SECTION 3. SURVEY AND REVIEW OF CURRENT GASIFICATION TECHNOLOGY AND PRACTICE

The data and information collected during the review of the current "state of the art" include material obtained from the literature, through field interviews, and developed on the project.

A. Literature Search

A search of the literature pertinent to coal gasification research and development was made with emphasis being placed on the literature which has appeared since the publication of the excellent review of coal gasification by C. G. von Fredersdorff and M. A. Elliott.(1)

The purpose of the literature search was to compile a permanent record and to make available the published information in the following areas:

- 1. Current gasification practice and technology
- 2. Areas of gasification research which have been or are being investigated
- 3. Economic data related to various processes

1. Library Procedure: The literature was and still is being read, abstracted, and indexed as part of a continuing activity of the overall program. Whenever possible, copies of documents are obtained and placed in a permanent file where they are readily available for reference.

Index cards being prepared for filing contain the following information:

- 1. File number
- 2. Key phrases for subject identification
- 3. Authors' names and business affiliations
- 4. Title
- 5. Source
- 6. Brief abstract

The basic subject index which will be expanded as work progresses is based on the BCR library subject index. The assigned category number for gasification is 530. The following basic subject breakdown is used:

530.000	Gasification - General
530.100	Gasification - Theoretical
530.200	Characteristics and reactions of gases
531.000	Gasification processes
531.100	Atmospheric pressure
531.200	Elevated pressure
531.300	Underground gasification

⁽¹⁾ von Fredersdorff, C. G. and Elliott, M. A., "Chemistry of Coal Utilization, Supplementary Volume," Lowry, H. H., ed., New York: John Wiley and Sons, Inc., 1963. pp 892-1022.

532.000 532.100 532.200 532.300	Gasification auxiliaries Coal preparation Oxygen production Gas purification
532.400 532.500 532.600	Tar separation Methane synthesis Offsite facilities
532.700 532.800 532.900	Hydrogen production Auxiliary equipment Instrumentation
533.000	Gasification - Economics
534.000	Production of liquid fuel
535.000	Hydrogenation
536.000	Carbonization

2. Progress Achieved: The principal abstract journals have been examined for the period 1959 through 1964. They include the following:

Chemical Abstracts Fuel Abstracts and Current Titles Gas Abstracts BCURA Monthly Bulletin, Abstract Section Applied Science and Technology Engineering Index

Where possible, articles referred to in these journals have been read and, when of sufficient value to the research group, copies have been obtained for ready reference in the library. Abstracts of some 250 papers form the basis for the annotated bibliography which is included as Appendix 3.1.

A large number of articles have been identified but have not been completely reviewed. Often the title gives sufficient indication of the material contained in an article; such items are included with this report as additional references; the author, title, and source of some 300 such papers are listed in Appendix 3.2. In many cases, some additional information about these papers is available to the project staff, however, final abstracts have not yet been prepared.

Many articles published prior to 1959 have been obtained and indexed for use by the project staff. These were selected on the basis of their direct application to areas of interest in relation to the processes being examined in depth. In most cases, they are already included in other collections of references and therefore, have not been included in either of the accompanying lists of references.

