #1	3	1	1	0.50	1.1
Ash Discharge Auger #2	3	1	1	0.50	1.1
Ash Cooling Auger	5	1	1	0.50	1.9
Underfire Air Fan	40	1	1	0.85	25.5
Cooling Water Pump	10	2	1	0.38	2.8
Syngaas Compressor	100	1	1	0.65	48.6
Fly Ash Discharge Valve	1	2	2	0.50	0.7
Final Ash Conveyor	10	1	1	0.50	3.7
ID Fan	250	1	1	0.83	155.3
Overfire Air Fan	10	1	1	0.50	3.8
Reox/Recycle Fan	10	1	1	0.55	4.1
Air Compressor	100	1	1	0.50	37.4
Miscellaneous Electrical Usage					2.0
Total	567.0				340.6


Reid Plant Boiler Penetration Schematic

Boiler Penetration Sizing Nomogram

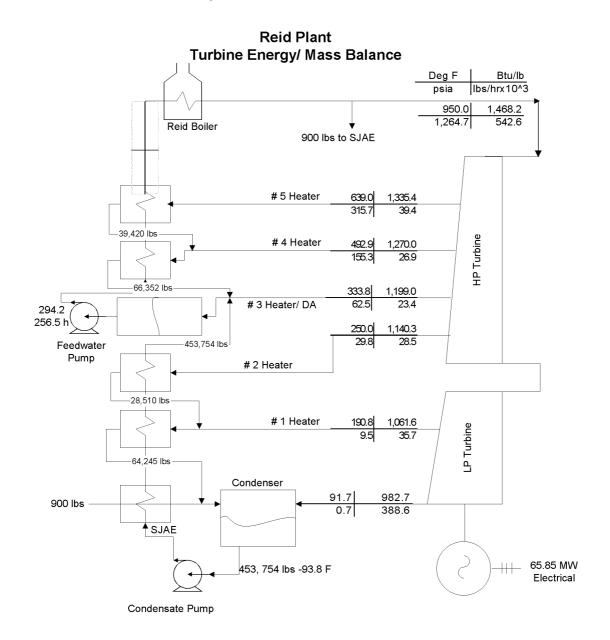
Proposed Gasifier Location at Reid Plant

