Early Entrance Coproduction Plant. Phase I. Preliminary
Concept Report. May 17, 2001. Book 1. Tasks 1-3. - 2001
Abughazaleh, John S. (KBR)
Mushtaq, Ahmed (Praxair)
Ashok, Anand (GE)
Anderson, John (TESI)
Benham, Charles (Rentech)
Brent, Fred D. (Texaco)
Chance, Thomas E. (GE)
Davis, William K. (Texaco)
Drnevich, Raymond F. (Praxair)
Hall, Larry, (KBR)
He, Ming (Texaco)
Lang, Stephen A. (KBR)
Mintner, David (KBR)
Moore, Wendy (KBR)
Ong, Jimmy O. (Texaco)
Potoczniak, George (KBR)
Sanchez, Adela G. (Texaco)
Schrader, Charles H. (TESI)
Shah, Lalit S. (Texaco)
Sheth, Kalapi D. (Texaco)
Shires, Phil J. (KBR)
Song, Rai (Texaco)
Texaco Energy Systems Inc.
Book Cover |
Transmittal Letter |
Title Page |
Disclaimer |
i |
Abstract |
ii |
Table of Contents |
iii |
List of Tables, Figures and Drawings |
TFD-1 |
Executive Summary |
ES-1 |
Experimental |
E-1 |
Results and Discussion |
RD-1 |
Conclusion |
C-1 |
References |
R-1 |
List of Acronyms |
A-1 |
TASK 1 |
1.0 |
Project Plan |
1-1 |
|
1.1 |
Project Management Plan |
1-1 |
|
1.1.1 |
Work Breakdown Structure |
1-1 |
1.1.2 |
Schedule and Milestones |
1-1 |
1.1.3 |
Manning and Project Cash Flow Projections |
1-1 |
1.1.4 |
DOE Review |
1-1 |
1.1.5 |
Final Issue |
1-2 |
TASK 2 |
2.0 |
Concept Definition, Development, and Technical Assessment |
2-1 |
Overview |
2-1 |
|
2.1 |
Overall Concept Definition and Development |
2-2 |
|
2.1.1 |
Market |
2-2 |
2.1.2 |
Technical |
2-4 |
|
2.1.2.1 |
F-T Product Upgrading Options |
2-4 |
2.1.2.2 |
F-T Catalyst Wax Separation |
2-6 |
2.1.2.3 |
F-T Wastewater Treating/Utilization |
2-6 |
2.1.3 |
Economics/Optimizations |
2-7 |
|
2.1.3.1 |
F-T Feed Gas H2:CO Optimum Ratio |
2-8 |
2.1.3.2 |
Heat and Process Integration |
2-9 |
2.1.3.3 |
Percent of CO2 in the F-T Feed Gas |
2-10 |
2.1.3.4 |
Acid Gas Removal Scheme |
2-11 |
2.1.3.5 |
F-T Tail Gas Utilization Study |
2-11 |
|
2.1.3.5.1 |
Reactors in Series |
2-12 |
2.1.3.5.2 |
Recycle to the F-T Reactor |
2-12 |
2.1.3.5.3 |
Recycle to the Syngas Generation Unit |
2-12 |
2.1.3.5.4 |
Fuel for Power Generation |
2-13 |
2.1.3.5.5 |
Other Utilization Options |
2-13 |
2.1.3.5.6 |
EECP Concept - Selected Tail Gas Utilization Concept |
2-13 |
2.2 |
Alternative Site Design Options - Assessment and Selection |
2-13 |
|
2.2.1 |
Introduction |
2-13 |
2.2.2 |
Results and Discussion |
2-15 |
|
2.2.2.1 |
Design Basis |
2-15 |
|
2.2.2.1.1 |
Design Basis - Product Upgrading Summary |
2-23 |
2.2.2.2 |
Block Flow Diagrams |
2-28 |
2.2.2.3 |