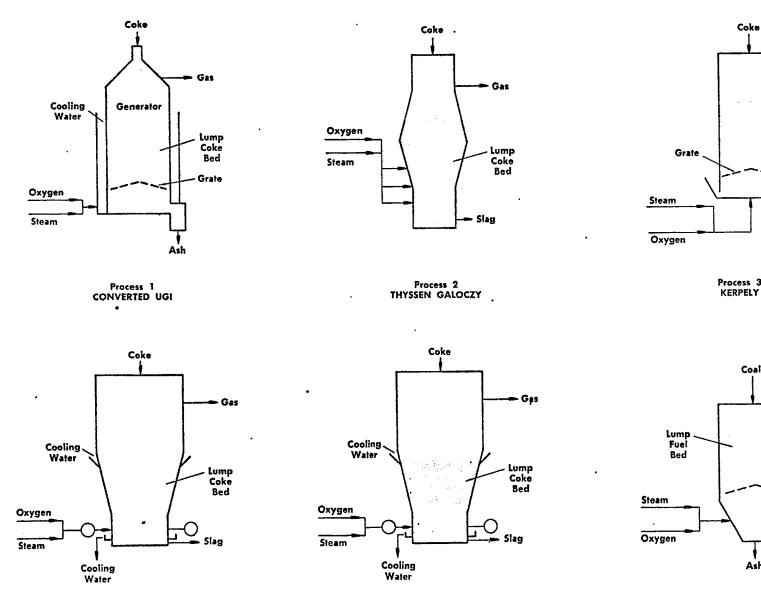
A substantial amount of work has been done in other countries and publication of this work has been in French, German, and Russian. Wherever possible, translations of these articles have been obtained from the U.S. Bureau of Mines,

Section 3

the U.S. Office of Technical Services, the National Coal Board of England, the Commonwealth Scientific and Industrial Research Organization of Australia, and other reliable sources. French and German papers for which translations are not available have been read in the original. Two German papers of immediate interest to the project staff have been translated.(2) Copies of these translations are available from the ECR library at nominal cost of reproduction to interested parties.

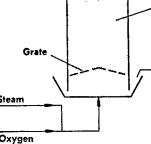
B. Field Interviews

Field trips and field interviews with organizations in the United States and Europe were made to supplement and update information available from the published literature.


In the United States, the organizations included the United States Bureau of Mines, Illinois Institute of Gas Technology, and Battelle Memorial Institute, together with 10 industrial organizations; in England these included The Ministry of Power, The Gas Council, The Central Electricity Generating Board, The National Coal Board, together with the British Coal Utilisation Research Association and four industrial organizations; and in Germany, Bergbau-Forschung and nine industrial organizations. Also, seven additional contacts were made by mail with organizations in France, Netherlands, Austria, and England. The names and locations of the various organizations are listed in Appendix 3.3. Trip reports covering the visits with the various European organizations have appeared in the regular monthly progress reports. A summary of the European survey trip is given in Appendix 3.4.

C. Processes Reviewed

Data and information on all processes proposed for consideration were compiled for ready reference and future use. A summary of the processes considered is presented in Table 3-1. More complete information on these processes is included in Appendix 3.5.


(2) Sabel, F., "Synthesis gas manufacture in a flame of free oxygen," Erdoel Kohle-Erdgas-Petrochemie <u>17</u> (8), 621-5 (1964).

Danulat, F., "Interactions between gas and fuel in pressure gasification," Gas-Wasserfach <u>85</u>, 557-62 (1942).

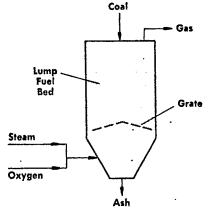
Process 4 LEUNA SLAGGING

Process 5 LEUNA-BASE SLAGGING Process 6 WELLMAN-GALUSHA

.

.

.


Gas

Lump Coke Bed

1

Ash

Process 3 KERPELY

8.

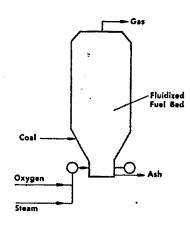
ø

Process No.	I. Commercial Syn- thesis Gas Processes Using Oxygen and Coke	Contact Method	Pressure	Process Characteristics	Reactor Description	Reactor Diagram	Plant Description	Flow Diagram	Specific Performance	Material Balance	Heat Balance	Fuel Analysis	Gas Analysis	Reagent Cost
1.	UGI Converted	Fx	A	S	S	ន	N	'N	S	S	I	I	I	S
2	Thyssen Galoczy	Fx	A	ន	S	S	ន	ន	S	ន	ន	I	ន	S
3	Kerpely	Fx	A	ຮ	ន	S	ន	S	ន	ន	ន	I	S	s
4	Leuna	Fx	A	ន	ន	S	N	N	S	ន	I	I	ន	s
5	BASF-Leuna	Fx	A	ន	ន	ន	ន	ន	ន	ន	I	N	ន	s
6	Wellman-Galusha	Fx	A	S	ន	۰s	ន	S	S	ន	S	S	ន	S

