Return to DOE Report Table of Contents

Return to Trifunctional Catalysts for Conversion to Syngas to Alcohols - 1985 to 1986 Table of Contents

Modifiers in Rhodium Catalysts for Carbon Monoxide Hydrogenation: 
Structivity Relationships -
May 1989

Bhore, Nazeer Ahmed

Delaware University

Part 1, Pages 1 -125, 5.14MB.pdf

Part 2, Pages 126 - 275, 4.72MB.pdf

Part 3, Pages 276 - 400, 3.76MB.pdf

Table of Contents

1.

Introduction, Scope and Approach

1

1.1

Synthesis Gas Reactions

1

1.2

Oxygenates

4

1.3

Scope

8

1.4

Approach and Structure-Activity Relationships

8

1.5

Organization of Dissertation

14

References

19

2.

Background

20

2.1

Oxygenates

20

2.1.1

Manufacture

20

2.1.1.1.

Modified Fischer-Tropsch

20

2.1.1.2.

Iso-Synthesis

20

2.1.1.3.

Homologation

21

2.1.1.4.

Co-Production with MeOH

21

2.1.1.5.

Modified Rh Catalysts-Based Processes

23

2.1.2

Uses

24

2.2

CO Hydrogenation

24

2.2.1.

Reaction Pathway

24

2.2.2.

Effect of Support and Modifiers

28

2.2.3.

Effect of Metal Percursor

28

2.2.4.

Role of Additives in CO-Hydrogenation

32

2.2.5.

Effect of Alkali Modifier

32

2.2.6.

Role of Alkali Modifier

36

2.2.7.

Effect of MO Modifier

40

2.3.

Catalysts Preparation:  Effect of pH

48

2.4.

Characterization

50

2.4.1.

Ion-Scattering Spectroscopy (ISS)

50

2.4.1.1.

Problems with ISS on Particulates

52

2.4.1.2.

Previous Work on Catalysts

53

2.4.2.

Transmission Electron Microscopy

55

2.4.2.1.

Sample Preparation

56

2.4.2.2.

Operation of the Microscope

57

2.4.2.3.

Analysis and Interpretation of Images

57

2.4.2.4.

Techniques for Bimetallic Catalysts

60

2.4.3.

Nuclear Magnetic Resonance Spectroscopy

61

2.4.3.1.

Previous Work on Adsorbed 13CO

63

2.4.4.

X-Ray Photoelectron Spectroscopy

72

2.4.4.1.

Charge Correction with Insulating Materials

72

2.4.4.2.

Oxidation State of Molybdenum

74

2.4.4.3.

Quantitative XPS on Supported Catalysts

75

2.4.5.

Infrared Spectroscopy

78

2.4.6.

Electron Spin Resonance Spectroscopy

80

References

82

3.

The Delplot Technique: A New and Simple Method for Reaction Pathway Analyses

95

3.1.

Introduction

95

3.1.1.

Introduction

95

3.1.2.

Rank of a Product

99

3.1.3.

Time Scales

102

3.1.4.

Rate-Limiting Steps

103

3.1.5.

Overview

104

3.2.

Basic Delplot:  Products of Primary Rank

105

3.2.1.

Development

105

3.2.2.

Rules for Basic Delplot

108

3.3.

Extended Delplot

111

3.3.1.

Development

111

3.3.1.1.

First Order Reactions

112

3.3.1.2.

Non-First Order Kinetics

115

3.3.1.3.

Characteristics of Delplot Intercepts

116

3.3.1.4.

Series-Parallel Reactions:  Effective Order of Reaction

116

3.3.2.

Rules for Extended Delplot

119

3.3.3.

Effective Rank of Product

120

3.3.3.1.

Definition

120

3.3.3.2.

Derivation of Effective Product Rank Equation (EPRE)

121

3.3.3.3.

Application of EPRE

124

3.4.

Application to Fischer-Tropsch Synthesis and Oxygenate Synthesis Reaction Networks

125

3.5.

Miscellaneous Delplots

129

3.5.1.

Non-Integer Rank Delplot

129

3.5.2.

Product-Based Delplot

131

3.6.

Identification of Reaction Steps

134

3.6.1.

Introduction

134

3.6.2.

Example

135

3.6.3.

Overall Scheme

140

3.7.

Separation of Regimes

140

3.7.1.

Order of Magnitude Analysis

140

3.7.2.

Singular Perturbation Analysis

145

3.8.

Conclusions

150

References

152

4

Equipment and Experimental Methods

154

4.1.

Flow Microreactor

154

4.2.

Test Reactions

158

4.3.

Analytical System

160

4.4.

Static Chemisorption

160

4.5.

Flow Chemisorption

161

4.6.

X-Ray Diffraction

161

4.7.

X-Ray Fluorescence Spectroscopy

161

 

4.7.1.

Calibration

163

 

4.7.2.

Effect of Particle Size on the Selection of Standards

163

4.8.

X-Ray Photoelectron Spectroscopy

164

4.9.

Temperature Programmed Methods

167

4.10.

Electron Spin Resonance Spectroscopy

169

4.11.

Ion-Scattering Spectroscopy

170

4.12.

