

DE84013993

ASSESSMENT OF TRACE CONTAMINANTS FROM A MODEL INDIRECT LIQUEFACTION FACILITY. VOLUME II. STREAM CHARACTERIZATION OF LURGI/FISCHER-TROPSCH COAL LIQUEFACTION

GENERAL RESEARCH CORP. MCLEAN, VA

JAN 1982

U.S. Department of Commerce National Technical Information Service

DOE/EV/10291-T

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It has been reproduced from the best available copy to permit the broadest possible availability.

Assessment of Trace

Report 1234-02-81-CR

Contaminants From a Model*

Indirect Liquefaction Facility

VOLUME II -- STREAM CHARACTERIZATION OF LURGI/FISCHER-TROPSCH COAL LIQUEFACTION

Prepared By:

J.V. Antizzo, D.L. Britt, H.S. Epstein, N. Kenkeremath, S. Subramanian

International Research and Technology Operations General Research Corporation McLean, Virginia 22102 DOE/EV/10291--T2-Vol.2

DE84 013993

S. Singh

Chemical Technology Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830

January 1982

MANAGEMENT SYSTEMS DIVISION

÷.

CORPORATION

A SUBSIDIARY OF FLOW GENERAL INC. 7655 Old Springhouse Road, McLean, Virginia 22102

Prepared For:

Technology Assessment Division Environmental Protection, Safety, and Emergency Preparedness Office U.S. Department of Energy

G.

IS UNLIMITED

ľ,

0

DISTRIBUTION OF THIS DOCUMENT

łę

Under Contract No. DE-AC01-79-EV 10291

FOREWORD

Development and deployment of a commercial indirect liquefaction industry has been proposed as a means of reducing United States dependence on foreign sources of energy.

Deployment of a commercial industry on an environmentally acceptable basis requires identification and evaluation of potential environmental problems. This assessment is an attempt to anticipate potential environmental hazards that may be posed by commercial scale facilities to provide an improved basis for planning and implementing environmental research.

The study comprises four major tasks: characterization of hazardous materials released from an indirect liquefaction facility; assessment of ecological hazards; assessment of public health hazards; and assessment of occupational health hazards. The report is organized in the same manner. Volume I is an overview and summary of the results; volume II presents stream characterization data; and volumes III, IV and V present assessments of ecological, public health and occupational health hazards, respectively.

This study was sponsored by the Technology Assessment Division of the Department of Energy. Organizations participating in the assessment were General Research Corporation, Oak Ridge National Laboratory, and Argonne National Laboratory. TABLE OF CONTENTS

\$

ų	Page
LIST OF ILLUSTRATIONS , LIST OF TABLES	11 11
1 INTRODUCTION	1 ·
<pre>2 METHODOLOGY 2.1 Overview 2.2 Characterization of Liquid Streams 2.3 Characterization of Gaseous Streams 2.4 Characterization of Solid Streams</pre>	2 2 8 39 54
3 ESTIMATION OF MAXIMUM AMBIENT POLLUTANT CONCENTRATION RESULTING FROM INDIRECT LIQUEFACTION STREAMS 3.1 Introduction 3.2 Caveats 3.3 Assumptions, Calculations and Results 3.4 # Applications of Results	74 ;; 74 74, 75 94
4 REFERENCES	<u>9</u> 6
APPENDIX A LIQUEFACTION PROCESS DESCRIPTION AND BASIC PREMISES USED IN DEVELOPING THE MATERIAL BALANCE	A-1
APPENDIX B ESTIMATION OF STREAM FLOW RATES AND CONCENTRATIONS BY STREAM	B-1
APPENDIX C EPA SOURCE ANALYSIS MODEL (SAM/I)	C-1

i

F

φ.

e,

\$

з,

ê :

í,

11 LIST OF ILLUSTRATIONS . •

្លង

¢

¢

.

č.

İ

بنے

.

ء '

Figure Number	· • • · ·	
1	Simplified Block Flow Diagram for Indirect Coal Liquefaction Process (Lurgi/Fischer-Tropsch)	5
2 G	Liquid Streams for Indirect Coal Liquefaction Process (Lurgi/Fischer- Tropsch)	11
3 ≷≂	Gaseous Streams for Indirect Coal Liquefaction Process (Lurgi/Fischer- Tropsch)	41
4	Solid Streams for Indirect Coal Liquefaction Process (Lurgi/Fischer- Tropsch)	57
C-1	SAM/I Pollutant Discharge Overview	C3
	LIST OF TABLES	
Table Number		1
1	Process and Environmental Streams of Interest	6
2 "	Stream Components Selected for Inclusion in the Analysis	7
3 👳	Liquid Streams Characterized in the Analysis	9
4	Trace Element Concentrations for Wyoming and Rosebud Montana Subbituminous Coals	13
5	Trace Element Distribution for Lurgi at SASOL	15
.6	Literature Values for Stream Constituents	17
.	Removal Efficiencies for Liquid Stream Constituents by Control Process	19 4. (*
· · ·	· · · · · · · · · · · · · · · · · · ·	3 J 4

ii. .

· ,

۰. .

Page

e

.

LIST OF TABLES (cont.)

iii

9<u>×</u>

1

Table	Number		Page ·
8		Comparison of Parameter Values for Gasification Reactors	27 <i>i</i> ř
9 _		Estimation of Compound Quantities Based on Tar Constituents and Compound Solubility	28
10	•	Concentration in/Streams	35
11		Flow Rates in Streams	37 -
12 د		Gaseous Streams Characterized for Risk Assessment	39
13	,	Trace Element Concentrations for Wyoming and Rosebud Montana Subbituminous Coals	· 43
14		Trace Element Distribution for Lurgi at SASOL	44
: 15		Distribution of Trace Elements from Utility Boiler	45
16	•	Utility Stack Gases, Stream 28	46
17		Flow Rates of Trace Elements in the Tar	47
18		\odot Flow Rates of Trace Elements in Stream 28	47
19		Atmospheric Losses from Cooling Towers, Stream 29	49
20		Feed Lockhopper Vent Gas, Stream 72	50
21		Evaporative Emission for Product and By- Product Storage, Streams 73-78	5 3
22	'. ••	Evaporative Emissions of Gasoline, Stream 73	54 [.]
23 C3	V,	Solid Streams Characterized for Risk Assessment	55
^{'''} ,24		Trace Element Concentrations for Wyoming and Rosebud Montana Subbituminous Coals	59

ŝ

ł

4

q

ł

a

è

`Q.

Ø 2

5

С

е.

	· .	
	e e	
·		
•	(cont.)	3
Table Number		Page
25	Distribution of Trace Elements from Utility Boiler	60
26	Trace Element Distribution for Lurgi at SASOL	61
27	Flow Rates of Trace Elements in the Tar	62
28	Flow Rates of Trace Elements in the Bottom Ash and Fly Ash of Stream 33	63
29	Flow Rates of Trace Elements in the Scrubber Sludge Portion of Stream 33	64
30	Flow Rates of Materials in Stream 34	64
31	Flow Rates of Trace Elements in the Gasifier Ash, Stream 34'	65
32	Flow Rates of Materials in Stream 36	66 <u>.</u>
33	Flow Rates of Trace Elements in Stream 36	67
34	Leachate from Montana Rosebud Ash, Stream 69	[°] 69
35	Biological Sludge, Stream 70	72
. 36	Spent Shift Catalyst, Stream 79	73
. 37	Estimated Post-Dilution Concentrations Due to Discharge of Stream 28 - Utility Stack	76
63 63	Gas	·•
38. Ŋ _w	Estimated Post-Dilution Concentrations Due to Discharge of Stream 29 - Atmospheric, Losses from Cocherge Terrer	. 78
30	Estimated Postabilution Concentration -	
	to Discharge of Stream 53 - Reverse Osmosis Waste Solution	84
- 40	Estimated Post-Dilution Concentrations Due to Discharge of Stream 69 - Ash Leachate	· 89

LIST OF TABLES (cont.)

m.17 w 1		Page
Table Number	́ С	
4 1 "{	Estimated Post-Dilution Concentrations Due to Discharge of Stream 70 - Biosludge	. 93
42	Estimated Post-Dilution Concentrations Due to Discharge of Stream 72 - Lockhopper Vent Gas	95
. A-1	Coal Analysis	A-4
À2	Product Slate	- A4
B-1	Estimated Process Stream Concentration for the Risk Assessment of Indirect (Lurgi/Fischer-Tropsch) Coal Liquefaction Process	B-2
B-2	Detailed Breakdown of Liquid Hydrocarbons	·B8
C-1	Summary of Model Stream Discharge Rates and Dilution Factors	C-5
.1		

5

24

<u>ر</u> ¢

••

۱. ج

1 INTRODUCTION .

13 34 17 2

Indirect liquefaction is a promising technology for producing synfuels. Recent studies indicate that if any portion of the national synfuels goals for 1987 and 1992 is to be met with coal liquefaction, the bulk of the production is likely to come from indirect processes. An indirect coal liquefaction industry will benefit the nation by providing a critically needed supplement to our dwindling oil and gas However, development and deployment of a commercial coal reserves. indirect liquefaciton industry is not without risks. To ensure development and deployment of indirect processes in an environmentally acceptable manner, potential hazards to the general public, occupational personnel and ecosystems must be assessed and factored into the design, siting and operation of commercial facilities. At present, the potential adverse environmental impacts of indirect liquefaction facilities are not well understood.

Especially lacking is information on the identity and quantity of trace contaminants that may be released from process and waste streams. At the present time chemical characterization data for streams from indirect liquefaction facilities are very limited. In response to these data gaps the Department of Energy (DOE) is attempting to develop preliminary estimates of the types and quantities of potential pollutants that may be released into the environment by commercial scale indirect liquefaction facilities. The purpose of these estimates is to provide a basis for estimating the types and magnitudes of potential environmental impacts of a commercial facility and a commercial industry.

The purpose of this draft report is to document the methodology, assumptions, caveats, results, and references used in developing these preliminary estimates. It is hoped that such documentation will enhance understanding of both the value and limitations of the estimates, and facilitate modification of the estimates as data become available from ongoing research.

'1

2 METHODOLOGY

2.1 Overview

Chemical characterization data were very limited for indirect coal liquefaction; no commercial-scale facilities existed in the U.S., and data from other nations (e.g., South Africa) were generally limited and often not representative of American conditions. Because data were so limited, it was recognized that development of an information base useful for assessing environmental implications would require considerable manipulation of the data which were available. In order to minimize confusion and misinterpretation, data sources, calculations, assumptionsC and results were made explicit wherever possible.

Development of the data base was accomplished in several steps:

(I

1) Choice of Indirect Liquefaction Process-

A single process was chosen to serve as the basis of the analysis to avoid the confusion which would arise from attempting to deal with several processes or a "generic" process. The Lurgi/Fischer-Tropsch process was chosen because it represented a proven, commercial technology, and more data were available for it than most other processes.

2) Development of a Conceptual Plant Configuration-

A conceptual Lurgi/Fischer-Tropsch plant, processing approximately 28,000 tons per stream day (TPSD) of low sulfur Wyoming subbituminous coal, was developed to provide the basis for estimating the types and quantities of pollutants which might be released from a commercial facility. Process operations and streams were based largely, but not exclusively, upon information in the report titled <u>Research Guidance Studies to Assess Gasoline from Coal by Methanol-to-Gasoline and SASOL-type Fischer-Tropsch Technologies⁸⁷. The process description and basic premises used in conceptualizing the plant are presented in Appendix A. A simplified block flow diagram, developed from the report,</u> is presented in Figure 1. As indicated in the diagram, the conceptual plant included environmental controls as well as process and auxiliary operations. The major process streams and environmental streams of interest in the analysis are listed in Table 1.

3) Identification of Stream Components of Interest-

Review of the literature indicated that a variety of stream components associated with coal liquefaction would be of environmental concern. Potential stream components included in the analysis were selected by representatives of participating groups from Oak Ridge National Laboratory, Argonne National Laboratory and Battelle Pacific National Laboratory at a workshop, and are listed in Table 2. In selecting components of interest it was assumed that the plant complex would be designed to meet all existing local and federal environmental regulations, as of July 1977, for liquid and gaseous effluents. The analysis was focused largely on trace organics and trace elements.

4) Estimation of Flow Rates of Stream Components by Stream-

Flow rates of each stream component were estimated for each stream to provide initial estimates of types and quantities of compounds to be expected in each stream. Estimates of the flow rates of the major stream components were derived largely from Base Case II of the Mobil report.⁸⁷ Flow rates of the minor components (i.e., those constituting less than one percent of the stream flow rate) were estimated based on sparse information. The results are presented in Appendix B.

5) Estimation of Concentrations of Individual Trace Elements and Organic Compounds in Each Stream-

No data could be located in the literature regarding concentrations of individual trace elements and organic compounds in streams from commercial-scale Lurgi/Fischer-Tropsch plants utilizing Wyoming subbituminous coal. The types and concentrations of individual trace elements and organic compounds were estimated using data from a

· 4 ·

ACKNOWLEDGMENT

 \mathcal{O}

÷.

The authors wish to express their appreciation to Dr. Arnold Goldberg, President, INA Loss Control Services, Inc., formerly the DOE Project Officer, and Mr. Bipin Almaula, of the U.S. Department of Energy, for their assistance and guidance throughout the project.

e :

5

ŝ

. .

0

4

1

ί.

		FRUC	CESS AD	TRUNTRONMENTAT	STREAMS OF INTER	EST*			
STREAM MANE · SOURCE · NUMBER	- SOURCE NUMBER	STREAM NUMBER		STREAM NAME	SOURCE	STREAM ?	STREAM NAME	≷. Source	
Feed Coal. 35	35	35	-	Vent Gas	Ash Handling	64	OFF Gas	F-T Product Upgrading	
Sized Coal - Coal Preparation 36 4	Coal Preparation 36 4	36		sh/Scrubber	Ash Handling	65	Waste Stream	F-T Product Upgrading	•
Undersized Coal Preparation 37 5	Coal Preparation 37 5	37		sluice Water	Ash Handling	66 67	Heater Stack Gas	F-T Product Upgrading	•
Nitropen Air Senaration 38	Air Senaration 38	38		Waste Water	Ash Handling	68	CO, OFF Gas	F-T Product Upgrading	
Steam Utilities Generation 39	Utilities Generation 39	96		Waste Liquor	Waste Steam Generator	69	Leachate from Ash	Stream 36	-
Rau Gas () Gasifier 40 Washed Gas Wash Conler	Gasifier Wash Cooler	40	_	Waste Liquor	Waste Steam Generator	70	Biological	Biological	_
Cooled Gas Haste Steam Generator 41	Waste Steam Generator 41	. 17	· ·	Vaste Liquor	Gas Cooling	"	Leachate from	Stream 70	_
Gas /L1quór Separator 42	Gas/Liquór Separator 42	42		Waste Liquor	Gas Cooling		Biolsludge	ŗ	_
Gas Cas Recompression/ 43 %	Gas Recompression/ 43 H Separator 4, 7	43 43	- 24	laste Liquor	Streams 40,41,42,57,58	72	Lockhopper vent Gas Emmissions	Coal' Lockhopper	
Gas Gas/Liquor Seperator	Gas/Liquor Seperator	f″		0101	Separation	61	Evaporative Treese	Streame 18-23	·
Cooled Shifted Cas Cooling 45 C	Cas Cooling 45 6	45	-	JIIG	Gas/Liquor Separation.	. 71	Evaporative	Stream 60	
Combined Gas Streams 13 £14 2	Cas conting Streams 13 &14 : 46 0	46 0		dl/Tär Free Liquor	Gas Liquor/	75	Losses Evaporative	stream 45 .	
Furified Gas Rectisol Unit 47	Rectisol Unit . 47 F	47 1		henols .	Phenol Recovery		Losses .		
Fischer-Tropsch Fischer-Tropsch 48 F Products Synthesis	Fischer-Tropsch 48 F Synthesis	48	P4	henol-Free Liquor	Phenol Recovery	76	Evaporative Losses	Stream 44	
SNG F-T Product Upgrading 49 A	F-T Product Upgrading	40 V	Z	monia	Armonia Recovery	77	Evaporative	Stream 47	_
C ₃ LFG F-T Product Upgrading 50 L	F-T Product Upgrading 50 L	20	2,2	monia-Free iquor	Ammunia Recovery	78	Losses Fuancrariue	Stream 49	
C ₄ LPG F-T Froduct Upgrading 51 4	F-T Product Upgrading 51 W	51 12	3	aste Air	Biological Treatment	2	losses		
Gasoline. F-T Froduct Upgrading 52 1 Distillate Fuel Oil F-T Product Upgrading	F-T Product Upgrading 52 1 F-T Product Upgrading 1	52		Btological Effluent	Biological Treatment	, 7 9	Spent Shift Catalyst	Rav Gae Shift	
Heavy Fuel Oil _ F-T Product Upgrading 53 0	F-T Product Upgrading 53 (53	<u> </u>	Concentrated Waste	Reverse Osmosis			•	
Fugitive Emissions Goal Preparation 54 I	Goal Preparation 54 1	54		reated Effluent	Reverse Osmosis				_
Coal Dust Bag House 55 S	Bag House 55 S	55	0	our Gas	Rectisol Unit			-	
Vent Cas Bag House 56	Bag House 56	56		Incineration Gas	Stretford Unit				_
Coal File Leachate Coal Preparation 57	Coal Preparation 57	57	_	Maste Liquor	Rectisol Unit		•		
Stack Gas Utilities Generation 58 4	Utilities Generation 58 4	58		laste Liquor	Alcohol Recovery	_	Ϋ́,		_
Evaporative Losses Utilities Generation 59 A	Utilities Generation 59 A	29 A	<	queous Liquor	F-T Synthesis				
Deaerator Losses Utilities Generation 60	Utilities Generation 60	60		Heavy Alcohol	Alcohol Recovery	¢	•	; ; ;	
Make-up Water		1	_	Froduct				 , <u>-</u>	
Blowdown Utilities Generation 61	Utilities Generation 61	¹⁹ .	-	Catalyst Raw Material				Ĵ	
Ash & SO ₂ Scrubber Utilities Generation 62 Sludge	Utilities Generation 62	62		F-T Catalyst	Catalyst Preparation			· · ·	_
Ash Lockhopper 63	Ash Lockhopper 63	63	_	Spent F-T Catalyst	F-T Synthesis				·

•

•

*Stream numbers, names and sources are keyed to the flow diagram in Figure 1.

:

TABLE 2

н,

٠.

	۱۰ ۱۰ ۱۰ (۲۹۴۵)	STREAM COMPONENTS SELECTED FOR INCLUS IN THE ANALYSIS	SION #
		Gaseous Components	÷;
. 0	. CO	C2H4	H ₂ S
	co ₂	[™] ^C 2 ^H 6	cos
	^H 2	$N_2 + Tinerts$	H ₂ O
×. •	CH ₄	, 0 ₂	⁽⁾ Others
		Liquid and Solid Components	
	H ₂ 0	Thiophenes	Ni(CO)
1.5	Methanol	Ammoria	Minerals
	Tar	HCN	Coal
	0i1	Aromatic amines	Sulfur
	Naphtha	Nitrosamines	Particulates
	Crude phenols	Polynuclear aromatics (PNA)	Trace elements
	Mercaptans	Fatty Acids	Others
	· ·		- <u>-</u>

.

8

1

.

variety of sources." Detailed descriptions of data sources and values, assumptions, and calculations are presented in Sections 2.2, 2.3, and 2.4.

6) Evaluation of Results-

Results of the effort were evaluated and compared with the results and projections from other studies to provide some insight into the reasonableness of the values.

1. 5

2.2 Characterization of Liquid Streams

Review of the literature indicated that characterization data for liquid effluents for commercial-scale Lurgi/Fischer-Tropsch plants were very limited. No experimental data could be found regarding specific , constituents in treated effluents from commercial-scale Lurgi/Fischer-Tropsch processing of Wyoming subbituminous coal.

Liquid streams selected for the analysis are listed in Table 3; their inter-relationships are illustrated in Figure 2.

Wash process liquor (Stream 4%) was chosen as the key liquid stream of interest because it représents the largest and most highly contaminated wastewater stream in a Lurgi/Fischer-Tropsch plant.³⁷ It was also chosen for analysis because it is the major influent to the wastewater treatment facility in the plant; the types and quantities of constituents present in Stream 43 largely determine the types and quantities of pollutants present in the liquid and solid effluents from the wastewater treatment facility (i.e., streams 53, 54, 70 and 71).

The analysis focused on two general classes of pollutants which have been identified as primary causes of concern in liquid streams from coal conversion facilities: trace elements and organic compounds. The

^{*}Data from both theoretical and experimental studies were used when they were deemed appropriate and useful.

	STOFAM NIMER	IS CHARACIERIZED	IN THE ANALISIS
r		• 	JIRLAM NATE
	27		Coal pile leachate
	. 31		Make-up water
	38	•	Ash sluice water
	43		Raw process water
	<u>46</u>		Gas liquor.separator effluent
	48		Phenosolvan effluent
	<u> </u>		Ammonia stripper effluent
	52		Biological treatment effluent
	53	l	Reverse Osmosis concentrated waste solution
	54	· · ·	Reverse Osmosis permeate
\$	54 & 31	•	Feed to cooling towers

TABLE 3

10 . *

V C

.

N. N.

:

J

. ;

•

. 5

:

.

-

•

÷.

types and quantities of pollutants were estimated based on three sets of data. Estimatés of trace elements were based largely on experimental trace element distribution coefficients developed for Lurgi at SASOL.³⁷ Estimates of organic compounds were based on experimental effluent data from SASOL⁸ and on characterization data for coal tar produced by a bench-scale gasifier using Wyoming subbituminous coal.¹⁹

The types and quantities of constituents which may be present in liquid streams were estimated in 3 basic steps:

- Identification of the types and quantities of constituents potentially present is the major raw process waste stream (Stream 43).
- 2) Identification or estimation of efficiency of removal of each constituent (identified in Step 1) by each wastewater treatment process specified in the flow diagram (i.e., gas/liquor separation, phenol recovery, ammonia recovery, biological treatment, and reverse osmosis).
- 3) Calculation of constituent concentrations in liquid effluents from the water treatment facility by sequentially applying the removal efficiencies for each constituent as the stream passed through each water treatment process. Additional pollutant loadings added to the liquid stream (via Streams 27 and 28) were estimated from literature data and incorporated into the calculations at the appropriate point.

The specific calculations, data and assumptions used in estimating the types and concentrations of trace elements and organic compounds which may be present in the liquid streams are discussed in Sections 2.2.1, 2.2.2 and 2.2.3.

2.2.1. Estimation of Trace Elements in Liquid Streams

0

Estimation of Trace Element Concentrations in Stream 43-

The concentrations of trace elements in Wyoming subbituminous coal on a moisture free, whole coal basis were identified in the literature. (See Table 4).

The flow rate of each trace element into the gasifier was estimated:

 $F_{TE-G} = (C_{TE})(F_{DC}) / 1,000,000$

λ.

· T	RACE ELEMENT CONCENTE	RATIONS FOR WYOMING AM	D [¬] ROSEBUD [~] MONTANA
, , , , , , , , , , , , , , , , , , ,	NY N. N. C.		
Trace Elements	Wyoming Subbituminous ⁴⁰	Montana Rosebud Subbituminous	Ratio of Concentrations of Trace Elements - Montana to Wyoming
Ag As Ba Be Br Cd Ce Co Cr Cs Cu F Co	.0643 .57-1.2 32 87 .718 .318 .55 .4.2-16 .55 .4.2-16 .55 .4.2-16 .55	.06 .08-1.2 32 87 .78 - .318 - .6-4 4-16 .7 - 9-10 66	114 .14-1 1 .99-1 - 1-1 1.09-7.27 .95-1 - 1.01-1 .98-1.01
Ga Ge Hg In La Li Mo Mn Ni	- .11~.17 - 3.6-15.0 2.2 2.8-3.4 1.7-14	.11-17 - 2.2 2.8-3.4 2-14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P Pb Rb Su Sc Sc Sr Ta Te U V W Y Zn Zr	.51-12 .08-1.5 .33 .14 - .88 10-14 - .23-8	.51-12**** 	1-1 - - - - - - - - - - - - - - - - - -

 $\frac{h}{2}$

TABLE

5

ۍ

.1

..

ş

\$

where-

 F_{TE-G} is the flow rate of each trace element into the gasifier (in lb/hr).

C_{TE} is the concentration of each trace element in dry, whole coal (in ppm).

F_{DC} is the flow rate of dry, whole coal to the gasifier // (Water-free components of Stream 2 in the flow diagram).*

The distribution of each trace element from Lurgi gasifier into ash, liquor, tar and oil streams at SASOL were identified in the literature. (See Table 5).

The distribution of trace elements in the conceptual plant was assumed to be the same as the distribution at SASOL.

The flow rate of each trace element into the gas liquor was estimated:

$$\mathbf{F}_{\text{TE-L}} = \frac{(\mathbf{F}_{\text{TE-G}})^{\frac{1}{2}} (\mathbf{D}_{\text{TE-L}})}{100\mathbb{Z}}$$

where-

F_{TE-L} is the flow rate of each trace element into the gas liquor (in 1b/hr).

FTE-G is the flow rate of each trace element into the gasifier (in lb/hr).

ì.

 D_{TE-L} is the distribution factor of each trace element in the liquor based on SASOL data (in %) (See Table 5).

It was assumed that the total flow of each trace element into the gas liquor dissolved in the water component of the gas liquor stream, then

$$C_{\text{TE-43}} = \frac{F_{\text{TE-L}} \times 1,000,000}{F_{\text{W-43}}}$$

"Flow rates of each stream are presented in Appendix B.

TRACE ELEMENT DISTRIBUTION FOR LURGI AT SASOL^{*,37} (Percent of Element in Coal)

5

TABLE

1

Q.

Element	Ash	Liquor	·Tar ·	011
Ве	33.3	53.3	17.0	0.3
В	90	8.8	2.0	0.0
ν.	99.9	0.1	0.0	* 0.0
Mn.	99.9	0.2	0.0	0.0
Ni	99.4	0.4	` 0. 0	0.0
As	26.9	67.2	1.9	3.9
Cd	51.9	45 .5 .	0.6	1.4
Sb	50.0	45.0	3.8	0.6
Ce	99.9 🧐	0.1	0.0 ·	0.0
Hg .	51.9	41.6	6.4	0.6
РЪ	94.2	1.7	4.3 ,	0.0
Br	10.0	88.9	0.1	0.0
F	56.3**	43.8**	0.0	· 0.0
Cl	52.6**	47.4**	0.3	0.0
· · ·				

* Analysis by spark source mass spectrometer (which can give a semi-quantitative analysis) for El Paso by SASOL.

...

** % distribution calculated on analyses as done by SASOL previously.

. .

16

0

where-

1

C_{TE-43} is the concentration of each trace element in the water component of Stream 43 (in ppm).

- F_{TE-L} is the flow rate of each trace element into the gas liquor (in lb/hr).
- F_{W-43} is the flow rate of the water component of Stream 43, i.e., 1,993,000 lb/hr.

Estimation of Trace Element Concentrations in Stream 27-

The concentration of each trace element in coal pile leachate (Stream 27) was identified in the literature (Table 6). The literature data were assumed to be representative of Wyoming subbituminous coal.

Identification/Estimation of Efficiencies of Removal of for Each Constituent by Each Wastewater Treatment Process-

Efficiencies of removal of each constituent in the liquid streams (43 and 27) were identified or estimated from the literature for each wastewater control technology process identified in the flow diagram. Rémoval efficiencies assumed in the assessment are presented in Table 7.

Estimation of Trace Element Concentrations in Stream 46-

The concentration of each trace element in Stream 46 was estimated by weighting the concentrations in streams 43 and 27 by their respective flow rates, applying the efficiency of removal of each constituent by the gas liquor separator, and dividing by the flow rate of Stream 46:

 $C_{TE-46} = \frac{(C_{TE-43})(F_{W-43}) + (C_{TE-27})(F_{W-27})}{100} \frac{[100 - RE_{TE-ES}]}{100}$

^F₩-46

where-

 C_{TE-46} is the concentration of each trace element in the water component of Stream 46 (in ppm).

с_{те-43}

is the concentration of each trace element in the water component of Stream 43 (in ppm).