TABLE 3-1. SUMMARY OF AVAILABLE DATA ON COMMERCIAL AND PILOT-SCALE GASIFICATION PROCESSES

Fx = Fixed Bed

Fl = Fluidized Bed


A = AtmosphericE = Elevated

S = Data Satisfactory I = Data Incomplete N = No Data

ļ

- En = Entrained

Process 7 BAMAG-WINKLER ATMOSPHERIC

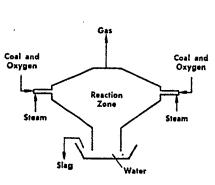
Coal from Lock Hopper

Lump Fuel

Bed

Steam

Oxygen


.

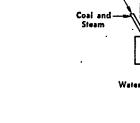
Gas

Grate

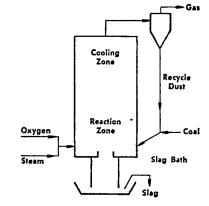
L

w

Process & KOPPERS-TOTZEK

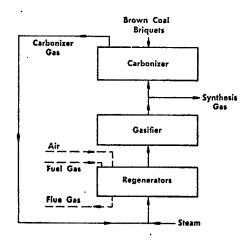

Coal

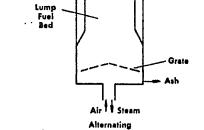
- Product


Blast

Gas

Gas


Oxygen -



¥

.

Process 9 B & W DuPONT

Ash

Process 12 GAS INTEGRALE

Process 13 PINTSCH HILLEBRAND

Process 10 RUMMEL SINGLE-SHAFT

Slag

- Gas

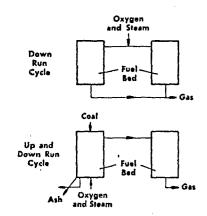
Process No.	I. Commercial Syn- thesis Gas Processes Using Oxygen and Coal	Contact Method	Pressure	Process Characteristics	Reactor Description	Reactor Diagram	Plant Description	Flow Diagram	Specific Performance	Material Balance	Heat Balance	Fuel Analysis	Gas Analysis	Reagent Cost	a manufacture of the second
7	Bamag-Winkler Atmospheric	Fl	A	ទ	S	S	S	S	S	S	S	S	S	S	
8	Koppers-Totze ¹⁻	En	A	ន	S	S	s	S	S	S	s	s	s	S	
9	B & W-DuPont	En	A	S	S	S	N	N	S	S	S	I	S	S	
10	Rummel Single-shaft	En	A	S	S	S	S	S	S	S	S	I	ຮ່	S	
11	Lurgi Dry-ash	Fx	E	ន	ຮ່	S	S	S	S	S	I	I	S	s	
12	Using Air and Coal Gas Integrale	Fx	A	S	S	S	S	S	I	S	S	I	S	S	
13	Pintsch Hillebrand	Fx	Е	I	S	S	S	S	S	S	I	I	S	I	

TABLE 3-1. SUMMARY OF AVAILABLE DATA ON COMMERCIAL AND PILOT-SCALE GASIFICATION PROCESSES (Continued)

