1. |
Introduction, Scope
and Approach |
1 |
1.1 |
Synthesis Gas
Reactions |
1 |
1.2 |
Oxygenates |
4 |
1.3 |
Scope |
8 |
1.4 |
Approach and
Structure-Activity
Relationships |
8 |
1.5 |
Organization of
Dissertation |
14 |
References |
19 |
2. |
Background |
20 |
2.1 |
Oxygenates |
20 |
2.1.1 |
Manufacture |
20 |
2.1.1.1. |
Modified
Fischer-Tropsch |
20 |
2.1.1.2. |
Iso-Synthesis |
20 |
2.1.1.3. |
Homologation |
21 |
2.1.1.4. |
Co-Production with
MeOH |
21 |
2.1.1.5. |
Modified Rh
Catalysts-Based
Processes |
23 |
2.1.2 |
Uses |
24 |
2.2 |
CO
Hydrogenation |
24 |
2.2.1. |
Reaction Pathway |
24 |
2.2.2. |
Effect of Support
and Modifiers |
28 |
2.2.3. |
Effect of Metal
Percursor |
28 |
2.2.4. |
Role
of Additives in
CO-Hydrogenation |
32 |
2.2.5. |
Effect of Alkali
Modifier |
32 |
2.2.6. |
Role
of Alkali Modifier |
36 |
2.2.7. |
Effect of MO
Modifier |
40 |
2.3. |
Catalysts
Preparation: Effect
of pH |
48 |
2.4. |
Characterization |
50 |
2.4.1. |
Ion-Scattering
Spectroscopy (ISS) |
50 |
2.4.1.1. |
Problems with ISS on
Particulates |
52 |
2.4.1.2. |
Previous Work on
Catalysts |
53 |
2.4.2. |
Transmission
Electron Microscopy |
55 |
2.4.2.1. |
Sample Preparation |
56 |
2.4.2.2. |
Operation of the
Microscope |
57 |
2.4.2.3. |
Analysis and
Interpretation of
Images |
57 |
2.4.2.4. |
Techniques for
Bimetallic Catalysts |
60 |
2.4.3. |
Nuclear Magnetic
Resonance
Spectroscopy |
61 |
2.4.3.1. |
Previous Work on
Adsorbed 13CO |
63 |
2.4.4. |
X-Ray
Photoelectron
Spectroscopy |
72 |
2.4.4.1. |
Charge Correction
with Insulating
Materials |
72 |
2.4.4.2. |
Oxidation State of
Molybdenum |
74 |
2.4.4.3. |
Quantitative XPS on
Supported Catalysts |
75 |
2.4.5. |
Infrared
Spectroscopy |
78 |
2.4.6. |
Electron Spin
Resonance
Spectroscopy |
80 |
References |
82 |
3. |
The
Delplot Technique: A
New and Simple
Method for Reaction
Pathway Analyses |
95 |
3.1. |
Introduction |
95 |
3.1.1. |
Introduction |
95 |
3.1.2. |
Rank
of a Product |
99 |
3.1.3. |
Time
Scales |
102 |
3.1.4. |
Rate-Limiting Steps |
103 |
3.1.5. |
Overview |
104 |
3.2. |
Basic
Delplot: Products
of Primary Rank |
105 |
3.2.1. |
Development |
105 |
3.2.2. |
Rules
for Basic Delplot |
108 |
3.3. |
Extended Delplot |
111 |
3.3.1. |
Development |
111 |
3.3.1.1. |
First
Order Reactions |
112 |
3.3.1.2. |
Non-First Order
Kinetics |
115 |
3.3.1.3. |
Characteristics of
Delplot Intercepts |
116 |
3.3.1.4. |
Series-Parallel
Reactions:
Effective Order of
Reaction |
116 |
3.3.2. |
Rules
for Extended Delplot |
119 |
3.3.3. |
Effective Rank of
Product |
120 |
3.3.3.1. |
Definition |
120 |
3.3.3.2. |
Derivation of
Effective Product
Rank Equation (EPRE) |
121 |
3.3.3.3. |
Application of EPRE |
124 |
3.4. |
Application to
Fischer-Tropsch
Synthesis and