Process Descriptions |
2-33 |
|
2.2.2.3.1 |
Overall Block Flow Diagram |
2-33 |
2.2.2.3.2 |
Port Arthur Cases - PARHCU and PARFW |
2-33 |
2.2.2.3.3 |
Tampa Electric Polk Station Cases - THCU and TSC |
2-35 |
2.2.2.4 |
Stream Summaries |
2-37 |
2.2.2.5 |
Equipment List |
2-62 |
2.2.2.6 |
Overall Utility Summaryies |
2-74 |
2.2.2.7 |
Heat and Process Integration |
2-79 |
2.2.2.8 |
Acid Gas Removal Options |
2-80 |
2.2.2.9 |
Capital Cost Estimate |
2-81 |
|
2.2.2.9.1 |
Purpose and Scope |
2-81 |
2.2.2.9.2 |
Approach |
2-82 |
2.2.2.9.3 |
Estimate Structure |
2-82 |
2.2.2.9.4 |
Methodology |
2-83 |
2.2.2.10 |
Environmental Considerations |
2-87 |
2.2.2.11 |
Marketing Considerations |
2-88 |
|
2.2.2.11.1 |
Plant Site Selection Criteria |
2-88 |
2.2.2.11.2 |
Objectives |
2-88 |
2.2.2.11.3 |
Background Information |
2-88 |
2.2.2.11.4 |
Product Slate and Pricing |
2-89 |
2.2.2.11.5 |
Product Valuation Methodologies |
2-90 |
2.2.3 |
Conclusions |
2-94 |
2.3 |
Design Considerations for Advanced Subsystems |
2-98 |
|
2.3.1 |
Fischer-Tropsch Synthesis |
2-99 |
2.3.2 |
Gas Turbine |
2-102 |
2.3.3 |
Fischer-Tropsch Product Upgrading |
2-105 |
TASK 2 - Attachments |
2-A |
Attachment 2-A: F-T Product Upgrade Options Study |
2A-1 |
2-B |
Attachment 2-B: F-T Wastewater Treating/Utilization Study |
2B-1 |
2-C |
Attachment 2-C: F-T Feed Gas H2:CO Optimum
Ratio Study |
2C-1 |
2-D |
Attachment 2-D: F-T Feed Gas Optimum Percent CO2
Study |
2E-1 |
2-E |
Attachment 2-E: Acid Gas Removal Selection Study |
2E-1 |
2-F |
Attachment 2-F: Evaluation of a Combined
Primary and Tail Gas Treating Amine System |
2F-1 |
TASK 3 |
3.0 |
Technical Assessment of Subsystems |
3-1 |
Overview |
3-1 |
|
3.1 |
Basic Engineering Design Data |
3-2 |
3.2 |
Air Separation Unit |
3-3 |
|
3.2.1 |
Process Arrangement |
3-3 |
3.2.2 |
Design Basis |
3-3 |
3.3 |
Gasification |
3-9 |
3.4 |
Acid Gas Removal |
3-11 |
|
3.4.1 |
Stripping Nitrogen |
3-11 |
3.5 |
Sulfur Recovery Unit/Tail Gas Treating Unit |
3-13 |
3.6 |
Fischer-Tropsch Synthesis |
3-15 |
|
3.6.1 |
Battery Limit Conditions |
3-15 |
3.6.2 |
Syngas |
3-16 |
3.6.3 |
Zinc Oxide Bed Design Basis |
3-17 |
3.6.4 |
Fischer-Tropsch Synthesis Reactor Yields |
3-17 |
3.6.5 |
Fischer-Tropsch Catalyst Properities |
3-17 |
3.6.6 |
Catalyst Activation |
3-17 |
3.7 |
Gas Turbine/Generator |
3-18 |
3.8 |
Steam System |
3-22 |
|
3.8.1 |
Steam System Header Pressure |
3-22 |
3.8.2 |
Steam Condensate Systems |
3-22 |
3.8.3 |
Water Systems |
3-22 |
3.9 |