Fx = Fixed Bed

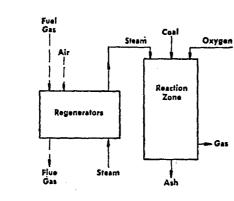
Fl = Fluidized Bed E = Elevated

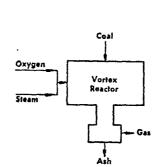
En = Entrained

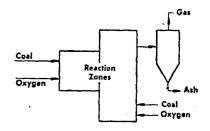

A = Atmospheric

S = Data Satisfactory

1


- I = Data Incomplete
- N = No Data



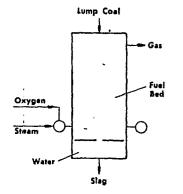


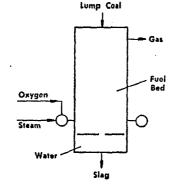
k

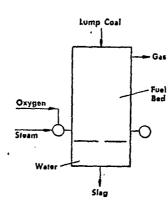
¥

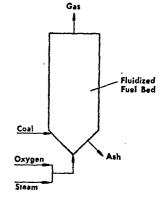
.

Process 14 BASF-FLESCH DEMAG




- Gas





Process 17 INLAND STEEL

Process 18 GC-LURGI SLAGGING

Process 19 BCURA - LURGI SLAGGING

Process 20 USBM - LURGI SLAGGING

.

.

Process 21 HYDROCARBON RESEARCH

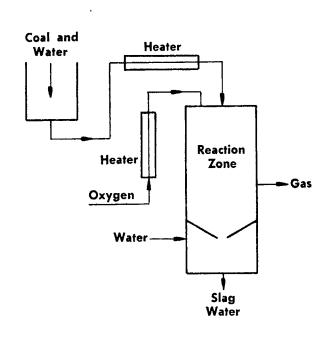
TABLE 3-1. SUMMARY OF AVAILABLE DATA ON COMMERCIAL AND PILOT-SCALE GASIFICATION PROCESSES (Continued)

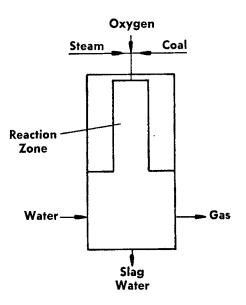
Process No.	II. Pilot-scale Syn- thesis Gas Processes Using Oxygen and Coal	Contact Method	Pressure	Process Characteristics	Reactor Description	Reactor Diagram	Plant Description	Flow Diagram	Specific Performance	Material Balance	Heat Balance	Fuel Analysis	Gas Analysis	Reagent Cost
14	BASF-Flesch-Demag	FxFl	А	S	S	S	N	N	S	S	S	I	S	S
15	Panindco	En	Α	S	S	S	S	S						
16	USBM Vortex	En	А	S	S	S	S	S						
17	Inland Steel	En	Α	S	S	S	N	N						
18	Gas Council-Lurgi	Fx	E	S	<u>S</u>	S	S	S						
19	BCURA-Lurgi*	Fx	Е	S	S	S	S	S						
20	USBM-Lurgi	Fx		S	S	S	S	S						
21	Hydrocarbon Research	Fl	Е	S	S	N	N	N	S	S	s	S	s	I

Fx	=	Fixed Bed
Fl	=	Fluidized Bed
En	=	Entrained

A = Atmospheric E = Elevated S = Data Satisfactory

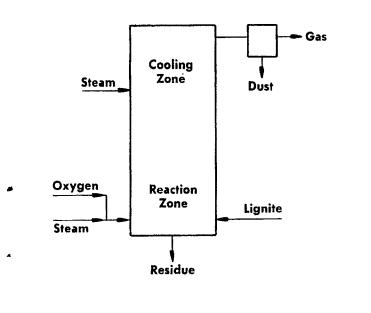
I = Data Incomplete

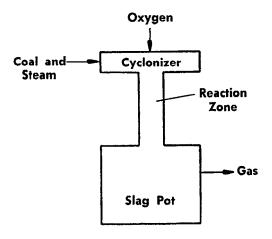

N = No Data


*Uses Coke

14.

*


.