Reid Plant Boiler

Proposed Gasifier Location

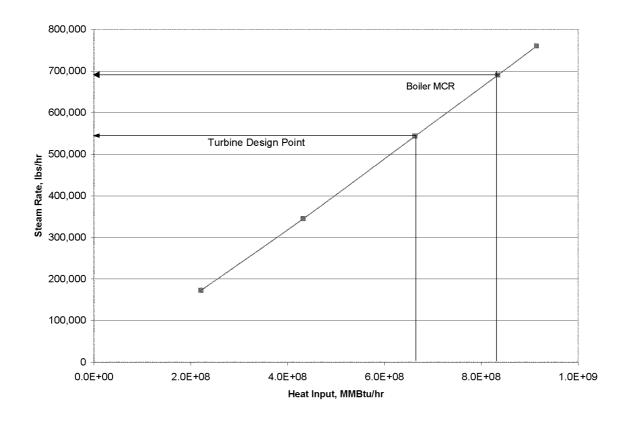

Fuel Receiving and Storage

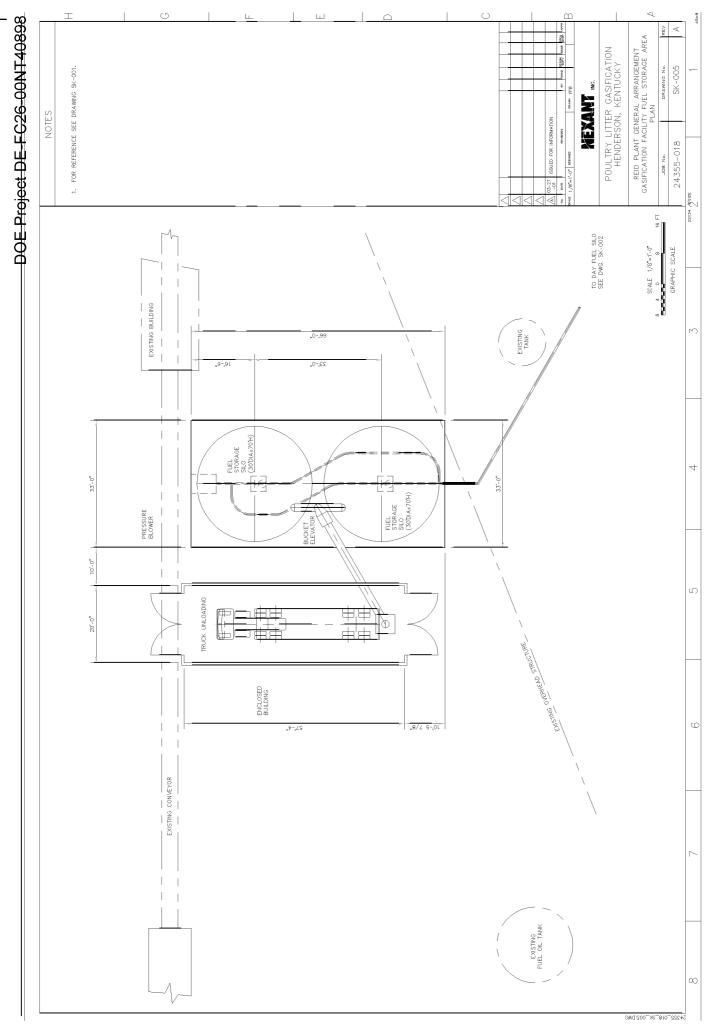
Fuel


Fuel Storage

Reid Plant Boiler Penetrations

- Four Penetrations
- 2 on each side of the boiler
- Just below the lower windbox line
- Pressure at the burner –10"-12" of WC
- Velocity at the burner 150~300 ft/sec
- Flow 70,000~100,000 scfm