17

LITERATURE VALUES FOR STREAM, CONSTITUENTS

;

TABLE 6

CONCENTRATIONS	ST	REAM CONCENTRATIONS (ppm)	
STREAMS	RAW GAS LIQUOR	COAL FILE LEACHATE (STREAM 27)	ASH SLUICE Water Blowdown (Stream 38)
TRACE ELEMENTS Arsenic Boron Beryllium Cadmium Fluorine Lead Mercury Manganese Nickel Vanadium	0.55 (1) 1.9 (1) 0.29 (1) / 0.25 (1) / 0.25 (1) / 0.14 (1) / 0.049 (1) / 0.0047 (1) / 0.0036 (1), 0.0096 (1),	0.01 (2) 0.01 (2) 0.005 (2) 0.023 (2) 0.027 (2) 110.0 (2) 0.32 (2)	0.02 (3) 0.00064 (3) 0.09 (3) 0.0003 (3) 0.5 (3) 0.5 (3) 0.35 (3)
CARBOXYLIC ACIOS Acetic Acid Propanoic Acid Butanoic Acid 2-Methylpropionic Acid Pentanoic Acid 3-Methylbutanoic Acid Hexanoic Acid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		×.
BENZENE AND SUBSTITUTED BENZENES Biphenyl Ethylbenzene Indan Toluene 1,2,4 Trimethylbenzene 0-Xylene	0.7 (5) 15. (5) 8.9 (5) 50. (5) 6. (5) 18. (5)		
MONOHYDRIC PHENOLS Phenol 2-Methylphenol 3-Methylphenol 4-Meylphenol 2.4-Xylenol 3.5-Xylenol	3100. (6) 340. (6) 420. (6) 300. : (6) 120. : (6) 50. (6)		
DIHYDRIC PHENOLS Catechol 3-Methylcatechol 4-Methylcatechol 3.6-Dimethylcatechol Resorcinol 5-Methylresorcinol 4-Methylresorcinol	550. (6) 400. (6) 385. (6) 45. (6) 275. (6) 65. (6) 36. (6)	•	

,

18

h L P P

. .

TABLE 6 (CON'T)

CONCENTRATIONS IN	STREAM CONCENTRATIONS (ppm)			
CONSTITUENTS	RAW GAS LIQUOR (STREAM 43)	COAL PILE LEACHATE (STREAM 27)	ASH SLUICE WATER BLOWDOWN (STREAM 3B)	
POLYNUCLEAR AROMATICS			· · ·	
Acenaphthylene. Anthracene Benzo(g, A, I)perylune Benzo(g, A, I)perylune Benzo(g, Pyrene Chrysene Chrysene Fluoranthene Fluoranthene Perylene Phenanthrene Pyrene	$\begin{array}{ccccc} 0.4 & (5) \\ 0.1 & (5) \\ 0.001 & (5) \\ 0.0003 & (5) \\ 0.004 & (5) \\ 0.002 & (5) \\ 0.22 & (5) \\ 0.2 & (5) \\ 0.2 & (5) \\ 0.2 & (5) \\ 0.2 & (5) \\ 0.2 & (5) \\ 0.1 & (5) \\ 0.2 & (5) \end{array}$	÷		
SULFUR HETEROCYCLICS Methylthiophene		•		
NITROGEN HETEROCYCLICS Acridine 2,4-9imethylpyridine 2,5-Dimethylpyridine 3-Methylpyridine 4-Methylpyridine Pyridine Quinoline	$\begin{array}{cccc} 2.2 & (7) \\ 1. & (4) \\ 1. & (4) \\ 70. & (4) \\ 25. & (4) \\ 6. & (4) \\ 117. & (2) \\ 45. & (4) \end{array}$:		
<u>OXYGEN HETEROCYCLICS</u> Benzofuran Dibenzofuran	:	*		
MERCAPTANS Methanethigi	20. (7)	•		
AROMATIC AMINES Aniline	12. (4)	·		

Estimate based on SASOL distribution coefficients (37).
 Reference 18.
 Reference 91.
 Reference 8.
 Estimate based on RTI data (19). Limited by compound solubility.
 Reference 92.
 Estimate based on RTI data (19). Limited by compound production rate.

. 19

r.

ŗ

;

0

•

TABLE 7

3

:)

REMOVAL EFFICIENCIES FOR LIQUID STREAM CONSTITUENTS BY CONTROL PROCESS ·· (Percent Removed) .

20

-1

			······		
сомроихв	GAS LIQUOR SEPARATOR	PHENO- SOLVAN-	AMMONIA RECOVERY	BIOLOGICAL TREATMENT	REVERSE
	(^{RE} x-ils)	(^{RE} X-РН)	(RE _{X-AR})	((КЕ Х-ВТ)	(^{RE} X-RO)
ALIPHATICS, ALICYCLICS	: 0	15 (1)*	0	95 (2,3)	/
AND FATTY ACIDS					
Aceric Acid					51 (9)
Propanoic Acid					65 (9)
Butanoic Acid					63 (10)
2-Methylpropionic Acid Penrapoir Acid					63 (10) 61 (10)
3-Merhylbutanoic Acid					53 (10) 53 (10)
Hexanoic Acid					63 (10)
		7	•	, .+.	
BENZERE AND SUBSTITUTED		15 (1)		40-90 (3,4,5)	63 (10)
BENZENES					
Ethylbenzene		·		90 (4)	
Toluene				90 (4)	
1,2,4-Trimethylbenzene				90 (4)	
- O-Xylene				90 (5)	1
MONOHYDRIC PHENOLS		99.5 (1)		92-94 (G)	-
Phonel		I		00 (7)	60 (0)
2-Methylohenol				· 97 (7)	74 (9)
- 3-Mechylphenol				97 (7)	87 (9)
4-Methylphenol	, , ,			97 (7)	75 (9)
2,4-Xylenol				81 (7)	90 (9)
3,5-Xylenol				37 (7)	90 (9)
DIHYDRIC PHENOLS		60 (1)		HIGH (3,7)	
Catechol				97 (7).	75 (9)
3-Methylcatechol				100 (5)	j (11)
4-Methylcatechol		i.		97 (8)	
3,6-Dimethylcatechol		÷		97 (8)-	(11)
Resorcinol SeMerbyl Resorcinol				98 (7)	(9)
4-Mechyl Resorcinol				97 (8)	
			•		, ,
TRIAIDRIC PHENOLS		60 (1)		LOW (3)	
Phioroglucinol	ł	ł	4		

:

*Numbers in parenthesis refer to references.

Reference 78. (1)

5

(2) Reference 8.

Reference 15.

Reference 80.

- Reference 102.
- Reference 6.
- Reference 93.
- (3) (4) (5) (6) (7) (8) Assumed same removal as catechol.
- (9)

.

Reference 25. Assumed value based on rejection of non-phenolic organics in reference 25. (10)

2

- (11) Assumed same removal as catechol and
- (12)
- (13)

Assumed same removal as catecnol and resorcinol. DOE/ECT, unpublished. Assumed same removal as nitrogen heterocyclics. ~ Assumed values: assuming little degradation, but absorption/sedimentation removes 90% compounds (>2 rings) and 70% compounds (1.2 rings). (14)

2.

:

.

(15)

(1,2 rings). Assumed same value as phenanthrene. Assumed same value as for pyridine.

- (16)
- Assumed value.
- (17) (18) (19) (20) Reference 51.

¢

- Average value, reference 34.
- Reference 17. (21) o
 - Average value, reference 35.

TABLE 7 (Cont.)

φ

8 F - 4

4 2

÷

' 21

۰.

.

۲.

٤.

ζ,

Û

÷

	· · · · · · · · · · · · · · · · · · ·				
. Сомроимр	GAS LIQUOR SEPARATOR	PHENO- SOLVAN	AMMONIA	BIOLOGICAL TREATMENT	REVERSE
· · · · · · · · · · · · · · · · · · ·	(^{KE} X-LS)	(кех-рн)	(REX-AR)	(^{RE} X-BT)	(REX-RO)
POLYAROMATIC HYDROCARBONS	0	15 (1)	- 0	30-90 ⁺ - (4,12)	99 (15)
Acenaphthylene			「夢」	90 (14)	
Acridine				÷ 90 (14)	
Anchracene				90 (14)	
Benz(a)anthracene	1 1			90 (14)	•
Benzo(g,h,i)perylene	14 - C			90 (14)	
Benzo(a) pyrene			{ }	90 (14)	
· Benzo(e)pyrene				90 (14)	
Biphenyl		•		70 (5)	
Chrysene				90 (14)	
Fluoranthene				90 (14)	
Fluorene				90 (14)	
Indan				70 (14)	
Indene	1 V			75 (5)	
Naphthalene			1 1	70 (14)	
reryiene				90 (14)	
Prenanthrene				90 (14)	(9)
Pyrene		I		90 (14)	Ŧ
SULFUR HETEROCYCLICS		15 (2)		÷	63 (10)
Mechylthiophene				70 (14)	
Thiophene		•2		70 (14)	
· . ·					•
NITROGEN HETEROCYCLICS		1 A			74 (16)
2,4-Dimethylpyridine		99 (2)		90+. (5)	
2,5-Dimethylpyridine		99 (2)		90+ (5)	
2-Methylpyridine	1	99 (2)		· 90+ (5)	•
3-Methylpyridine		99 (2)		90+ (5)	
4-Mechylpyridine		99 (2)		90+ (5)	
Pyridine		99 (2)		99+ (5)	(9)
Quinoline ·		9 9 (13)		90 (13)	-
OXYGEN HETEROCYCLICS					, 74 (13)
Benzořuran		15 (1)		00 (17)	
Dibeazofuran				. 90 (13)	
				90 (13)	
MERCAPTANS	• •				
Methanethiol		15 (1)		90 (17)	90 (17)
AROMATIC AMINES			.		, , , , , , , , , , , , , , , , , , ,
Aniline		15 (1)		95 (5)	63 (10)
TRACE ELEMENTS		0		30-90 (12,18)	•
Arsenic				50 (17)	89 (21)
Boron			1	50 (17)	90 (21)
Heryllium Cadadau			1 1	50 (17)	90 (17)
				32.5 (19)	90 (17)-
riuorine Taad		i 1		50 (17)	93 (6)
Jest Jest Jest Jest Jest Jest Jest Jest			{·	70 (19)	60 (21)
Marganace			1	4/.5 (19)	90 (17)
Nickel				20 (17)	100 (6)
Vanadium		, - 	1 1	27.0 (19)	Y6 (5)
		I I	l 1	43 (20)	95 (2 <u>1</u>)

 $^{\prime\prime}$

F_{W-43} is the flow rate of the water component of Stream 43, i.e., 1,993,000 lb/hr.

22

 C_{TE-27} is the concentration of each trace element in the water component of Stream 27 (in ppm).

 F_{W-27} is the flow rate of the water component of Stream 27, i.e., 1,030 lb/hr.

RE_{TE-LS} is the efficiency of removal of each trace element in the gas liquor separator (in %).

 F_{W-46} is the flow rate of the water component of Stream 46, i.e., 1,991,000 lb/hr.

Estimation of Trace Element Concentrations in Stream 48

The concentration of each trace element in Stream 48 was estimated using the following equation:

$$C_{TE-48} = \frac{\binom{(C_{TE-46})(F_{W-46})}{100}}{\frac{[100-RE_{TE-PH}]}{100}}$$

where-

¢,

\$5

 C_{TE-48} is the concentration of each trace element in Stream 48 (in ppm).

;===:==:==:

- C_{TE-46} is the concentration of each trace element in Stream 46 (in ppm).
- F_{W-46} is the flow rate of the water component of Stream 46, i.e., 1,991,000 lb/hr.
- RE_{TE-PH} is the efficiency of removal of each trace element by the Phenosolvan control unit (in %).
- F_{W-48} is the flow rate of the water component of Stream 48, i.e., 1,990,000 lb/hr.

Estimation of Trace Element Concentrations in Stream 50 .

The concentration of each trace element in Stream 50 was estimated using the following equation:

 $(C_{TE-48})(F_{W-48})$ [100-RETE-AR] 100 ^F₩-50

23

where-

 C_{TE-50} is the concentration of each trace element in Stream 50, (in ppm).

CTE-48 is the concentration of each trace element in Stream .48, (in ppm).

FW-48 is the flow rate of the water component of Stream 48, i.e., 1,990,000 1b/hr.

 RE_{TE-AR} is the efficiency of removal of each trace element by the Ammonia Recovery unit (in %).

 F_{W-50} is the flow rate of the water component of Stream 50, i.e., 1,991,000 lb/hr.

Estimation of Trace Element Concentrations in Stream 52

The concentration of each trace element in Stream 52 was estimated using the following equation:

• .	(C _{TE-50})(F _{W-50})	[100-re _{te-bt}]
$C_{TE-52} =$		100
	· Fw-52	'.

where-

 \dot{c}

 C_{TE-52} is the concentration of each trace element in Stream 52, (in ppm).

 C_{TE-50}^{c} is the concentration of each trace element in Stream 50, (in ppm).

 F_{W-50} is the flow rate of the water component of Stream 50, i.e., 1,991,000 lb/hr.

RETE-BT is the efficiency of removal of each trace element by the Biological Treatment unit, (in %).

F_{W-52} is the flow rate of the water component of Stream 52, i.e., 1,962,000 1b/lir.

Estimation of Trace Element Concentrations in Stream 38-

The concentration of each trace element in Stream 38 was assumed to be equal to the concentration of elements in column volume leachate fractions of ash from Lurgi gasification of Montana Rosebud coal.⁹¹ The data were assumed to give a good approximation of Wyoming subbituminous coal as the concentration of almost all trace elements were essentially equal in both coals, as shown in Table 4. The concentration of each trace element in Stream 38 is presented in Table 6.

24

Estimation of Trace Element Concentrations in Stream 53-

The concentrations of each trace element in Stream 53 was estimated using the following equation:

 $[(C_{TE-52})(F_{W-52}) + (C_{TE-38})(F_{W-38})] [RE_{TE-R0}]$ 100

F_{₩-53}

where-

 C_{TE-53} is the concentration of each trace element in Stream 53, (in ppm).

 C_{TE-52} is the concentration of each trace element in Stream 52, (in ppm).

F_{W-52} is the flow rate of the water component of Stream 52, i.e., 1,962,000 lb/hr.

 C_{TE-38} is the concentration of each trace element in Stream 38, (in ppm).

F_{W-38} is the flow rate of the water component of Stream 38, i.e., 879,000 lb/hr.

RE_{TE-RO} is the efficiency of removal of each trace element by the Reverse Osmosis unit (in %).

 F_{W-53} is the flow rate of the water component of Stream 53 which is assumed to be 20% of the sum of the water components of Streams 52 and 38, i.e., 568,200 lb/hr. Estimation of Trace 'Element Concentrations in Stream 54-

ų

:

The concentration of each trace element in Stream 54 was estimated using the following equation:

	$(C_{TE-52})(F_{W-52}) + (C_{TE-38})(F_{W-38})$	[100-RE	TE-RO]
$C_{TE-54} =$:	10	0
where-	F _{W-54} ==		Х <u>.</u>
	is the concentration of each trace of Stream 54 (in ppm).	element	in 🚡
C _{TE-52}	is the concentration of each trace of Stream 52 (in ppm).	element	in
FW-52	is the flow rate of the water compo- i.e., 1,962,000 lb/hr.	nent of	Stream 52,
C _{TE-38}	is the concentration of each trace of Stream 38 (in ppm)	element	in
F _{W-38}	is the flow rate of the water composite., 879,000 1b/hr.	nent of	Stream 38,
RETE-RO	is the efficiency of removal of each the Reverse Osmosis unit (in %).	h trace	element by
F _{W-54}	is the flow rate of the water components of Stream 52 and 38, i.e	nent of um of th •, 2,273	Stream 54, e water ,000 1b/hr.

Estimation of Trace Element Concentrations in Stream 31-

The concentration of each trace element in Stream 31 (make-up water to utilities generation) was assumed to be zero.

Estimation of Trace Element Concentrations in Streams 31+54-

The concentration of each trace element in Streams 31+54 was estimated using the following equation:

-2

÷

Ç,

$$C_{\text{TE-(31+54)}} = \frac{(C_{\text{TE-31}})(F_{W-31}) + (C_{\text{TE-54}})(F_{W-54})}{(F_{W-31}) + (F_{W-54})},$$

ŝ

where-

CTE-(31+54) is the concentration of each trace element in Stream 31 + 54, (in ppm).

C_{TE-31} is the concentration of each trace element in Stream 31, (in ppm).

FW-31 is the flow rate of the water component of Stream 31, i.e., 1,180,000 lb/hr.

C_{TE-54}

is the concentration of each trace element in Stream 54, (in ppm).

^F₩-54

=-----

is the flow rate of the water component of Stream 54, assumed to be equal to 80% of the sum of the water components, of Streams 52 and 38, i.e., 2,273,000 lb/hr.

2.0

2.2.2 Estimation of Organic Compounds in Liquid Streams

Data on the types and concentrations of organic compounds in liquid streams were very limited. No data could be found regarding organic constituents in process waters from Lurgi/Fischer-Tropsch processing of Wyoming subbituminous coal.

In order to provide estimates of the types and concentrations of organic compounds which may be present in liquid streams from wastewater treatment units, data from two sources were used.

- A search of the literature indicated that limited data were available from the SASOL operation in South Africa and Lurgi gasifiers in Westfield, Scotland.⁹² Although the coal feed type, liquid stream flow rates, and operating conditions may not be the same as those specified for the conceptual plant used in this analysis, the available data were assumed to be representative. The data are presented in Table 6.
- Ongoing studies sponsored by the Environmental Protection Agency recently have characterized the organic components of tars produced by gasification of Wyoming subbituminous coal. Although there are differences between the conceptual plant and the EPA study regarding reactor configuration and operating conditions, the EPA data were assumed to be useful in providing preliminary estimates of the types and concentrations of organic compounds which may be produced by Lurgi gasification of Wyoming subbituminous coal. Parameter values for the EPA

study, Lurgi gasifiers and the conceptual plant configuration are compared in Table 8. Data from the EPA Study which were used in estimating the types and concentrations of organic compounds in liquid streams are summarized in Table 9 (column 4).

These two sources of data were used to estimate the concentrations of organics in Stream 43. Estimates of concentrations of organics in subsequent liquid streams in the wastewater treatment units were estimated by sequentially applying removal efficiencies of control units for each organic constituent to calculate the amount of each constituent which would remain in the liquid stream, and then dividing the quanitity of constituent to the flow rate of the water component of each stream.*

Estimation of Organics Concentrations in Stream 43-

As in the case of trace elements, Stream 43 was considered to be the crucial liquid stream for the analysis; it was the largest, most highly contaminated liquid waste stream in the plant, and its composition largely determined the composition and flow rates of subsequent streams from the wastewater treatment units.

Characterization of organics in Stream 43 was accomplished using data from the SASOL and Westfield, Scotland plants ⁹² and gasification screening tests¹⁹ described in the previous section. The SASOL and Westfield data, presented in Table 6, were assumed to be representative of Stream 43 and were used directly. The tar characterization data from the gasification screening tests were used in the following way to estimate quantities of organics in Stream 43.

1) It was assumed that the compounds detected in the tar produced by fixed-bed gasification of Wyoming subbituminous coal and the rates of production would be representative of Lurgi gasification of Wyoming subbituminous coal.

*The water component of each stream was used rather than the whole stream because it was assumed that the total quantity of each constituent was dissolved in the water component.

έ.

27

TABLE 8

28

COMPARISON OF PARAMETER VALUES FOR GASIFICATION REACTORS

	RTI <u>Test #33</u> 19	Lurgi 19 c	Conceptual	Plant ⁸⁷
Air/Coal, g/g	1.5	3.0	1.2	en.
Steam/Coal, g/g	.36	1.5	.89	
Carbon Conversion, %	98.9	95	99.5	
Coal Residence Time (min)	110	60	No Data	
Tar Produced, g/g	.012	No Data 🥇	.019	
Gas Procuded, SCF/1b	· 35	52	38	
HHV of Raw Gas, Btu/SCF	201	195	No Data	
Throughput, lb/hr/ft ²	45	248	No Data	
Coal Type .	Wyoming Subbit	New Mexico Subbit	Wyoming Subbit	
Fressure, Psia	200	300	450	4.
' Mesh Size	8 x 16	1.75" x .08"	1/4" x 2"	
Maximum Temperature ^O C	1040	No Data	No Data	
Heatup Time to 800°C, Min.	8	na *	NA *	

* NA-Not applicable

•

1.5

. :

2

TABLE 9

•

.

.

9

ESTURATION OF CONPORTION (MANTITLES ÍMSED ON TAR CONSTITUENTS AND CARPORD SOLUDILETY *:

•3

Image: contract in the stand of th												
CHTOND Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction </th <th>-</th> <th></th> <th>~</th> <th>7</th> <th>e</th> <th>2</th> <th>· · ·</th> <th></th> <th>-</th> <th></th> <th>lf=</th> <th>•</th>	-		~	7	e	2	· · ·		-		lf=	•
CHTMAN Financial Francis Financial Francial Fin		f Idout of Land	I there if the		,	to the factor of t	,	-		,		
Clarpon Try with the function Try with		in lurut.	in Yar Four	Provinced from	Proceposition.	-1" Minut Xers	Contribution.		Parame of	Lineary ra-	- Dimession	
Total Total <th< td=""><td>(10) ILANIND</td><td>Tar. 011</td><td>Voranture</td><td></td><td>- (2)</td><td>Fras (an (1)</td><td>fu Batar</td><td></td><td>Satural lon</td><td>then thus to</td><td>rin in</td><td></td></th<>	(10) ILANIND	Tar. 011	Voranture		- (2)	Fras (an (1)	fu Batar		Satural lon	then thus to	rin in	
(T.(A).1) mans (nai) (T.(A).2) mass (nai) (T.(A).2)		or Liquor	Subbit amt-	(Red/gar	(11/10)	(Indal)	(mid)	Comparind .	Level (11)	Solubility	Stream 43	
Withweithed Instant (1)		(1,0,1)	nous Conl	of Coal)					•	(wdd)	1	
List of the homener 0 (10) (100)	lethanethrol		~	2.1×10 ⁻⁵	1.1.1	20.6	(11) (10), 1.2				10	
With Uniformation L Lot of a line Total line Total of a line	Ethyl Benzene	(III) V		1 5010	7.85	9 961	(2) (3)	-	2	13		
Final Final <th< td=""><td></td><td></td><td>. `</td><td></td><td></td><td></td><td></td><td></td><td> 1 :</td><td></td><td></td><td></td></th<>			. `						 1 :			
Phonol Fronol 1 (12) 7 1.6401 ⁻⁷ 10431 ⁻⁷ 1.6401 ⁻⁷ 10431 ⁻⁷ 10131 ⁻⁷	anopholitika in the second		د نتر ب	1.0x10	1.001	89.7	1 (5) (6)	-	-		(a.)**	
Thubulation 0 (10) 7 1, 1, 6, 10 7 1, 6, 10 7 1, 6, 10 7 1, 1, 10 80. 1, 1 100 Table 1, 2, 4, 17 1, 10 1, 2, 2, 11 1, 10 1, 13 1, 10 1, 13 90. 11, 13 90. 11, 13 90. 11, 13 90. 11, 13 90. 90. 11, 13 90. <td>Իկուտի</td> <td>1. (12)</td> <td><u>}</u></td> <td>1.6×10⁻</td> <td>3042.1</td> <td>14.15.7</td> <td>82,000-(6)</td> <td>-</td> <td>01</td> <td>8,200</td> <td>1435.</td> <td>.,</td>	Իկուտի	1. (12)	<u>}</u>	1.6×10 ⁻	3042.1	14.15.7	82,000-(6)	-	01	8,200	1435.	.,
Telloning 0 (10) Z. Zull ¹¹ 4,102.9 1974.1 200 1 10 30.	Thinghene	(UI) 0	· · ·	3.0×10 ⁻⁵	57.0	26.9	(9) (2) 1'	-	01	_	(3.)	
1.3.4 ⁻¹ /intertrythamene 0 (10) 7 - <td< td=""><td>Toluone .</td><td>(01) 0</td><td><u>`</u></td><td>2.2×10⁻¹</td><td>÷ 4182.9</td><td>1974.1</td><td>500 (6)</td><td>٦</td><td>10</td><td>511.</td><td>51.</td><td></td></td<>	Toluone .	(01) 0	<u>`</u>	2.2×10 ⁻¹	÷ 4182.9	1974.1	500 (6)	٦	10	511.	51.	
Wines (0) 0 (10) 7 4.04.01 132.1.1 713.0 133.1.1 713.0 133.1.1 113.0 133.1.1 113.0 133.1.1 113.0 133.1.1 113.0 133.1.1 113.0 133.1.1 113.0 133.1.1 113.0 133.1.1 113.0 133.1.1 113.0 133.1.1 113.0 133.1.1 113.0 133.1.1	1.2.4-it have thy then zene	0 (10)	``	ı	ı	1	57 (7)		u .	5.7	<i>6</i> .	•
Instantarian 0 (10) 7 1.08.0 ¹⁴ 190.1 89.7 1 (3) (6) 2 10 2 10 Inlpeneral 0 (10) 7 6.3810 ⁶ 12.0 5.7 7 (3) 2 10 0.7 7 0.7 <td>(Xylene (D)</td> <td>(UI) 0</td> <td>~</td> <td>8.0×10⁻⁴</td> <td>1521.1</td> <td>717.9</td> <td>(1) 511</td> <td>-</td> <td>2</td> <td>17.5</td> <td>18.</td> <td>-</td>	(Xylene (D)	(UI) 0	~	8.0×10 ⁻⁴	1521.1	717.9	(1) 511	-	2	17.5	18.	-
Itplemyl (1) 7 (a.)a(0 ⁻⁶ (12.0 5.7 7 (a) 2 10 0.7 0.7 0.7 India 0 (10) 7 7.6a(0 ⁻⁵) 1(2.0 5.7 1(3) 2 10 -0.7 9.0 India 0 (10) 7 7.6a(0 ⁻⁵) 106.5.7 30.3 314.1 2 10 3.2 9.0 Initialities 0 (10) 7 7.6a(0 ⁻⁵) 66.3 3.2 100 2 10 3.2 9.0 Primbline 0 (10) 7 5.5a(0 ⁻⁵) 10.5 2 10 0.1 0.3 3.2 9.0 9.0 0.0 </td <td>hurzofuran · ·</td> <td>(UI) 0</td> <td>~</td> <td>1.0x10⁻⁴</td> <td>140.1</td> <td>19.7</td> <td>1 (5) (6)</td> <td>2</td> <td>10</td> <td></td> <td>*</td> <td></td>	hurzofuran · ·	(UI) 0	~	1.0x10 ⁻⁴	140.1	19.7	1 (5) (6)	2	10		*	
Indua 0 (10) 7 7.4s.10 ⁻⁵ (44.3) (61.1) 88.9 (13) 2 10 9.0 Indust 0 (10) 7 5.53 1(4.3) (61.1) 2 10 3 9.0 supticibutes 0 (10) 7 5.53 1(4.1) 22 10 3 10 3 9.0 supticibutes 0 (10) 7 5.53 1(4.1) 22 10 3 10 3 3 statistication 0 (10) 7 5.5410 ⁻⁵ 4.03 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1<	liphenyl		• •	6.3×10 ⁻⁶	12.0	5.7	7 (4)	2	10	- 0.7	a.7	
Index 0 (10) 7 5.5x10 ⁻⁶ 106.5.7 701.5 1<(3) 6 10 3.2 10 3.2 10 4.8 splitchelener 0 (10) 7 7.5x10 ⁻⁶ 645.5 314.1 32 (3) 2 10 3.2 3.2 3.4 splitchelener 1 2 (40) 7 3 (40) 2 10 3.2 3.2 3.4 formultip/tene 1 2 (40) 3 2 (40) 3 2 10 0.4 0.4 formultip/tene 1 2 2.2 wst (3) 0 3 10 2 3 3 formultip/tene 1 2 31.1 2 3 1 2 3 10 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Indau	(01) 0	.~	7.6×10.5	144.5	68.1	88.9 (13)	2	2		0.6	
Majniciuleue 0 (1) 7.5% (6,1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 1 3 <th< td=""><td>լ հեղերե</td><td>(01) 0</td><td>~</td><td>5.5×10⁻⁴</td><td>1045.7</td><td>2°C4V</td><td>i (5) (6)</td><td>2</td><td>9</td><td></td><td>2</td><td>:</td></th<>	լ հեղերե	(01) 0	~	5.5×10 ⁻⁴	1045.7	2°C4V	i (5) (6)	2	9		2	:
quiantifie i 5.1x10 ⁵ 96.9 65.7 6,100 (4) 2 10 610. 63. Acriation i 5.1x10 ⁵ 96.9 65.7 6,100 (4) 2 10 610. 63. Acriation i 2.2xa10 ⁵ 101.6 2.22 vas (5) (6) 3 10 0 0.4 0.4 0.4 Arritition i 5.2x10 ⁵ 101.6 2.22 vas (5) (6) 3 10 0	Naphelia Jeue 👡 🦷	0 (10)	~	1. 7. 10 ⁻⁴	665.5	1.415	(½) 2C	23	10	3.2	· • • • • •	
Accumulativiene Accumulativiene Accumulativiene 0.4	the ind Inc		~	5.1×10 ⁻⁵	9.90	45.7	6, 100 (4)	2	10	6 LD.	45.	
Artifice Artifice 1 2.4×10^{-6} 4.6 2.2 vess (5) (6) 3 10 $ 2.2$ 0.1	Acruablicity I ene	•	`	4.9×10 ⁻⁵ (8)	93.2	6.64	(1) 7		5	0.4	0.4	2
Anthraceae $a_1(a_1)$ $b_1(a_1)$ $b_1(a_1)$ $b_1(a_2)$ $b_1(a_1)$ $b_1(a_2)$ $b_1(a_1)$ $b_1(a_2)$ $b_1(a_3)$ $b_1(a_3)$ $b_1(a_3)$ $b_1(a_3)$ $b_1(a_3)$ $b_1(a_3)$ $b_1(a_3)$ $b_1(a_3)$ $b_1(a$	Acridine		`	2.4×10 ⁻⁶	4.6	2.2	VBS (5) (A)	m	01	1	2.2	29
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Anthrucene	_	~	8.5×10 ⁻⁵	161.6	76.3	1 (4)	'n	<u>e</u> .	0.1	0.1	
Flurence 7 5.7×10^{-5} 108.4 51.1 2 7 10 0.2 0.2 Prominitenes 7 6.6×10^{-5} $B3.7$ 39.5 1 7 1 10 0.2 0.2 Revacabilitracene 7 5.2×10^{-5} $B3.7$ 39.5 1 7 1 10 0.2 0.2 Revacabilitracene 7 2.0×10^{-5} 38.3 17.9 $a.001$ 60.1 60.1 0.1 0.1 0.2 0.1 Perrove 7 1.5×10^{-5} 5.7 1.1 0.2 0.2	Dihmzufuran	(01) Q	`	5.9×10 ⁻⁵	112.2	52.9	(9) 1	n	e	i	0.2	
Phomuticreus i_1 $i_2 \times i_1 0^{-5}$ $63.i$ 39.5 1 (i_1) i_1 0.0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.001 0.0001 0.0001 0.0001 <	Fluarento		~	5.7×10 ⁻⁵	LNR.4	51.1	(ii) z		9	0.2	0.2	- <u> </u>
HeraCa)Antilizacene i j_1 i_2 i_1 </td <td>Phynanchrons</td> <td></td> <td>~</td> <td>4.4810 5</td> <td>63./</td> <td>39.5</td> <td>- (9);</td> <td></td> <td>5 51</td> <td>1.0.</td> <td>0.1 2</td> <td></td>	Phynanchrons		~	4.4810 5	63./	39.5	- (9);		5 51	1.0.	0.1 2	
Chrvene / 2.0x10 ⁻⁵ 38.1 17.9 0.002 (a) 0 <t< td=""><td>พบร(ก) AnLirncene</td><td></td><td>~</td><td>(8), 2×10⁻⁶(8)</td><td>4.4</td><td>4.7</td><td>(1) 10.0</td><td>*</td><td>100</td><td>0.01</td><td>10.0</td><td>с.</td></t<>	พบร(ก) AnLirncene		~	(8), 2×10 ⁻⁶ (8)	4.4	4.7	(1) 10.0	*	100	0.01	10.0	с.
Flurrathene ℓ $1,2\times10^{-5}$ 60.8 28.7 9.2 ℓ_1 100 $0.$ $0.$ Verme ℓ 1.5×10^{-5} 66.5 31.6 0.2 ℓ_1 0.2 0.2 0.2 Henzo(n)Pyrene ℓ $1.5\times10^{-6}(8)$ 2.7 1.1 0.006 0.2 0.2 Renzo(n)Pyrene ℓ $1.5\times10^{-6}(8)$ 2.7 1.1 0.006 0.2 0.2 Renzo(n)Pyrene ℓ $1.5\times10^{-7}(8)$ 2.7 1.1 0.006 0.006 0.006 Renzo(n)Pyrene ℓ $1.5\times10^{-7}(8)$ 1.6 0.8 0.006 0.006 Renzo(n)Pyrene ℓ $1.5\times10^{-7}(10)$ 0.6 0.6 0.003 0.006 Renzo(n)Pyrene ℓ $1.2\times10^{-7}(10)$ 0.6 0.3 0.003 0.004 Renzo(n)Pyrene ℓ $1.2\times10^{-7}(10)$ 0.6 0.3 0.003 0.003 Renzo(n)Pyrene ℓ 0.003 0.003 0.003 0.003 0.0001	(liryrong		`	2.0×10 ⁻⁵	18.3	17.9	0.002 (4)	4	100	0.002	0.0112	÷
Iverant / 1.5x10 ⁻⁵ f.6.5 31.6 0.2 (4) \dot{h} 100 0.2 0.2 0.2 0.2 Henzo(2)Pyrene / / 1.5x10 ⁻⁶ (8) 2.7 1.1 0.00% (4) 5 100 0.00% 0.00% Averac(5)Pyrene / / 1.7x10 ⁻⁷ (8) 2.7 1.1 0.00% (4) 5 100 0.00% 0.00% Averac(5)Pyrene / / 1.7x10 ⁻⁷ (8) 1.6 0.8 0.00% <td>Fluaranchene</td> <td></td> <td>~</td> <td>3.2×10⁻⁵</td> <td>60.8</td> <td>28.7</td> <td>(1) 2.0</td> <td>"</td> <td>100</td> <td></td> <td>0.</td> <td></td>	Fluaranchene		~	3.2×10 ⁻⁵	60.8	28.7	(1) 2.0	"	100		0.	
Henze(n)Fyrene / $[-4x10^{-6}(h) 2.7 1.7 0.004(4) 5 100 0.004 0.004$ Reuze(c)Fyrene / $[-5x10^{-7}(h) 1.6 0.8 0.004(4) 5 100 0.004 0.004 0.004$ Purylene / $[-5x10^{-5} 2.7 1.7 1.7 0.0046(4) 5 100 0.0044 0.0004$ Reuze(s,1,1,1)Ferylene / $[-2.9x10^{-7}(h) 0.6 0.3 - 0.3 0.0003(4) 6 1.0 0.001 0.0001$	Pvrenn		~	1.5×10 ⁻⁵	6.61	31.6	0.2 < (4)		100	0.2	0.2	
Runzu(r)Pyrena / 8.7×10 ⁻⁷ (H) 1.6 0.004 (4) 5 100 8.004 0.004 Preylene / / 1.3×10 ⁻⁷ (H) 24.7 11.7 0.0046(4) 5 100 0.0044 0.0044 Renzel(H, I) Perylene / / 2.3×17 11.7 0.0003(4) 5 100 0.0004 0.0004 Renzel(H, I) Perylene / / 2.3×17 11.7 0.0003(4) 5 100 0.0004 0.0004 Reserve.19 / / 0.2.9×10 ⁻⁷ (1) 0.6 0.3 0.0003 (2) 6 100 0.0001 0.0001	Arnza (a) Pyrene		`	1.4×10 ⁻⁶ (8)	2.7	1.1	(7) 700.0	œ.	io.	0,004	900.0	
Prestore / / 1.3z10 ⁻³ 2A.7 11.7 0.00MA(4) 5 100 0.00MA 0.00MA .Rusra(y, \u00eb, 1) Feryteur / / 2.9x10 ⁻⁷ (1) 0.6 0.3 0.0003 (4) 6 100 0.0001 .Rusra(y, \u00eb, 1) Feryteur / / 2.9x10 ⁻⁷ (1) 0.6 0.3 0.0003 (4) 6 100 0.0001	Renza(e)Pyrena		~	8.7×10 ⁻⁷ (B)	. y'l	0.8	0.00% (4)	£	Inu	0.00%	0.004	
.Muraditi, i, i) Feryteur / / 2.9x10 ⁻⁷ (1) 0.6 0.3 0.0003 (4) 6 100 0.001 0.0001	Pery lene		`	1.3×10 ⁻⁵	24.7	11.7	(4) 4000.0	ر ه مر	001	0,0004	0.0004	
	,8ແຄະຄ(x,ໍ່ໄ, l)Perylenc		~	2.9×10 ⁻⁷ (II)	9.6	C.0	0.0003 (4)		itte)	1000-0	0.0001	
(1) Baference 19.				1								•
	(1) Vafarence 19.									/		

۰,

1

**Estimates highly uncertain due to lack of data on rompound solubility. Total Production - (Pollutant Production Rate)(1,901,334 lb con1/br). Maximum Concentration - (Total Production) 1 (Finw Rate of Stream 43). Reference 9.

vsa = very alighiy soluble; ss = alightiy solubia; i = inanlubie. Reference 75.

.

Reference 4. Reference 79, Reference 113. Reference 45. Reference 22. Reference 22.

,

.

ري. اا

2) It was further assumed that the concentration of each compound in the gas liquor would be limited by either the production rate of the compound or the solubility of the compound in water.

30

- 3) The quantity of each compound produced as a function of the quantity of coal fed to the gasifier was identified in the study. The data are presented in Table 9 (column 4).
- 4) It was assumed that the total quantity of each organic compound in the tar dissolved in the water component of Stream 43. The resultant concentration of each organic compound in the water component of Stream 43 was calculated using the following equation:

whère-

- C_{o-43} is the concentration of each organic compound in the water component of Stream 43, (in ppm).
- R_o is the rate of production of each organic compound per unit of coal charged to the gasifier (1b compound produced/1b of coal gasified).
- F_{C-2} is the flow rate of whole coal to the gasifier, i.e., Stream 2, (1,901,324 lb/hr).
- F_{W-43} is the flow rate of the water component of Stream 43, i.e., 1,993,000 lb/hr.

The results are presented in Table 9, Column 6.

5) The concentration of each compound, which would result if the limiting factor were the solubility of the compound in water, was estimated:

$$C_{o-43} = \frac{(S_{o-W})(L_{o-V})}{100\%}$$

where-

C₀₋₄₃ is the concentration of each organic compound in Stream 43 if the solubility of the compound in water were the limiting factor (in ppm).

 S_{o-W} is the solubility of the compound in water (in ppm).
is the assumed level of solubility (in %) which would be attained by each compound as a function of molecular size. Based upon findings at Oak Ridge National Laboratory⁴⁵ it was assumed that for compounds with 4 or more rings $L_{o-W} = 100\%$, and for compounds with 3 or fewer rings $L_{o-W} = 10\%$.

The results are presented in Table 9, Column 10.

6) The concentration of each organic compound in the water component of Stream 43 was assumed to be the lesser of the two concentrations estimated in steps 4 and 5. Concentrations in Stream 43 used in the analysis are presented in Table 9, Column 11.

Estimation of Organics Concentrations in Stream 27-

Concentrations of organic compounds in Stream 27 were assumed to be zero due to lack of data on specific compounds.

Estimation of Organics Concentrations in Stream 46-

The concentration of each organic compound in the water component of stream 46 was estimated:

 $(C_{o-43})(F_{W-43}) + (C_{o-27})(F_{W-27})$ [100-RE_{0-LS]} 100

where-

 C_{0-46} is the concentration of each compound in the water component of Stream 46, (in ppm).

 C_{o-43} is the concentration of each compound in the water component of Stream 43, (in ppm).

- F_{W-43} is the flow rate of the water component of Stream 43, i.e., 1,993,000 lb/hr.
- C_{o-27} is the concentration of each organic compound in Stream 27, i.e., assumed = 0.

 $F_{W-27}\,$ is the flow rate of the water component of Stream 27.

 RE_{o-LS} is the efficiency of removal of each compound in the tar/oil separation unit (in %).

FW-46 is the flow rate of the water component of Stream 46, i.e., 1,991,000 lb/hr.

Estimation of Organics Concentrations in Stream 48-

The concentration of each compound in Stream 48 was estimated using the following:

$$= \frac{(C_{0-46})(F_{W-46})}{\frac{[100-RE_{0-PH}]}{100}}$$

where-

C₀₋₄₈

- C_{o-43} is the concentration of each compound in the water component of Stream 48 (in ppm).
- C_{o-46} is the concentration of each compound in the water component of Stream 46.
- F_{W-46} is the flow rate of the water component of Stream 46, i.e., 1,991,000 lb/hr.
- RE_{O-PH} is the efficiency of removal of each compound in the Phenosolvan unit (in %).
- F_{W-48} is the flow rate of the water component of Stream 48, i.e., 1,990,000 lb/hr.

Estimation of Organics Concentrations in Stream 50-

The concentration of each organic compound in Stream 50 was estimated using the following:

$$C_{o-50} = \frac{(C_{o-48})(F_{o-48})}{\frac{[100-RE_{o-AR}]}{100}}$$

where-

 C_{o-50} is the concentration of each compound in the water component of Stream 50 (in ppm).

- C₀₋₄₈ is the concentration of each compound in the water component of Stream 48 (ppm).
- F_{W-48} is the flow rate of the water component of Stream 48, si.e., 1,990,000 lb/hr.
 - RE_{0-AR} is the efficiency of removal of each compound in the ammonia recovery unit (in %).
 - F_{W-50} is the flow rate of the water component of Stream 50, i.e., 1,991,000 lb/hr.

÷ ،

···· · * .

 \square

Estimation of Organic Consentrations in Stream 52-

The concentration of each compound in Stream 52 was estimated using the following:

		(C ₀₋₅₀)(F _{W-50})	[100-RE _{0-BT}]
с _{о-52}	= -		100
		[₽] ₩52	

where-

- C_{o-52} is the concentration of each compound in the water component of Stream 52 (in ppm).
- C_{o-50} is the concentration of each compound in the water component of Stream 50 (ppm).
- F_{W-50} is the flow rate of the water component of Stream 50, i.e., 1,991,000 lb/hr.
- RE_{0-BT} is the efficiency of removal of each compound in the Biological Treatment unit (in %).
- F_{W-52} is the flow rate of the water component of Stream 52, i.e., 1,962,000 lb/hr.

Estimation of Organic Concentrations in Stream 38-

Concentrations of organic compounds in Stream 38 were assumed to be zero, due to lack of data.

Estimation of Organics Concentrations in Stream 53-

The concentration of each organic compound in Stream 53 was estimated using the following:

 $C_{o-53} = \frac{[(C_{o-52})(F_{W-52}) + (C_{o-38})(F_{W-38})] [RE_{o-R0}]}{F_{W-53}}$

where-

- C₀₋₅₃ is the concentration of each compound in the water component of Stream 53 (in ppm).
- C₀₋₅₂ is the concentration of each compound in the water component of Stream 52 (in ppm).
- F_{W-52} is the flow rate of the water component of Stream 52, i.e., 1,962,000 lb/hr.
- C_{0-38} is the concentration of each compound in Stream 38, assumed = 0.
- F_{W-38}° is the flow rate of the water component of Stream 38, (i.e., 879,000 lb/hr.
- REo-RO is the efficiency of removal of each compound in the Reverse Osmosis unit (in %).
- F_{W-53} is the flow rate of the water component of Stream 53, assumed to be equal to 20% of the combined water flow rate of Streams 38 and 52, i.e., 568,200 lb/hr.

Estimation of Organic Concentrations in Stream 54-

Concentrations of each compound in Stream 54 were estimated using the following:

 $C_{o-54} = \frac{[(C_{o-52})(F_{W-52}) + (C_{o-38})(F_{o-38})]}{F_{W-54}} \frac{[100 - RE_{o-R0}]}{100}$

where-

- C₀₋₅₄ is the concentration of each compound in the water component of Stream 54 (in ppm).
- Co-52 is the concentration of each compound in the water component of Stream 52 (in ppm).
- F_{W-52} is the flow rate of the water component of Stream 52, i.e., 1,962,000 lb/hr.
- C_{o-38} is the concentrations of each organic compound in Stream 38, assumed = 0.

 RE_{o-RO} is the efficiency of removal of each compound in the Reverse Osmosis unit (in %).

34 -

 F_{W-54} is the frow rate of the water component of Stream 54, assumed to be equal to 80% of the combined water flow rate of Stream 52 and 38, i.e., 2,273,000 lb/hr.

τ.

6

2

Estimation of Organic Concentrations in Stream 31-

Concentration of organics in treated makeup water (Stream 31) was assumed to be equal to zero.

Estimation of Organic Concentrations in Streams 31+54-

The concentration of each organic compound in Streams 31+54 was estimated using the following:

$$\sum_{k=0}^{\infty} (C_{0-31})(F_{W-31}) + (C_{0-54})(F_{W-54})$$

where-

¥.

11

^C o~(31+54)	is the concentration of each compound in the water component of Streams (31+54).
^C o-31	is the concentration of each compound in Stream 31, assumed = 0.
Fw-31	is the flow rate of the water component of Stream 31, i.e., 1,179,700 lb/hr.
с _{о-54}	is the concentration of each compound in the water component of Stream 54.
^F ₩-54	is the flow rate of the water component of Stream 54, i.e., 2,273,000 lb/hr.
^F W-31 ^{+F} W-54	is the sum of the flow rate of the water component of Streams 31+54, i.e., 3,452,000 lb/hr.

2.2.3 Results

The estimated concentrations and flow rates of each stream constituent, including both trace elements and organic compounds, are presented by stream in Table 10 and 11.

ļ

10
TABLE

÷

4

:..

CONCENTRATION IN STREAM (PPM)

٠,

•

•

TRACE CLEVEN'S	22	31	×.	43	71	40	63	22	. 29	2.	51131
Arsunic	1,05-02	0.0	2, of -02	5,56-01	10-35.2	5, 5F01	5.tE-01	10-30.2	10-36-11	2,06-02	20-30°1
Herellaun .	1,06 02	0.0	0.0	2,96-01	2.96-01	2, 46-01	· 2.9E-01	10-3511	1.45-01	1.36-02	9.5603
Roran	0.0	0.0	0.0	1.96100	1.7E-100	1,96400	1.96400	10-3U.9	3.11.100	N.5E-02	5.46-02
ડિઝનક્ષ દેવલ	6.0E-03	0.0	5,4E-04	2.56-01	2.5E-01	2,56-01	2.5E-01	1.76-01	5.3E-01	1.56-02	9.AE~03
Fluorise	0.0	0.0	0.0	2.0E401	2.0E101	2.06401	2,06101	1.06401	3.36101	6.2E-01	4.5E-01
ונטל	2.36-02	0.0	9.05-02	10-36-7	1036 - 1	1.46-01	1.46-01	4,36-02	1.76-01	2,912-02	1.96-02
Aunsulese	1,16402	0.0	5.0E-01	4,76-03	4.2E-02	5.'2E02	6.25-02	3.16-02	0-JE-01	0,0	0.0
Neregru	2,76-02	0.0	3.06-04	4.76-02	4.9E-02	4.96-02	4.96-02	2.5E-02	0.1E-02	2;2E-03	1.56-03
Nickel '	3.2E-01	0.0	·3.5E-02	3.66-02	3.9E-02	3.9E-02	3.76-02	2.UE-02	1.56-01	7.4E-04	5.06-04
an then by	0.0	0.0	0.0	5.6E-03	9.4E-03	9.3E-03	9.4E-03	5, 4E-ÛJ	1.86-02	2.3E-04	1.56-04
Acetic acid	0.0	0.0	0.0	1:7E102	1.7E102	1,55102	1.5E102	7.4E100	1.315101	3.16100	2.16400
Aniline	0.0	0.0	0.0	1.25-01	1.26101	1,28-01	10-30.1	6,1E-03	1.3E-02	1,96-03	1.3E-03
Vulanate Acid	0.0	0.0	0.0	1.36401	1.36101	1.1E401	1.16101	5.4E-01	1.26400	1,06-01	1,2E-01
Cotechal	0.0	0.0	0°0	5.56402	5,52102	2.26102	2,26102	4.7E100	1.76-101	3,4E100	9.56-01
llocannic Acid	0.0	0.0	0·0	1.0E-100	1.0E100	G. SE-01	0.56-01	4,36-02	9.4E-02	1,4E-02	9.1E-03
Pentanoic Acid	0.0	010	0.0	1.2E101	1.26101	1.05101	1.05101	10-32,8	1.16100	1.7E-01	1.1E-01
[hunu]	0.0	0.0	0.0	3.16403	3. 1E-103	1.46401	1.46101	1.46-01	10-30.1	4.25-02	20-38-62
Prupanoie Acid	0.0	0.0	0.0	2.46101	2,46401	2.26101	2.26401	1.16100	2,56100	3.46-01	2.216-01
היווףדוה.ן	0.0	0'0	0*0.	1.26102	1,26402	1,26400	1.26100	1.26-02	3.0E-02	2.76-03	1,06-03
kespreinu l	0.0	0-0	0.0	2,06102 .	2,46402	1.16102	1.16102	2.26100	2, 46100	° 4.NE-01	3126-01
2Hethutrhulut	0.0	0.0	0.0	3.46102	3.4E102	1, 7E100	1.76100	5,26-02	1.3E-01-	1.26-02	7,7E-03
2-Methuleronlanic Ac	.0.0	0.0	0.0	2.06400	3.0E100	1.76-00	1.7E100	B,4E-02	1.915-01	2.06-02	1.11502
อนเหนาธะนาญวงน-2	0.0	0.0	0.0	7.06101	7,05401	7.0E-01	7.06-01	7,16-02	1.05-01	1.46-02	1.16-02
2,9-Ainethylearidine	0.0	0-0	0.0	1.06100	1.06400	1,0E02	1.05-02	.1.0E-03	2.46-03	2.515-20	1.56-04
2+4-Xutanol	0.0	0.0	10.0	1.26102	1.26102	F0-30.2	10-30*7	1,26-01	3.46-01	1.0E-02	6.66-03
2.5-binethalistridine	0.0	0.0	0.0	1.05100	1.06100	1.05-02	1.00-02	1,0603	2.46-03	2.36-04	1.56-04
3-nutim)nutanaje Aci	0.0	0.0	0.0	1.05100	2.06100	G. (5E-01	0.56-01	4.31202	Ú. 1E 02	1.45-02	× 16-03
3-Nullulratedial	0.0	0.0	0,0	4.01.102	4,05402	1.56102	1.46102	0.0	0.0	0.0	0.0
3 detivitation1	0.0	0.0	0.0	4.26102	1.2E102	2.16100	2.10100	4.46-02	1. 11-01	7.20-03	1. 7E -03

:_{*}`

•.

÷

••

÷

TABLE 10 (CONT.)

.

Ŧ

-

•

•

.....

•

·

.

•

.

:

· · •

*•• •

ζ

" CONCENTRATION IN STREAMS (PPM)

	6	IK.	QE	£4 ·	7V	40	80	25 25	25	. •2	16143	
	0.0	0.0	0'0	2,46401	2.46101	2.46-01	2.4E-01	2,4E02	6.7E-02	5.9E-03	3.9E-03	
	0.0	0.0	0.0	5.0E101	5.0E101	2.5E-01	2,55-01	1,46-01	2.0E-01	1,46-02	9.1E-03	
lui	0.0	0.0	0*0	4,56101	10436.6	1013011	1.0130.1	5.55-01	1,16400	1.26-01	2.011-02	
101	0.0	0.0	0.0	3.46-01	3.46101	1.46401	10130.1	1.46-01	1.1E100	, 9,5E-02	4.25-02	
	0.0	0.0	0.0	3,96102	3.96102	1.56402	· 1.5E102	4.76100	1.25101	1.06100	4.7E-01 ⁽¹⁾	-
	0.0	0'0	0.0	3,01102	3,00102	1.SE100.	1.55100	9.46-02	10-32,1	9.YE-03	5.5E ^{.4} 03	
	0.0	0.0	0.0	6,0L100	6.0E100	4 - 0E-02	4.0E-02	6.1E-03	1,46-02	1.46-03	9,06-04	9
111	0-0	0.0	0.0	4.5E101	6.5E-101	2.46101	2.46401	7.96-01	<2.16400	1.7E-01	1.16-01	
	0.0 %	0.0 -	0.0	10-30.f	4.0E-01	3,46-01	3.46-01	3.5E-02	1.25-01	3.0E-01	2.06-04	
	0.0	0'0	0.0	1,05-01	1.0E-01	· 0.56-02	0.56-02	₿•4E~03	3,0E-02	7,55-05	4.95-05	
21	0.0	0.0	0.0	1.0E-02	1.05-02	(J.5E-03	D.SE-03	0.4E-04	3,0E-03	6 Z, SE-05	4,95-06	•
	0-0	0.0	0.0	4.0E-03	4.0E-03	3,46-03	3.46-03	3,56-01	1.2E-03	3,0504	2,06-04	
	0.0	0.0	0.0	4.0E-03	4.0E03	3.4E-03	3.46-03	3,56-04	1.25-03	3. 0E-04	2,0604	37
lenē	0.0	0.0	0.0	3.06-04	3, 0E-04	2.46-01	1 • 4E0 4	2.46-05	1. PE-05	2,26-07	1.116-07	
	0.0	0.0	0.0	7.0E-01	7.0E-01	4.05-01	6.0E-01	1.05-01	4.2E-01	1.46-03	1,015-03	• •
	0.0	0.0	0.0	E030*2	2.0E-03	1.76-03	دارز 2E−03	1.76-04	5.96-04	1.56-04	7.UE-07	•
,	0.0	0.0	0*0	1.0E-01	10-30'1	11.5E-02	B.3E-02	U.4E- 03	2,26~02	. EO-36'T	1.36-05	•
	0.0	0.0	0.0	1.56101	1.56101	1.36101	1.36101	1.36100	2.96100	4.2E-01	2,46-01	. :
	0.0	0.0	0.0	10-30.5	2,0E-01	1.76-01	10-37.1	1.76=02	5.96-02	1,56-04	9.0E-05	
	. 0.0	0.0	-0.0	2.0E-01	2,0E-01	1.76-01	1.76-01	1.76-02	5.9E-02	1.56-04	9.11E-05	.: •
	0.0	0.0	0.0	11, VE100	0.94100	7.66100	7,36100	2.36100	7.96100	2 /0E-02	1.3E-02	•
	÷ 0*0	0.0	0*0	2.25101	2,26101	1.94401	1,96101	1.96100	5.VE100	1.45-01	1.1E-01	-
	0.0	0.0	0.0	3.26100	3.26100	2.76100	2,70100	[], JE -0]	2.116100	2012-42	4.76-03	
	0.0	0.0	0.0	4 . 0E -04	4,00-04	3,45-04	3.46-04	3.50-05	1.36-04	3.01-07	2.06-07	
	0.0	0.0	0.0	10-30-1	1,0E-01	0,56-02	0.50-02	U - 6103	3.06-027	7,56-05	1,00-05	
	0.0	0.0	0.0	2.0E-01	2,06-03	1.76-01	1.76-01	1. /E-02	h. ye- 02	40- JSI' T	9.18-05	· <u>.</u>
	0.0	0'0	. 0.0	9.5E100	9.46100	9, 4E -02	9.5E 02	9, /E-03	2,55-02	2121-03	1.46-03	
	0.0	0.0	0.0	5.06101	5,06101	4.46101	10138.4	4.36100	Y.4EIÖJ	1,41:100	7.1E-01	•
	:	4	:							:		• .

(LBS/HR)
STREAMS
NI
RATES
FLOW

. TĄBLE 11

)^{/.} **.**.