Transmission Electron Microscopy and EDX

170

4.13.

Solid-State NMR Spectroscopy

170

4.14.

Low Pressure IR

171

References                         

174

5

The Effect of Support, Modifiers and Catalyst Precursor in CO Hydrogenation

175

5.1

Introduction

175

5.2

Catalysts Preparation

175

5.3

Results and Discussions

178

5.3.1.

Rhodium Precursor

178

5.3.2.

Support

182

5.3.3.

Modifiers

184

5.3.3.1.

Rh/Al2O3

184

5.3.3.2.

Rh/SiO2

188

5.3.3.3.

Rh/TiO2

192

5.3.3.4.

Rh/Florisil

197

5.3.4.

Alloying with Pd

198

5.3.5.

Modification by Sodium

198

 

5.3.6

Modification by Molybdena

201

5.4.

Conclusions

203

References

206

6

Performance of Sodium Modified Rhodium/Alumina Catalysts

207

6.1.

Catalysts Preparation

207

6.2.

CO Hydrogenation

208

6.2.1.

Activity

208

6.2.2.

Product Distribution

209

6.2.3.

Effect of Catalysts Pretreatment

215

6.2.4.

Selectivity and Productivity

218

6.3.

Transport Limitations

219

6.4.

Basic Delplot Analysis

219

6.5.

Extended Delplot Analysis

233

6.6.

Conclusions

234

References

238

7

Characterization of Sodium Modified Rhodium/Alumina Catalysts

239

7.1.

Hydrogen Chemisorption

239

7.2.

X-Ray Diffraction

242

7.3.

Infrared Spectroscopy

243

7.3.1.

Stability of Adsorbed CO Species

247

7.3.2.

Effect of Temperature

247

7.3.3.

Effect of Reaction

250

7.4.

X-Ray Photoelectron Spectroscopy

250

7.4.1.

Chemical State of Rhodium

253

7.4.2.

Chemical State of Sodium

255

7.4.3.

Silanization Studies

257

7.4.4.

Photoelectronic Responses

259

7.5.

Temperature Programmed Methods

266

7.5.1.

Effect of Sodium on the Reducibility of Rhodium

166

7.5.2.

Effect of Sodium on Hydrogen Adsorption in Rh-Na/Al2O3

272

7.6.

Discussion

272

7.6.1.

Reactivity

272

7.6.2.

Location of Sodium Modifier

274

7.6.3.

Chemical State of Rh and Na

275

7.6.4.

Formation of Mixed Oxide

276

7.6.5.

Ensemble Requirement

276

7.7.

Conclusions

277

References

278

8

Performance of Molybdena Modified Rhodium/Alumina Catalysts

280

8.1.

Catalyst Preparation

280

8.2.

Performance Testing Results

282

8.2.1.

Overall Activity and Selectivity

282

8.2.2.

Product Distribution

284

8.2.3.

Approach to Steady State

288

8.3.

Transport Limitations

291

8.4.

Delplot Analysis

291

8.4.1.

Basic Delplot Analysis

293

8.4.2.

Separation of Regimes

300

8.4.3.

Nature of Reaction Steps

302

8.5.

Power Law Fit

302

8.6.

Activation Energies

303

8.7.

Ethylene Hydrogenation

308

8.8.

Conclusions

311

References

313

9

Characterization of Molybdena Modified Rhodium/Alumina Catalysts

314

9.1.

X-Ray Fluorescence Spectroscopy

314

9.2.

CO Chemisorption

315

9.3.

X-Ray Diffraction

317

9.4.

Transmission Electron Microscopy and Energy Dispersive X-Ray Analysis

322

9.4.1.

Bright Field Images

322

9.4.2.

Energy Dispersive X-Ray Analysis

327

9.5.

In-Situ Infrared Spectroscopy

327

9.6.

X-Ray Photoelectron Spectroscopy

331

9.6.1.

Binding Energies

331

9.6.2.

Relative Photoelectronic Response

333

 

9.6.3.

Estimation of Particle Size

337

9.6.4.

Effect of pH of the Solution on Molybdena Aggregation

341

9.7.

Electron Spin Resonance Spectroscopy

342

9.8.

Ion-Scattering Spectroscopy

346

9.9.

Solid-State Nuclear Magnetic Resonance Spectroscopy

352

9.9.1.

Chemical Shifts

352

9.9.2.

Calculations

355

9.10.

Discussions

358

9.11.

Conclusions

371

References

372

10

Overall Conclusions and Recommendations

376

10.1.

Overall Conclusions

376

10.2.

Recommendations for Future Work

380

Appendix

 

A

Calculations of Possible Transport Limitations

382

A.1

Mass Transfer

382

A.1.1.

Axial Dispersion

382

A.1.2.

Intraparticle Mass Transfer

385

A.1.3.

Fluid to Particle Mass Transfer

385

A.2

Heat Transfer

387

A.2.1.

Fluid to Particle Heat Transfer

389

A.2.2.

Intraparticle Gradients

390

References

392

B

Salient Features of the Theory of Relaxation of Nuclear Spins

393

B.1.

Randomly Fluctuating Magnetic Field

393

B.2.

Scalar Coupling of Spins

397

References

400