Reid Plant Turbine Energy Balance Turbine Name Plate Data by GE


Ref: GE Design Case @ 65.85 MW Gross Turbine Output

B. Patel/ 3/23/01
Nexant Inc.

Turbine Design Point steam Load v/s Boiler heat Input

Appendix B - TXU Case

Appendix B- TXU Case

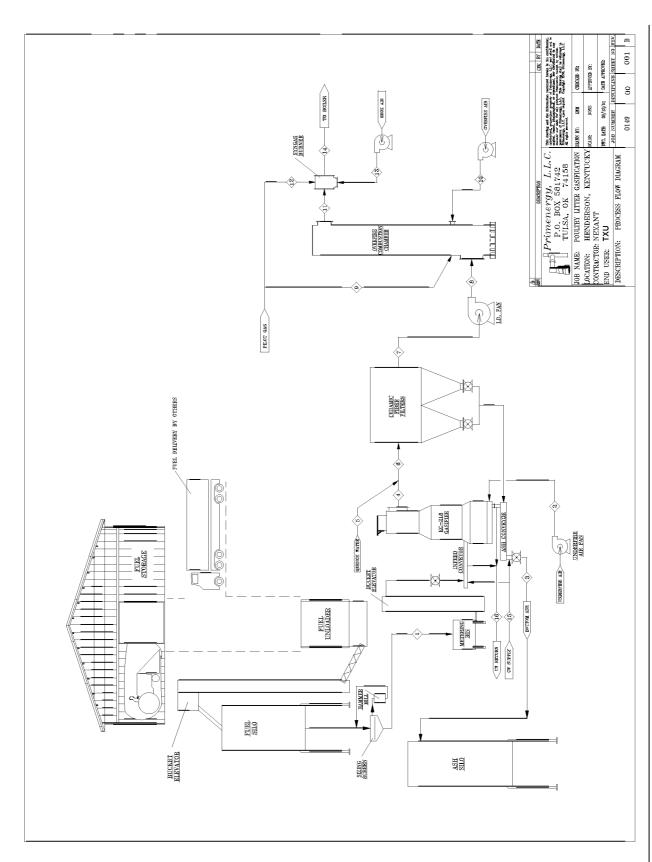


Table B-1 Material and Energy Balance for Monticello Case

Stream ID	1	2A	3	4	5	9	7	8	8A	6	10	11
Stream	BROILER	HEATED	GASIFIER	QUENCH	SYNGAS	HEAT	QI	OVERFIRE	HEATED	OVERFIRE	HEATED	COMB
Name	LITTER	GASIFIER	BOTTOM	WATER	SCRUBBER	ЕХСН	FAN	& REOX	OVERFIRE	SYNGAS	REOX	PROD TO
		AIR	ASH		EXHAUST	EXHAUST	EXHAUST	AIR	AIR		AIR	BOILER
Pressure, psig ("w.cg)	-	(20.0)		50	(-10.0)	(-13.0)	(8.0)	(15.0)	(12.0)	(7.0)	(12.0)	(0.9)
Temperature, °F	77	650	300	77	1400	662	662	77	650	2400	650	2379
Molecular Weight (Ib/Ibmole)	1	28.68	75.25	18.02	24.39	24.39	24.39	28.68	28.68	27.56	28.68	28.33
Component	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
Carbon	10,151		927									
Hydrogen	1,019											
Nitrogen	1,041											
Oxygen	7,135											
Sulfur	221		111									
Chlorine												
Carbon Monoxide					10,293	10,293	10,293			1,200		
Carbon Dioxide					17,628	17,628	17,628			31,914		33,799
Hydrogen					971	971	971			329		
Water (v)		510			10,795	10,795	10,795	435	435	16,966	480	20,386
Nitrogen		39,813			40,854	40,854	40,854	33,982	33,982	74,836	37,490	112,326
Oxygen		12,053						10,287	10,287		11,349	8,053
Sulfur Dioxide					221	221	221					
Ash	4,216		4,110									
Water (I)	7,927			1,928								
TOTAL	31,710	52,376	5,147	1,928	80,761	80,761	80,761	44,704	44,704	125,245	49,319	174,564

Appendix B- TXU Case

Table B-1 Material and Energy Balance for Monticello Case (contd.)

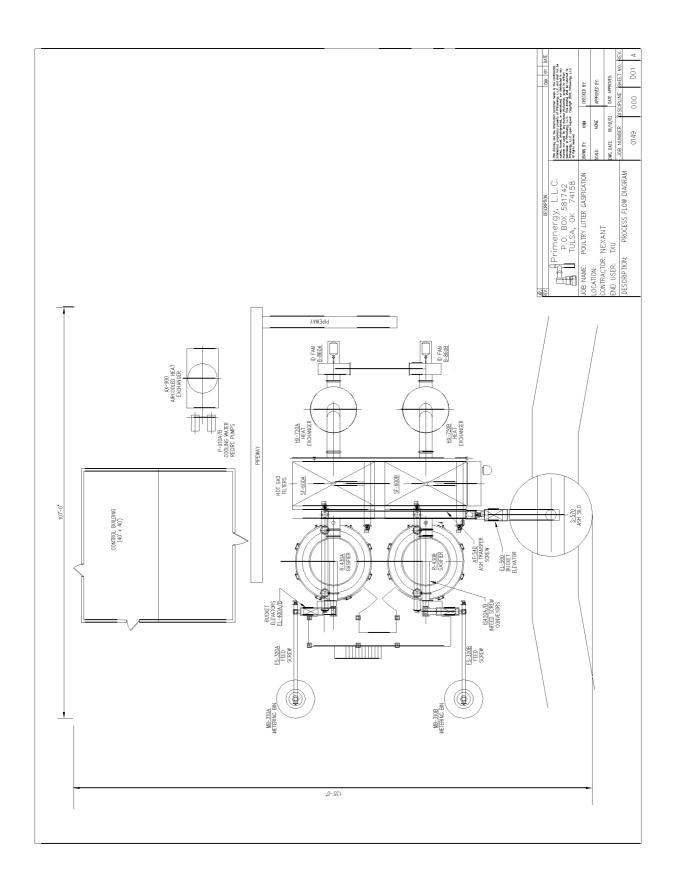
Stream ID	1	2A	3	4	5	9	7	8	8A	6	10	11
Stream	BROILER	HEATED	GASIFIER	QUENCH	SYNGAS	HEAT	al	OVERFIRE	HEATED	OVERFIRE	HEATED	COMB
Name	LITTER	GASIFIER	BOTTOM	WATER	SCRUBBER	ЕХСН	FAN	& REOX	& REOX OVERFIRE	SYNGAS	REOX	PROD TO
		AIR	ASH		EXHAUST	EXHAUST	EXHAUST	AIR	AIR		AIR	BOILER
Pressure, psig ("w.cg)		(20.0)		50	(-10.0)	(-13.0)	(8.0)	(15.0)	(12.0)	(7.0)	(12.0)	(0.9)
Temperature, °F	77	650	300	77	1400	662	662	77	650	2400	650	2379
Molecular Weight (lb/lbmole)	1	28.68	75.25	18.02	24.39	24.39	24.39	28.68	28.68	27.56	28.68	28.33
Component	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
TOTAL	31,710	52,376	5,147	1,928	80,761	80,761	80,761	44,704	44,704	125,245	49,319	174,564
AVAIL ENERGY VALUE (LHV-Hv), Btu/lb	4,537				1,181	1,181	1,181			178		
AVAILABLE ENERGY MMBtu/hr	143.85		13.06		95.35	95.35	95.35			22.32		
SENSIBLE ENERGY MMBtu/hr		7.47			35.43	14.90	14.90		6.37	93.47	7.03	122.86
FLOW RATE, scfm (gpm)		11,551		(3.86)	20,940	20,940	20,940	9,859	9,859	28,743	10,877	38,968
FLOW RATE, acfm		24,656			74,899	45,190	45,190	10,181	21,045	158,087	23,217	212,766