•

1

;

2

۰,

\$3

:]		•	•	•				, i			•			38 								{					,	
	12162	4.35-02	2.96-02	.I.9E-01	3.4E-02	1. AEI 00	6.5E-02	0.0	5.1E-03	1.76-03	5,36-04	7.16400	4.46-03	4.16-01	3, 36100	3.16-02	3.6-01	9.4E-02	7.76-01	2. IE-03	1.16100	2.46-02	5.JE-02	3.46-02	5.3E-04	2,3E-02	5.26-04	3. IE-02.
	·ñ	6.3E-02	2,95-02	1.96-01	3.46-02	1.46100	4,56-02	0.0	5. IE-03	1,76-03	5.JE-04	7.15400	H.4E-03	4.1E-01	3.36100	3.16-02	3,05-01	9 . 6E-02	7.76-01	4. IE- 03	1.16100	2.66-02	6.3E-02	3. AE -02	5.2E-04	2,3602	5.26-04	3.1E-02
	, z.s	5. 16: 01	2.46-01	1.7E100	3.05-01	1.95101	9.01-02	5.0E-01	4. <i>6</i> E-02	0.56-02	1.0E-02	7.46100	7.56-03	6.9E-01	9.9E400	1.JE-02	6.4E-01	2. IE01	1,46100	1./E-02	3,36400	7.58-02	1.16-01	1.05-01	1.56-03	2.06-01	1,5E-03	5. 3E- 02
	1	5,56-01	2,96-01	1.95100	3.46-01	2.06401	11.4E-02	4.16-02.	5.1E-02	5,46-02	1.1E-02 &	1.46101	1,26-02	1.16100	1.36101	0.56-02	1,06-100	3.16-01	2.26100	2, 36-02	4.46100	1.05-01	1.71-01	1.45-01	2.06-03	2.46-01	2,06-03	0.56-02
	04	1.16100	5.66-01	3,96100	5.0E-01	1.01101	2706-01	1.26-01	9.7E-02	7.7E-02	1.76-02	2.96102	2,46~01	2.26101	4.46102	1.76100	2.06101	3, 1E101	4.46101	1,36100	2.26102	3,46100	3.46100	1.41:100	1.06-02	1,26100	2,05-02	001.12.1
	416	1.16100	5.01-01	3.96100	5.06-01	4.01-101	2.46-01	1. 王 -01	9.7E-02	7.7E-02	1.96-02	2.96102	2,46-01	2.26101	4.46402	1.7E100	2,05101	3. 16101	4.45101	2.46100	<u>2. 15102</u>	3.40100	3.46100	1.96100	2.0002	1. 951-00 -	2, 05-02	1.76400
	ગાર	1,16100	5.11601	3;96100	5.01-01	4.06101	2,01-01	J.2E-01	9.76-02	7.76-02	1,96-02	3,46102	2,46101	2,66101	1.1E103	2.06400	2.46+01	6.26103	5.20101	2.36102	5,52102	6.06102	4,06400	1.46102	2.ĠE100	2.45402	2.0E100	2.0E100
	5.4	1.15100	5.01-01	3.917100	5.06-01	4.01.101	2, 116-01	9,315-03	¥.7V02	7.76-02	1,92-02	3.46102	2,46101	2.46101	1.16403	2.06100	. 2. 4E401	6.2E103	5.26.101	2.36.102	5.56102	4 (IE-) 02	4.06100	1.461.02	2.00100	2,46102	2.01100	2.01:100
	85	1.415 02	0.0	0.0	10 37.8	0.0	7.96-02	4.9ビーショ	2.46-04	3.16-02	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0
	15	0'0	0'0	0'0	0'0	0.0	0.0,	0.0	0.0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0,Ů	. 0.0	0.0	0.0	0'0	0.0	0.0
	1	1.05.00	1.66-05	0.0	80-3C-8	0.0	2.46-05	1.115 01	2.01-05	1.() - 3E - E	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0.0	0.0	0'0	0.0
	collentites/ nace: et chénts	น้ายเมือง	Uerul luqu	horan	firefuelense .	f luorine	La col	Ashinase Ash	hereny	1 + 4.5 FH	Variarijinu	Acets: acid	Antline .	Intamic Acid	Catechal	Numanoia Acid	Pertanate Acid	l certairt d	Franance Acud	Pertane	kessternol.	2-thetherror thurse	2-dethylpropinne Ac	2-hethdruridine	2, a-numethulpuri dina	2,4Xulen01	2,5-fuactiviteridane	tev standarthalad-i

.

.

٠·

. .

7

1 - AE -02 0'0

1.46-02 0.0

1.31. 01 1.112-01

001312

1.1100

0.0

0.0

3. 264 0.8 3. 21.4 02

0.06102 /u.05102 1.48.10<u>5 1</u>1.40.102

. 0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

เอง จากแลนปกปกปลาร์ 3-dethatestern) A harding to the formula

.

· ' ...

?" ? ;

.

TABLE 11 (CONT.)

•

3

•

FLOW RATES IN STREAMS (LBS/HR)

:

Ŕ

۰.

.

om'orios/ Rail Elements	7.7	12	9£	54	56	₽ ₽	05	č	23	۰. 	18:163	
-ปละไทยไทยเ <i>นื้อ</i> เคือ	0.0	0'0	0.0	5.25101	5,26101	5,25-01	5,26-01	5.26-02	3,0E-02	. L.3E-02	1.36-02	
Lonutux-2.	0.0	0.0	0.0	1.06102	1.05102	5.06-01	5.06-01	3.16-01	3.0E-0J.	3, IE-02	3.16-02	
.s- Inmuthyleatediol	0.0	0.0	0.0	9.0E-H01	9.06401	3.46401	3.41:101	1.16100	11.1E-01	2.7E-01	2.7E-UI	
"Authut Resorcingt	0.0	0'0	0.0	7.26101	7.26101	2.98101	1013612	0.66-01	10-35.4	2.26-01	2.26-01	
Infested tether	0.0	0.0	0.0	7.76102	7,76102	3.16102	3, 16102	9.2E100	4.9E100	2.3£100	2,36100	
-the Churl Phenol	0.0	0.0	0.0	6.0E102	6,01102	3,012100	3, 0F1 00	9,05-02	4.75-02	., 2,2E-02	2,26-02	
huthut-uridane	0.0	0.0	0.0	1.26101	1.25401	10-35.1	1.25-01	1.25-02	U.U.	3.1E-03	3.16-03	
-hathal Kesoreinal	0.0	0.0	0.0	1,36402	1,36402	5.36101	5.26401	1.4E100	1,26400	3.76-01	3 . 9E-01	
evoarh Linsi eve	0.0	0.0	0.0	0.05-01	U.0E-01	4. (IE-01	4 • NE-01	6 • UE-02	6,7E-02	60-3U.2	6.0E-04	
athreene *	0.0	0.0	0.0	2.0E-01	2.06-01	10-36-1	1,76-01	1,7E-02	1.74 602	1.76-04	1.7E-04	•
החיטביוואמם (6) בנוט	0.0	0.0	0°0	2,0E-02	2.015-02	1.76-02	1,76-02	1.7E-03	1.7E-03	1.7E-05	1.7E-05	
annarth, ach	0.0	0,0	0-0	1,05-03	B. 0E-03	6.0E~03	4, 0E03	6.IIE-04	6,7E-04	5. DE05	6.0E-06	
0120(a)0214	0.0	0.0	0.0	E0-30.(I	6.05-03	2. (IE-03	Å. (JE- 03	6.llE-01	6.7E-01	6.NE-04	6.DE06	
anutur))yuruture	0.0	0.0	0.0	6.0E-04	6.0E-01	5,16-04	5, 16-04	5.JE05	5,06-05	5.'JE-07	5. IE -07	
l schenar I	0.0	0.0	0.0	1.46100	1.46100	1.26100	1.25100	3.46-01	3.56-01	3.46-03	3.46-03	
nitettin	0.0	0.0	0.0	4.0E03	£0-30.4	3.40-03	3,4603	3.46-04	- 31.4E-04	3.46-06	3. 1E-05	
heazofurar	0.0	0.0	0.0	2.0E-01	2.0E-01	1.76-01	1,76-01	1.7E-02	1,35-02	4.4E-03	4.46-03	
יין ויטניטון נאין	0.0	0.0	0.0	3,05101	3,06101	2.46401	2.61101	2.46400	1.46100	9.5E-01	9.5E-01	
, Joran three	0.0	0.0	0.0	4 • OF-01	1.05-01	3.4E-01	3,46-01	3.46-02	3,46-02	3.4E-01	3.46-04	
	0.0	0.0	0.0	10- 10 • 1	4.05-01	3. 4E -01	3+ 46-01	3, 46-02	3,46-02	3,46-04	5. 4L -04	
ulean .	0.0	0.01	0.0	1.015101	1.0130.1	10175-1	1,50,101	4.56400	4,50100	4.5E-02	4.56-02	
thin. this f	0.0	0.0	0.0	1.46101	4.46101	3.76101	101.1215	3.76100	001.15°F	10-1/15	10-37.2	
ાનો વિજ્ઞાસ્ટ છે. આ ગામ આ ગ	0.0	0.0	0.0	6.41:100	4.1LI00	5.4E100	11.46100	001.17 1	. 1.68.100	1,61 02	1.45-02	
مانيا ((ارزين	0.0	0.0	0.0	1.0-30-11	11, 01:-04	4 O - 311 - 7	4.131: 04	6.06.03	81.7L, 05	5.11102	6. uE-07	
ռւտերա	0.0	0.0	0.0	1010*7	10-30.2	10-3/11	ie iž i	1.71 03	1./1: 02	1.76-04	1.75-04	'n
1 Pálue	0.0	0.0	0.0	4,00 01	1.01 01	3.40 01	10 11-5	3.45 02	3.40 02	3.46-04	• • • • • • • • • •	
. ज्या दिव्या द	0°9	0.0	0-0	10136-1	1.94101	16 14.1	10-76-1	1,71-02	1,46 02	4,96-0.5	1. YE-03	
1.16.1.1.1	0.0	0.0	0.0	1.01102	1,06102	101.1% H	0.56101	901,12*n	5.30100	00131,°E	3.11100	
Yutena	0.0	0.0	0.0	3.30101	3.136401	10100 ×	3,06101	4. UEL00	1.91100	1.16100	1.12100	r

2.3 Characterization of Gaseous Streams

5

Characterization data in the literature were very limited. No experimental data could be found regarding specific gaseous constituents from Lurgi/Fischer-Tropsch processing of Wyoming subbituminous coal.

Gaseous streams selècted for the analysis are listed in Table 12; their interrelationships are illustrated in Figure 3. These streams were selected because they may contain constituents of environmental concern and they will be released to the environment.

The analysis focused on criteria pollutants and two general classes of pollutants which have been identified as potential causes of concern in gaseous streams from coal conversion facilities: trace elements and organic compounds.

• TABLE 12

GASEOUS STREAMS CHARACTERIZED FOR RISK ASSESSMENT

STREAM NUMBER*	STREAM NAME
28	Utility stack gases to atmosphere
29	Evaporative losses (incl. cooling tower drift)
72	Lockhopper vent gas emissions
73	Evaporative losses (Streams 18-23)
74	Evaporative losses (Stream 60)
75	Evaporative losses (Stream 45)
76	Evaporative losses (Stream 44)
77	Evaporative losses (Stream 47)
78	Evaporative losses (Stream 49)
	-7

*See Figure 3 on following page.

EOUS STREAMS FOR L LIQUEFACTION PROCESS FISCHER-TROPSCH)

.

FOR CHARACTERIZING EAMS.

In general the types and quantities of pollutants in each stream reported here have been derived from the literature and modified, as necessary, to reflect the size and feed coal of the conceptual plant used in this analysis. The types and quantities of trace elements present in the gaseous streams were estimated using the trace element characterization data for Wyoming subbituminous coal presented in Table 13. The distribution of trace elements from the gasifier was based on SASOL data³⁷, and is presented in Table 14. The distribution of trace elements from the utility boiler was based on data from the WESCO Coal Gasification Project¹⁰⁸ and is presented in Table 15.

The specific calculations, data and assumptions used in estimating the types and concentrations of trace elements and organic compounds which may be present in the gaseous streams were analyzed by stream.

Utility Stack Cases (Stream 28)

Stream Constituents:

ά.

The major and minor constituents of Stream 28 were reported by Schreiner⁸⁷, and are presented in Table 16.

Any of the trace elements found in the coal could be present in trace amounts. The flow rates of five trace elements in Stream 28 were estimated by calculating the amount of each element entering the utility boiler in the feed coal and tar from the gasifier, and then applying distribution coefficients based on the WESCO report (See Table 15).

The quantity of each trace element in the tar was estimated:

$$Q_{TE-T} = (C_{TE-DC})(F_{DC-G})(D_{TE-T})$$

where-

 $Q_{\text{TE-T}}$ is the flow rate of the trace element in the tar feed to the boiler (lb/hr).

C_{TE-DC} is the concentration of the trace element in the dry coal, ppm.

TRACE ELEMENT CONCENTRATIONS FOR WYOMING AND ROSEBUD MONTANA SUBBITUMINOUS COALS (ppm)

Ċ,

Trace Elements	Wyoming 40 Subbituminous	Montana Rosebud Subbituminous ⁴⁰	Ratio of Concentrations of Trace Elements - Montana to Wyoming
Ag	.0643	.06	114
ir As	.57-1.2	.08-1.2	.14-1
В	32	32	1
Ba	87	· * 87	1
Be	.718	.78	.99-1
Br	-	-	-
Cđ	.318	.318	1-1
Ce	-	-	-
Co	.55	. 6-4	1.09-7.27
Cr	4.2-16	4-16	.95–1
Cs		-	·
Cu	8.9-10	9–10	1.01-1
F	65-67	66	.98-1.01
Ga	· _	o -	· _
Ge	-	-	
Hg	.1117	.1117	1-1
I	-		-
In	-	-	– 2
La	-	-	-
Li	3.6-15.0	-	-
Мо	2.2	. 2.2	1
Mn	2.8-3.4	2.8-3.4	1-1
N1	1.7-14	2-14	1.18-1
P	-	7	
РЪ	.51-12	.51-12	1-1
Rb,	-	· –	-
Ru	-		· -
Sb	.08-1.5	-	~
SC	-		
Se	.55	.33	
	•14	*14	L
BL I	-		-
To			-
n ;		88	1
- V	10-14	10-14	1 1
ν		-	· <u>+</u>
l y	_	· · · -	_
Zn	.23-8	28	8.70-1
Zr	-	170	

44

Ö

ô '	
TABLE 14	
TRACE ELEMENT DISTRIBUTION FOR LURGI AT SAS	CL ^{*, 37}
(Percent of Element in Coal)	
li li	
f* *	

· · · · · · · · · · · · · · · · · · ·				
Element	Ash	Liquor	Tar	011
Be	33.3	53.3	17.0	0.3
B	90	8.8	2.0	0.0
v .	99.9	0.1	<i>"</i> 0.0	0.0
Mņ	99.9	0.2	0.0	0.0
Ni	99.4	0.4	0.0	0.0
As	26.9	67.2	1.9	., 3. 9
Cd.	51.9	45.5	0.6	1.4
ЅЪ	50.0		3.8	0.6
Ce	99.9	0.1	. 0.0	-0.0
Hg .	51.9	41.6	. 6.4	0.6
Pb c	94.2	1.7	, 4.3	0.0
Br	10.0	88.9	0.1	0.0
F	56.3**	43.8**	0.0	ଜି 0.0
Cl	52.6**	47.4**	0.3	.0.0
		3 ¹ -	-	
	<u> </u>	J		
	•	Į,	· · ·	1 <u>,</u> '

*Analysis by spark source mass spectrometer (which can give a semi-quantitative analysis) for El Paso by SASOL.

** % distribution calculated on analyses as done by SASOL previously.

45

į.

DISTRIBUTION OF TRACE ELEMENTS FROM UTILITY BOILER 108

و مسیم سریا در ا			c		
TRACE		DISTRIBUTION (%)			
ELEMENT	BOTTOM ASH	ESP FLY ASH	STACK GAS SCRUBBER	ATMOSPHERIC EMISSIONS	
As	4.4	94.6	0.8	0.2	
Ве	16.9	82.2	0.7	0.2	
Cđ	. 16.0	82.7	1.0	0.3	
F	1.2	26.8	57.6	14.4	
Hg	4.4	13.0	0.1	82.5	
РЪ	9.7	89.3	. 0.8	0.2	

.

..

• • •

• .

ł

.

.

٠.

FDC-G is the flow rate of dry coal to the gasifier, i.e., 1,369,000 lb/hr.

 D_{TE-T} is the fraction of the total quantity of this trace element fed to the gasifier that ends up in the tar. (Table 14).

and the total quantity of each trace element in Stream 28 due to trace element input from the feed coal and tar was estimated:

 $Q_{TE-28} = [(C_{TE-DC})(Q_{DC-B}) + (Q_{TE-T})] D_{TE-28}$

where-

 Q_{TE-28} is the flow rate of the trace element to the atmosphere, 1b/hr C_{TE-DC} is the concentration of the trace element in the coal feed to the boiler, ppm, dry coal basis. Q_{DC-B} is the flow rate of dry coal to the boiler, i.e.,

298,000 lb/hr.

 Q_{TE-T} is the flow rate of the trace element in the tar feed to the boiler, lb/hr. (from Table 17, below)

D_{TE-28} is the fraction of the total ⁽⁵⁾quantity of this trace element fed to the boiler that is emitted to the atmosphere. (Table 15)

TABLE 16 - Utility Stack Gases, Stream 28

Component		lbs/hr*	. <u>Wt%</u>
co ₂	ja tehn e	2,739,799	39.46
N ₂ + Inerts	- <u></u>	3,632,785	52.33
o ₂ · \	· .	71,264	1.03
^H 2 ^O	2*	497,676	7.17
$\mathrm{SO}_{\mathbf{x}}$ (as SO_{2})		960	138 ÿpm
NO _x (as NO)		-176	25 ppm

*Appendix B, Stream 28

The calculations are presented in Tables 17 and 18.

TABLE 17- Flow Rates of Trace Elements in the Tar

48

): • : 0

Trace '		•		
Elements'	(<u>ppm</u>)	(MM ib/hr)	:	(1b/hr)
As	.57-1.2	1.369	•019	.01480312
Be	.7180	1.369	•17,	.16521862
Cd	•31-•80	1.369	. 006	•00 25 -•0066
F	65-67	1.369	0.0	0.0
Hg	•11-•17	1.369	•064	•00 96- •0149
РЪ	•51-12•0	1.369	.043	.03007064

TABLE 18 - Flow Rates of Trace Elements in Stream 28

: F_{DC-B}^{**} + Q_{TE-T}^{**} x $D_{TE-28}^{108} = Q_{TE-28}^{*}$

			-		
Trace Elements	(<u>ppm</u>)	(MM lb/hr)	(<u>1b/hr</u>)		(1b/hr)
As	•57-1•2	-298	.01480312	•002	.00040008
Ве	•71-•80	•298	.16521862	•002	.000800085
Cđ	•31-•80	•298	.00250066	•003	-00030007
F	65-67	•298	.00000000	•144	2.789-2.875
Hg	•11-•17	•298	•0096-•0149	•825	•0350-•0541
Pb	.51-12.0	•298	.03007064	•002	.00040086

* See Table 14

ŧ.

**From Table 17

(C_{TE-DC}⁴⁰ x

Atmospheric Losses from Cooling Towers (Stream 29)

Stream Constituents:

The flow rate of cooling tower atmospheric losses for the plant size studied was 2,413,000 lbs/hr. The flow rates of the constituents in the cooling tower atmospheric losses were calculated using the following equation:

: 49

$$Q_{C} = (C)(F_{A})$$

where-

 Q_C is the flow rate of the component, 1bs/hr.

C is the concentration of this component in the cooling water, ppm.

 F_A is the flow rate of the atmospheric losses, MM lbs/hr.

The calculations are presented in Table 19.

Feed Lockhopper Vent Gas (Stream 72)

Stream Constituents:

ij

The following assumptions were made in calculating the composition of the feed lockhopper vent gas.

- The feed lockhopper pressurizing gas has the same composition as the product gas stream leaving the Gas/Liquor Separator. Gas phase composition of the raw gas was assumed to be those components that remained in the product gas stream after condensation and separation of the Lurgi tar and Lurgi oil. Sound engineering practice supports this interpretation.
- 0.1% of the total flow rate of product gas exiting the Gas/Liquor Separator was vented to the atmosphere during lockhopper depressurization.⁴⁰
- 3) The list of individual organic compounds, except for the fatty acids, contained in the vent gas was derived from the literature.¹⁹
- Atmospheric losses from the cooling tower consist of two components, evaporation and drift. Make-up water to the cooling tower consists of boiler blowdown and treated gas liquor.

	с*	x	F _A	=	Q _C
Component	<u>(ppm</u>)		(<u>MM 1b/hr</u>)		(lbs/hr)
COD	501	ĩ	2.413		1210
BOD .	77	* :	2.413		190
TOC**	89		2.413		220
Tars/0ils**	9		2.413		20
Other Organics**	85		2.413		210
Ammonia	508		2.413		1230
Na ⁺¹	363	:	2.413		876
Ca ⁺¹	209		2.413		504
Mg ⁺² ·	0		2-413		0
Alkalinity as CaCO3	0		2.413		D
${\rm S0_3}^{-2}$ / ${\rm S0_4}^{-2}$	2254	<u>:</u> •	2.413	•	5439
C1 ⁻	112	· •	2.413		270
SCN	1		2.413		2
TDS	3083		2.413		7439

TABLE 19 - Atmospheric Losses from Cooling Towers, Stream 29

- 4) It was assumed that the fatty acids present in the raw gas liquor would also be present in the product gas. The list of fatty acids contained in the gas liquor was presented in the literature.⁹²
 - 5) It was assumed that the trace elements present in the coal would also be present in the product gas. The list of trace elements contained in Wyoming subbituminous coal was derived from the literature⁴⁰ and is presented in Table 13 of this report.

The estimated composition of Stream 72 is presented in Table 20.

*Reference: Unpublished EPA data

ļ

: :

** See composition of liquid stream 54 + 31 or organic compounds and trace elements possibly present in the atmospheric losses

TABLE 20-Feed Lockhopper Vent Gas, Stream 72

Ģ

22

Component	Lbs/Hr [*]	** Wt 2
^N 2	8.4	.002
^H 2 ⁰	1422	36.374
co ₂	1483	37.934
CO .	<u> </u>	15.399
^H 2	. 89	. 2.277
сн ₄	206	5.269
^с 2 ^н 4	2.5	0.064
H ₂ S	5.4	0.138
COS	.12	0.003
Ni(CO) ₄	.006	1.5 ppm
Tars:	·	.11.3
Naphthalene Anthracene Phenanthrene Pyrene Cresols Phenol Xylenols Fluorene Dibenzofuran Chrysene Perylene Aniline		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*0.1% of Stream 10 in the flow diagram.

** Calculated using the following equation: wt % = <u>(lbs/hr of the component)</u> 3909.38 x 100

52 : .

: .

•

÷

Component	Lbs/Hr	<u>Wt%</u>
011:	38.5	. 985 .
Benzene Thiophene Toluene Xylenes Phenol Alkylphenols Naphthalene Indan Cresols Xylenols		·
Naphtha:	15.7	. 402
C ₂ - C ₆ Aliphatics Bénzene Xylene Ethylbenzene		•
Phenols:	5.2	.133
Phenol Xylenols Cresols Trimethylphenol O-Isopropylphenol		
Mercaptans:	.02	5.1 ppm
Methanethiol Ethanethiol		
Thiophenes:	.016	4.1 ppm
Thiophene Methylthiophene		
Ammonia	8.1	.207
HCN	.008	2.0 ppm
Aromatic Amines:	•004 .	- 1.0 ppm
Aniline Methylaniline Dimethylaniline	5	 [}

.

z,

Component	Lbs/Hr		<u>Wt %</u>
Nitrosamines:	.002		.5 ppm
N-Nitrosamine			
Pahs	. 002 [.]		.5 ppm
Chrysene			
Perylene			
Pyrene	٦,.		
Fluorene			
Anthracene			
Napthalene Bibboryl			
Indepe			
Benzofuran			
Dibenzofuran			
Fluoranthene			
Quinoline			
ACTIGINE			
Fatty Acids:	1		.026
Acetic Acid			
Propancic Acid			
n-Butanoic Acid			
2-Methylpropanoic Acid	•	ז:	
n-Pentanoic Acid			
D-Mechyi Butanoic Acid		1 [°]	
M MERBHOLE ACTU		,	
Irace Elements:	.002		.5 ppm
Ag ~	•		
As			
B			
Ba Ba			
Cd ² ····à	κ.		
Co			1
Cr			
Сц	• •	-	
F .			
ng Ma			
Ni	\$	۰.	
Pb			
Se			
			ļ
Şn			1
Şn /U	a .		- G
Sn /U V 7-	a .		- 12
Şn U Ç V Zn	a .		- <i>C</i>

•

53

TABLE 20 (Concluded)

ى

Evaporative Emissions (Stream 73-78)

Stream Constituents:

 \odot

ं

The contaminants believed to be found in evaporative emissions are presented in Table 21. A more detailed breakdown of gasoline in Stream 73 is presented in Table 22.

> TABLE 21 - Evaporative Emissions for Product and By-Product Storage, Streams 73-78

Product/By-Product	Lbs/Hour
Diesel Oil (Stream 73)	0.513
Fuel Oil (Stream 73)*	° 0.014
Lurgi Oil (Stream 75)**	12.625
Lurgi Tar (Stream 76)†	6.750
Alcohol (Stream 74)††	1.500
Phenols (Stream 77)§	3.750
Ammonia (Stream 78)	No Data
C ₃ LPG (Stream 73)	No Data
C ₄ LPG (Stream 73)	No Data

*The fuel oil was reported to be all C_7 + hydrocarbons.⁸⁷

[†]The following compounds were reported to be present in the Lurgi tar: napththalene, anthracene, fluoranthene, pyrene, cresols, phenol, fluorene, dibenzofuran. (EPA unpublished data.)

^{††}The alcohol was reported to be ethanol and C_3 + alcohols.⁸⁷

§ The following phenolic compounds; were expected to be present: phenol: catechol, resorcinol, methylcatechol, methyl resorcinol, cresols, xylenols.

54

5)

^{**}The folloiwng compounds were reported to be present in the Lurgi oil: benzene, thiophene, toluene, xylenes, phenol, alkyl phenols, naphthalene, cresols, benzothiophene. (EPA unpublished data.)

TABLE 22-Evaporative Emissions of Gasoline, Stream 73

Component	lbs/Hour*
Methane	0.213
Ethylene	0.001
Propylene	0.017
Propane	0.425
Isobutane	2.071
Isobutylene	0.738
n-Butane	2.413
Cis-2-Butane	0.575
Isopentane	5.238
n-Pentane	2.450
Hexanes	0.446
Heptanes	0.188
Octanes	0.299
Total	15.055

2.4 Characterization of Solid Streams

No experimental data could be found regarding specific constituents in solid wastes from Lurgi/Fischer-Tropsch processing of Wyoming subbituminous coal.

Solid streams selected for the analysis are listed in Table 23; their interrelationships are illustrated in Figure 4. These streams were selected because they may contain constituents of environmental concern, and their disposal may result in environmental releases. ÷,

The analysis focused on two classes of pollutants which have been identified as potential causes of environmental concern in solid streams from coal conversion facilities; trace elements and organic compounds.

In general the types and quantities of pollutants in each stream either have been

• estimated from the literature and modified, as necessary, to reflect the size and feed coal of the conceptual plant used by ORNL as the basis of this analysis, or

*Unpublished EPA data

È

*Liquid stream, but emanating from a solid waste after disposal.

° 56

• estimated by assuming that pollutants removed from the gaseous and liquid streams in the solid form via non-destructive mechanisms (e.g., absorption and reverse osmosis) will be present in the resultant solid wastes.

The type and quantities of trace elements present in Stream 33 (bottom ash, fly ash and scrubber sludge) were estimated using the trace element characterization data for Wyoming subbituminous coal presented in Table 24. The distribution of trace elements from the utility boiler and in the gasifier tar were calculated using distribution data from WESCO¹⁰⁸ and SASOL³⁷, respectively, presented in Tables 25 and 26.

5.

The specific calculations, data and assumptions used in estimating the types and concentrations of trace elements and organic compounds which may be present in the solid streams are discussed in the following pages.

Boiler Bottom Ash, Fly Ash and Scrubber Sludge (Stream 33)

Stream Constituents:

 \mathbf{i}

ŧŕ,

The concentrations of six trace elements in Stream 33 were estimated by calculating the total input of each trace element into the utilities generation section (in coal and gasifier tar) and then applying the distribution factor for each trace element (See Table 25).