Fischer-Tropsch Product Upgrading |
3-23 |
|
3.9.1 |
Scope of Work |
3-23 |
3.9.2 |
Feedstock and Product Properties |
3-24 |
3.9.3 |
Feed Rates and Process Yields |
3-29 |
3.9.4 |
Hydrogen Make-Up Gas |
3-29 |
3.9.5 |
Unit Design Basis |
3-30 |
|
3.9.5.1 |
Service Factor |
3-30 |
3.9.5.2 |
Design Considerations |
3-30 |
3.9.6 |
Battery Limit Conditions |
3-31 |
3.9.7 |
Unit Turn-Down |
3-31 |
3.10 |
Off Site |
3-31 |
|
3.10.1 |
Purge Nitrogen |
3-31 |
3.10.2 |
Flare System |
3-32 |
3.10.3 |
Secondary Fuel Specifications |
3-32 |
3.10.4 |
Plant and Instrument Air |
3-33 |
3.10.5 |
Electric Power |
3-33 |
3.10.6 |
Cooling Water |
3-34 |
3.11 |
Unit/Equipment Numbering |
3-35 |
TASK 4 |
4.0 |
Subsystem Design Specifications |
4-1 |
Overview |
4-1 |
|
4.1 |
EECP Concept |
4-2 |
|
4.1.1 |
Concept Process Description |
4-2 |
4.1.2 |
Overall Block Flow Diagrams |
4-4 |
4.1.3 |
Refinery Integration |
4-9 |
4.1.4 |
Pinch Analysis |
4-10 |
4.2 |
Process Description |
4-10 |
|
4.2.1 |
Air Separation Unit |
4-10 |
|
4.2.1.1 |
Gas Turbine Extraction Air Supply |
4-11 |
4.2.1.2 |
Main Air Feed Filtration and Compressions |
4-11 |
4.2.1.3 |
Air Cooling and Purification |
4-11 |
4.2.1.4 |
Cryogenic Distillation |
4-11 |
4.2.1.5 |
Product Compression |
4-12 |
4.2.2 |
Gasification |
4-12 |
|
4.2.2.1 |
Coke Handling Unit (U-2000) |
4-12 |
4.2.2.2 |
Slurry Preparation Unit (U-3000) |
4-12 |
4.2.2.3 |
Gasification Unit (U-4000) |
4-13 |
4.2.2.4 |
Coarse Slag Handling Unit
(U-5000) |
4-13 |
4.2.2.5 |
Black Water Flash Unit (U-6000) |
4-13 |
4.2.2.6 |
Fines Handling Unit (U-7000) |
4-14 |
4.2.2.7 |
Low Temperature Gas Cooling
(U-8000) |
4-14 |
4.2.3 |
Acid Gas Removal Unit |
4-14 |
4.2.4 |
Fischer-Tropsch Synthesis |
4-15 |
|
4.2.4.1 |
Fischer-Tropsch REactor |
4-15 |
4.2.4.2 |
F-T Product Separation |
4-15 |
4.2.4.3 |
F-T Reaction Heat Removal System |
4-16 |
4.2.4.4 |
Catalyst Handling System |
4-16 |
4.2.5 |
F-T Upgrading |
4-17 |
|
4.2.5.1 |
General |
4-17 |
4.2.5.2 |
Description of Flow |
4-18 |
4.2.6 |
Power Block |
4-20 |
|
4.2.6.1 |
Gas Turbine |
4-21 |
4.2.6.2 |
Steam Turbine |
4-22 |
4.2.6.3 |
Generators |
4-22 |
4.2.6.4 |
Heat Recovery Steam Generator |
4-22 |
4.2.6.5 |
Unit Controls |
4-23 |
4.2.6.6 |
Feedwater System |
4-23 |
4.2.7 |
SRU/TGTU Process Description |
4-23 |
4.2.8 |
Steam System Process Description |
4-24 |
4.2.9 |
Off Site |
4-26 |
4.3 |
Process Flow Sketches |
4-26 |
|
4.3.1 |
Air Separation Unit |
4-26 |
4.3.2 |
Gasification Unit |