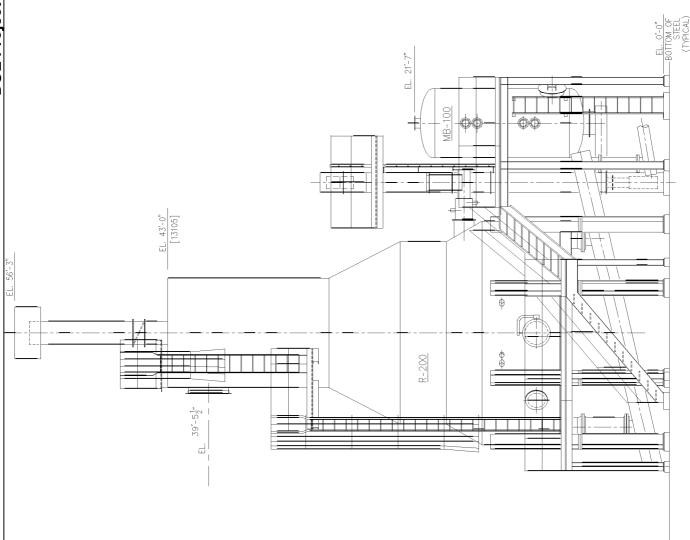
Appendix B- TXU Case

Table B-2 Electrical Usage for Monticello Case

SYSTEM MOTOR LIST 8	& ELECT	RICAL RI	EQUIREM	1ENT	
	MOTOR				ELCTL
	SIZE	QTY	QTY	OPRTG	USAGE
ITEM	Нр	SUPLD	OPRTG	FACTOR	Kw
Fuel Receiving Hopper	15	1	1	0.40	4.5
Fuel Receiving Hopper Discharge Conveyor	15	1	1	0.40	4.5
Storage Silo Bucket Elevator	20	1	1	0.40	6.0
Separation Screen	5	1	1	0.40	1.5
Hammer mill	50	1	1	0.40	14.9
Hammer mill Air System	15	1	1	0.40	4.5
Silo Unloader	15	2	2	0.40	9.0
Silo Discharge Conveyor	10	2	2	0.40	6.0
Metering Bin Discharge Screw	5	2	2	0.50	3.7
Bucket Elevator	5	2	2	0.50	3.7
Fuel Feed Rotary Valve	5	2	2	0.50	3.7
Fuel Infeed Auger	5	2	2	0.50	3.7
Agitator	5	2	2	0.50	3.7
Ash Cooling Auger	5	2	2	0.50	3.7
Underfire Air Fan	50	2	2	0.79	58.9
Cooling Water Pump	15	2	1	0.70	7.9
Syngaas Compressor	150	1	1	0.75	84.0
Fly Ash Discharge Valve	1	4	4	0.50	1.5
Final Ash Conveyor	10	1	1	0.50	3.7
Ash Bucket Elevator	10	1	1	0.50	3.7
ID Fan	250	2	2	0.69	256.1
Reox / Overfire Air Fan	60	2	2	0.73	65.6
Air Compressor	25	1	1	0.75	14.0
Miscellaneous Electrical Usage					5.0
Total					573.7