Process 22 TEXACO

Process 24

BIANCHI

Process 25 IGT CYCLONIZER

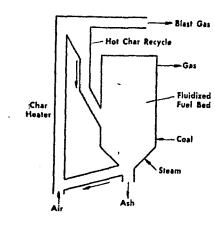
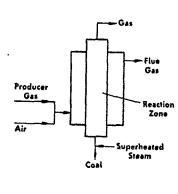
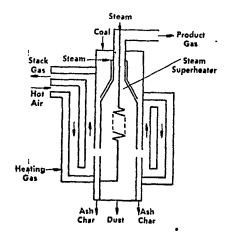

		_		•			•							
Process No.	II. Pilot-scale Synthesis Gas Processes Using Oxygen and Coal	Contact Method	Pressuré	Process Characteristics	Reactor Description	Reactor Diagram	Plant Description	Flow Diagram	Specific Performance	Material Balance	Heat Balance	Fuel Analysis	Gas Analysis	Reagent Cost
22	Texaco	En	Е	I	I	N	I	S	I	S	S	S	S	I
23	USBM Morgantown	En	E	S	S	S	S	S						
24	Bianchi	En	E	S	S	S	N	N						
25	IGT Cyclonizer	En	E	S	S	S	S	s						

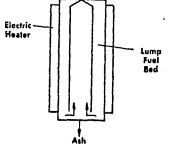
TABLE 3-1. SUMMARY OF AVAILABLE DATA ON COMMERCIAL AND PILOT-SCALE GASIFICATION PROCESSES (Continued)


- Fx = Fixed Bed
 - Bed A =
- A = Atmospheric
- S = Data Satisfactory
- I = Data Incomplete
- N = No Data

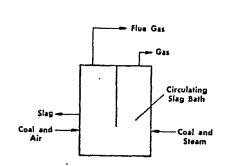
- Fl = Fluidized Bed
- En = Entrained
- E = Elevated


16,

۰


Process 26 ICI MOVING BURDEN

-


Coal Gas Steam

Process 27 HELLER PROCESS

Process 29 USBM ANNULAR RETORT

Process 30 USBM ELECTRICALLY HEATED

Process 28 RUMMEL DOUBLE-SHAFT

•

•

¥

.

Process No.	II. Pilot-scale Synthesis Gas Processes Using Air and Coal	Contact Method	Pressure	Process Characteristics	Reactor Description	Reactor Diagram	Plant Description	Flow Diagram	Specific Performance	Material Balance	Heat Balance	Fuel Analysis	Gas Analysis	Reagent Cost
26	ICI Moving Burden	Fl	A	S	ន	S	S	N		:				
27	Heller Process	En	A	S	ន	N	N	N	S	S	S	S	S,	S
28	Rummel Double-shaft	En	A	S	ຮ່	S	ន	S						
29	USBM Annular Retort	Fx	A	S	S	S	S	S						
30	USBM Electrically Heated**	Fx.	A	ន	S	S	S	N						

TABLE 3-1. SUMMARY OF AVAILABLE DATA ON COMMERCIAL AND PILOT-SCALE GASIFICATION PROCESSES (Continued)

Fx = Fixed Bed

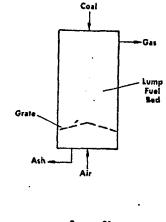
F1 = Fluidized Bed

En = Entrained

A = AtmosphericE = Elevated S = Data Satisfactory I = Data Incomplete

N = No Data

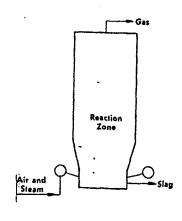
** Uses no air

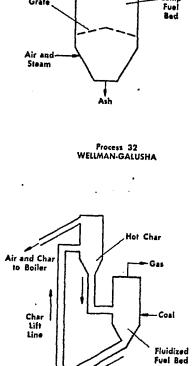


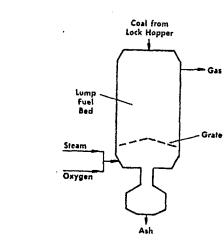
- Gas

Lump

Coal


Grate




4

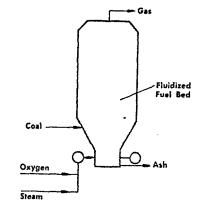
.

