

PB234203

į,

EVALUATION OF COAL CONVERSION PROCESSES TO PROVIDE CLEAN FUELS. PART II

ELECTRIC POWER RESEARCH INST., PALO ALTO, CALIF

FEB 1974

U.S. Department of Commerce National Technical Information Service

One Source. One Search. One Solution.

Providing Permanent, Easy Access to U.S. Government Information

National Technical Information Service is the nation's largest repository and disseminator of governmentinitiated scientific, technical, engineering, and related business information. The NTIS collection includes almost 3,000,000 information products in a variety of formats: electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

Search the NTIS Database from 1990 forward

NTIS has upgraded its bibliographic database system and has made all entries since 1990 searchable on **www.ntis.gov.** You now have access to information on more than 600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites

Because many Government agencies have their most recent reports available on their own web site, we have added links directly to these reports. When available, you will see a link on the right side of the bibliographic screen.

Download Publications (1997 - Present)

NTIS can now provides the full text of reports as downloadable PDF files. This means that when an agency stops maintaining a report on the web, NTIS will offer a downloadable version. There is a nominal fee for each download for most publications.

For more information visit our website:

www.ntis.gov

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161

EVALUATION OF COAL CONVERSION PROCESSES TO PROVIDE CLEAN FUELS

٠

ĸ

Final Report

by

Donald L. Katz, Dale E. Briggs, Edward R. Lady, John E. Powers, M. Rasin Tek, Brymer Williams, Walter E. Lobo (Consultant)

Prepared Under Research Project EPRI 206-0-0 by

THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING

For

ELECTRIC POWER RESEARCH INSTITUTE

Palo Alto, California

February 1974

ABSTRACT

A review is made of six general methods of coal utilization with elimination of the sulfur prior to or during combustion in an electric power generating plant:

> Fluidized Bed Combustion Coal Beneficiation Pyrolysis Coal Gasification Coal Dissolution and Liquefaction Insitu Combustion

The processes in each category were reviewed, analyzed and evaluated keeping in mind that they would have to be potentially better than stack gas cleaning processes to be considered as a viable alternative to the electric power industry. Critical process steps, where additional research must be done before the processes can be considered at the commercial stage of development, were identified.

A total of thirty-seven processes were reviewed: five in fluidized bed combustion, one in coal beneficiation, three in pyrolysis, twenty-two in coal gasification and six in coal dissolution and liquefaction. The advantages and disadvantages of the processes were identified. Additional processes are known to exist besides those reviewed. Many of these processes were not reviewed because of the severe time restrictions of the study rather than the merits of the

ii

processes. Other processes were proprietary and not actively seeking outside funding.

ş

.

Five topics, which are important to coal utilization although not actually coal conversion or utilization processes, are included in Part III. They include discussions of combined cycle systems, economics, retrofit capabilities, thermodynamics and coal slurry pipelines. These topics give perspective to the general subject of coal use.

TABLE OF CONTENTS

	Page
TITLE PAGE	
ABSTRACT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
FOREWORD	×iii
ACKNOWLEDGMENTS	xvi
PART I - EVALUATION OF COAL UTILIZATION PROCESSES FOR CLEAN FUELS (SEPARATE VOLUME)	58 pages
PART II- CRITICAL REVIEW AND ASSESSMENT OF COAL UTILIZATION PROCESSES FOR CLEAN FUELS	
Introduction	2
Fluidized Bed Combustion	6
Review and Assessment	6
Bibliography	14
Coal Beneficiation	15
Review and Assessment	15
Process Descriptions	18
TRW's - Meyer Process	18
Bibliography	25
Pyrolysis	26
Review and Assessment	26
Process Descriptions	30
FMC - COED	30
Oil Shale Corp TOSCOAL	33
Garrett - Flash Pyrolysis	38
Bibliography	44

.

TABLE OF CONTENTS (Contd.)

ŧ

×

ø

4

.