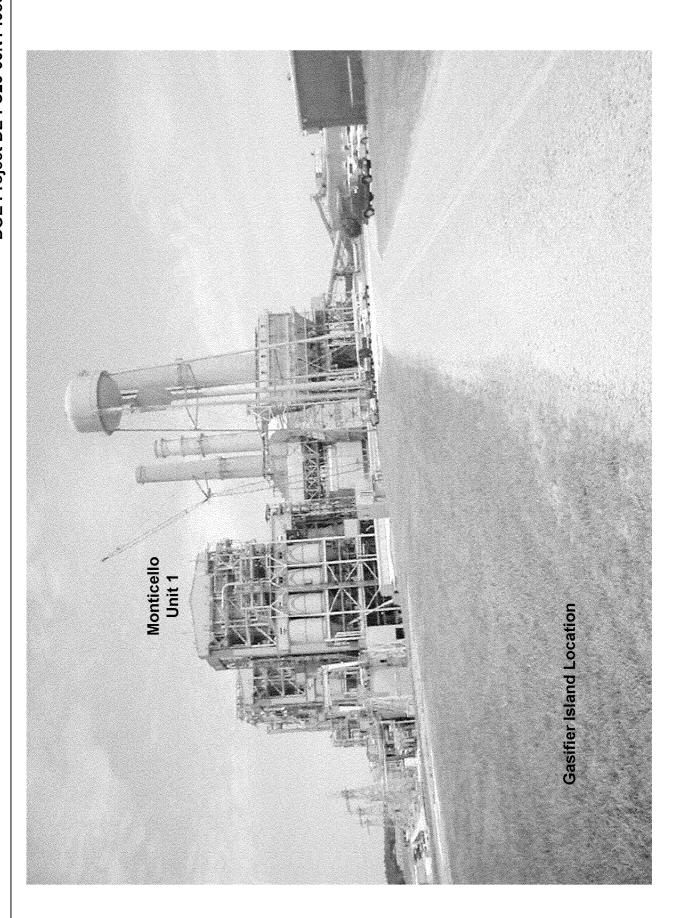
Table B-2 Texas Lignite Analysis (Monticello Boiler Fuel)


Texas Lignite	Value	Units
Fuel HHV	15 738 (6,767)	kJ/kg (Btu/lb)
С	39.20	%
H	2.99	
0	11.04	
Ν	0.58	
S	0.61	
Ash	14.31	
Moisture	31.27	
Total	100.00	