4-26 |
4.3.3 |
Acid Gas Removal Unit |
4-26 |
4.3.4 |
F-T Synthesis Unit |
4-26 |
4.3.5 |
F-T Upgrading Unit |
4-26 |
4.3.6 |
Power Block Unit |
4-26 |
4.3.7 |
Sulfur Recovery Unit/Tail Gas Treating Unit |
4-26 |
4.3.8 |
Steam System |
4-27 |
4.3.9 |
Off Site |
4-27 |
4.3.10 |
Power Distribution Network |
4-27 |
4.4 |
Stream Summaries |
4-50 |
|
4.4.1 |
ASU Stream Summaries |
4-50 |
4.4.2 |
Gasification |
4-51 |
4.4.3 |
Acid Gas Removal |
4-54 |
4.4.4 |
F-T Synthesis |
4-54 |
4.4.5 |
F-T Upgrading |
4-65 |
4.4.6 |
Power Block |
4-66 |
4.4.7 |
SRU/TGTU |
4-68 |
4.5 |
Equipment List |
4-70 |
|
4.5.1 |
ASU |
4-70 |
4.5.2 |
Gasification |
4-73 |
4.5.3 |
AGR |
4-73 |
4.5.4 |
F-T Synthesis |
4-74 |
4.5.5 |
F-T Product Upgrading Equipment List |
4-75 |
4.5.6 |
Power Block |
4-77 |
4.5.7 |
SRU/TGTU |
4-77 |
4.5.8 |
Steam System Equipment List |
4-78 |
4.5.9 |
Off Site Equipment List |
4-79 |
4.6 |
Utility/Catalyst/Chemical Summary |
4-80 |
|
4.6.1 |
ASU |
4-83 |
4.6.2 |
Gasification |
4-83 |
4.6.3 |
AGR |
4-86 |
4.6.4 |
F-T Synthesis |
4-87 |
4.6.5 |
F-T Upgrading |
4-91 |
4.6.6 |
Power Block |
4-92 |
4.6.7 |
SRU/TGTU |
4-92 |
4.6.8 |
Steam System |
4-95 |
4.6.9 |
Off Site |
4-95 |
4.6.10 |
Overall Utility Plan |
4-96 |
4.7 |
Subsystem Plot Plans |
4-96 |
|
4.7.1 |
Overall Plot Plan |
4-96 |
4.7.2 |
Air Separation Unit |
4-96 |
4.7.3 |
Gasification |
4-96 |
4.7.4 |
AGR |
4-96 |
4.7.5 |
F-T Synthesis |
4-96 |
4.7.6 |
F-T Upgrading |
4-96 |
4.7.7 |
Power Block |
4-96 |
4.7.8 |
SRU/TGTU/AGR |
4-96 |
4.8 |
Technical Barriers |
4-105 |
|
4.8.1 |
F-T Synthesis |
4-105 |
|
4.8.1.1 |
Reactor Design Concerns |
4-106 |
|
4.8.1.1.1 |
Confirmation of Catalyst Performance |
4-106 |
4.8.1.1.2 |
Catalyst Replacement Rate |
4-107 |
4.8.1.1.3 |
Water Gas Shift Activity |
4-107 |
4.8.1.1.4 |
Hydrodynamics |
4-107 |
4.8.1.1.5 |
Scale-Up |
4-108 |
4.8.1.1.6 |
Design of Reactor Internals |
4-109 |
4.8.1.2 |
Catalyst/Wax Separation |
4-109 |
|
4.8.1.2.1 |
Rentech Primary Separation |
4-110 |
4.8.1.2.2 |
Rentech Second Stage Separation |
4-110 |
4.8.1.3 |
Equipment Design |
4-110 |
|
4.8.1.3.1 |
Activation Vessel |
4-110 |
4.8.1.3.2 |
Catalyst Slurry Pump |
4-110 |
4.8.1.3.3 |
Catalyst Addition/Withdrawal |
4-110 |
4.8.1.4 |
Environmental |
4-111 |
|
4.8.1.4.1 |
F-T Tail Gas Utilization |
4-111 |
4.8.1.4.2 |
Disposal of Catalyst |
4-111 |
4.8.1.4.3 |
F-T Water Usage |
4-112 |
4.8.2 |
Power Block |
4-112 |
4.8.3 |
F-T Product Upgrading |
4-112 |
|
4.8.3.1 |
Hy-Finishing Technology |