	Page
Coal Gasification	45
Review and Assessment	45
Process Descriptions	94
Lurgi	94
Koppers-Totzek	99
Winkler	108
Bituminous Coal Research - Bi-Gas	111
Combustion Engineering	118
Foster Wheeler	126
Atomics International - Molten Salt	133
M.W. Kellogg - Molten Salt Gasifier	136
U.S. Bureau of Mines - Stirred Bed	140
Gasilication U.S. Burcau of Mines - Hydrane	144
U.S. Bureau of Mines - Synthane	147
Battelle - Ash-Agglomerating Gasifie	er 151
City College, City University N.Y Squires	160
IGT - U-GAS	172
TGT - HYGAS	177
Westinghouse - Advanced Gasifier	181
Consolidation Coal - CO, Acceptor	190
Brigham Young University - Entrained Bed Gasifier	195
Texaco - Partial Oxidation Process	198
Shell - Partial Oxidation Process	201
Bituminous Coal Research - Fluidized Bed	l 202
Applied Technology Corp ATGAS	204
Bibliography	207
Coal Dissolution and Liquefaction	213
Review and Assessment	213
Process Descriptions	254
Hydrocarbon Research, Inc H-COAL	254

TABLE OF CONTENTS (contd.)

Page

ŧ

Pittsburg & Midway Coal Mining Company - Solvent Refined Coal	262
Southern Services, Inc Solvent Refined Coal	269
Gulf R&D - Gulf Catalytic Coal Liquids	275
U.S. Bureau of Mines - Synthoil	282
Consolidation Coal Company - Consol Synthetic Fuel	289
Bibliography	294
Insitu Gasification of Coal	297
Review and Assessment	297
Bibliography	304

PART III - RELATED TOPICS IN COAL UTILIZATION

Introduction	30.6
The Combined Cycle in Relation to Coal as a Fuel	307
Economic Evaluation	319
Capability of Existing Electric Generating Units to Use Clean Fuels	343
Thermodynamic Analysis	354
Black Mesa Coal Slurry Pipelines	386
News Release on Project	390

LIST OF TABLES

,

Table

.

3

.

.

COAL BENEFICIATION

I Fuel Cost by Year, Utilities Financing Method 23 II Comparisons of Cost Estimates for Meyers Process 24

PYROLYSIS

I	TOSCO Retorting of Wyodak Coal	36
II	Composition of Big Horn, Wyoming Subbituminous Coal	40
LII	Garrett Coal Gasification Process Typical Gas Analysis at 1600°F	40
IV	Typical Tar Properties at 1600°F	43
v	Typical Char Properties at 1600°F	43

COAL GASIFICATION

I	Coal Gasification Process Reviewed	59
II	Summary Development Status of Representative Coal Gasifier Systems	62
III	Summary Review of Typical Product Compositions and Heating Values for Coal Gasifiers	64
IV	Summary of Commercial H ₂ S and Acid Gas Absorption Process	87
v	Typical K-T Gasifier Data for U.S. Coals	106
VI	Summary of Economics for Each of Three U-GAS Clean Power Plant Proposals	176
	COAL DISSOLUTION AND LIQUEFACTION	
I	Summary of Coal Dissolution Methods	220
II	Present Coal Dissolution Processes and Development Programs	221
III	Conceptual Commercial Size Coal Liquefaction Plants	223
IV	Coal Liquefaction Process Operating Conditions and Typical Products	224
V	Viscosity of a Representative Coal Slurry at Various Concentrations of Coal (7)	225

LIST OF TABLES (contd.)

ŧ

Table	COAL DISSOLUTION AND LIQUEFACTION (contd.)	Page
VI	Coal Analysis (as Received) H-Coal Study (10)	259
VII	Coal Hydrogenation Results (Wt.% of M.A.F.	260
17 T T	Coal) H-Coal Study (11)	200
V T T T	Typical Analyses of Coars	270
IX	Comparisons of Catalytic Liquefaction Runs Using Various Coals	279
Х	Hydrodesulfurization of Kentucky Coal	287
XI	Results of Hydrodesulfurization of Middle Kittanning #6 Seam Coal in Recycle Oil	288
XII	Analysis of Liquefaction Process (Foster Wheeler Case A)	293
	INSITU GASIFICATION OF COAL	
I	Typical Gas Analyses of Gas from Hanna Insitu Gasification Experiment (3)	299
II	U.S. Patent on Insitu Gasification of Coal Utilizing Non-Hypersensitive Explosives	301
THE	COMBINED CYCLE IN RELATION TO COAL AS A FUEL	
I	Thermal Efficiencies	313
	ECONOMIC EVALUATION	
I	Overall Economic Comparisons Between Solid, Liquid and Gaseous Fuel from Coal	321
	CAPABILITY OF EXISTING ELECTRIC GENERATING UNITS TO USE CLEAN FUELS	
I	Installed and Projected Electrical Generation Capacity of United States in 1000 MW	345
II	Electric Utility Boiler Conversion from Coal to Oil 1/	34 8
III	Fuel Conversion Considerations	349
	THERMODYNAMIC ANALYSIS	
I	Summary of Stream Properties	384