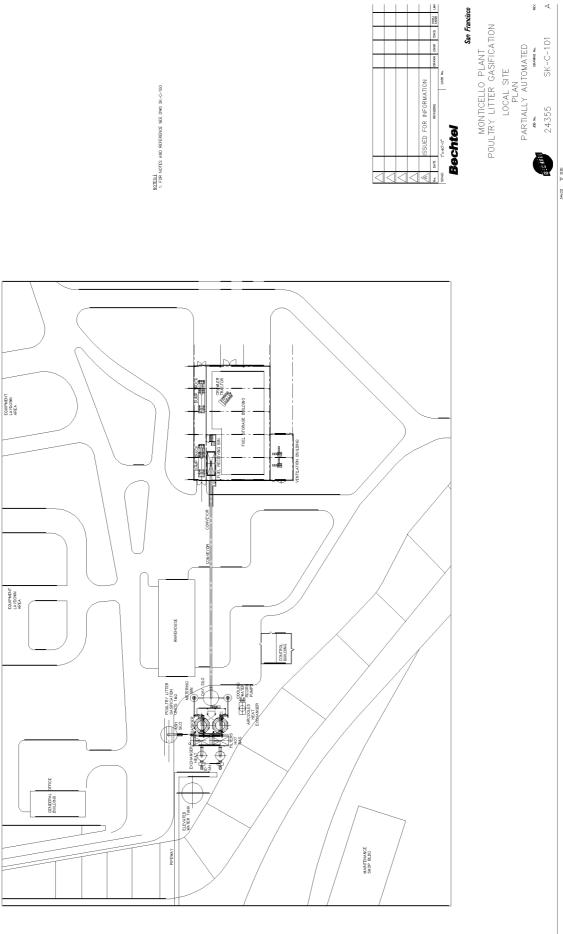

Table B-3 Monticello Boiler Design Data

Monticello Unit 1 & 2	Units	Control Point	MCR
Fuel		Texas Lignite	Texas Lignite
Evaporation	lbs/h	3,200,000	4,025,000
FW Temp	F	478	501
FW Pressure (calc)	psig	3,750	4,068
SH Outlet Temp	F	1,005	1,005
SH Outlet Press	psig	3,595	3,825
SH Pressure Drop	psig	141	222
Reheat Flow	lbs/h	2,814,000	3,520,000
Reheat inlet Temp	F	550	572
Reheat Inlet Press	psig	542	682
Reheat Outlet Temp	F	1,005	1,005
Reheater Press Drop	psig	28	35
Econmizer Press Drop	psi	14	21
Gas Drop - Furnace to Econ	"wg	2.45	3.65
Gas Drop Econ Outlet to AH Outlet	"wg	4.80	6.85
Gas Temp Entering AH	F	805	860
Gas Temp Leaving AH	F	327	351
Gas Temp Leaving AH	F	311	336
Air Temp Air Heater	F	85	85
Air Temp Leaving	F	701	730
Air Press Air Heater	"wg	7.90	10.35
Amb. Air Temp	F	80	80
Excess Air Econ	%	20	20
Fuel Fired	lbs/h	681,000	836,000
Efficiency	%	82.69	82.06

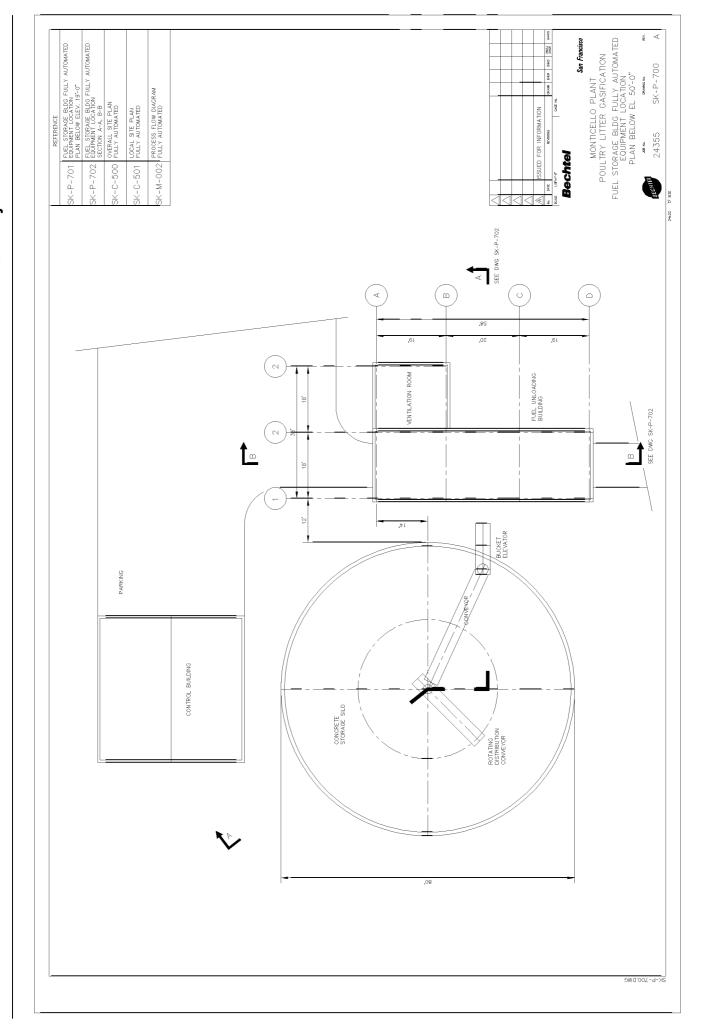
Table B-4 Monticello Plant Sensitivity Case


Case	Litter Cost	Ash Credits	Capital Cost	TXU Cost Share	Interest	Period	Fuel	O&M	Capital	Total
	\$/ton	\$/Ton			%	Years	c/kWh	c/kwh	c/kwh	c/kwh
Base Case	8	0	\$14,882,622	\$14,882,622	7.5%	10	1.00	0.78	2.69	4.47
2	8	(6)	\$ 4,882,622	\$14,882,622	7.5%	10	0.83	0.78	2.69	4.30
3	8	0	\$14,882,622	\$ 7,441,311	7.5%	10	1.00	0.78	1.34	3.13
4	6	(6)	\$14,882,622	\$14,882,622	7.5%	10	0.58	0.78	2.69	4.05
5	6	(6)	\$14,882,622	\$ 7,441,311	7.5%	10	0.58	0.78	1.34	2.71
6	4	0	\$14,882,622	\$14,882,622	7.5%	10	0.50	0.78	2.69	3.97
7	4	0	\$14,882,622	\$ 7,441,311	7.5%	10	0.50	0.78	1.34	2.63
8	0	(6)	\$14,882,622	\$14,882,622	7.5%	10	-0.17	0.78	2.69	3.30

Primenery Gasifier Elevation


Prepared By Nexant, Inc.