The flow rates of the trace elements in the tar feed to the boiler were first calculated using the following equation.

$$Q_{TE-T} = (C_{TE-DC})(F_{DC-G})(D_{TE-T})$$

where-

 Q_{TE-T} is the flow rate of the trace element in the tar feed to the boiler, lb/hr

 C_{TE-DC} is the concentration of the trace element in the dry coal, in ppm

-

 F_{DC-G} is the flow rate of dry coal to the gasifier, MM lbs/hr

D_{TE-T} is the fraction of the total quantity of this trace element fed to the gasifier that ends up in the tar.

TRACE ELEMENT CONCENTRATIONS FOR WYOMING AND ROSEBUD MONTANA

ų. L

SUBBITUMINOUS COALS (ppm) .

Trace Elements	Wyoming Subbituminous 40	Montana Rosebud Subbituminous ⁴⁰	Ratio of Concentration of Trace Elements - Montana to Wyoming
Ag As B	.0643 .57-1.2 32	.06 .08-1.2 32	114 .14-1 1
Ba Be	87	87	1 .99-1
Br Cđ		- 318	-
Ce	-	- · ·	
Cr	4.2-16	4-16	.95-1
Cu F	8.9-10 65-67	9–10 66	1.01-1 .98-1.01
Ga Ge	-	-	
Hg I	.1117	.1117	1-1
In La	<u> </u>	- .	-
Li	3.6-15.0	2.2	-
Mn	2.8-3.4	2.8-3.4	
P	.1.7-14 - 57-12		-
Rb			- ·
Sb	- .08-1.5		
Se	.33	.33	1
Sn Sr	14	• 14 -	
Te	-		
V	.00 10-14	.00 10–14	
W Y		-	- - -
Zn Zr		2-8 170	0./U-I -

?

•``

DISTRIBUTION OF TRACE ELEMENTS FROM

TRACE	DISTRIBUTION (%)				
ELEMENT	BOTTOM ASH	ESP Fly Ash	STACK GAS SCRUBBER	ATMOSPHERIC EMISSIONS	
As	÷ 4.4	94.6	0.8	0.2	
Be	16.9	82.2	0.7	0.2	
Cđ	16.0	82.7	1.0	0.3	
F	· 1.2	26.8	57.6	14.4	
Hg	4.4	13.0	0.1	82.5	
РЪ	9.7	89.3	0.8	0.2	

ت

•

۰.

 $\hat{X}_{\underline{\lambda}}$

12

61

į

-<u>-</u>--

TRACE ELEMENT DISTRIBUTION FOR LURGI AT SASOL^{*,37} (Percent of Element in Coal)

Element	Ash	Liquor	Tar	Oil
Ве	,33.3	53.3 ″	17.0	0.3
В	90	8.8	2.0	0.0
v	99.9	0.1	0.0	0.0
Mn	9 . 9	0.2	0.0	0.0
Ni	99.4	0.4	0.0	0.0
As	26.9	67.2	1.9	3.9
Cđ	51.9	45.5	. 0.6	1.4
Sb	50.0	45.0	3.8	0.6
Ce	99.9	0.1	0.0	0.0
Hg .	51.9	41.6	6.4	0.6
РЪ	94.2	1.7	4.3	0.0
Br	10.0	88`.9	0.1	· 0.0
F	56.3**	43.8**	· 0.0	0.0
Cl	· 52.6**	47.4**	0.3	· ,0.0

* Analysis by spark source mass spectrometer (which can give a semi-quantitative analysis) for El Paso by SASOL.

. -

** % distribution calculated on analyses as done by SASOL previously.

:

਼

P

The flow rates of the trace elements in the bottom ash plus fly ash stream were then calculated using the equation below.

$$Q_{TE-A} = [(C_{TE-DC})(F_{DC-B}) + (Q_{TE-T})] D_{TE-A}$$

٠.-

where-

- .

- Q_{TE-A} is the flow rate of the trace element in the bottom ash plus fly ash, 1b/hr.
- C_{TE-DC} is the concentration of the trace element in the coal feed to the boiler, ppm dry coal basis.
- F_{DC-B} is the flow rate of dry coal to the boiler, MM lbs/hr.
- Q_{TE-T} is the flow rate of the trace element in the tar feed to the boiler, 1b/hr.
- D_{TE-A} is the fraction of the total quantity of this trace element fed to the boiler that is removed with the boiler bottom ash and fly ash.

The calculations are presented in Tables 27, 28, and 29.

Trace Element	C _{TE-DC} x (ppm)	F _{DC-G} * (MM 1b/hr)	× _{DTE-T} ³⁷	$= Q_{TE-T}$ (1b/hr)
As	• • 57-1•2	1.369	.019	.01480312
Be	.7180	1.369	•17	. 1652- . 1862
Cđ	•31-•80	· 1.369	- 006	.00250066
F	65 ~67	1.369	0.0	0
Hg	•11-•17	1.369	•064	.00960149
РЪ	.51-12.0	1.369	•043	•0300-•7064

Table 27 - Flow Rates of Trace Elements in the Tar

*Appendix B, Stream 2

з.

TABLE 28	 Flow	Rate	s of	Trace	Element	s in	the	Bottom
	, Ash	and	Fly	Ash o	f Stream	33		

Trace	(C _{TE-DC} ⁴⁰ x	^F DC-B	+ F_{TE-T})	x D _{TE-A} 37	$= Q_{TE-A}$
Element	<u>(ppm)</u>	(MM lb/hr)	(1b/hr)		(1b/hr)
As	•57-1•2	-298	.01480312	.99	.183385
Be ·	.7180	•298	·16521862	.991	•373-•421,
Cd	.3180	-298	.00250066	•987	.094242
F	65-67	-298	0	•28	5.424-5.590
Hg	.1117	•298	.00960149	.174	.00740114
Pb	.51-12.0	-298	•0300 - •7064	•99	. 180-4 . 240

The flow rates of six trace elements in the scrubber sludge portion of Stream 33 were estimated using the following equation.

...

$$Q_{TE-S} = [(C_{TE-DC})(F_{DC-B}) + (F_{TE-T})] D_{TE-S}$$

where-

.

	Q _{TE-S}	is the flow rate of the trace element in the scrubber sludge, 1b/hr.
	C _{TE-DC}	is the concentration of the trace element in the coal feed to the boiler, ppm, dry coal basis.
	^F DC-B	is the flow rate of dry coal to the boiler, MM lbs/hr.
	^F TE-T	is the flow rate of the trace element in the tar feed to the boiler, 1b/hr.
	D _{TE-S}	is the fraction of the total quantity of this trace element fed to boiler that was removed with the scrubber sludge.

The calculations are presented in Table 29.

*Appendix B, Stream 3

۰.

**From Table 27

TABLE 29 - Flow Rates of Trace Elements in the Scrubber Sludge Portion of Stream 33

ι.

ł

Trace	(C_{TE-DC}^{40})	x	\mathbf{F}_{DC-B}^{*}	+ F _{TE-T} **)	x	D _{TE-S} 1	$^{08} = Q_{\text{TE-S}}$
Element	<u>(ppm)</u>		(MM lb/hr)	(1b/hr)		. <u></u>	(1b/hr)
As	.5712		•298	.01480312		-008	.00150031
Be	•71-80		•298	•1652 - •1862		.007	•0026 - •0030
Cd	.3180		•298	.00250066		.01	.00090025
F	65-67		•298	0		•576	11.157-11.500
Hg	.1117		•298	.00960149		.001	.00000001
РЪ	.51-12.0		•298	.03007064		-008	.00150343

Gasifier Ash (Stream 34)

Stream Constituents:

Schreiner⁸⁷ reported flow rates for the materials in Stream 34, and these are presented in Table 30.

 \sim

TABLE 30 - Flow Rates of	Materials in Stream 34
Constituent	Flow Rate
H ₂ 0 .	199,486
Minerals	96,031
Coal	7,038
Sulfur	66

The flow rates of nine trace elements in the gasifier ash were estimated using the following equation:

 Q_{TE-34} = $(C_{TE-DC})(F_{DC-G})(D_{TE-G})$

⁴Appendix B, Stream 3

**From Table 27

 Q_{TE-34} is the flow rate of the trace element in the gasifier ash stream, 1b/hr. C_{TE-DC} is the concentration of the trace element in the coal feed to the gasifier, ppm, dry coal basis. F_{DC-G} is the flow rate of dry coal to the gasifier, MM 1bs/hr.

 \bigcirc D_{TE-G} is the fraction of the total quantity of this trace element fed to the gasifier that was removed with the gasifier ash.

The calculations are presented in Table 31.

where-

TABLE 31 - Flow Rates of Trace Elements in the Gasifier Ash, Stream 34

Trace Element	С _{ТЕ-DC} 40 х (ррт)	F _{DC-G} × (MM lb/hr)	D _{TE-G} ³⁷ =	Q _{TE-34} (1b/hr)
As	•57-1.2	1.369	•269	•2099 - •4419
Be	.7180	1.369	•330	.32103617
Cđ	.3180	1.369	•519	•2203 - •5684
F	65-67	1369	•563	50.10-51.64
Hg	.1117	1.369	.519	.07821208
РЪ	.51-12.0	1.369	•942	. 6577-15 . 48
В	32	1.369	•900	- 39.43
Ni	1.7-14.0	1.369	.994 .	2.313-19.05
v	10.0-14.0	1.369	•999	13.676-19.147

*Appendix B, Stream 2

Dewatered Gasifier Ash, Boiler Ash, and Scrubber Sludge to Final Disposal (Stream 36)

Stream Constituents:

Schreiner⁸⁷ reported flow rates for the materials in Stream 36, and these are presented in Table 32.

TABLE 32 - Flow Rates of Materials in Stream 36

Constituent	Flow Rate (lbs/hr)
н ₂ о	20,000
Minerals	116,989
Coal	7,038
Sulfur	- 66

The flow rates of nine trace elements in Stream 36 were estimated using the following equation.

 $Q_{TE-36} = Q_{TE-A} + Q_{TE-S} + Q_{TE-34} - (C_{TE-38})(F_{38})$

where-

is the flow rate of the trace element in Stream Q_{TE-36} 36, 1b/hr. is the flow rate of the trace element in the Q_{TE-A} boiler bottom ash and fly ash, 1b/hr. is the flow rate of the trace element in the Q_{TE-S} scrubber sludge, 1b/hr. Q_{TE-34} is the flow rate of the trace element in the gasifier ash, Stream 34, 1b/hr. is the concentration of the trace element in the C_{TE-38} sluice water recycle, Stream 38, ppm. is the flow rate of Stream 38, MM lb/hr. F38

The calculations are presented in Table 33.

Spent F-T Catalyst (Stream 63)

Stream Constituents:

Commercial Fischer-Tropsch catalysts included cobalt (fixed-bed) and iron (fixed- and fluid-bed). Although iron was the base for both units, catalyst preparation and formulation were extremely different and very specific for each unit type.

Although spent F-T catalyst was removed periodically, not continuously, Schreiner reported the replacement rate of F-T catalyst on a continuous basis to be 30 TPSD. Catalyst life was approximately 50 days.

Due to the proprietary nature of the catalyst, very limited information was available regarding chemical composition, economics of regeneration or metal recovery from spent catalysts. It appeared that the cobalt band catalyst could be economically recovered. On-site regeneration of iron band catalyst may not be practical or economical, and hence it may be either sent to metals/catalyst vendors or disposed of as a solid waste. No data was available regarding leachate characteristics.
Leachate from Solid Wastes in Stream 36 (Stream 69)

ò

Stream Constituents:

Ash and sludge from the boiler and gasifier were slurried and pumped to the ash handling unit where the solids were dewatered. The dewatered solids, therefore, were leached before they went to final disposal. Nevertheless, the data in the following table, which represents first column volume leachate fractions of Montana Rosebud subbituminous ash, were assumed to be representative of the leachate composition from a quenched ash. Stream components are listed in Table 34. Estimation of the leachate flow rate is presented on the following two pages.

Trace Element	Concentration ⁹¹ (mg/l)
AL .	•20
As ·	•02
Cd	•00064
Cu	•03
Fe	1.6
Hg	.0003
Mn	50
Ni	•035
Pb	•09
Se	•06
Zn	•0029
Other Trace Elements	No data
Organics	No data

TABLE 34 - Leachate from Montana Rosebud* Ash, Stream 69

*The trace element composition of Montana Rosebud subbituminous coal . was very similar to the trace element composition of Wyoming subbituminous coal as shown in Table 24.

1,

Estimation of the Flow Rate of Leachate From Ash and Scrubber Sludge Disposal

The flow rate of Stream 36* indicated that:

Total Dry Ash + Scrubber Sludge = 127,802 lb/hr. With an onstream factor of 92% assumed,⁸⁷

Days on line per year = (365 days/hr)(92%) = 336 days/year Total dry ash and scrubber sludge:

=(127,802 lb/hr)(336 days/year)(24 hr/day) = 1,030,595,328 lb/yr Four values were averaged for the density of dry $ash/sludge^{36}$:

Density = $[(72 + 75 + 105 + 116)1b/ft^3] \div 4 = 92 lb/ft^3$ A density of 92 lb/ft³ was assumed so that the total volume of waste was:

Volume =: $\frac{1,030,595,328 \text{ lbs/year}}{(92 \text{ lb/ft}^3)(43,560 \text{ ft}^2/\text{acre})} = 257 \text{ [acre-feet/year]}$

This waste was assumed to be disposed of by landfill to an average thickness of 30 feet³⁶. The total acreage of solid waste was:

Acre/year = $\frac{257.2 \text{ acre-feet/year}}{30 \text{ feet}}$ =8.57 acres/year

Because leachate generation was directly attributable to the average net yearly precipitation/evaporation, it was best to consider rainfall levels in the U.S. as the basis for total leachate production. The range of net precipitation was from 0 to >30 inches per year. This gave a range of 0 to >815,000 gal/acre/year for leachate generation.¹⁶

The landfilling of ash and scrubber sludge required 8.57 acres per year, and the rate of production of leachate ranged from a low of 0 gallons per year to a high of: >6,984,550 gal/year. High leachate production = (8.57 acres)(>815,000) = >6,984,550 gal/year.

*Appendix B, Stream 36

Biological Sludge (Stream 70)

Stream Constituents:

Flow rate of wastewater to the biotreatment unit was 1,990,190 lbs/hr.*

1,990,190 1bs/hr = 3,977 gpm

The WESCO EIS reported¹⁰⁸ that 6.7 TPD of dry biological solids were produced from a wastewater flow of 2,810 gpm.

6.7 TPD x 2000 lbs/ton x 1 day/24 hrs x 1 hr/60 min = 9.3 lbs/min

9.3 lbs/min dry biological sludge = .0033 lbs/gal

Sludge production was adjusted to flow rate from Schreiner:⁸⁷

.0033 lbs/gal x 3977 gpm = 13 lbs/min = 780 lbs/hr. dry solids. Vacuum filtration was assumed to produce a solid concentration of 20%:

780 + 0.2 = 3,900 lbs/hr biological sludge.

Removal in the activated sludge unit was accomplished through absorption and sedimentation for the biorefractory compounds. The biorefractory compounds removed from the water were contained in the biosludge. The flow rate of biorefractory compounds removed with the biosludge was:

 $F_B = (C_{52}) (R_{52}) (F_{52})$

where-

- F_B is the flow rate of each biorefractory compound in the biosludge (lb/hr.)
- C₅₂ is the concentration of each biorefractory compound in Stream 52 (ppm_w)
- R₅₂ is the efficiency of removal of each compound in the biotreatment unit
- F_{52} is the flow rate of Stream 52 (10⁶ gal/hr.)

*Appendix B, Stream 50

Calculations are presented in Table 35.

5

TABLE 35 - Biological Sludge, Stream 70

ŗ,

.73

к,

ः

<u>.</u>;,

۴.

î.

	C ₅₂	x	R ₅₂	×	^F 52 .	= .	FB	
Compound	Removal (ppm)*		Flow Rat Efficien	e <u>cy</u> **	Biosludge (10 ⁶ 1b/hr	·)	(1b/hr)	
Acenaphthylene	0.3403		0.9		1.99		0.61	
Anthracene	0.0851		0, 9		1.99	:	0.15	
Benz(a)anthracene	0 . 00851		0.3		1.99		0.015	
Benzo(g,h,i)perylene	0.00026		0.9	•	1.99	•	0.00046	
Benzo(a)pyrene	0.0034.		0.9		1.99		0.0061	
Benzo(e)pyrene	0.0034	•	0.9		1.99		0.0061	
Chrysene	0.0017		0.9		1.99		0.003	
Fluoranthene	0.1702		0.9		1.99		0.31	
Fluorene	0.1702		0.9		1.99		0.31	
Naphthalene	2.723		0.70		1.99		3.80	
Phenanthrene	0.0851		0.90		1.99		0.15	
Pyrene	0.1702		0.90		1.99		0.30	
Arsenic .	0.5545		0.50		1.99		0.55	
Beryllium	0.2932		0.50		1.99		0.29	
Cadmium	0.2503		0.32	5	1.99		0.16	
Mercury	0.0486		0.47	5	1.99		0.046	
Lead	0.1403		0.70		1.99		0.20	
	1						•	

*Estimated values. See Table 10, column 8.

**See Table 7.

<u>.</u>p`

:

Q,

Leachate from Biosludge (Stream 71)

Stream Constituents:

11

No data available.

Spent Shift Catalyst (Stream 79)

Stream Constituents:

The average useful life of shift catalyst was 3 years.^{*} An indirect liquefaction plant producing 45,000 BPSD fuel oil equivalent had an inventory of about 400 tons of shift catalyst.^{**} Therefore once every 3 years 400 tons of spent shift catalyst was replaced. The spent catalyst may either be disposed of or reclaimed. Because of the high price of cobalt it is likely that spent shift catalyst will be reclaimed. The trace element content of spent shift catalyst is given in Table 36.

Quantity (% wt)*
5-15
15-25
· 5–20
5-10
0.7-7.0
4-10
0.3-1
0.2-0.8

TABLE 36 - Spent Shift Catalyst, Stream 79

*Unpublished EPA data

**Calculated from unpublished EPA data

\$.

3 ESTIMATION OF MAXIMUM POST-DILUTION POLLUTANT CONCENTRATIONS RESULTING FROM INDIRECT LIQUEFACTION STREAMS

3.1 Introduction

Maximum post-dilution concentrations of various pollutants resulting from discharge streams from indirect liquefaction facilities were estimated to provide a basis for subsequent analytical tasks in the risk assessment.

Due to the relatively high degree of uncertainity regarding estimated pollutant concentrations in discharge streams, and the total lack of site specific environmental information, sophisticated modeling of pollutant transport, transformation and fate was not warranted. Instead, maximum post-dilution pollutant concentrations resulting from the various facility discharges were estimated using either dilution factors based on the Source Analysis Model (SAM/I)¹¹² or very simple models.

Short descriptions of the assumptions and calculations used to estimate the pollutant post-dilution concentrations resulting from the release of selected facility streams are presented in Section 3.3 in addition to tables of results. A short description of the Source Analysis Model (SAM/I) is presented in Appendix C.

3.2 Caveats

C

These estimates of post-dilution concentrations have been prepared to provide a basis for conducting subsequent analytical tasks of the assessment of indirect liquefaction. While a considerable amount of effort has been expended in developing these estimates, users of the data are reminded and cautioned that, at best, the estimates are very rough due to a variety of problems, including but not limited to the following:

• Characterization data (qualitative and quantitative) for process and effluent streams from Lurgi/Fischer-Tropsch plants were very limited. Data used in developing these estimates came from a variety of sources and may not be representative of commercial Lurgi/Fischer-Tropsch plants.

- Dilution factors used to estimate post-dilution concentrations were not representative of any particular plant or site; they were general values derived by modeling nationwide average conditions.
- Environmental interactions and transformations were not considered in the estimates.
- Using SAM/I, dilution factors and resultant post-dilution concentrations were a function of discharge stream flow rates; discharge stream flow rates used in developing the estimates were derived from the conceptual plant flow diagram/matrix, which may or may not be truly representative of a commercial Lurgi/Fischer-Tropsch plant.
- The estimates of post-dilution concentrations presented in Tables 37 through 42 actually represent only incremental increases in pollutants due to the discharge of a single stream, i.e., the estimates did not include environmental background concentrations, nor did they include pollutant loadings from other discharge streams from the indirect liquefaction facility.

e,

3.3 Assumptions, Calculations and Results

Estimation of Pollutant Post-Dilution Concentrations Due to Release of Stream 28 - Utility Stack Gas

Post-dilution concentrations of pollutants due to release of Stream 28 were estimated using a dilution factor from the Source Analysis Model (SAM/I). The assumptions and calculations are presented below. The results are presented in Table 37.

Assumptions:

Calculation:

where-

PC =

- Ambient temperature = 25°C, pressure = 1 atm.
- .

. .-

Mean density of Stream 28- Mean density of air = 1,180 gm/m^3

11 1.

(EC) (<u>µg</u>/PPM_w) (Density of air)

DF

PC is the post-dilution concentration, in ug/m³

EC is the emission stream concentration in PPM_{w}

Density of air is 1,180 gm/m³

3

DF is the SAM/I dilution factor, which = 235 for a gaseous stream being discharged into the atmosphere at a flow rate of 8.75×10^5 gm/sec.

÷

:.

ł

 $\frac{\mu g/PPM_{W}}{gm} = 1.0$

. -

TABLE 37

ESTIMATED POST-DILUTION CONCENTRATIONS DUE TO DISCHARGE OF STREAM 28-UTILITY STACK GAS

Stream Component	Emission Stream Concentration [*] (PPM _w)	Post-Dilution Concentration (µg/m ³)
co ₂	3.9 E+5	2.0 E+6
N2 + Inerts	5.2 E+5	2.6 E+6
0 ₂	1.0 E+4	5.2 E+4
н ₂ о	7.2 E+4	3.6 E+5
so _x	1.4 E+2	7.0 E+2
NO _x	2.5 E+1	1.3 E+2
Arsenic .	1.2 E-4 ^{**}	5.8 E-4
Beryllium	1.2 E-4**	6.1 E-4
Cadmium	1.0 E-4 ^{**}	5.1 E-4
Lead	1.2 E-3 ^{**}	6.0 E-3
Mercury	7.8 E-3 ^{**}	3.9 E-2
Particulates	4.0 E-1	2.0 E 0

*See Section 2.3

••

-2

**Based upon higher value of thee estimated range of concentration

.

25

-

Estimation of Pollutant Concentrations Due to Release of Stream 29 - Atmospheric Losses from Cooling Tower

The risks due to Stream 29 were analyzed differently for public health and ecosystems. Risks to public health were evaluated assuming that essentially all of the atmospheric emissions from the cooling tower were in the gaseous state. This assumption was not strictly accurate. However it appeared to be reasonable in view of the fact that drift would comprise a relatively small part (5%) of the atmospheric losses and it was assumed that the receptor population was situated close to the liquefaction facility.

The uncertainity regarding the transport and fate of drift and the partitioning of pollutants between the drift and evaporative losses appeared to be of greater importance in the ecological evaluation than in the public health evaluation. The ecological evaluation was based on pollutant emission rates rather than post-dilution concentrations.

Post-dilution Concentrations for Public Health:

Atmospheric post-dilution concentrations of illutants due to discharge of Stream 29 were estimated using a dilution factor from the Source Analysis Model (SAM/I). Assumptions and calculations used in estimating post-dilution concentrations and emission rates are presented below. Results are presented in Table 38.

TABLE 38ESTIMATED POST-DILUTION CONCENTRATIONS DUE TODISCHARGE OF STREAM 29 - ATMOSPHERIC LOSSES FROM COOLING TOWER

	· ,	इ	. Ö	
Stream Component	Conc. in Cooling Water (PPM _W)	Conc. in Atmospheric Emissions (PPM _W)	Public Health Fost-dilution Concentration (µg/m ³)	Ecological Emmission Rate (mg/sec)
		• • • • • • • • • • • • • • • • • • • •		
				. ~
Ammonia	2 ⁰ 5E+1	4.9E-1	1.9E+1	4.3E+2
Arsenic	1.8E-2	3.5E-4	1.3E-2	5.5E O
Beryllium	8.5E-3	1.7E-4	6.5E-3	2.6E 0
Boron	5.6E-2	1.1E-3	4.3E-2	1.7E+1
Cadmium	9.8E-3	1.9E-4	7.5E-3	-3.0E 0.
Fluorine	4.1E-1	8.0E-3	3.1E-1	1 • 2E+2
Lead	1.9E-2	3.7E-4	1.5E-2	5.8E 0
Mercury	1.5E-3	2.9 <u>E-5</u>	1.1E-3	4.6E-1
Nickel	5.0E-4	9.8 ^{//} E-6	4.0E-4	1.5E→1
Vanadium	1.5E-4	2.9E-6	1.1E-4	4.6E-2
Acetic Acid	2.1E 0	4.1E-2	1.6E O	- 6.4E+2
Aniline	1.3E-3	2.6E-5	1.0E-3	. 4.0E-1
Butanoic Acid	1.2E-1	2.3E-3	9.1E-2	3.6E+1
Catechol	9.5E-1	1.9E-2	7.2E-1	2.9E+2
Hexanoic Acid	9.1E-3	1.8E-4	6.9E-3	2.8E O
Pentanoic Acid	1.1E-1	2.2E-3	8.4E-2	3.3E+1
Phenol	2.8E-2	5.5E-4	2.1E-2	8.5E O
Propanoic Acid	2.2E-1	4.3E-3	1.7E-i	6.7E+1
Pyridine	1.8E-3	3 . 5≊−5	1.4E-3	5.5E-1
Resorcinol	3.2E-1	6.3E-3	2.4E-1	9.7E+1
2-Methylphenol	7.7E-3	1.5E-4	5.9E-3	2.3E 0
2-Mechylpropionic Acid	1.8E-2	3.5E-4	1.4E-2	5.5E O

79

c::'

,

÷

ŗ.

TABLE 38 (Continued).

Ð

2

¢

Ċ,

	Stream Component	Conc. in Cooling Water (PPM _W)	Conc. in Atmospheric Emissions (FPM _w)	Public Health Post-dilution Concentration $(\mu g/m^3)$	Ecological / ⁷ Emmission Rate (mg/sec)
	÷ ?			<u>ь</u> 	
1. V.:-	2-Methylpyridine	1.1E-2	2•2E-4	8.4E-3	3.3E 0
	2,4-Dimethylpyridine	1•5E-4	2.9E-6	1.1E-4	4.6E-2
	2,4-Xylenol	6.6E-3	1.3E-4	5.0E-3	2.0E 0
2	2,5-Dimethylpyridine	1•5E-4	2.9E-6	1 . 1E4	4.6E-2
-	3-Methylbutanoic Acid	9.1E-3	1.8E-4	6.9E-3	2.8E 0
	3-Methylcatechol	0.0E 0	0.0E 0	0.0E 0	0.0E_0
Ŷ	3-Methylphenol	4.7E-3	9.2E-5	3-6E-3	1.4E 0
۲ ^۲	3-Methylpyridine	3.9E-3	7.6E-5	3.0E-3	1.2E 0
	3,5-Xylenol	9.1E-3	1.8E-4	6-9E-3	2 .9 E+1
	3,6-Dimethylcatechol	7-8E-2	1.5E-3	5-9E-2	2.4E+1
	4-Methyl Resorcinol	6.2E-2	1.2E-3	4.7E-2	1.9E+1
	4-Methylcatechol	6.7E-1	1.3E-2	5.1E-1	2.0E+2
	4-Methylphenol	6.5E-3	1.3E-4	4.9E-3	2.0E 0
	4-Methylpyridine	9.0E-4	1.8E-5	6.9E-4	2.7E-1
	5-Methyl Resorcinol	1.1E-1	2.2E-3		3.3E+1
	Acenaphthylene	2.0E-4	3.9E-6	1.5E-4	6.1E-2
	Anthracene	4 . 9E-5	9.6E-7	3.7E-6	1.5E-2
	Benz(a)inthracene	4•9E-6	9.6E-8	3.7E-6	1.5E-3
•	Benzo(a)pryene	2.0E-6	3.9E-8	1.5E-6	6.1E-4

80

¢

.

·2

٩.

÷ •

-, 1

ţ,

2

.