LIST OF FIGURES

Page Figure FLUIDIZED BED COMBUSTION 1 Schematic Flow Diagram - Fluidized Bed Boiler and SO2 Acceptor at 1 Atmosphere Pressure 7 COAL BENEFICIATION 19 1 Flow Sheet for TRW Meyer Process PYROLYSIS 31 1 . Process Flow Diagram for FMC - COED Oil Shale Corp. TOSCOAL Pyrolysis-type 2 Fuel Gas from Coal Process 34 Conceptual Schematic of Garrett Flash 3 39 Pyrolysis Process Garrett Coal Pyrolysis Process Product 4 41 Distribution COAL GASIFICATION Schematic Representation of Processing 1 Steps to Low and High Btu Gases 51 61 Classification of Coal Gasifiers 2 3 Schematic Representation of Processing Steps and Processing Requirements for Coal Gasification 66 95 4 Lurgi Fixed Bed Coal Gasifier Koppers-Totzek Single Stage Entrained 5 Slagging Gasifier 1.00 6 Winkler Coal Gasifier 109 7 Bituminous Coal Research Bi-Gas Coal 112 Gasification System 8 Conceptual Design of a Air Blown Bi-Gas 117 Process 9 Detailed Layout of the Combustion Engineering Atmospheric Pressure Coal Gasifier 119 10 Combustion Engineering Atmospheric Pressure Gasification System 121 11 Foster Wheeler Pressurized Gasifier 127 12 Flow Sheet for Molten Salt Gasifier 135

LIST O	FΕ	IGURES	(cont	d.)
--------	----	--------	-------	-----

ł

4

Figure		Page
	COAL GASIFICATION (contd.)	
13	M.W. Kellogg Company Molten Salt Coal	177
.	Gasification Process	137
14	U.S. Bureau of Mines Stirred-Bed Gasifier	141
15	U.S. Bureau of Mines - Hydrane Process for Coal Gasification	145
16	U.S. Bureau of Mines - Synthane Coal Gasi- fication Process	148
17	Battelle Memorial Institute - Self-Agglomera- ting Gasification Process	152
18	The Effect of Temperature and Bed Depth and Gas Velocity on Ash Collection Efficiency	153
19	Combustion Efficiency as a Function of Tempera- ture in the Fluidized Bed Coal Burner	154
20	Stability of the Self-Agglomerating Fluidized Bed Coal Burner as a Function of Temperature and Gas Velocity	155
21	Block Diagram of Battelle Coal Gasification PEDU	158
22	The Mark I Coal Gasifier	162
23	The Mark II Coal Gasifier	165
24	Schematic of a Panel Bed Filter	169
25	Institute of Gas Technology Ash-Agglomerating Gasifier	173
26	Institute of Gas Technology HYGAS Coal . Gasifier	178
27	Westinghouse Multistage Fluidized Bed Process for the Total Gasification of Coal with Desulfurization for an Electric Power Plant	183
28	Consolidation Coal Co., Inc. CO ₂ Acceptor Coal Gasification Process as Originally Built	191
29	Texaco Partial Oxidation Coal Gasification Process	199
30	Bituminous Coal Research, Inc. Fluidized Bed Gasifier System	203
31	Applied Technology Corporation Two Step Gasification System	205

LIST OF FIGURES (contd.)