SK-C-500


24355

San Francis

2K-C-201'DMC

2K-C-101'DMC

Appendix B -TXU Case

Appendix C – BB Power Report		

PRELIMINARY ENGINEERING STUDY FOR FEASIBILITY OF MODULAR BIO-GASIFIER HOT PRODUCER GAS INJECTION INTO PULVERIZED COAL FIRED FLAT WALL FURNACE

FOR:

NEXANT INC.

AT

WESTERN KENTUCKY ENERGY REID PLANT SEBREE POWER COMPLEX SEBREE, KENTUCKY

BBP CONTRACT No. 200756 Original Contract Riley Stoker Corp. B2502

Date Issued: 31 May 2001

PRELIMINARY ENGINEERING STUDY FOR FEASIBILITY OF MODULAR BIO-GASIFIER HOT PRODUCER GAS INJECTION INTO PULVERIZED COAL FIRED FLAT WALL FURNACE

FOR NEXANT INC. AT

WESTERN KENTUCKY ENERGY **REID PLANT** SEBREE POWER COMPLEX SEBREE, KENTUCKY

BBP CONTRACT NO. 200756 Original Contract Riley Stoker Corp. B2501

DATE ISSUED: 31 May 2001

Prepared By:

Sr. Staff Engineer

Boiler Design

Prepared By:

Sr. Consultant

Fuel Burning

Approved By:

Brian Vitalis

Manager

Boiler Design

BABCOCK BORSIG POWER

May 31, 2001

NEXANT, Inc. 45 Fremont Street, 7th Floor San Francisco, CA 94105-2210

Attn: Mr. Babul Patel

Subject:

Phase 1 Engineering Study for Feasibility of Modular Bio-Gasifier Hot

Producer Gas Injection into Pulverized Coal Fired Flat Wall Furnace

At Western Kentucky Energy, Reid Plant Sebree Power Complex, Sebree, Kentucky NEXANT, Inc. PO #0104-NEX-133

Original Contract Riley Stoker Corp, B2502

DB Riley Contract 200756

Dear Babul,

Thank you for using Babcock Borsig Power's engineering services; attached please find three copies of engineering's report that provides NEXANT assistance and recommendations in determining feasible locations, size, and number of penetrations required to flow syn gas into a pressurized type furnace.

As mentioned in today's conversation, once you have reviewed the report, call me a day ahead of time and I will set up a teleconference with engineering (Frank and Dick) to answer any questions that you may have.

Thank you for the opportunity to be of service to you, BBP looks forward to perhaps working with NEXANT on Phase 2 of this project.

Sincerely,

Babcock Borsig Power, Inc.

Liène Strachoures

Elaine K. Strzelewicz

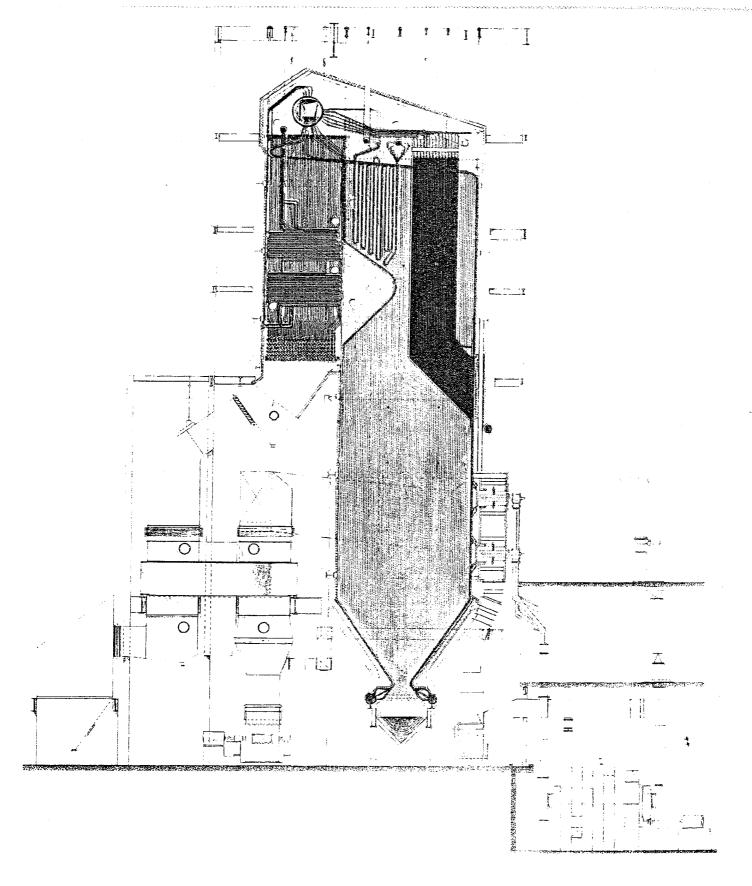
Job Manager, Field Engineering and Services Department