Lump

Fuel Bed

Ash

Coal


Air and

Steam

Process 33 IFE TWO-STAGE

►Upper Gas

-iowar Gas

2

.

Process 34 BAMAG-WINKLER ATMOSPHERIC

Process 35 RUHRGAS VORTEX

.

Process 36 LR PROCESS

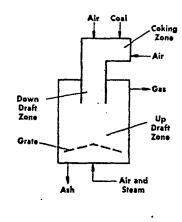
TABLE 3-1. SUMMARY OF AVAILABLE DATA ON COMMERCIAL AND PILOT-SCALE GASIFICATION PROCESSES (Continued)

							······			•				
Process No.	III. Commercial Fuel Gas Processes Using Air and Coal	Contact Method	Pressure	Process Characteristics	Reactor Description	Reactor Diagram	Plant Description	Flow Diagram	Specific Performance	Material, Balance	Heat Balance	Fuel Analysis	Gas Analysis	Reagent Cost
31	Power-Gas Mechanical	Fx	A	S	S	S	S	S	S	S	S	I	S	S
32	Wellman-Galusha	Fx	A.	S	S	S	S	S	S	S	S	S	S	S
33	IFE Two-stage	Fx	A	ន	S	ន	S	ន	N	N	N	N	N	N
34	Bamag-Winkler Atmospheric	Fl	A	ß	S	S	N .	N	S	S	S	S	S	S
35	Ruhrgas Vortex	En	A	S	S	S	S	S	S	S	S	S	S	N
36	LR Process	En	A	S	S	S	S	N	N	N	N	N	S	N
37	Lurgi Dry-ash	Fx	Е	ន	S	s	N	N	S	N	N	S	S	N

Fx = Fixed Bed

Fl = Fluidized Bed En = Entrained

A = Atmospheric E = Elevated


S = Data Satisfactory

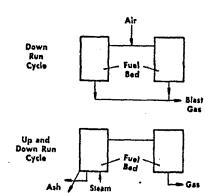
19.

I = Data Incomplete

N = No Data

Process 38 BCR-KAISER

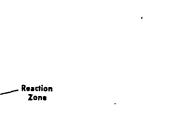
Coal


Process 42 PANINDCO

Air

Steam

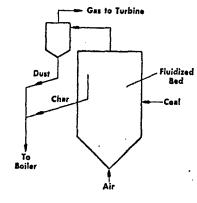
.


×

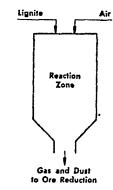
. . .

٠

•

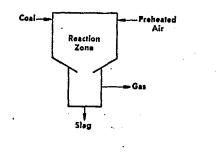

- Gas

Ash



Process 43 B & W CYCLONE

.


Process 40 CEGB MARCHWOOD

ъ

.

Process 41 GREAT NORTHERN RAILWAY

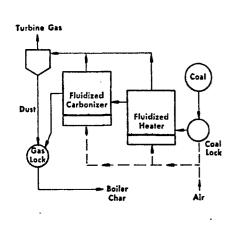
Process 44 FRS CYCLONE

.