•

٠

ł

٠

,

٠

ä

	LIST OF FIGURES (CONCA.)	Page
Figure	CONT. DISCOTHUTON AND LIGHTSACTION	
	COAD DISSOLUTION AND DIQUERACIION	
l	Classification of Coal Dissolution and Liquefaction Process	214
2	Processing Steps in Coal Dissolution and Liquefaction	226
3	Viscosity Values for Fine Coal Particles in Oil and Water (19)	230
4	Viscosity Peaks from Bath Extraction of Kentucky No. 11 Coal (19)	232
5	H-Coal Process for Fuel Oil Production Devolatilization Plant	255
6	Pittsburg and Midway Coal Mining Company Solvent Refined Coal Process - SRC	263
7	ParsonsPAMCO Hybrid Demonstration Plant Schematic Flow Sheet	268
8	Schematic Flow Sheet of the Southern Services, Inc. Pilot Plant	270
9	Gulf R&D Catalytic Coal Liquids Process	276
10	Process Material Balance for Bituminous and Subbituminous Coals	280
11	Schematic Drawing of the U.S. Bureau of Mines Synthoil Process Unit	283
12	Consolidation Coal Company - CONSOL Synthetic Fuel (SCF) Proce ss	290
	INSITU GASIFICATION OF COAL	
1.	Section of Insitu Gasification Experiment, Hanna, Wyoming (3)	<u>298</u>
TI	HE COMBINED CYCLE IN RELATION TO COAL AS A FUEL	
1	Progression of Gas Turbine and Compressor Technology	311
	CAPABILITY OF EXISTING ELECTRIC GENERATING UNITS TO USE CLEAN FUELS	
1	Major Geographic Divisions of the United States	346
	THERMODYNAMIC ANALYSIS	
1	Generalized Power Generating Station	356
2a	Actual Process to Generate Electric Power	366
2b	Idealized Process to Generate Electric Power	366

4 **5** -**L**

LIST OF FIGURES (contd.)

Figure

Page

٠

	THERMODYNAMIC ANALYSIS (contd.)	
3	Schematic of Process Used to Illustrate the Calculation of the Thermodynamic Efficiency	37 3
	BLACK MESA COAL SLURRY PIPELINES	

1Schematic Flow Sheet for Coal PreparationPlant of Black Mesa Pipeline Company388

FOREWORD

The Task Force on Coal Utilization of the Electric Power Research Institute approached The University in March 1973 to assess the various processes which convert coal to clean fuels or utilize coal in environmentally acceptable ways for electric power generation. A preliminary proposal was submitted to Mr. Larry Simpkin on March 30, 1973 suggesting a 14-month study. After review and discussion, we were advised that EPRI's need was for a study to be completed by January 1974. Accordingly, the final proposal submitted on June 6, 1973, was for one-half the time and budget originally suggested.

ş

The University of Michigan Team received oral reports on the stages of approval of the proposal and started preliminary studies on July 16, 1973. The Board of Directors of EPRI approved the proposal on August 15, 1973. The final contract agreement was signed by EPRI on October 24, 1973 and by The University on November 13, 1973. A news release, approved by EPRI, was issued by the University on August 24, 1973 and is given on page 390.

The seven-month study was very intensive; members of the team had teaching responsibilities for a substantial fraction of their time during the study in addition to the project work.

xiii

The results of the study of coal conversion processes were divided into two volumes: Part I and Parts II and III. In this way, the recommendations for support to the Electric Power Research Institute (Part I) are separate from the critical review and assessment of the coal utilization processes being developed in the nation (Part II).

Part I was prepared specifically to assist the Electric Power Research Institute management in the preparation of a long term research program in coal utilization on behalf of the electric power industry. Part I contains the choices and recommendations for research support by EPRI. Those processes which seem to have the best prerequisites for providing clean fuels from coal at the earliest dates were delineated. The bases for and the reasoning behind the choices are given.

Part II contains the process descriptions and general evaluations of some thirty-seven processes which are reviewed. The team of investigators reviewed and studied reports and research proposals for the processes. Personal visits were made to the organizations carrying out the research and development and to the sites where the experiments are being conducted at bench, process equipment development unit and pilot plant stages. The organizations were very cooperative in providing information and generous with their time in answering our questions. Several organizations provided further supporting information requested by telephone or letter after our visits.

xiv

The description of the processes is intended to give members of the electrical utility industry an overall understanding of processes and is not intended to transfer detailed technical knowledge in a thorough manner. References are cited for the more complete descriptions available to the team. It is from those references that the information given has been extracted. The understanding developed by the team and documented in Parts II and III of this report provided the basis for the evaluation rendered in Part I.

Part III contains several topics which are important to coal utilization although not actually coal conversion or utilization processes. These topics were added to give greater perspective to the general subject of coal use.

The authors for the several process descriptions or sections are listed. Dr. D.E. Briggs managed and edited the final report.

> Donald L. Katz February 1973

xv

ACKNOWLEDGMENTS

We acknowledge the time and thoughtful comments freely given by the many individuals in the organizations visited during this project. We appreciate their help sincerely.

.

We were assisted in this work by the following graduate students in chemical engineering:

Michael W. Britton Andre W. Furtado David E. Hammer Gerald D. Holder J. Andrew Stirling Edward E. Timm

We hope their experience has been as interesting as ours.