Oxygenate Synthesis
Reaction Networks |
125 |
3.5. |
Miscellaneous
Delplots |
129 |
3.5.1. |
Non-Integer Rank
Delplot |
129 |
3.5.2. |
Product-Based
Delplot |
131 |
3.6. |
Identification of
Reaction Steps |
134 |
3.6.1. |
Introduction |
134 |
3.6.2. |
Example |
135 |
3.6.3. |
Overall Scheme |
140 |
3.7. |
Separation of
Regimes |
140 |
3.7.1. |
Order
of Magnitude
Analysis |
140 |
3.7.2. |
Singular
Perturbation
Analysis |
145 |
3.8. |
Conclusions |
150 |
References |
152 |
4 |
Equipment and
Experimental Methods |
154 |
4.1. |
Flow
Microreactor |
154 |
4.2. |
Test
Reactions |
158 |
4.3. |
Analytical System |
160 |
4.4. |
Static Chemisorption |
160 |
4.5. |
Flow
Chemisorption |
161 |
4.6. |
X-Ray
Diffraction |
161 |
4.7. |
X-Ray
Fluorescence
Spectroscopy |
161 |
|
4.7.1. |
Calibration |
163 |
|
4.7.2. |
Effect of Particle
Size on the
Selection of
Standards |
163 |
4.8. |
X-Ray
Photoelectron
Spectroscopy |
164 |
4.9. |
Temperature
Programmed Methods |
167 |
4.10. |
Electron Spin
Resonance
Spectroscopy |
169 |
4.11. |
Ion-Scattering
Spectroscopy |
170 |
4.12. |
Transmission
Electron Microscopy
and EDX |
170 |
4.13. |
Solid-State NMR
Spectroscopy |
170 |
4.14. |
Low
Pressure IR |
171 |
References
|
174 |
5 |
The
Effect of Support,
Modifiers and
Catalyst Precursor
in CO Hydrogenation |
175 |
5.1 |
Introduction |
175 |
5.2 |
Catalysts
Preparation |
175 |
5.3 |
Results and
Discussions |
178 |
5.3.1. |
Rhodium Precursor |
178 |
5.3.2. |
Support |
182 |
5.3.3. |
Modifiers |
184 |
5.3.3.1. |
Rh/Al2O3 |
184 |
5.3.3.2. |
Rh/SiO2 |
188 |
5.3.3.3. |
Rh/TiO2 |
192 |
5.3.3.4. |
Rh/Florisil |
197 |
5.3.4. |
Alloying with Pd |
198 |
5.3.5. |
Modification by
Sodium |
198 |
|
5.3.6 |
Modification by
Molybdena |
201 |
5.4. |
Conclusions |
203 |
References |
206 |
6 |
Performance of
Sodium Modified
Rhodium/Alumina
Catalysts |
207 |
6.1. |
Catalysts
Preparation |
207 |
6.2. |
CO
Hydrogenation |
208 |
6.2.1. |
Activity |
208 |
6.2.2. |
Product Distribution |
209 |
6.2.3. |
Effect of Catalysts
Pretreatment |
215 |
6.2.4. |
Selectivity and
Productivity |
218 |
6.3. |
Transport
Limitations |
219 |
6.4. |
Basic
Delplot Analysis |
219 |
6.5. |
Extended Delplot
Analysis |
233 |
6.6. |
Conclusions |
234 |
References |
238 |
7 |
Characterization of
Sodium Modified
Rhodium/Alumina
Catalysts |
239 |
7.1. |
Hydrogen
Chemisorption |
239 |
7.2. |
X-Ray
Diffraction |
242 |
7.3. |
Infrared
Spectroscopy |
243 |
7.3.1. |
Stability of
Adsorbed CO Species |
247 |
7.3.2. |
Effect of
Temperature |
247 |
7.3.3. |
Effect of Reaction |
250 |
7.4. |
X-Ray
Photoelectron
Spectroscopy |
250 |
7.4.1. |
Chemical State of
Rhodium |
253 |
7.4.2. |
Chemical State of
Sodium |
255 |
7.4.3. |
Silanization Studies |
257 |
7.4.4. |
Photoelectronic