CC: K. Davis, P. Knight/1, J. Scott/1, E. Vega/1

Babcock Borsig Power, Inc. Energy Systems and Services Division

Mailing Address:

Shipping Address:


5 Neponset Street Worcester, MA 01606 Telephone: (508) 852-7100 (508) 852-7548

www.bbpwr.com

Nexant Inc.
WKE Reid Plant
BBP Contract 200756
DISTRIBUTION LIST

Nexant, Inc.

- K. Davis
- R. Dube
- P. Knight
- T. Martinko
- J. Scott
- E. Strzelewicz
- E. Vega
- B. Vitalis
- F. Zone
- Extra (3 Copies)

BIG RIVERS RURAL ELECTRIC COOPERATIVE CORP. SEBREE, KENTUCKY

690.000 lbs/hr—1475 psig design—1300 psig operating—955F Burns & McDonnell Engineering Co., Consulting Engineers

Nexant Inc. WKE Reid Plant BBP Contract 200756

TABLE OF CONTENTS

1.0 INTRODUCTION	
1.1 Introduction	1
1.2 Background	2
2.0 EXECUTIVE SUMMARY	3
2.1 Objective	3
2.2 Findings and Conclusions	4
2.3 Recommendations	5
3.0 DISCUSSION	
3.1 Description of Bio-Gasifier Process	6
3.2 Boiler Performance	12
3.3 Syn Gas Penetration Size Requirements	15
3.4 Boiler Syn Gas Penetration Location	18
3.5 Syn Gas Pressure Requirements	20
3.6 Preliminary Recommendations on Required	
Stiffening/Strengthening at the Boiler Penetrations	21
4.0 APPENDICES	22
4.1 Original Boiler Performance	22
4.2 Communications	23

Nexant Inc. WKE Reid Plant BBP Contract 200756

LIST OF TABLES

- 1. Gasifier Process Streams
- 2. Boiler Performance

LIST OF FIGURES

- 1. Poultry Litter Gasification Process Schematic
- 2. Syn Gas Penetration Sizing Nomogram
- 3. Syn Gas Penetration Location

Nexant Inc.
WKE Reid Plant
BBP Contract 200756

1.0 -INTRODUCTION AND BACKGROUND

1.1 Introduction

NEXANT, Inc. and its partners, Western Kentucky Energy and Primenergy, are working with DOE-NETL to develop a biomass cofiring project at the Western Kentucky Energy Reid Plant located near Henderson, Kentucky. The cofiring project is a proposal for the installation of modular bio-gasifier(s) adjacent to the existing boiler and injecting the hot producer gas from the gasifier into the boiler. As part of phase 1, Nexant is seeking assistance in modeling the expected boiler operation post gasifier(s) installation. The specific tasks for BBP (subcontractor scope of work) as a part of phase 1 are as follows:

- Determine feasible locations for boiler penetration(s) to minimize the impact on existing boiler equipment
- Size the penetrations
- Determine pressure requirements at the penetrations
- Provide preliminary recommendations on required stiffening/strengthening at the boiler penetrations.

Nexant Inc. WKE Reid Plant BBP Contract 200756

1.2 Background

The Western Kentucky Energy Reid Plant was designed by Riley Stoker Corporation under contract B-2502 (1962). It consists of one steam generating unit at a maximum continuous rating of 690,000 Lb/hr steam flow, 1300 psig outlet steam pressure, 955 °F outlet steam temperature, 440 °F feedwater temperature entering the economizer, while firing West Kentucky Bituminous coal. The boiler has two (2) Riley ball tube mills, eight (8) Riley type 60 flare burners, and one (1) Ljungstrom 25VIx48 air heater.