TABLE 38 (Concluded)								
Stream Component	Conc. in Cooling Water	Conc. in Atmospheric Emissions	Public Health Post-dilution Concentration	Ecological Emmission Rate				
	(PPM _w)	(PPM _w)	(µg/m ³)	(mg/sec)				
·			·	······································				
-				ſ				
Benzo(e)pyrene	2.0E-6	3.9E-8	1.5E-6	6.1E-4				
Benzo(g,h,i)perylene	1.5E-7	2.9E-9	1.4E-2	4.6E-5				
Biphenyl	1.0E-3	2.0E-5	7.6E-4	3.0E-1				
Chrysene	9.8E-7	1.9E-8	7.5E-7	3.0E-4				
Dibenzofuran	1.3E-3	2 . 5E5	1.0E-3	4.0E-1				
Ethylbenzene	2.8E-1	5.5E-3 `	2.1E-1	8.5E+1				
Fluoranthene	9.8E-5	1.9E-6 ;	7.4E-5.	3.0E-2				
Fluorène	9.8E-5	1.9E-6	7.4E-5	3.0E-2				
Indan	1.3E-2	2.5E-4	9.9E-3	4.0E 0				
Methanethiol	1.1E-1	2.2E-3	8.4E-2	3.3E+1				
Naphthalene	4.7E-3	9.2E-5	3.6E-3	1.4E O				
Perylene	2.0E-7	3.9E-9	1•5E-7	6.1E-5				
Phenanthrene	4.9E-5	9.6E-7	3.7E-5	1.5E-2				
Pyrene	9.8E-5	1.9E-6	` 7 . 4E−5	3.0E-2				
Quinoline	1.4E-3	2.8E-5	1.ÎE-3	4.3E-1				
Toluene	9.1E-1 [*]	1.8E-2	6.9E-1	2.8E+2				
o-Xylene	3.2E-1	6.2E-3	2.4E-1	9.7E+1				

÷

Assumptions:

- Ambient temperature 25°C, pressure 1 atm.
- Evaporative losses accounted for essentially all of the atmospheric losses from the cooling tower."
- Relative humidity of influent air was 0%, and of effluent air was 100%.
- Water content of air was 0.02 1b water/lb of dry air.⁷⁵
- Density of atmospheric emission stream = density of air = 1,180 gm/m³.

Calculation:

The total flow rate of moisture and air from the cooling tower was calculated using the following:

TF = WF + AF

where-

TF is the total flow rate of air and moisture

£r.

WF is the flow rate of moisture

AF is the flow rate of air

At 25°C and 1 ATM, the moisture content of air was 0.02 lb water/lb dry air. Therefore,

 $AF = (WF) (1 \ 1b/0.02 \ 1b) = 50 \ WF$

and

TF = WF + 50WF = 51 WF

According to Schreiner, the flow rate of water out of the cooling tower was 2.413 x 10^6 lb/hr or 3.04 x 10^5 gm/sec. Therefore,

 $TF = (51)(3.04 \times 10^5 \text{ gm/sec}) = 1.55 \times 10^7 \text{ gm/sec}.$

*According to Schreiner⁸⁷ drift accounted for 5% and evaporative losses 95%, but to simplify the estimates it was assumed that all of the atmospheric loss was evaporative in nature. The concentration of each pollutant in the total emission stream (air + water) was calculated by the following:

$$EC = \frac{(CW)(WF)}{TF}$$

where-

J,

EC is the pollutant concentration in the total emission stream, in $\ensuremath{\text{PPM}}_w$

CW is the pollutant concentration in the cooling tower feed water, in PPM,

1

÷

WF is the flow rate of the water in the atmospheric stream, 3.04×10^5 gm/sec

TF is the total flow rate of air and moisture.

 $TF = 51 \times WF$

therefore-

But,

 $EC = \frac{(CW)(WF)}{51 WF} = \frac{CW}{51}$

The post-dilution concentration of each pollutant was then calculated:

 $PC = \frac{(EC)(\frac{\mu g}{gm}/PPM_w)(Density of Air)}{DF}$

PC is the pollutant post-dilution concentration, in $\mu g/m^3$ EC is the pollutant concentration in the emission stream, in PPM_w.

 $\frac{\mu g}{gm}$ / PPM_w is a conversion factor, equal to 1.0

Density of air is 1.180 gm/m^3

DF is the SAM/I dilution factor, which was 30.4 for a gaseous discharge to the atmosphere at a flow rate of 1.55×10^7 gm/sec.

Emission Rates for Ecosystems:

From an ecological perspective, the partitioning of contaminants between drift and evaporation losses was important because drift tends

|| 83

to settle over a more limited area, relatively close to the plant, than the evaporative losses. Thus, whatever contaminants were present in the drift would tend to become enriched on the surface of vegetation and in soils within one or two kilometers of the plant. Because data were so limited and partitioning was important, the ecological risks were evaluated on the basis of pollutant emission rates rather than postdilution concentrations in the atmosphere. Two emission rates were calculated as follows:

$$E = (C)(F)$$

where-

- E is the emission rate, in mg/sec
- C is the pollutant concentration in water fed to the cooling tower, in mg/1

÷

F is the flow rate of Stream 29, i.e., 304 1/sec.

Estimation of Pollutant Post-Dilution Concentrations Due to Disposal of Stream 53 - Reverse Osmosis Concentrated Waste Solution

Two sets of post-dilution concentrations were estimated for disposal of Stream 53. The set used to evaluate risks to public health was developed assuming that groundwater contamination would be the major concern; the set used to evaluate risks to ecosystems was developed assuming contamination of surface streams would be the primary cause of concern. The assumptions and calculations are presented below. The results are presented in Table 39.

84

TABLE 39

ESTIMATED POST-DILUTION CONCENTRATIONS DUE TO DISCHARGE OF STREAM 53 - REVERSE OSMOSIS WASTE SOLUTION

÷

٩,

Stream Component	Effluent Stream Concentration (PPM _w)	Public Health Post-dilution Concentration (PPM _w)	Ecological Post-dilution Concentration (PPM _W)
	, Ş		
Arsenic	8.9E-1	8.9E-2	2.3E-1
Beryllium	4.6E-1	4.6E-2	1.2E-1
Boron	3.1E 0	3.1E-1	7.9E-1
Cadmium	5.3E-1	5.3E-2	1.3E-1
Fluorine	3.3E+1	.3.3E 0	8.3E 0
Lead	1.7E-1	1.7E-2	4.3E-2
Manganese 🖉	8.8E-1	8.8E-2	
Mercury	8.1E-2	8.1E-3	2 • 1E-2
Nickel	1.5E-1	1.5E-2 '	3.8E-2
Vanadium	1.8E-2	1.8E-3	4.5E-3
Acetic Acid	1.3E+1	1.3E 0	3.3E 0
Aniline	1.3E-2	1.3E-3	3.3E-3
Butanoic Acid	1.2E-0 "	1.2E-1	3.1E-1
Catechol	1.7E+1	1.7E 0	.4.4E 0
Hexanoic Acid	9.4E-2	9.4E-3	2-4E-2
Pentanoic Acid	1.1E O	1.1E+1.	2.8E-1
Phenol	3.8E-1	3.8E-2	9.6E-2
Propanoic Acid	2.5E 0	2.5E+1	6.3E-1 💥

85

e,

ĵ,

۰Ÿ,

ŧ

• •	TABLE 39	(Co; *)	
Stream Component (Effluent Stream Concentration (PPM _W)	Public Health Post-Dilution Concentration (PPM _w)	Ecological Post-Dilutio Concentratio (PPM _w)
Pyridine	3.0E-2	3.0E-3	7.5E-3 ^{(;}
Resorcinol -	5.8E O	5.8E-1	1.5E 0
2-Methylphenol	1.3E-1	1•3E-2	3.3E→2
2-Methylpropionic Acid	1 1.9E-1	1.9E-2	4-8E-2
2-Methylpyridine	1.8E-1	1.8E-2	4.6E-2
2,4-Dimethylpyridine	2.6E-3	2.6E-4	6.6E-4
2,4-Xylenol	3.6Ē≝1	3.6E-2	9.1E-2
2,5-Dimethylpyridine	2.7E-3	2.6E-4	6-6E-4
3-Methylbutanoic Acid	9.4E-2	9.4E-3	2.4E-2
3-Methylcatechol	0.0E 0	0.0E 0	0.0E 0
3-Methylphenol	1.9E-1	1.9E-2	4.8E-2
3-Methylpyridine	6.7E-2	6.7E-2	1.7E-2
3,5-Xylenol	5.0E-1	5.0E-2	1.3E-1
3,6-Dimethylcatechol	1.4E 0	1.4E-1	3-6E-1
4-Methyl Resorcinol	1.1E 0	1.1E-1	2.8E-1
4-Methylcatechol	1.2E+1	1.2E 0	3.1 <u>5</u> 0
4-Methylphenol	1.2E-1	1.2E-2	370E-2
4-Methylpyridine	1.6E-2	1.6E-3	4 .1E-3
5-Methyl Resorcinol	2.1E O	2.1E-1	5.3E-1
Acenaphthylene	1.2E-1	() 1.2E-2	3_0F-2

86

-

•

.:

.

÷

۰.

۰.

•

Stream Component	Effluent Stream Concentration (PPM _W)	٦) 	Public Health Post-dilation Concentration (PPM _W)	Ecological Post-dilution Concentration (PPM _w)	
:	• •		· ·	· · · · ·	. :
Anthracene	3.0E-2		3.0E-3	7.6E-3	•
Benz(a)anthracene	3.0E-3	÷	3.0E-3	7.6E-4	
Benzo(a)pyrene	1.2E-3		1.2E-4	3.0E-4	
Benzo(e)pyrene	1.2E-3		1 - 2E-4	3.0E-4	
Benzo(g,h,i)peryler	ne 8.9E-5		8.9E-6	2.2E-5	
Biphenyl	6.2E-1	•	6-2E-2	1.6E-1	•
Chrysene	5.9E-4		5-9E-5	<u>_1</u> #•5E−4	•
Dibenzofuran	2.2E-2		2.2E-3	5.6E-3	
Ethylbenzene	2.9E 0		2.9E-1	7.3E-1	
Fluoranthene	5.9E-2		5.9E-3	1.5E-2	
Fluorene	5.9E-2		5.9E-3	1.5E-2	
Indan	- 7.9E 0		7.9E-1	2.0E 0	
Methanethiol	5.9E 0		5.9E-1	1.5E 0	
Naphthalene	2.8E 0		2.8E-1	7.1E-1	
Perylene *	1.2E-4		1.2E-5	3.0E-5	
Phenanthrene	3.0E-2		, 3.0E-3	7.6E-3	
Pyrene	5.9E-2	•	5.9E-3	1.5E-2	ii
Quinoline 🤤	2.5E-2		2.5E-3	6.3E-3	
Toluene	9.4E 0		9.4E-1	2.4E 0	
o-Xylene	3.3E 0		3.3E-1	8.3E-1	

TABLE 39 (Concluded)

. •-

. 87

...

.

 $\bar{Q}^{(1)}$

:

.. ·

ı,

Post-dilution Concentrations for Public Health:

The risk to public health posed by Stream 53 was assumed to originate from improper disposal of the stream and subsequent contamination of the groundwater. The dilution factor was derived from the Source Analysis Model (SAM/I). Assumptions and calculations were as follows.

Assumptions:

f.

- Stream 53 disposed of in a sump or fill site.
- Receiving body (sump or fill site) had a base diameter > 10m.
- SAM/I dilution factors were appropriate for estimating subsequent pollutant concentrations in groundwater.

÷

- Local population used groundwater directly for domestic needs.
- Flow rate of Stream 53 = 569,000 lb/hr (71,700 gm/sec).

Calculations

Fost-dilution concentrations of pollutants from Stream 53 for the public health analysis were calculated using the following equation:

$PC = \frac{EC}{DF}$

where-

PC is the post-dilution concentration in PPM, or mg/1.

- EC is the concentration in effluent Stream 53, in PPM.
- DF is the SAM/I dilution factor, which was 10, for a liquid stream discharged into a sump or fill site with a diameter > 10 meters.

Post-dilution Concentrations for Ecosystems:

The risk to ecosystems posed by Stream 53 was assumed to orginate from disposal of the stream and subsequent leakage of all of the stream contaminants into a small surface stream. A SAM/I dilution factor was not used.

Assumptions:

- Stream 53 was disposed of in an inadequate evaporation pond.
- All of the stream components except water were subsequently released into a small (10 cfs) surface stream through overflow or by percolation through the soil.
- Loss of stream contaminants through physical, chemical and biological processes prior to entry into the surface stream was negligible.
- Evaporation of the water components of stream 53 in the evaporation pond was significant, resulting in extreme concentration of stream contaminants prior to the entry into the surface stream.

Calculations:

5

Post-dilution concentrations of pollutants from Stream 53 for the ecological analysis were calculated using the following equation:

 $PC = (EC)(FR_{53})$

FR_

where-

ï

PC is the post-dilution concentrations, in PPM.

EC is the constituent concentration in Stream 53, in PPM.

FR₅₃ is the flow rate of Stream 53, 71.7 gm/sec.

 FR_s is the flow rate of the surface stream, 283 l/sec.

Estimation of Pollutant Post-Dilution Concentrations Due to the Discharge of Stream 69 - Leachate from Gasifier and Utility Ash

90

Two sets of post-dilution concentrations were estimated for discharge of contaminants in Stream 69. The set used to evaluate risks to public health was developed assuming that groundwater contamination would be the major concern, while the set used to evaluate risks to ecosystems was developed assuming contamination of surface streams would be the primary cause for concern. The assumptions and calculations are presented below. The results are presented in Table 40.

TABLE 40

ESTIMATED POST-DILUTION CONCENTRATIONS DUE TO DISCHARGE OF STREAM 59 ASH LEACHATE

Stream Component	Effluent Stream Concentration (PPM _w)	Public Health Post-dilution Concentration (PPM _w)	Ecological Post-dilution Concentration (PPM _W)
	·		·
Aluminum	2.0E-1	2.0E-2	6.0E-4
Arsenic	2.0E-1	2.0E-3	6.0E-5
Cadmium	6.4E-4	6.4E-5	1.9E-6
Copper	3.0E-2	3.0E-3	9.0E-5
Iron	1.6E 0	1.6E-1	4.8E-3
Lead	9.0E-2	[»] . 9.0E-3	2 . 7E-4
Manganese	5.0E~1	5.0E-2	1.5E-3
Mercury	3.0E-4	. 3.0E−5	9.0E-7
Nickel	3.5E-2	3.5E-3	1.1E-4
Selenium -	6.0E-2	6.0E-3	1.8E-4
Zint	2.9E-3	2.9E-4	1.8E-4

_ F.

2

:

۶.

Post-dilution Concentrations for Public Health:

The risk to public health was assumed to originate from improper disposal of the stream and subsequent contamination of groundwater. The dilution factor was derived from the Source Analysis Model (SAM/I). Assumptions and calculations were as follows:

Assumptions:

- Gasfler and utility ash (Stream 36) were the source of theleachate.
- The ash was disposed of at a fill site.
- The fill site had a base diameter > 10 meters.
- SAM/I dilution factors were appropriate for estimating subsequent pollutant concentrations in groundwater.
- The local population used the groundwater directly for domestic uses.
- Flow rate of the leachate = 7×10^6 gallons/year.*

Calculations:

Post-dilution concentrations of pollutants from Stream 69 for the public health analysis were calculated using the following equation:

Ċ

$$\frac{OB}{FC} = OS$$

where-

PC is the pollutant post-dilution concentrations, in PPM,

- EC is the pollutant concentration in effluent Stream 69, in PPM
- DF is the SAM/I dilution factor, which was 10, for a liquid stream discharged in a fill site with a base diameter ≥ 10 meters.

*See Section 2.4

Post-dilution Concentrations for Ecosystems:

i ii

٠į

The risk to ecosystems posed by Stream 69 was assumed to originate from disposal of the ash and subsequent contamination of a small surface stream. ASAM/I dilution factor was not used.

92

Assumptions:

- Flow rate of the leachate = 7.0 x 10⁶ gal/year^{*} or 0.85 = liters/sec.
 - Pollutant concentrations in the leachate were not reduced by physic ', chemical or biological processes prior to entry into a small cface stream.
 - The surface stream flow rate was 10 cubic feet/sec (283 1/sec).

Calculations:

The post-dilution concentration of each pollutant due to release of Stream 69 was calculated using the following:

$$PC = \frac{(EC)(LF)}{2} = \frac{(EC)(.85 \text{ 1/sec})}{283 \text{ 1/sec}} = \frac{EC}{333}$$

where-

See Section 2.4

PC is the post-dilution concentrations, in PPM_w . EC is the concentration in the effluent stream, in PPM_w . LF is the flow rate of the leachate, equal to 0.85 l/sec. SF is the flow rate of the small surface stream, 283 l/sec.

Estimation of Pollutant Post-Dilution Concentrations Due to Disposal of Stream 70 - Biosludge

5. 1

The post-dilution concentrations of pollutants, which might result from disposal of Stream 70, biosludge, were estimated assuming that all of the trace elements and toxic organic compounds in the biosludge were made available to a small surface stream through leaching. Assumptions and calculations are presented below. Results are presented in Table 41.

93

4

Assumptions:

.....

Biosludge was disposed of in a landfill.

:3

- All of the trace metals and toxic organics were leached out of the biosludge and enter a surface stream.
- The concentrations of leachate contaminants were not reduced by physical, chemical or biological processes prior to entry into the surface stream.

æ

- The flow rate of the surface stream was 10 cfs.
- The water component of the leachate was negligible.

Calculations

The concentration of each pollutant in the surface stream was calculated as follows:

 $PC = \frac{(PR)(1000mg/gm)}{SF}$

where-

J.

ð

PC is the post-dilution concentration, in PPM,

PR is the production rate of the trace elements and organics in Stream 70^{*}, in gm/sec.

SF is the flow rate of the surface stream, 283 1/sec.

5 B

"See Table 35 for pollutant production rate.

TABLE 41

ESTIMATED POST-DILUTION CONCENTRATION DUE TO DISPOSAL OF STREAM 70 - BIOSLUDGE

Stream Component	Biosludge Removal Rate (gm/sec)	Post-dilution Concentration (PPM _w)
	:	
Arsenic	6.9E-2	2.4E-1
Beryllium	3 - 7E−2	1.3E-1
Cadmium	2.0E-2	7.1E-2
Mercury	5.8E-3	2.0E-2
Lead	2.5E-2	8 .9 E - 2
Acenaphthylene	7.7E-2	2.7E-1
Anthracene	1.9E-2	6.7E-2
Benz(a)anthracene	1.9E-3	6.7E-3
Benz(g,h,i)perylene	5.8E-5	2.0E-4
Benzo(a)pyrene	7.7E-4	2.7E-3
Benzo(e)pyrene	7.7E-4	2.7E-3
Chrysene	3.8E-4	1.3E-3
Fluoranthene	3-9E-2	1.4E-1
Fluorene	3.9E-2	1.4E-1
Naphthalene	4.8E-1	1.7E 0
Phenanthrene	1.9E-2	6.7E-2
Pyrene	3-8E-2	1.3E-1

94

ŝ

ł.

Estimation of Pollutant Post-Dilution Concentrations Due to Release of Stream 72 - Lockhopper Vent Gas

95 [:]

The post-dilution concentrations of pollutants which may result from the discharge of Stream 72 were estimated using a dilution factor from the Source Analysis Model (SAM/I). The assumptions and calculations are presented below. The results are presented in Table ¹ 42.

Assumptions:

::

- Ambient temperature = 25°C, pressure = 1 atm.
- Mean density of Stream 72 = 1,180 gm/m³ (25°, 1 atm).

Calculation:

PC =

(EC)(gm/PPM,)(Density of Air)

DF

where-

gu

PC is the post-dilution concentration, in $\mu g/m^3$ EC is the concentration in Stream 72 in PPM_w^{*} ($\mu g/PPM_w$) is a conversion factor = 1.0

Density of air is 1,180 gm/m³

DF is the SAM/I dilution factor, which was 24,000 for a gaseous stream being discharged into the atmosphere at a rate of 493 gm/sec.

3.4 Applications of Results

The information presented in Volume II represents estimates of maximum post-dilution concentrations for trace elements and organic compounds released by a model, commercial-scale indirect liquefaction facility. The ecological, public health and occupational health hazards posed by this model facility are based upon these estimates and are described in Volumes III, IV and V, respectively. Volume I presents a summary of Volumes II through V and overall conclusions made in the assessment.

TABLE 42	
----------	--

ESTIMATED POST-DILUTION CONCENTRATIONS DUE TO DISCHARGE OF STREAM 72 - LOCKHOPPER VENT GAS

• .•.

.

Stream Component	Emission Stream Concentration (PPM _w)	Post-dilution Concentration (µg/m ³)
		······································
CO .	1.5E+5	7•4 E+ 3
CH ₄	5.2E+4	2•5E+3
с ₂ н ₄	6-4E+2	3.1E+1
H ₂ S .	1.4E+3	6.6E+1
COS	3.0E+1	1-4E 0
Ni(CO)4	1.5E O	7.4E-2
Tars	1.1E+3	5-4E+1
Oils	9 . 9E+3	4 .9E+ 2
Naphtha	4.0E+3	1•9E+2
Phenols	1.3E+3	6•4E+1
Mercaptans	5.1E O	2.5E-1
Thiophenes	4.1E 0	2.0E-1
Ammonia	2.0E+3	9 . 8E+1
HCN	2.0E 0	9.8E-2
Aromatic amines	1.0E 0	4•9E-2
Nitrosamines	5.0E-1	2.5E-2
PAHs	5.0E-1	2.5E-2
Fatty acids	2.6E+2	1.3E+1
Trace elements	5.0E-1	2.5E-2

.

4 REFERENCES

 ϵ_{i}^{i}

- Anderson, G.L., A.H. Hill, and D.K. Fleming, "Predictions on the Disposition of Select Trace Constituents in Coal Gasification Processes," presented at EPA Environmental Aspects of Fuel Conversion Technology Symposium, Hollywood, FL, April 1979.
- 2. API Monograph Series, <u>Publication 714 on Indan and Indene</u>, American Petroleum Institute, Washington, DC, April 1980.

- 3. Atkins, P.L., S.L. Davis, E.L. Husting, J.D. Kuebler, R.M. LaSalle, and T.O. Peyton, <u>Potential Health and Safety Impacts</u> of High-Btu Coal Gasification; <u>Occupational</u>, Prepared for the Planning and Analysis Group - American Gas Association, by Flow Resources Corporation, 1978.
- 4. Baird, T.N., L.W. Barnhouse, H.M. Braunstein, H.F. Hartman, R.J. Haynes, R.D. Roop, M.S. Salk, and F.S. Sanders, <u>Environmental</u> and Health Aspects of Disposal of Solid Wastes from Coal <u>Conversion: An Information Assessment</u>, ORNL-5361, Oak Ridge National Laboratory, Oak Ridge, TN, September 1978.
- Bombaugh, K.T., and W.E. Corbett, "Kosovo Gasifications Test Program Results - Part II - Data Analysis and Interpretations," presented at EPA Symposium on Environmental Aspects of Fuel Conversions Technology, Hollywood, FL, April 1979.
- 6. Bostwick, L., "Potential Emission Effluent and Waste Problems in Coal Conversion Processes," in <u>Symposium on Potential Health</u> and Environmental Effects of <u>Synthetic-Fossil Fuel Technolo-</u> <u>gies, CONF-780903</u>, Oak Ridge National Laboratory, Oak Ridge, TN, July 1979.
- 7. Bostwick, L.E., M.R. Smith, D.O. Moore, and D.K. Webber, <u>Coal</u> <u>Conversion Control Technology, Volume I - Environmental</u> <u>Regulations: Liquid Effluents, EPA 600/7-79-228a, prepared</u> for the U.S. EPA by Pullman Kellogg Co., October 1979.
- 8. Bromel, M.C., and J.R. Fleeker, Biotreating and Chemistry of Waste Waters from the South African Coal, Oil and Gas Corporation (SASOL) Coal Gasification Plant, Department of Bacteriology, North Dakota State University, Fargo, ND, 1976.
- 9. Brown, R.A., Fate and Effects of Polynuclear Aromatic Hydrocarbons in the Aquatic Environment, Publication 4297, American Petroleum Institute, Washington, DC, 1978.
- 10. Budden, K.T., and W.H. Zieger, Environmental Assessment of Coal Liquefaction: Annual Report, EPA 600/7-78-019 prepared for U.S. EPA by Hittman Associates, Inc., February 1978.

11. Cair(us, T., and A.W. Maki, "Hazard Analysis in Toxic Materials Evaluation," in <u>Journal of Water Pollution Control</u> <u>Federation</u>, Vol. 51, No. 4, p. 666-671, April 1979.

Ð

- 12. Cameron Engineers, "Fischer Tropsch Synthesis Process," in EPA Project Status Report, EPA 600/7-77-102, July 1977.
- 13. Cavanaugh, E.C., W.E. Corbett, and G.C. Page, <u>Environmental</u> <u>Assessment Data Base for Low/Medium-Btu Casification</u> <u>Technology: Volume I, Technical Discussion, EPA 600/7-77-</u> <u>125a</u>, prepared for U.S. EPA by Radian Corporation, Austin, TX, November 1977.
- 14. Cavanaugh, E.C., W.E. Corbett and G.C.-Page, Environmental Assessment Data Base for Low/Medium-Btu Gasification Technology, Volume II, EPA 600/7-77-1256, prepared for U.S. EPA by Radian Corporation, November 1977.
- 15. Chambers, C.W., H.H. Tbak, and P.W. Kabler, "Degradation of Aromatic Compounds by Phenol-Adapted Bacteria," in Journal of <u>Water Pollution Control Federation</u>, Vol. 35, No. 12, p. 1517-1528, December 1963.

."

- 16. Chen, K.Y., T.C.S. Lu, B.A. Eichenberger, S.Y. Chiu, and T. Surles, Coal Solid Wastes and Potential Hazardous Wastes Due to Leachate Generation, prepared by Argonne National Laboratory, December, 1979.
- Cheng, M.H., J.W. Patterson, and R.A. Miniar, "Heavy Metal Uptake by Activated Sludge," in Journal of Water Pollution Control Federation, Vol. 47, No. 2, p. 362-376, February 1975.
- 18. Chu, T.J., R.T. Ruane and G.R. Steiner, Characteristics of Wastewater Discharges from Coal - Fired Power Plants, 31st Annual Purdue Industrial Waste Conference, May 4-6, 1976, Purdue University, West Lafayette, IN.
- 19. Cleland, J.G., S.K. Gangwal, C.M. Sparacino, R.M. Zweidinger, D.G. Nichols and F.O. Mixon, <u>Pollutants from Synthetic Fuels</u> <u>Production: Coal Gasification Screening Test Results, EPA-600/7-79-200</u>, prepared for U.S. EPA by Research Triangle Institute, Research Triangle Park, NC, August 1979.
- 20. Cleland, J.G., F.O. Mixon. D.G. Nichols, C.M. Sparacino, and D.E. Wagoner, <u>Pollutants from Synthetic Fuels Production:</u> <u>Facility Construction and Preliminary Tests</u>, EPA-600/7-78-171, prepared for U.S. EPA by Research Triangle Institute, August 1978.

- 21. Cleland, J.G., and J. Pierce, <u>Pollutant Evaluations for a Labora-</u> tory <u>Semi-Batch Coal Gasifier</u>, presented at EPA Symposium on <u>Environmental Aspects of Fuel Conversion Technology IV</u>, Hollywood, FL, April 1979.
- 22. Colley, T.D., W.A. Gathman and M.L. Owen, <u>Emissions from Synthetic</u> <u>Fuels Production Facilities</u>, Volume 2, <u>EPA-9084-77-010B</u>, <u>prepared for U.S. EPA by Radian Corporation</u>, Austin, TX, September 1977.