Responses |
259 |
7.5. |
Temperature
Programmed Methods |
266 |
7.5.1. |
Effect of Sodium on
the Reducibility of
Rhodium |
166 |
7.5.2. |
Effect of Sodium on
Hydrogen Adsorption
in Rh-Na/Al2O3 |
272 |
7.6. |
Discussion |
272 |
7.6.1. |
Reactivity |
272 |
7.6.2. |
Location of Sodium
Modifier |
274 |
7.6.3. |
Chemical State of Rh
and Na |
275 |
7.6.4. |
Formation of Mixed
Oxide |
276 |
7.6.5. |
Ensemble Requirement |
276 |
7.7. |
Conclusions |
277 |
References |
278 |
8 |
Performance of
Molybdena Modified
Rhodium/Alumina
Catalysts |
280 |
8.1. |
Catalyst Preparation |
280 |
8.2. |
Performance Testing
Results |
282 |
8.2.1. |
Overall Activity and
Selectivity |
282 |
8.2.2. |
Product Distribution |
284 |
8.2.3. |
Approach to Steady
State |
288 |
8.3. |
Transport
Limitations |
291 |
8.4. |
Delplot Analysis |
291 |
8.4.1. |
Basic
Delplot Analysis |
293 |
8.4.2. |
Separation of
Regimes |
300 |
8.4.3. |
Nature of Reaction
Steps |
302 |
8.5. |
Power
Law Fit |
302 |
8.6. |
Activation Energies |
303 |
8.7. |
Ethylene
Hydrogenation |
308 |
8.8. |
Conclusions |
311 |
References |
313 |
9 |
Characterization of
Molybdena Modified
Rhodium/Alumina
Catalysts |
314 |
9.1. |
X-Ray
Fluorescence
Spectroscopy |
314 |
9.2. |
CO
Chemisorption |
315 |
9.3. |
X-Ray
Diffraction |
317 |
9.4. |
Transmission
Electron Microscopy
and Energy
Dispersive X-Ray
Analysis |
322 |
9.4.1. |
Bright Field Images |
322 |
9.4.2. |
Energy Dispersive
X-Ray Analysis |
327 |
9.5. |
In-Situ Infrared
Spectroscopy |
327 |
9.6. |
X-Ray
Photoelectron
Spectroscopy |
331 |
9.6.1. |
Binding Energies |
331 |
9.6.2. |
Relative
Photoelectronic
Response |
333 |
|
9.6.3. |
Estimation of
Particle Size |
337 |
9.6.4. |
Effect of pH of the
Solution on
Molybdena
Aggregation |
341 |
9.7. |
Electron Spin
Resonance
Spectroscopy |
342 |
9.8. |
Ion-Scattering
Spectroscopy |
346 |
9.9. |
Solid-State Nuclear
Magnetic Resonance
Spectroscopy |
352 |
9.9.1. |
Chemical Shifts |
352 |
9.9.2. |
Calculations |
355 |
9.10. |
Discussions |
358 |
9.11. |
Conclusions |
371 |
References |
372 |
10 |
Overall Conclusions
and Recommendations |
376 |
10.1. |
Overall Conclusions |
376 |
10.2. |
Recommendations for
Future Work |
380 |
Appendix |
|
A |
Calculations of
Possible Transport
Limitations |
382 |
A.1 |
Mass
Transfer |
382 |
A.1.1. |
Axial
Dispersion |
382 |
A.1.2. |
Intraparticle Mass
Transfer |
385 |
A.1.3. |
Fluid
to Particle Mass
Transfer |
385 |
A.2 |
Heat
Transfer |
387 |
A.2.1. |
Fluid
to Particle Heat
Transfer |
389 |
A.2.2. |
Intraparticle
Gradients |
390 |
References |
392 |
B |
Salient Features of
the Theory of
Relaxation of
Nuclear Spins |
393 |
B.1. |
Randomly Fluctuating
Magnetic Field |
393 |
B.2. |
Scalar Coupling of
Spins |
397 |
References |
400 |