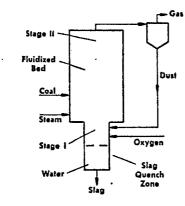
Process No.	IV. Pilot-scale Fuel Gas Processes Using Air and Coal	Contact Method	Pressure	Frocess Characteristics	Reactor Description	Reactor Diagram	Plant Description	Flow Diagram	Specific Performance	Material Balance	Heat Balance	Fuel Analysis	Gas Analysis	Reagent Cost	
38	BCR-Kaiser	Fx	А	S	S	S	N	N							
39	BASF-Flesch-Demag	FxFl	A	S	S	S	N	N	N	S	S	I	S	S	
40	CEGB Marchwood	Fl	Е	S	s	S	S	S							
41	Great Northern Railway	En	A	S	ន	S	S	N							
42	Panindco	En	A	S	S	S	S	S					×		
43	B & W Cyclone	En	N	N	N.	N	N	N							
44	FRS Cyclone	En	A	s	S	I	N	N							
									I			J			Ì

TABLE 3-1. SUMMARY OF AVAILABLE DATA ON COMMERCIAL AND PILOT-SCALE GASIFICATION PROCESSES (Concluded)

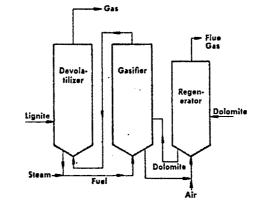
Fx = Fixed Bed

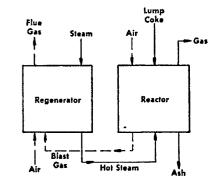

- Fl = Fluidized Bed
- En = Entrained
- A = AtmosphericE = Elevated

S = Data Satisfactory

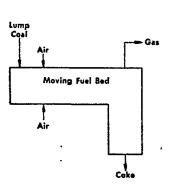

- I = Data Incomplete
 - N = No Data

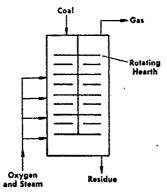
22.


.

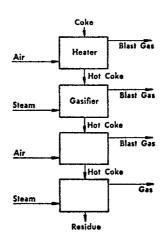


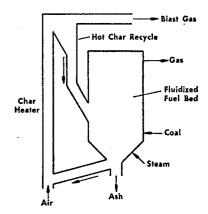
۶.




Process 46 TWO-STAGE FLUIDIZED SUPER-PRESSURE

Process 45 BECHTEL CARBONIZER




Process 49 CHEM-COKE

Process 50 NICHOLS-HERRESHOFF FURNACE

.

Process 51 CAMERON AND JONES

Process 52 STANDARD OIL FLUIDIZED-BED

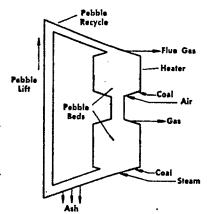
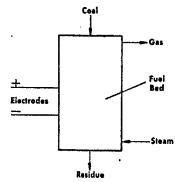

Process 47 CO1 ACCEPTOR

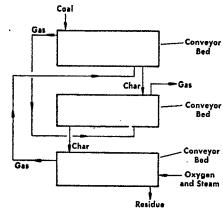
TABLE 3-2. PROPOSED CONCEPTUAL PROCESSES

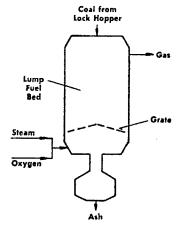
Process No.	I. Fuel Gas Using Air	Coal Size	Pressure	Source of Data
45	Bechtel Carbonizer	I	E	υ
46	Two-stage Fluidized Super-pressure	I	SP	U
	II. Synthesis Gas Using Air			
47	CO ₂ Acceptor	` C	E	U
48	Stookey	C	A	U
49	Chemcoke	C	A	U
50	Nichols-Herreshoff	C	A	U
51	Cameron and Jones	С	A	ប
52	Standard Oil Fluidized-bed	I	A	P


LEGEND

Coal Size	Pressure	Publication
C = Coarse or Briquet I = Intermediate P = Pulverized	A = Atmospheric E = Elevated SP = Above 1000 psi NA = Not Available	U = Unpublished P = Published

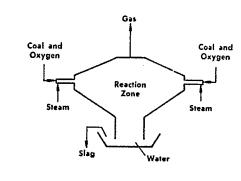
.