12

- 23. Collins, R.V., K.W. Lee, and D.S. Lewis. "Comparison of Coal Conversion Waste Waters," presented at EPA Symposium on Environmental Aspects of Fuel Conversion Technology V, St. Louis, MO, 1980.
- 24. Cooke, R., and P.W. Graham, "The Biological Beneficiation of the Effluent from a Lurgi Plant Gasifying Bituminous Coals," International Journal of Air and Water Pollution, Vol. 9, p. 97-112, Pergamon Press, 1965.
- 25. Concentration Specialists, Inc., Feasibility Analysis of the Concentration of Coal Conversion Process Condensate, prepared for U.S. DOE, January 1980.
- 26. Cowser, K.E., Coal Liquids Evaluation and Paraho-Sohio Shale Oil Quarterly Progress Report for the Period Ending December 31, 1979, ORNL/TM-7271, Oak Ridge National Laboratory, Oak Ridge, TN, 1980.
- 27. Duvel, W.A., and T. Helfgott, "Removal of Wastewater Organics by Reverse Osmosis," in Journal of Water Pollution Control Federation, Vol. 47, No. 1, p. 57-65, January 1975.
- 28. Eckstein, L., C. Hook, D. Roe, and J. Zalkind, EPA Program Status Report: Synthetic Fuels from Coal, EPA-600/7-77-102, prepared for U.S. EPA by Cameron Engineers, Inc., July 1977.
- 29. Epler, J.L., T. Ho, A.W. Hsie, F.W. Larimer, C.E. Nix, and T.R. Rao, "Short-Term Mutagenicity Testing," in Symposium on Potential Health and Environmental Effects of Synthetic Fossil Fuel Technologies, Oak Ridge National Laboratory, Oak Ridge, TN, July 1979.
- 30. Evans, J.M., "Trip Report South 'African Coal, Oil and Gas Corporation - SASOL, December 5-7, 1977."

· ''

31. Federal Register, Vol. 40, 1910 and 1034, 1975.

-2

- 32. Felix, W.D., D.D. Mahlum, W.C. Weimer, R.A. Pelroy, and B.W. Wilson, <u>Chemical/Biological Characterization of SRC-II Product</u> and By-Products, presented at the Symposium on Environmental Aspects of Fuel Conversion Technology V, St. Louis, MO, September 1980.
- 33. Fisher, C.W., R.D. Hepner, and G.R. Tallon, "Coke Plant Effluent Treatment Investigations," in <u>Blast Furnace and Steel Plant</u>, p. 315-320, May 1970.
- 34. France, D.A., Trace Element Emissions Related to Coal Conversion Processes (Draft), prepared for Oak Ridge National Laboratory by Science Applications, Inc., Oak Ridge, TN, October 20, 1978.
- 35. Gaddis, T.L., and H.G. Spencer, <u>Evaluation of Hyperfiltration for</u> Separation of Toxic Substances in Textile Process Water, EPA-600/2-79-118, prepared for U.S. EPA by Clemson University, June 1979.
- GAI Consultants, Inc., <u>Coal Ash Disposal Manual</u>, FR 1257, prepared for Electric Power Research Institute, Palo Alto, California, December, 1979.
- 37. Ghassemi, M., K. Crawford, and S. Quinlivan, Environmental Assessment Data Base for High-Btu Gasification Technology, Volume I, Technical Description, EPA-600/7-78-186a, prepared for U.S. EPA by TRW, Inc., September 1978.
- 38. Ghassemi, M., K. Crawford, and S. Quinlivan, <u>Environmental Assessment Data Base for High-Btu Gasification Technology</u>, Volume <u>II, Appendices A, B, C, EPA-600/7-78-186b</u>, prepared for U.S. <u>EPA by TRW</u>, Inc., September 1978.
- 39. Ghassemi, M., K. Crawford, S. Quinlivan and D. Strehler, "Environmental Assessment Report: High-Btu Gasification", presented at EPA Symposium on Environmental Aspects of Fuel Conversion Technology IV, Hollywood, FL, April 1979.
- 40. Ghassemi, M., K. Crawford, and S. Quinlivan, <u>Environmental Assess-</u> ment Report: <u>Lurgi Coal Gasification Systems for SNG</u>, EPA-600.7-79-120, prepared for U.S. EPA by TRW, Inc., May 1979.

41. Ghassemi, M., D. Strehler, K. Crawford; and S. Quinlivan, <u>Applica-bility of Petroleum Refinery Technologies to Coal Conversion</u>, EPA-600/7-78-190, prepared for U.S. EPA by TRW, Inc., October 1978.

42. Goldstein, D.T., and D. Yung, <u>Water Conservation and Pollution</u> <u>Control in Coal Conversion Processes</u>, EPA-600/7-77-065, prepared for U.S. EPA by Water Purification Associates, Cambridge, MA, June 1977.

2

- 43. Griffin, R.A., R.M. Schuller, S.T. Kossel, and N.F. Shimp, "Solubility and Toxicity of Potential Pollutants in Solid Coal Wastes", in Environmental Aspects of Fuel Conversion Technology III, EPA-600/7-78-063, April 1978.
- 44. Fred C. Hart Associates, Inc., <u>The Impact of RCRA on Coal</u> <u>Gasification Wastes</u>, prepared for U.S. DOE, New York, NY, August 4, 1979.
- Southworth, and 45. Herbes, S.E., G.R. C.W. Gehrs, "Organic Coal Contaminants in Aqueous Conversion Effluents: Environmental Consequences and Research Priorities," in Trace Substances in Environmental Health - A Symposiuum, University of Missouri, 1976.
- 46. Hicks, R.E., D.T. Goldstein, F.B. Seufert, and I.W. Wei, Wastewater Treatments in Coal Conversion, EPA-600/7-79-133, prepared for U.S. EPA by Water Purification Associates, June 1979.

ترسن:

- 47. Hobbs, C.H., C.R. Clark, L.C. Griffiths, R.O. McClellan, R.F. Henderson, J.O. Hill, and R.E. Royer, "Inhalation Toxicology of Primary Effluents from Fossil Fuel Conversion and Use," in <u>Symposium on Potential Health and Environmental Effects of Synthetic Fossil Fuel Technologies</u>, Oak Ridge National Laboratory, Oak Ridge, TN, July 1979.
- 48. Hossain, S.M., T.W. Mitchell, and A.B. Cherry, "Control Technology Development for Products/By-Products of Coal Conversion Systems," in Symposium Proceedings: Environmental Aspects of Fuel Conversion Technology III, EPA-600/7-78-063, prepared for U.S. EPA by Research Triangle Institute, Research Triangle Park, NC, April 1978.
- 49. Jackson, J. O., "Comparative Industrial Hygiene Aspects for Coal Gasification and Liquefaction, Oil Shale and Tar Sands Processing" in Proceedings of Symposium on Potential Health and Environmental Effects of Synthetic Fossil Fuel Technologies - September 25-28, 1978, CONF 780903, Oak Ridge National Laboratory, July 1979.
- 50. Kennedy, D.M., L. Breitstein, and C. Chen, "Control Technologies for Particulate and Tar Emissions from Coal Converters," prepared for U.S. EPA by Dynalectron Corporation, McLean, VA, 1979.

- 51. Klein, T.A., and R.E. Barker, Assessment of Environmental Control Technology for Coal Conversion Aqueous Wastes, ORNL/TM-6253, Oak Ridge National Laboratory, Oak Ridge, TN, July 1978.
- 52. Klein, T.A., "National Program in Control of Wastewater from Coal Conversion Processes," in <u>Symposium on Potential Health and</u> <u>Environmental Effects of Synthetic Fossil Fuel Technologies,</u> <u>CONF-780903, Oak Ridge National Laboratory, Oak Ridge, TN,</u> July 1979.
- 53. Klemetson, S.L., and M.D. Scharbow, "Filtration of Phenolic Compounds in Coal Gasification Wastewater," in Journal of the <u>Water Pollution Control Federation</u>, Vol. 51, No. 6, p. 1592-1615, June 1979.
- 54. Kolber, A., T. Hughes, M.B. Silkie, D. Nichols, and T. Wolff, "Bioassays for the Toxicity of Complex Environmental Mixtures," presented at the 6th National Conference on Energy and the Environment, Pittsburgh, Pennsylvania, May 21-24, 1979.

.

٠.

- 55. Kominek, E.G., "Future Needs and the Impact on the Water and Waste Equipment Manufacturing Industry due to the use of Synthetic Fuels," in Symposium Proceedings: Environmental Aspects of Fuel Conversion Technology III, EPA-600/7-78-063, U.S. EPA, April 1978.
- 56. Koralek, C.S. and S.S. Patel, <u>Environmental Assessment Data Base</u> for Coal Liquefaction Technology, EPA-600/7-77-184a, prepared for U.S. EPA by Hittman Associates, Inc., September 1978.
- 57. Kornreich, M., Coal Conversion Processes: Potential Carcinogenic Risk, MITRE Corporation, March 1976.
- 58. Leland, H.V., and J.M. Fielden, "Bioaccumulation and Toxicity of Heavy Metals and Related Trace Elements," in Journal of the Water Pollution Control Federation, Vol. 51, No. 6, p. 1592-1615, June 1979.
- 59. Loran, B.I. and J.B. O'Hara, "Specific Environmental Aspects of Fischer-Tropsch Coal Conversion Technology," in <u>Symposium</u> <u>Proceedings: Environmental Aspects of Fuel Conversion</u> <u>Technology III, EPA-600/7-78-063, prepared for U.S. EPA by</u> <u>Research Triangle Institute, Research Triangle Park, NC,</u> April 1978.
- 60. Lueck, R.H., <u>Assessment of Solvent Extraction for Treatment of</u> <u>Coal Gasifier Wastewater</u>, prepared for U.S. EPA by University of Missouri, Columbia, MO.

- 61. Malaney, G.W., P.A. Lutin, J.J. Cibulka, and L.K. Hickerson, "Resistance of Carbinogenic Organic Compounds to Oxidation by Activated Sludge," Journal of Water Pollution Control Federation, Vol. 39, No. 12, p. 2020-2028, December 1967.
- 62. Mesich, F.G., and F.S. Dzierlenga, "Measurement and Control of Fugitive Hydrocarbon Emissions," presented at the Second U.S. DOE Environmental Control Symposium, March 17-19, 1980, Radian Corporation, McLean, VA.
- 63. Mezey, E.T., S. Singh, and D.W. Hissong, <u>Fuel Contaminants</u> -<u>Volume 2: Removal Technology Evaluation</u>, EPA-600/2-76-177b, prepared for U.S. EPA by Battelle Columbus Laboratories, Columbus, OH, September 1976.
- 64. MITRE Corporation, "A Preliminary Review of Current Research Activities Bearing on Carcinogenic Effects of Liquefaction," 1979.
- 65. Neufield, R.D., and T. Valiknac, "Inhibition of Phenol Biodegradation by Thiocyanate," in Journal of Water Pollution Control Federation, Vol. 51, No. 9, p. 2283-2291, September 1979.
- 66. Newton, G.T., R.L. Carpenter, H.C. Yeh, S.H. Weissman, R.L. Hanson and C.H. Hobbs, "Sampling of Process Streams for Physical and Chemical Characterization of Respirable Aerosols," in Symposium on Health and Environmental Effects of Synthetic Fossil Fuel Technologies, Oak Ridge National Laboratory, Oak Ridge, TN, July 1979.
- .67. Office of the President, The President's Program for United States <u>Energy Security - The Energy Security Corporation</u>, The White House, Washington, DC, 1979.
- O'Hara, F.M., Coal Liquefaction Advanced Research Digest, ORNL/FE-2, Oak Ridge National Laboratory, Oak Ridge, TN, February 1979.
- 69. O'Hara, J.B., A. Bela, N.E. Jentz, S.K. Khaderi, H.W. Klumpe, B.I. Loran, D.G. Reynolds, and R.V. Teeple, <u>Fischer-Tropsch Complex Conceptual Design/Economic Analysis</u>, FE-1775-7, prepared for ERDA by the Ralph M. Parsons Co., January 1977.
- 70. Page, G.C., W.E. Corbett, and R.A. Magee, <u>Applications of Kosavo</u> (Lurgi), Gasification Plant Test Results to Pollution Control <u>Process:</u>(Design, presented at Advances in Coal Utilization Technology IV Symposium by Radian Corporation, Austin, TX, April 1981.

G

- 71. Page, G.C., W.E., Corbett, and W.C. Thomas, <u>Guidelines for Pre-</u> paring Environmental Test Plans for Coal Gasification Plants, EPA-600/1-78-134, prepared for U.S. EPA by Radian Corporation, Austin, TX, July 1978.
- 72. Parker, C.L., and D.I. Dykstra, Environmental Assessment Data Base for Coal Liquefaction Technology: Volume I, Systems for Fourteen Liquefaction Processes, EPA-600/7-78-184a, prepared for U.S. EPA by Hittman Associates, Columbia, MD, September 1978.
- 73. Parker, C.L., and D.I. Dykstra, <u>Environmental Assessment Data Base</u> for Coal Liquefaction Technology, Volume II, EPA-600/7-78-184b, prepared for U.S. EPA by Hittman Associates, Columbia, MD, September 1978.
- 74. Pellizzani, E.D., and N.P. Castillo, "Organic Constituents of Waters Associated with Coal and Oil Shale Conversion," in Symposium on Potential Health and Environmental Effects of Synthetic Fuel Technologies, Oak Ridge National Laboratory, Oak Ridge, TN, July 1979.
- 75. Perry, J.H., (ed), <u>Chemical Engineer's Handbook</u>, McGraw Hill Book Co., New York, NY, 1963.
- 76. Petrie, T.W., and W.T. Rhodes, <u>Environmental Impact of Synthetic</u> <u>Fuels Development</u>, EPA-600/7-79-023, prepared for U.S. EPA by Radian Corporation, Austin, TX, June 1979.
- 77. Radian Corporation, Current and Projected 1990 Environmental Standards for Coal Liquefaction Technology, prepared for U.S. DOE by Radian Corporation, McLean, VA, November 19, 1979.
- 78. Radian Corporation, Environmental Control Selection Methodology for a Coal Conversion Demonstration Facility, prepared for the U.S. DOE, October 1978.
- 79. Radian Corporation, Environmental Review of Synthetic Fuels, March 1979.
- 80. Richmond, C.A., "Health and Environmental Considerations for Synthetic Fuels Technologies," testimony presented to the House Committee on Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN, September 7, 1979.
- 81. Roberts, P.V., P.L. McCarty, M. Reinhard, and J. Schreiner, "Organic Contaminant Behavior During Groundwater Recharge," in Journal of the Water Pollution Control Federation, Vol. 52, No. 1, p. 161-172, January 1980.

بر المطلق شده ال ï,

104

- 82. Rogers, K.A., A.S. Wilk, B.C. McBeath, and R.F. Hill, Comparison of Coal Liquefaction Processes, FE-2468-2, prepared for the U.S. DOE by the Engineering Societies Commission on Energy, Inc., Washington, DC, April 1978.
 - 83. Salja, B., M. Mitrović, and D. Petrović, "Environmental and Engineering Evaluation of the Kosovo Coal Gasification Plant," presented at U.S. EPA Symposium on Environmental Aspects of Coal Conversion Technologies IV, Hollywood, FL, 1979.

ę

12

- 84. Sargent and Lundy Engineers, <u>Technology Characterization Lurgi</u> <u>Coal Gasification Process for Production of High-Btu Syn-</u> <u>thetic Natural Gas</u>, report prepared for Argonne National Laboratory, August 18, 1976.
- 85. Sax, N.I., Dangerous Properties of Industrial Materials, Van: Nostrand Reinhold Co., New York, NY, 1975.

86. Schoultz, K., "Trip Report - SASOL - December 5-8, 1977."

- 87. Schreiner, M., <u>Research Guidance Studies to Assess Gasoline from</u> Coal by Methanol-to-Gasoline and Sasol-Type Fischer-Tropsch <u>Technologies</u>, FE-2447-13, prepared for U.S. DOE by Mobil R&D Corporation, August 1978.
 - 88. Shapiro, M.A., C.S. Godfrey, J.K. Wachter, and G.P. Gray, "Potential Health Problems in the Production of Synthetic Fuels," in Symposium on Energy and Human Health: Human Costs of Electric Power Generation, March 1979, Ohio River Basin Energy Study and the University of Pittsburgh, 1979.
 - 89. Shaw, H., and E.M. Magee, Evaluation of Pollution Control in Fossil Fuel Conversion Processes, Lurgi Process, EPA-650/2-74-009c, prepared for U.S. EPA by Exxon Corp., July 1974.
 - 90. Shinn, J.H., and J.R. Kercher, "Ecological Effects of Atmospheric Release from Synthetic Fuels Processes," in <u>Symposium on</u> <u>Potential Health and Environmental Effects of Synthetic</u> <u>Fossil Fuel Technologies, Oak Ridge National Laboratory, Oak</u> <u>Ridge, TN, July 1979.</u>
 - 91. Shriner, D.S., H.S. Arora, N.T. Edwards, B.R. Parkhurst, C.W. Gehrs, and T. Tamura, "Physical, Chemical and Ecological Characterization of Solid Wastes from a Lurgi Gasification Facility," in <u>Symposium on Potential Health and Environmental</u> <u>Effects of Synthetic Fossil Fuel Technologies</u>, Oak Ridge National Laboratory, Oak Ridge, TN, July 1979.

105

ĩĻ

 \leq

Q.
- 92. Singer, P.C., F.K. Pfaender, T. Churchilli, A.F. Maciorowski, J.C. Lamb, and R. Goodman, <u>Assessment of Coal Conversion Waste</u> Waters: Characterization and Preliminary Biotreatability, EPA-600/7-78-181, prepared for the U.S. EPA by the University of NC, September 1978.
- 93: Singer, P.C., F.K. Pfaender, T. Chinchilli, and J.C. Lamb, "Composition and Biodegradability of Organics in Coal Conversion Wastewaters," in <u>Symposium Proceedings</u>: <u>Environmental</u> <u>Aspects of Fuel Conversion Technology III</u>, EPA-600/7-78-063, <u>April 1978.</u>
- 94. Singer, P.C., T.C. Lamb, F.K. Pfaender, and R. Goodman, <u>Treatabil-ity and Assessment of Coal Conversion Wastewaters: Phase I</u>, EPA-600/7-79-248, prepared for U.S. EPA by the University of North Carolina - Chapel Hill, November 1979.
- 95. Singh, S.P.N., Memo to P.J. Walsh (ORNL) titled, "Development of Process Stream Compositions for the Risk Assessment of Lurgi/Fischer-Tropsch Coal Liquefaction Process," April 17, 1980.
- 96. Sinor, J.E. (ed), <u>Evaluation of Background Data Relating to New</u> Source Performance Standards for <u>Lurgi Gasification</u>, <u>EPA-600/7-77-057</u>, prepared for the U.S. EPA by Cameron Engineers, Inc., June 1977.
- 97. Slack, W.A., Biological Treatability of Gasifier Wastewater, MET/CR-79/24, prepared for U.S. DOE by West Virginia University, Morgantown, WV, June 1979.
- 98. Smith, J.H., et al., Environmental Pathways of Selected Chemicals in Freshwater Systems, EPA-600/7-78-074, prepared for the U.S. EPA by SRI, International, May 1978.
- 99. Somerville, M.H., and J.L. Elder, "A Comparison of Trace Element Analyses of North Dakota Lignite Laboratory Ash with Lurgi Gasifier Ash and Then Use in Environmental Analyses," in Symposium Proceedings: Environmental Aspects of Fuel Conversion Technology III, EPA-600/7-78-063, U.S. EPA, April 1978.
- 100. Somerville, M.H., J.L. Elder, D.N. Baria, and Y.T. Hung, A <u>Comparative Study of Effluents and Their Control from Four</u> <u>Dry Ash Lurgi Gasification Plants</u>, prepared for U.S. DOE by the University of North Dakota, Grand Forks, ND, July 1978.

- 101. Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder, <u>Bioaccumu-lation</u> Potential and <u>Acute Toxicity of Synthetic Fuels</u> <u>Effluents in Freshwater Biota: Azaarenes</u>, prepared for U.S. <u>DOE by Oak Ridge National Laboratory</u>, Oak Ridge, TN, April 1978.
- 102. Stamoudis, V.C., R.G. Luthy, and W. Harrison, <u>Removal of Organic</u> <u>Constituents in a Coal Gasification Process Wastewater by</u> <u>Activated Sludge Treatment</u>, <u>ANL/WR-79-1</u>, prepared for U.S. <u>DOE by Argonne National Laboratory</u>, Argonne, IL, June 1979.
- 103. Stamoudis, V.C., and R.G. Luthy, <u>Biological Removal of Organic</u> Constituents in Quench Water from a Slagging, Fixed-Bed Coal Gasification Pilot Plant, ANL/PAG-1, prepared for U.S. DOE by Argonne National Laboratory, Argonne, IL, February 1980.
- 104. Stamoudis, V.C., and R.G. Luthy, <u>Biological Removal of Organic</u> <u>Constituents in Quench Waters from High-Btu Coal Gasification</u> <u>Pilot Plants (Hygas and SFB/BFERC)</u>, <u>ANL/PAG-2</u>, prepared for <u>U.S. DOE by Argonne National Laboratory</u>, Argonne, IL, February 1980.
- 105. Steele, R.V., L.D. Attaway, J.A. Christerson, D.A. Kikel, J.D. Kuebler, B.M. Lupatkin, C.S. Liu, R. Meyer, T.O. Peyton, and M. Sussin, Leading Trends in Environmental Regulation that Affect Energy Development, IRT-21400/1, prepared for U.S. DOE by International Research and Technology Corporation, October 1979.
- 106. Strier, M.P., "Pollutant Treatability: A Molecular Engineering Approach," in <u>Environmental Science and Technology</u>, Vol. 14, No. 1, p. 28-31, January 1980.
- 107. U.S. Department of Health, Education and Welfare, <u>Registry of</u> <u>Toxic Effects and Chemical Substances</u>, Rockville, MD, 1978.
- 108. U.S. Department of Interior, Fossil Environmental Impact Statement: Western Gasification Company (WESCO) Coal Gasification Project and Expansion of Navajo Mine by Utah International, Inc., Vols. I and II, FES-76-2, January, 1976.
- 109. University of California, Processing Needs and Methodology for Wastewaters from the Conversion of Coal, Oil Shale and Biomass to Synfuels, DOE/EV-0081, prepared for U.S. Department of Energy, May 1980.
- 110. Verhoff, F.H. and M.K. Choi, <u>Sour Water Stripping of Coal Gasifi-</u> cation Waste Water, METC/CR-79/23, prepared for U.S. DOE by West Virginia University, Morgantown, WV, May 1979.

 $^{\circ}$

- 111. Warren, T.L., <u>Status of IERL-RTP Environmental Assessment</u> <u>Methodologies for Fossil Energy Processes</u>, EPA-600/7-78-151, prepared for U.S. EFA by Research Triangle Institute, Research Triangle Park, NC, July 1978.
- 112. Waterland, L.R., and L.B. Anderson, "Source Analysis Models for Environmental Assessment," in <u>Symposium Proceedings:</u> <u>Environmental Aspects of Fuel Conversion Technology, IV,</u> <u>April 1979, Hollywood, FL, p. 23-34, EPA-600/7-79-217.</u>
- 113. Windholz, Martha (ed), <u>The Merck Index</u>, Merck & Company, Inc., Rathway, NJ, 1976.
- 114. Witmer, F.E., "Department of Energy Environmental Assessment Program for Coal Conversion," in <u>Symposium Proceedings:</u> <u>Environmental Aspects of Fuel Conversion Technology IV, EPA-600/7-79-217, prepared for U.S. EPA by Research Triangle</u> Institute, Research Triangle Park, NC, September 1979.
- 115. Woodall-Duckham Ltd., <u>Trials of American Coals in a Lurgi Gasifier</u> <u>at Westfield</u>, <u>Scotland</u>, FE-105, prepared for U.S. ERDA and <u>American Gas Association</u>, November 1974.
- 116. Young, R.J., Potential Health Hazards Involved with Coal Gasification, NIOSH Technical Report, U.S. DHEW, November 1978.

LIQUEFACTION PROCESS DESCRIPTION AND BASIC PREMISES USED IN DEVELOPING THE MATERIAL BALANCE

.

150

٠.

Ē

APPENDIX A

.....

:

Process Description

Sized coal (+ 1/4" to 2") was gasified in the Lurgi gasifiers at 450 psig using steam and oxygen to yield a raw synthesis gas (syngas) product. The raw syngas exitted the gasifiers at 900° F. This gas was cooled and scrubbed to remove the attendant particulates, tars, oils, phenols, and other impurities. The impurities were separated from the gas as a gas liquor in the gas/liquor separator. The partially cleaned syngas was then split into two streams; one stream was further cooled while the other stream underwent shift conversion to adjust the H_2/CO ratio in the gas such that H_2/CO ratio of the combined gas stream was in the desired range for the Fischer-Tropsch reaction. The two streams were then comingled and further purified using the Rectiscl process to remove the sour gases (H_2S and CO_2) and naphtha from the syngas.

The cleaned gas from the Rectisol process was fed to the Fischer-Tropsch reactors where it was catalytically conversed (over a proprietary iron catalyst) to mainly aliphatic hydrocarton products. The raw products from the Fischer-Tropsch reactors were further processed and upgraded to yield the plant product slate consisting of SNG, C_3 and C_4 LPG, gasoline and fuel oils by using conventional petroleum refinery processes. Details of the product upgrading section have been omitted from the flowsheet because: 1) it consisted of conventional petroleum refinery-type processes, and 2) the major unknowns regarding environmental and occupational health concerns were associated with the front-end or syngas production section of the process.

The acid gases recovered in the various processing steps were taken to the sulfur recovery step where they were converted to sulfur using the Stretford process. The sulfur produced was proposed for sale as plant product. Tail gas from the Stretford process was incinerated in the plant boiler.

A-2

APPENDIX A

(cont.)

Boiler stack gas cleanup facilities for SO_2 removal were provided to reduce the SO_2 emissions to 0.2 pounds of SO_2 per million Btu of fired heat. In addition, an electrostatic precipitator was included to reduce the particulate matter to 0.1 pound per million Btu of fired heat duty.

The gas liquors recovered in the syngas cleanup steps were collected and processed further to separate the oils, dust, tars, crude phenols, and ammonia from the water. The recovered water underwent additional treatment prior to reuse in the process. Waste products recovered from the gas liquor were disposed of appropriately as indicated below.

Oils and tars were recovered from the waste water by settling and decantation. The oils were processed further in the product upgrading section to yield additional plant products; the tars were incinerated in the plant boiler. Crude phenols were recovered from the waste water by using the Phenosolvan process. The crude phenols were incinerated in the plant boiler. Anhydrous NH₃ was recovered for sale by using the Chemie-Linz/Lurgi process.

The denuded waste water from the ammonia recovery step was biologically treated to reduce its BOD and COD levels by removing the residual organics present in the water. The water was then subjected to a reverse osmosis treatment to reduce its metal salts content prior to reuse in the process. The biosludge (from the biological treatment step) was disposed of in an environmentally acceptable manner such as a landfill operation.

· · · · · ·

A-3

1

A-

(cont.)

TABLE A-1- Coal	analysis: =
Proximate analysis, as-rec	eived basis (wc.%)
Volatile matter	33.1
Fixed carbon	33.8
Ash	5-1
Moisture	28.0
Total	100.0
Ultimate analysis, moisture and	l ash-free (MAF) basis (wt.%)
Carbon	74.45
Hydrogen	5.10
Oxygen	19.25
Nitrogen	0.75
Sulfur	0.45
Total	100.00
Neating value, MAF basis,	Btu/1b
High neating value	12,720
Low heating value	12,236
TABLE A-2- Produ	ict slate
SNG ⁸⁶ , MMscf/sd*	173.3
C ₂ LPG, BPDS**	1,1707
C, LPG, BPSD	. 146
Gasoline, BPSD	13,580
Diesel fuel, BPSD	2,307
Heavy fuel oil. BPSD	622
Mixed alcohols, BPSD	1.825
Sulfur, TPSD	61
Anhydrous, NH3, TPSD	103
Total product, BPSD H	FOE [†] 44,950

* MMscf/sd = Million standard cubic feet per stream day **BPSD = Barrels per stream day

†FOE = Fuel of equivalent at 6 x 10⁶ Btu/barrel fuel oil

APPENDIX B:

ESTIMATION OF STREAM FLOW RATES AND CONCENTRATIONS BY INDIVIDUAL STREAM ARE PRESENTED IN TABLES B-1 AND B-2

...

.

