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ABSTRACT

Fischer-Tropsch synthesis is a process in which CO and H»
react to give predominantly liquid hydrocarbons. The reaction can
be considered a special type of polymerization in which the monomer
is produced in situ, and chain growth occurs by a sequence of
independently repeated additions of the monomer to the growing
chain. An investigation has been conducted to study the CO
hydrogenation reaction in order to better understand catalyst
deactivation and the elementary surface processes involved in chain
growth.

Isotopic tracers are uséd in conjunction with transient-
response techniques in this study of Fischer-Tropsch synthesis over
Ru/TiO, catalysts. Experiments are conducted at a total pressure of
1 atmosphere, reaction temperatures of 453-498 K and Do/CO (or
H2/CO) ratios of 2-5. Synthesis products are analyzed by gas
chromatography or isotope-ratio gas chromatography-mass
spectrometry.

Ru/TiO2 catalysts deactivate with no change of product

selectivity and the rate of deactivation correlates with initial



catalyst activity. Deactivation occurs at an initial rapid rate,
followed by a slower activity loss. Deactivation is accompaqied by
a loss in CO uptake and the accumulation of vario'us types of
carbonaceous species. The long-term loss of activity is attributed
to the buildup of iong chain hydrocarbon product spec_ies.

Rate constants for chain initiaiion, propagation and
termination are evaluated under steady-state reaction conditions by
using transients in isotopic composition. The activation energy tor
chain termination is much higher than that for propagation,
accounting for the observed decrease in the chain growth parameter
with increasing temperature. Coverages by reaction intermediates
are also estimated. The dominant reactive surface species are
monomeric building units, which occupy 0.2-0.6 ML. Alkyl species
that are the direct hydrocarbon product precursors occupy < 0.2 ML.
Adsorbed CO covers 0.7 ML. | |

When small amounts of 12C-labelled ethylene are added to
13CQ/H2 synthesis gas, ethylene acts as the sole chain initiator.
Ethylene-derived carbon also accounts for 45 % of the C; monomer

pool.
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