4-114 |
|
4.8.3.1.1 |
Olefins and Oxygenates |
4-115 |
4.8.3.1.2 |
Yields and Properties |
4-115 |
4.8.3.1.3 |
Thermal Degradation |
4-115 |
4.8.3.1.4 |
Iron Contamination |
4-116 |
4.8.3.1.5 |
Zero Sulfur |
4-116 |
4.8.3.2 |
Conclusion |
4-117 |
4.8.4 |
Technical Barriers - Acid Gas Removal (AGR) |
4-118 |
4.8.5 |
Risk Assessment |
4-119 |
|
4.8.5.1 |
Case A: Total EECP Facility |
4-120 |
4.8.5.2 |
Case B: EECP System Excluding Units 10000 and
11000 |
4-120 |
4.8.5.3 |
Case C: Power Island Only |
4-121 |
4.8.5.4 |
Case A-1: Spared Compressors in Unit 1100 |
4-122 |
4.8.5.5 |
Conclusions and Recommendations |
4-122 |
TASK 4 - Attachments |
4-A |
Attachment A: Pinch Analysis |
4A-1 |
4-B |
Attachment B: Facilities Reliability Study |
4B-1 |
TASK 5 |
5.0 |
Market Assessment |
5-1 |
Overview |
5-1 |
|
5.1 |
Market Analysis of Products |
5-1 |
|
5.1.1 |
Diesel |
5-1 |
|
5.1.1.1 |
Current Market Size |
5-1 |
5.1.1.2 |
Supply and Demand |
5-2 |
5.1.1.3 |
Projected 10-Year Growth Rates |
5-2 |
5.1.1.4 |
Current Prices |
5-2 |
5.1.1.5 |
Projected 10-Year Prices |
5-3 |
5.1.1.6 |
Projected New Markets |
5-3 |
5.1.2 |
Finished Waxes |
5-3 |
|
5.1.2.1 |
Current Market Size |
5-4 |
5.1.2.2 |
Supply and Demand |
5-4 |
5.1.2.3 |
Projected 10-Year Growth Rates |
5-4 |
5.1.2.4 |
Current Prices |
5-4 |
5.1.2.5 |
Project 10-Year Prices |
5-5 |
5.1.2.6 |
Projected New Markets |
5-5 |
5.1.3 |
F-T Naphtha |
5-6 |
|
5.1.3.1 |
Current Market Size |
5-6 |
5.1.3.2 |
Supply and Demand |
5-6 |
5.1.3.3 |
Projected 10-Year Growth Rates |
5-6 |
5.1.3.4 |
Current Prices |
5-7 |
5.1.3.5 |
Projected 10-Year Prices |
5-7 |
5.1.3.6 |
Projected New Markets |
5-11 |
5.2 |
Market Assessment of
Technology |
5-11 |
|
5.2.1 |
Feedstock
Availability |
5-11 |
5.2.2 |
Environmental Factors |
5-12 |
5.2.3 |
Technology Factors |
5-12 |
5.3 |
Fischer-Tropsch
Product Slate and Analysis |
5-15 |
|
5.3.1 |
Diesel |
5-15 |
5.3.2 |
Naphtha |
5-16 |
5.3.3 |
Specialty Low and
Medium Melt Waxes |
5-18 |
5.3.4 |
Specialty High Melt
Waxes |
5-19 |
5.4 |
Full-Scale Commercial
Plant |
5-20 |
|
5.4.1 |
Price and Feedstock
Availability |
5-20 |
5.4.2 |
Proximity to Markets |
5-21 |
5.4.3 |
Environmental
Considerations |
5-21 |
5.4.4 |
Infrastructure and
Process Integration |
5-22 |
TASK 6 |
6.0 |
Preliminary Site Analysis |
6-1 |
Overview |
6-1 |
|
6.1 |
Site Selection
Process |
6-1 |
|
6.1.1 |
Synergy with Existing
Infrastructure |
6-1 |
6.1.2 |
Construction
Requirements |
6-1 |
6.1.3 |