4

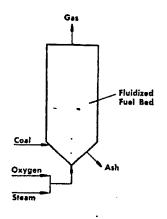


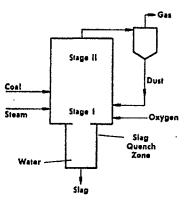
Process 54 JENSEN ELECTRIC

· · ·


.

.


Process 56 FIXED-BED SUPER-PRESSURE

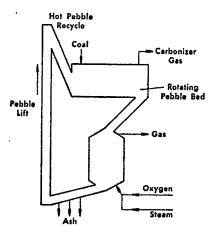


Process 59 MAYLAND PEBBLE-BED

Process 60 KOPPERS-TOTZEK PRESSURIZED

Process 53 MAYLAND PEBBLE-BED

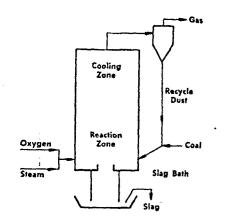
Process 58 TWO-STAGE SUPER-PRESSURE ENTRAINED


.

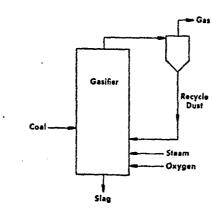
Process 57 FLUIDIZED-BED SUPER-PRESSURE

.

Process 55 MULTI-STAGE CONVEYOR

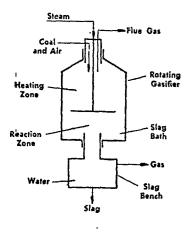


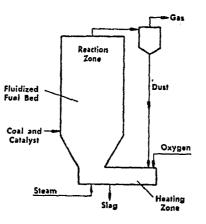
Process No.	II. Synthesis Gas Using Air (Continued)		Coal Size	Pressure	Source of Data
53	Mayland Pebble-bed		P	NA	P
54	Jensen Electric		С	А	Р
55	III. Synthesis Gas Using Oxygen Multi-stage Conveyor		C	E	ប
56	Fixed-bed Super-pressure		С	SP	ឋ
57	Fluidized-bed Super-pressure		I	SP	U
58	Two-stage Super-pressure Entrained	I	or P	SP	U
5 9	Mayland Pebble-bed		Р	NA	P
60	Koppers-Totzek Pressurized		P	E	ប


TABLE 3-2. PROPOSED CONCEPTUAL PROCESSES (Continued)

LEGEND

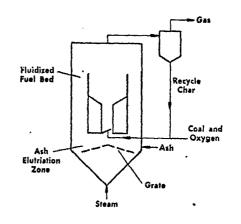
Coal Size	Pressure	Publication		
C = Coarse or Briquet I = Intermediate P = Pulverized	A = Atmospheric E = Elevated SP = Above 1000 psi NA = Not Available	U = Unpublished P = Published		




26.

.

Process 61 RUMMEL SINGLE-SHAFT PRESSURIZED



Process 62 RUMMEL MODIFIED SINGLE-SHAFT PRESSURIZED

Process 64 MACCORMAC-RUMMEL DOUBLE-SHAFT

Process 65 CATALYTIC STEAM METHANATION

а

Process 63 GAS COUNCIL FLUIDIZED-BED

TABLE 3-2.	PROPOSED	CONCEPTUAL	PROCESSES	(Concluded)	
------------	----------	------------	-----------	-------------	--

Process No.	III. Synthesis Gas Using Oxygen (Continued)	Coal Size	Pressure	Source of Data
61	Rummel Single-shaft Pressurized	Ρ	Е	U
62	Rummel Modified Single-shaft Pressurized	Ρ	Е	U
63	Gas Council Fluidized-bed	I	E	U
64	Maccormac-Rummel Double-shaft	Ρ	A	U
65	Catalytic Steam Methanation	Ρ	I	U

LEGEND

Coal Size	Pressure	Publication
I = Intermediate	A = Atmospheric E = Elevated SP = Above 1000 psi NA = Not Available	U = Unpublished P = Published