÷

Ċ

ŗ

TABLE B-1

.:

•

•

•...•

Appendix B: Estimated process stream concentration for the risk assessment of Indirect (Lurgl/Fischer-Tropsch) coal

Computent 1 2 3 H.M.M.TE., 1b mol/h 2 3 3 (2) 2,01 2,02 4 0 (1) 2,02 4 0 0 (1) 2,02 4 0 0 (2) 4 0 0 0 0 (1) 2,02 3 0 0 0 (2) 10,03 3 0 0 0 (2) 10,03 3 0 0 0 0 (2) 10,03 10,03 A A A A (1) 18,02 0 0 0 0 0 0 (1) 18,02 A A A A A A (1) 18,02 A A A A A A (1) 18,02 A A A A A A A					-	ŝ	сто ит Ниты	הנ						·.	
FLURMATE . 1b. mol/h 28.01 (1) 28.01 (2) 28.01 (1) 16.03 (1) 16.03 (1) 16.03 (1) 16.03 (1) 15.03 (1) 15.04 (1) 15.03 (1) 13.00 (1) 13.00 (1) 13.00 (1) 13.00 (1) 13.00 (1) 13.00 (1) 13.00 (1) 13.00 (1) 13.00 (1) 13.00 (1) 14.00 (1) 5.866 (1) 5.32390 (1) 14.00 (1) 14.00 (1) 14.00 (1) 14.00 (1) 14.00 (1) 14.00 (1) 14.00 (1) 14.00 (1) 14.00 (1) 14.00 (1) 14.00 <tr< th=""><th>unent</th><th>-</th><th>~</th><th>C</th><th>7</th><th>5</th><th>و</th><th>1</th><th>8</th><th>6</th><th>01</th><th>=</th><th>12</th><th></th><th></th></tr<>	unent	-	~	C	7	5	و	1	8	6	01	=	12		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1b mol/h 28.01 44.01	÷						21459 2726	21459	21459	21454 22722	4042 6353	11411		<i>k</i> .
$G(I_1, \dots, D)$ $D_1(D)$ $U_1 = 1$	2.02 16.04 28.05					•		12865 12865 86	12866 12866 86	12866 12866 86	21 C A A 1 2 8 6 6 8 8	8159 2424 16	5772 5730 52		
15^{-} $34,48$ 115^{-} $34,48$ 115^{-} $13,02$ 115^{-} $13,02$ 115^{-} $13,02$ 115^{-} $13,02$ 115^{-} $13,02$ 115^{-} $13,02$ 115^{-} $13,02$ 115^{-} $13,02$ 115^{-} 115^{-} 115^{-} 115^{-} 115^{-} 115^{-} 111^{-} 648.81^{-} 115^{-} 115^{-} 115^{-} 115^{-} 115^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 111^{-} 115^{-} 110^{-} $115^{$	30,07 «rt# 28,01 12,00				278 14060	55534 783		519 010	.614 310	01C 919	01E	- 20 - 59 	498 252		
$\begin{array}{cccccccc} 10,000\\ 10,01\\ 10,11\\ 1$	80, 11							158	158	15H 2	157 2	96	128 2	•	
$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	18,02					<u></u>	67276	68461	91926	I	I		1		
Temperature, Ψ Auh , h_{Lm} ,	flaurace.				14338	, 563 35	61279	, 202032	207487	11111	875611	21400	92150		
FindUATE, 11/1 648587 532390 115917 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 102 101 116959 96020 20905 103 101 116959 96020 20905 101 101 116959 96020 20905 101 101 1156959 96020 20905 101 101 110569 96020 20905 101 10000 1271963 277067 277067 101 101000 12549420 1271963 201 110 110000 1254920 121963 101 110 110000 1254 101 101 1100000 11001124 116000 101	re. "Y palk	Амћ <i>b</i> Лет.	Amb. Áfm.	Ainls . ALM .	08% 062	Amh. Alm.	748 660	900 ⁰ 4,50	1000 145	4250	767 414	414 191	767 614		
Nerthaund Lar Lar Naphtlia Crude pleenda Nercentana Nercentana Nercentana Armatic amhusa Armatic amhu	4/41	182828	532390	115917		11567		•		1692727	1425476	268531	1156945		
11 Haphtha Crude phenyla Harcaptans Threphenea Aniopila Anio	1							1631	19504	7026E	86,2,4	635	נטיון		•
Replacing Crude plengla Precipitand Therepriand Amignia Animatic aminus ^d Animatic aminu			•					11615	53215	51265	76467	7246	11221	•	
11-respirance 11-respirance 11-respirance 11-respirance Armarie Armarie Armarie Armarie 111. Armarie 111. Armarie 111. <tr td=""></tr>	hanna -							2/951	16189	16189	5234	1 6 6 7	8424		
Thripportes 1 Thripportes 1 ULN 1 Arumatic ambraus 1 ULN 1 Arumatic ambraus 9 NILL Arumatic ambraus 9 NILL Arumatic ambraus 9 NILL Arumatic ambraus 1 NILL Arumatic ambraus 9 NILL Arumatic ambraus 1 NILL STILLAR 2 Tulut STILLAR 2 NUMATE, NLA 2	ans.d							07	1.2	1,2	20	د ب	9 I 9 I		
III:M ² Armantic aminus ⁶ Armantic aminus ⁶ Armantic aminus ⁶ III:transminus ¹ 116959 III:transminus ¹ 11569420 III:transminus ¹ 1158 II:transminus ¹ 2116024 II:transminus ¹ 11001324 II:transminus ¹ 2116024 II:transminus ¹ 11001324	104							9812	99859	9985	- 3 CON	- 1522	6556		
Arimatic ominus PHA Faity acide PHA Faity acide PHA Faity acide PHA Faity acide PHA PHA PHA PHA PHA PHA PHA PHA	6						-	æ. √	8 1	₩ ~	œ ⊲	~ ~			
PRA Faity Aughder Faity Aughder Faity Aughder Faitur Faitur Gual Gual Functeulates Faitur Faita Liquid/Saulid Others Others Faita Liquid/Saulid Others Faita Liquid/Saulid Faita Liquid/Saulid Faita Liquid/Saulid Faita Liquid/Saulid FaiturAH FundATE, Tu/h FaiturAH F	ranine Bulline Bulline							7 m (7 FN (· ~ ;		. . .	• •• •	t'	,
птоблук птоблук птобл 5.01 иг 5.01 иг 5.01 иг 1.00 1201963 277067 5.01 иг 1.00 1201963 154,062 1.01 11 01 11 01 11 1.01 11 01 11 01 11 1.01 124 1901324 140189 1.01 124 11,0189 45 1.01 124 11,0189 45	çtdır							2799	2976 2976	79 76 7	1029 1029	194 194	H J S C H	l	
Suffuct Forctentates Forcentates Forcentates Others Total Equid/solid Total Equid/solid Total Equid/solid Total Equid/Suffuch Fortates For		116959 1549420	96020 1271963	20904 277067				٦	•	:	:	•	17.2 1		
Tutal Liquid/antid Tuurate, 16/h 2316024 1901324 A16019 Tutal Stutam EtaBNATE, 16/h 2316024 1901324 A14089 45	lacen lementa ^l	1158	156	107				4106 7	4516	9157 11	~	-			
TOTAL STRLAM PLANATE, 16/1, 2316024 1901324 414089 45	ald/wolld . 1b/h	2016024	1901 324	610919		11567		1.15980	14.2288	21021.81	1498457	2117286	2719121		
Radinaectvity 2.6 2.6	ли . 11/1 л чу	2316024 2.6	420 1001 . 8.5	680717	457707	1592621	0170071	4146482 0 • 1	4251081 D.1	42510A1 0.1	1 0 907716£ .	1.0 1.1404	1007736		-

4

÷

.

B-2

Table B-1

Appendix B (Continued)

...

٨

																			,																		, ,	Â	, . ,
	24				•		•	æ -	-		-	-		\$	Amb.	ALM.		1 68													25	nif	92	Ś		: 109		- 7 -	202 2.6
	2					•						-		1	, 130 130	001													44					5	14,36"	7436		77.67	PCP-
	22										ŗ	•		7	001	22				•	•								ЬD					hourse	m066CZ	25.390		76756	
	21														001						16056														798471	140918		810121	
	20														100																			101 C I	ChTT	1245		- 5721	
Number	6												:		100												•					•		210010	0610	6190		8190	
Strenm	18	2	5	719	(1.0/ I	577	308	5			: -			C I AR T	000 r		чv	ì	•											1>				mropa	C 11 C 1	8940		076216	
	11	787	2102	1000	101.	ALK A	200							10044	100 248		117	1,00	-	ĉ		dd			•	ï	ł	40	dd			•		1 115977 ¹¹¹		186095		627641	
	16	18500	2900	46985	00625	277	309	8			••	'_	13/10	r chie.	87C .			200			15675		Ş	5	17					۲۶				-		15696		97 JAB2	0.05
	15	18676	16546	12466	96	614	010		157	2			176311	1/6011	86 400		3184				15675	•	y .	4	81	7	~~	44		2		-	•	V		18963		20195	0.1
	14	17416	27370	279901	69	867	252		128	2			02150		86 400		7672				12722	-	- •	<u>;</u> ب	49 -	- ~	•	dd .		V			-	-		15277		19761019 2	0.1
	13	1218	1116	11184	16	116	59		3 0	2			24225		86 400		710				- 6662	,	v -	- :	<u>-</u>	- 🗸		Jd	Ţ	7			-	•		3685		509647	u.1
	ຊີພົອບບາໃພອງ	FLOWRATE, Jh mol/h CU 28.02	10'97 603	112 X.UZ Cili, 16.04	Call, 11 28.05	C.244 30.07	N ₂ F Inerts 28.01	n ₂ . 32.00	- 112 34.0B	COS 60.07	1120 18.02	111 hera	Tutal gam flowratm. The multh		Tenperature, "P Pressure, palg	FLUHRATE, 16/h	1120	Nethnust	Tar ·					Hanaldotur		Arumitle aminem ^d	Nitrosumines"		HALLY ACTUB HILTON F	Minerale	Coal -	Sulfur "	Traci elimina 8	Uthera	Tated I to the Line of the Lin	fluerates, lb/h	Tarral Crosses	FLOURATE, IN/h	Radlonct [vity []]

B-3

5

· .

Table B-1

.

.

.

• ,

. ۵

λ,

:

.

Appendix B (Continued)

:

•

۰.

						Stream	Number						
Component :	25 ^k	26 ⁴	27 ¹	28	29		17	32	5	96	۶	۶ſ	
FLAWRATR, 15 mul/h CO 28.01 CO 28.01 CO 44.01 B1 2.02 C11, 28.05 C211, 28.05				62254									
C,114, 30,07 113 + Inerta 28,01 11, 32,00 11,5 35,08 11,5 60,07 11,0 18,02	, , 1	4 4 4		129696 2227	_							()	
utuvre Total gae flowrate, 16 mul/h Tomperature, [*] F	Amb.	Amb. Atm.	60 4 F m	- 14 001 261991	Amb. Afm	Amb.	60	70 2	70 2		Ámh. Atm	Amlı. A Ew	B-4
FLOMIATE, Lb/h R.O Rethanol Vert	168	· .•	1030	491616	0000[1%2	1 0000 I	0019700	878977	ب	199486	25500	2000	
ri I It.ipittha Cruin phenyla Hercaptans ^d Thiophenes ^d Ammonts													
lich" Arumete auluen ^a Nitriaaminen ^e Nit prita			11	•	44 44								
NI (CO), ^J Hiueral s Coul Sulfur	25 310		7	7			•	4420	20550	16039 1038 3601		986911 9002 99	
Particulaten Trace clementa ^{ll} Others	0 6	2 V	12	56				50	200 25170	01/6	۲	02611 2611	
Total Ifquid/solid (lourate, 16/h	265	r.	EE01	497683	241 3000	1000	1179700	1777E88	12122	195000	25500	147802	-
TOTAL STURAH FLOHRATE, 16/h Radinuct 17 112	597 2.6	165	1001	6942675 n.ns	000E1%2	10000	0079711	88.747	23/27 2.5	1,320C	25500	14/802 2 5-	i,

					,						
					ittessa Number						•
ែកម្មសពេលt	ίε ;	9F.	θĽ	40	41	42	64	. 44	45	46	
tvrt, 1b mol/h tri 28.0	×								r.		4
CO2 44.0	 • == :	:	~ *	1 >			~		۰ ۰	~	
N, Z.0 CN, Ib,0											
C.H, 28.0 C.H. 70.0	2										
H, F Inuria 28.0			• I~								
u, 32.0 N,S 34.01	0'0	,				•					
1.03							,			•	
11,0 18,0 01,147 18,0	Π.									•	
gau fluuratu. /			2	2			ต่			r,	
	Ű	U	191	1.61	1711	1974	1600	157	110	95	•
liaturu, F '	000	.02 10,01	251	251	157	250	250 ⁴	100	80	50	
ave, 16/h					•						
li _t u Nethanol ,	139579	878977	529R6	982625	34.04.1 5	216938	1997980				
Tar Tar			HOIC	. REOTE	toyr	435 :	11696	36311	:	1990642	B
երիլիս հ	•		1946 1 00	94461	1221F	1246 .	11015	7	51709	200	5
Grude phonyla			9 <u>6</u> 6	6566	4.21	200	: 151 ⁵ 1	4 9 2	dd	19121	
and the second			, -	19	2		ور . ۲۲	a 4	ŧ	12	
аканти I.а. – – – – – – – – – – – – – – – – – –			173.	YL/1	1 0679	1507	8086.	i	. .	8086	
Vrund ic aminer			, dd	i	-			đđ	7 -	×	
(J E FOUAN J NUM 711A			ud 1	86			~ 2		— r	- ;	
atty açida			177	0771	519	194	826U		4	<u>и</u> р 8268	
linera la	617	260 0			-	-	'n	7	-		
aal w linr								-		ľ,	
'aitteulatus Fase elementu ⁰	Ð	20	410	4106			410B	4 1 UB			·
there			, ·				7	•		del	
l Iquíd/cu11d rate, 16/h		\$31627	104562	10456,35	71 819810	227719	2118759	4,2025	51716	2024115	
\$1 kt.201 KATZ, 11/11	14(000	1131627	4C0101	10/5/01	71,9901,	227719	2118481	42925	91716	2026233	
ctivity ¹ .							•		:		

•

Appendix B Continued 47 48 49 50 51 52 51 100 157 30 31 41 52 51 51 101 157 30 10 100 100 10 100 11 101 157 30 30 10 100 100 11 101 157 300 30 Am. 100 100 11 101 157 300 13061 13611 1961947 23855 281366 101 107 401 106 110 100 100 100 11 11 11 11 11 10 100 </th <th>~~~~</th> <th></th> <th>54⁷ 55 56 57</th> <th></th> <th>134 111 121 111 121</th> <th></th> <th>65 65 65</th> <th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>16 15/ 2</th> <th>2</th> <th>4</th> <th>34527 34787</th> <th>)° 95 95 58 58 58 58 58 58 58 58 58 58 58 58 58</th> <th>764 41992 2420</th> <th>B [97 [94]</th> <th>6</th> <th>ડ નંદ તા</th> <th>04 4 5</th> <th></th> <th>11) 2 17 70</th> <th></th> <th></th> <th></th> <th>61^{/17} · ·</th> <th>1237 4252) 2499</th> <th></th>	~~~~		54 ⁷ 55 56 57		134 111 121 111 121		65 65 65	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 15/ 2	2	4	34527 34787)° 95 95 58 58 58 58 58 58 58 58 58 58 58 58 58	764 41992 2420	B [97 [94]	6	ડ નંદ તા	04 4 5		11) 2 17 70				61 ^{/17} · ·	1237 4252) 2499	
47 49 50 51 52 47 43 49 50 51 52 600 1 1 16 1 22 600 1 3 16 1 22 600 1 1 16 1 22 100 1 1 16 1 22 100 1 1 1 10 21 22 100 1 1 1 1 10 21 22 100 1 1 1 1 10 21 22 100 1 1 1 1 10 21 22 100 1 1 1 1 1 1 10 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · ·	• -	د ، ¹ رد .		15							, Dire	100 ^{/1} 100 ^{/1} 10	2813069		0d dd			તેલે તેલે	dd dd	dd dd	2100 200	45 5		9250182 000	-
Appendix B 47 43 49 50 51 49 40 40 116 13 5 1465 5 1 40 40 13 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1	(Continued)	enm Rumbar	52	T.	;							h.d	100	1961961		dd		• . 11d	44	dd dd	40	-			U1961947	00.34.24
App 47 4.8 4.9 50 41 4.9 50 42 4.8 4.9 50 43 1990190 43 1990190 40 1990190 44 1990190 40 1990190 43 1990190 40 1990190 44 1990190 40 1990190 44 1990190 40 1990190 45 1990190 40 1990190 46 1990190 40 1990190 47 1990190 40 1990190 48 1990190 40 1990190 48 1990190 40 1990190 49 50 1990190 40 1990190 40 1990190 40 1990190 40 1990190 40 19	endix B	SCC	15		314			11673	2704 Pp	2	5,	14653 Art	Atm.	19601											18601	962077
47 43 43 43 49 01 01 2 43 49 49 01 01 2 01 2 95 95 01 01 1 2 95 95 95 95 01 01 1 1 7 7 49 40 01 1 1 1 7 95 95 95 01 1 <t< td=""><td>App</td><td></td><td>50</td><td></td><td>2</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>, E 11</td><td>20</td><td>0610661</td><td></td><td>1 a g</td><td>) i i</td><td>1287</td><td>dd //</td><td></td><td>dd .</td><td></td><td></td><td></td><td>2000292</td><td>2000414</td></t<>	App		50		2				•			, E 11	20	0610661		1 a g) i i	1287	dd //		dd .				2000292	2000414
47 43 43 44 45 45 45 45 45 45 45 45 45 45 45 45			49			•	•					. 50	000	05				8521						. ~	8561	1958
47 47 452 452 452 452 452 452 452 452			43		. 2				•			.	151	0610661	4		un da na	9608 91		dd dd					1 200385 1	2008975
			63	. 10.	5	20.	ca.	10	08	02		266	000	452	200	dd 17406	dd			dd			7		15262	15262

Ň					315	a Aumber					
Component	58	59	60	61	62	6:1	5	£3	93	13	3
PLOURATE, IL wol/h	-					0					
CU2 44.0						d g	•		1 5		1.4
11, 2.0 CI	~ ~					elet		,	2360	~	5(9)
GJR, 20,0	s ••				ll –		••••		53		. 4 11.
Calls 30.0	~						- 		- ' *		
NJ + INOFEN 28.0 UJ - 72-60	- =				.4				2 15		
11,5 34,01	: ar		••		•	1	Ŧ		. 111	÷	-
CUS 60.0	~					4	7		•		
Others Br.O.	7					<u>-</u>	Ē	125	1351		
Tutal RaH flouratu, II. and fl.									ы. 1 >		<u>د</u>
							12	125	9215	r	16.01
fragariaturu, "P Prasaru, psig	001	100	001	And .	Arab ,	Amb.	100	212	600	200	
FLOUNATE, 16/1			D D	Alm.	Atm.	ALm.	12	Atm.	8	Аί н.	=
N ₂ U Not Loosed	565024	450593		762							
l'ar l'ar		374		•							Of R1
01) 	β	đđ									-
Cude obenola Cude obenola	đ	dıl									
Herringer and	2	44									
Th Laplautes 4		-									
11CN v.	-	<u>-</u>									
Arennicle aminus	dd	2 :									
HI LE CHAUMINES PIAA	đ	đđ									
Falty ucida		i i									
x1 (CO)* /		•									
RINJER (* Cont	•	-	•				•	•			
Sultar				•							
Part leul acau Fraes of second			ſ	c J				•			
CIL hard	54.69 ^{/11}	26703	11171.016	0 /11/	*****	, 1 ,					
Tutal Itquid/wolld.	1			+Con	0047	. 0992			•	· .	
1 lourate, 1 b/h	456079	477687	21274	7616	2480	24 B.Z				· ·	
TUTAL STREAM				-			e	••			
FLOHNATE, 16/h	4560/9	477687	21234	7616	54'R(1 ·	24.82	2H6	2251	2816.52	901	, 72.400
, ,								,			660% /

.

•

						Stream Number	r.							. 1
	-	<u>a</u>	9	ę	i.		5	5 4	ž		79	44	8y	I
16 most/h 30.07 42.08 44.09 56.10	745.30 124.45 124.30	189.49 18.25 0.24	1.06 17.71 168.12	1.55	4.60	4					.18	50 0,50	0.50]
58.12 58.12 70.13	2.60 49.51 231.22	0.06 0.03 0.04		19,93).32 89.05 7.55			. 0, 83		-	J. 8 3			·
2.12	16.62	0.0			305.63 55.53	0.02		0.07		ų	.07 6	1.14	یه دست.	
86.17 86.17 86.17	10.201 26.08	0.0			173.67 20.72	رت. 0.02 0.05								
102.51	587.88	0.65			7 32.07	129.70	22. BI			-	· /*			в-8
118.15 61.24 66-07 114 64.69	,				350.88				86.48 1'	54.61 56,92			÷	3
1/10	2370.45	208.80	186.89	21.48	1351.10	129.79	22.81	1.08	Hó.48 41	01.53 1	.08	.7.1	0.55	
	185977 150.6	153,24	0418	1245	1 24862	25390 195.70	74,36 326,00	61	2469	46212	61	'n 'n	1	
bers Indication	cul correspon t moleculur	id to atrea veigin.	ห แเตโเอะม	ta Figu	re 1,							· · ·		

.

C-1

APPENDIX C

., ,

EPA SOURCE ANALYSIS MODEL I (SAM/I)*

·

•.

The SAM/I model has been designed for intermediate screening purposes to evaluate chemical analysis data. To address these objectives, the model includes elementary treatment of pollutant dispersion or dilution to post-dilution levels, but does not incorporate post-dilution chemical reaction or transformation.

To obtain the estimated maximum post-dilution concentration of a pollutant because of the discharge stream, SAM/I employs approximate dispersion models to account for the dilution of a discharge concentration to a post-dilution concentration. Models have been developed for gaseous, liquid, and solid discharges into appropriate receiving bodies within air, water, and land media. Figure C-1 illustrates the discharge stream/receiving body combinations treated. The figure shows that any given gaseous, liquid, or solid waste stream from a source can be discharged in a number of ways to air, water, or land-receiving media.

Similarly, liquid and solid streams can be discharged to deep well, sump (or waste pond), irrigated field, wastepile, plowed field, cavity, or fill site-receiving bodies in the land medium. The underlying physical picture for all the SAM/I dispersion models is that of a discharge stream entering an entraining post-dilution flow. After mixing takes place, the pollutant stream dispersion, or dilution factor can be approximated by the ratio of the entraining stream volumetric flow rate^{**} to the discharge stream flow rate. SAM/I defines a discharge stream dilution factor, K, in just such a manner:

К=

Entraining stream volumetric flow rate Discharge stream volumetric flow rate

*Information in this Appendix is excepted from reference 112.

**Entraining stream volumetric flow rate includes the discharge stream volumetric flow rate, i.e. it is the total volumetric flow rate of the two streams after they are mixed.

C−2

· ·	tus.					
Receptor c) H, E	н н н н	I	н. Н. Н. В. П. В.	I m	ТШ 	•
MEG Basis b) A	333	A	a s a	ΓĘ	۲٤	
Final Receptor Medium Air ^a)	S. waler S. water S. water	G. water	S. water S. water S. water	G. water, Land	G. water, Land	
Receiving Body	River Lake Ocean	Deep Well Sump Irrigated Flatd	RIver Lake Ocean	Wasteplie Plowed Field Sump	Cavity Fill Site	
	1			Surface	Interlor	
Receiving Medium		- Water	Water -	Dual		waler
	Residual	Liquid	Collid	Residual		G. water: Ground
charge		Control	55 00			ace water,
DIA		Waste Stream Gas, Uquid, Solid)	•			B) S. water. Sur

b) A; Alr, W: Water, L: Land c) H: Health, E: Ecological

`, •

.

•

Figure Crl SAM/I pollutant discharge overview.

.

•

,

:: .

C-3

.

۰.

. ••

*1*0 -. ÷

2

:

Therefore, the estimated maximum* post-dilution concentration for a pollutant species is the ratio of the discharge concentration to the dilution factor.

Dilution factors have been defined for all the receiving bodies shown in Figure C-1. In the dispersion models used to calculate these dilution factors, entraining flow characteristics and certain discharge stream characteristics have been internally parameterized based on estimates of nationwide averages of these characteristics. Thus, only discharge stream flow rate remains a model variable. Further, several model discharge stream flow rates have been defined, spanning discharge flow rate range of interest. Typical dilution factors have been assigned to each of these model streams. Therefore, the SAM/I user need only know the discharge rate of the stream under evaluation, and receiving body discharges into, to perform SAM/I calculations.

As an example, for gaseous effluent streams discharges into the atmosphere, a Gaussian plume dispersion model was used to predict maximum ground level pollutant concentrations. Here, the entraining the atmosphere. flow is The entraining flow characteristics, atmospheric stability, and wind speed are given values within the model typical of nationwide average conditions. Further, discharge stream stack height is internally parameterized by relating average stack height to average source flow rate (e.g., large utility power plants, sources with flue gas discharge rates in the Mg/s range have stack heights around 200m, whereas small commercial or industrial boilers, with flue gas flow rates in the kg/s range have about 10 m stacks). Thus, for SAM/I evaluations a user need only know discharge flow rate to be able to assign an approximate dilution factor.

The defined SAM/I dilution factors, as a function of effluent stream discharge rate, for the various effluent stream/receiving bodies is summarized in Table C-1. Details of the models used to assign these dilution factors are reported elsewhere.

*Maximum under worst probable conditions; it does not consider extreme worst conditions.

C-4

	Q _{TE-A} *	+ Q _{TE-S} ** -	+ Q _{TE-34} [†] -	{ <c<sub>te-38}*</c<sub>	[†] (F ₃₈)]= Q _{TE-36}
Trace Element	<u>(1b/hr)</u>	<u>(1b/hr)</u>	<u>(lb/hr)</u>	(ppm) (1	<u>м 15/1</u>	nr) (1b/hr)
As	.183385	.00150031	.20994419	. 02	-882	.377812
<u>.,</u> Ве	.373421	.00260030	.32103617	ND	.882	<.697786
Cđ	.094242	.00090025	.22035684	•00064 ·	.882	.315812
F	5.424-5.590	11.157-11.500	50.10-51.64	ND	.882	<66.68-68.73
Hg	.00740114	.00000001	.07821208	.0003	.882	.085132
РЪ.	.180-4.240	.00150343	.6577-15.48	.09	.882	.760-19.67
В	ND ^{5 5}	· ND	39.43	, ND	.882	>39.4
Ni	ND .	ND	2.313-19.05	.035	.882	>19.02
V	ND	ND	13.676-19.147	ND	.882	>19.147
						•

Table 33 - Flowrates of Trace Elements in Stream 36

*From Table 28

11

**From Table 29

 \leq

[†]From Table 31

....

⁺⁺These data are first column volume leachate fractions of Montana Rosebud subbituminous ash from the Lurgi gasifier in Westfield, Scotland. Montana Rosebud coal has a trace element composition very similar to the trace element composition of Wyoming subbituminous. These data were published in Shriner et al., July 1979. It was assumed that the concentrations of trace elements in the sluice water would be the same as the concentrations of trace elements in the first column volume leachate. § Appendix B, Stream 38.

^{§§}No Data

TABLE C-1

SUMMARY OF MODEL STREAM DESCHARGE RATES AND DILUTION FACTORS

C-5

Discharge Stream Type	G	as		Liquid/Solu	ble Solid	
Receiving Body	A	ir	Rive	r/Lake	- Oc	ean
Discharge Rate Q (g/s) and Dilution Factor K	Q	ĸ	Q	K	Q	K
	2.5 x 106 6.5 x 105 1.3 x 105 6.8 x 103 5.4 x 10 ²	1 x 102 3 x 102 1 x 103 5 x 103 2 x 104	1 x 105 1 x 104 1 x 103 1 x 102 1 x 101	1.5 x 10 ² 1.6 x 10 ³ 1.5 x 10 ⁴ 1.6 x 10 ⁵ 1.6 x 10 ⁶	3 x 10 ⁴ (Barge)	1 x 10 ³

Discharge Stream Type	Liquid		Liquid/Soluble Solid				Leached Solid	
Receiving Body	Deep Well		Irrigated Field		Sump, Waste Pile, Plowed Field, Cavity, Fill Site		Any Land Body	
Discharge Rate Q (g/s) and Dilution Factor K	Q	к	Q	ĸ	Q	. κ	Q	ĸ
	Any	1	Апу	100	Апу	10 * 100 **	Any	1

* Large receiving body with base diameter d > 10m. ** Large receiving body with base diameter d < 10m.

2.