Site Access |
6-4 |
6.1.4 |
Environmental
Requirements |
6-4 |
6.1.5 |
Community |
6-4 |
6.1.6 |
Geotechnic and
Topographic Investigation |
6-4 |
6.1.7 |
Economic Factors |
6-4 |
6.1.8 |
Site Commitment to
Project |
6-4 |
6.2 |
Identify Specific
Sites |
6-4 |
6.3 |
Identify Additional
Commitments/Parties for EECP Participation |
6-7 |
TASK 7 |
7.0 |
Environmental Assessment |
7-1 |
Overview |
7-1 |
|
7.1 |
Summary |
7-1 |
|
7.1.1 |
NEPA Requirements |
7-1 |
7.1.2 |
Air Permit
Requirements |
7-1 |
7.1.3 |
Wastewater Permit
Requirements |
7-2 |
7.1.4 |
Solid Waste Permit
Requirements |
7-2 |
7.2 |
Emission Levels |
7-2 |
7.3 |
Adaptability for CO2
Sequestration |
7-6 |
|
7.3.1 |
Introduction |
7-6 |
|
7.3.1.1 |
CO2
Emissions for EECP Phase I Project |
7-6 |
7.3.1.2 |
EECP Adaptability for
CO2
Sequestration |
7-6 |
7.3.2 |
Sequestration Options |
7-7 |
|
7.3.2.1 |
Membrane Contactor |
7-7 |
7.3.2.2 |
Kerr-McGee/ABB Lummus
CO2 Recovery Technology |
7-7 |
7.3.2.3 |
Mitsubishi Heavy
Industries, Ltd. Technology |
7-8 |
7.3.2.4 |
Membranes |
7-8 |
7.3.2.5 |
Carbon Fiber
Composite Molecular Sieve |
7-8 |
7.3.2.6 |
Others |
7-8 |
7.3.3 |
CO2
Sequestration |
7-9 |
|
7.3.3.1 |
Chemical Utilization
of CO2 |
7-9 |
7.3.3.2 |
Enhanced Oil Recovery |
7-9 |
7.3.3.3 |
CO2
Storage |
7-9 |
7.3.3.4 |
Advanced Concepts |
7-10 |
7.3.3.5 |
Forestation |
7-10 |
7.4 |
Water Use and
Remediation |
7-11 |
7.5 |
Solid Waste
Byproducts |
7-11 |
7.6 |
NEPA Requirements |
7-12 |
7.7 |
Permitting
Requirements |
7-13 |
|
7.7.1 |
Air |
7-13 |
7.7.2 |
Wastewater |
7-16 |
7.7.3 |
Solid Waste |
7-17 |
|
7.7.3.1 |
Non-Hazardous Wastes |
7-17 |
7.7.3.2 |
Hazardous Wastes |
7-17 |
7.8 |
Integration of
Existing Facilities with New Treatment Facilities |
7-17 |
|
7.8.1 |
Wastewater Treatment |
7-17 |
7.8.2 |
Solid Waste Disposal |
7-18 |
TASK 8 |
8.0 |
Economic Assessment |
8-1 |
Overview |
8-1 |
|
8.1 |
Feedstock Cost and
Product Price Evaluation |
8-2 |
|
8.1.1 |
Economic Parameters |
8-4 |
8.1.2 |
Economic Sensitivity
Analysis |
8-4 |
8.1.3 |
Taxes, Royalties, and
Inflation |
8-4 |
8.2 |
Cost Estimates |
8-5 |
|
8.2.1 |
Capital Estimates
Methodology |
8-5 |
8.2.2 |
Operating Costs |
8-11 |
8.2.3 |
Refinery Site
Methodology |
8-5 |
8.3 |
Role of Government
Incentives for Commercial Viability of EECP |
8-13 |
|
8.3.1 |
Tax Relief |
8-13 |
8.3.2 |
Energy Plicy Act
(EPACT) Alternate Fuels |
8-14 |
8.3.3 |
Long-Term F-T Liquids
Purchase Agreement |
8-14 |
8.3.4 |
Cost Sharing |
8-14 |