Part B:

HYDRODYNAMIC BEHAVIOR OF MULTIPHASE REACTORSAnnual Progress ReportSeptember 1980 to August 1981
Y.T. Shah
B.G. Kelkar*
S. Godbole* M. Honath* R. Albal* A. Kulkarni* S. Phulqaonkar*
*Department of Chemical and Petroleum Engineerina University of Pittsburgh Pittsburgh, Pennsylvania 15261
forGulf Research \& Development CompanyP.O. Drawer 2038Pittsburgh, Pennsyivania 15230
Prepared for the United States Department of EnergyUnder Contract No. DE-AC05-79ET10104(Formerly EX-76-C-01-0396)
Chemicals and Minerals Division
Report No. 627RM079

Overall Sumary

This annual report on the hydrodynamic behavior of multiphase reactors is divided into four sections.

Section 1 deals with the measurement of gas holdup and dispersion coefficients in a cocur'rent continuous bubble column. Three systems, namely alcohol solutions, carboxy methyl cellulose (CMC) solutions, and electrolytic solutions have been studied. The range of gas velocity covered is $2-30 \mathrm{~cm} / \mathrm{s}$ while the range of liquid velocity was varied from $0-15 \mathrm{~cm} / \mathrm{s}$.

Section 2 deals with the measurement of gas holdup and bubble rise velocity in a batch bubble column. The systems studied were glycerine, CMC and alcohol solutions with and without solids. The range of gas velocity covered is $2-30 \mathrm{~cm} / \mathrm{s}$.

Section 3 covers the aspects of mass transfer in a mechanically agitated contactor at high pressure in the presence of solids. The range of variables covered were pressure $400-1400 \mathrm{psig}$, speed of agitation 400-1000 rpm, solid concentration of $0-30$ volume percent and particle size in the range 75-500 microns.

Section 4 deals with the continuous cocurrent downflow column which is a recent addition to the multiphase flow processing laboratory at the University of Pittsburgh. This unit has been erected and is in the process of debugging for minor practical problems.

TABLE OF CONTENTS

Page

1. CONTINUOUS COCURRENT BUBBLE COLUMN 1
1.1 Introduction 1
1.2 Experimental Set-Up and Procedure. 1
1.2.1 Experimental Set-Up 1
1.2.2 Analysis 5
1.3 Results and Discussion 8
1.3.1 Effect of Surface Tension 8
1.3.2 Effect of Viscosity 29
1.3.3 Effect of Electrolyte Solutions 44
APPENDIX 1.1 56
APPENDIX 1.2. 74
References. 91
2. BATCH BUBBLE COLUMN 93
2.1 Introduction 93
2.2 Experiment Set-Up and Procedure. 98
2.3 Analysis of Raw Data 101
2.3.1 Holdups 101
2.3.2 Dynamic Gas Disengagement 103
2.4 Results and Discussion 106
2.4.1 Effect of Addition of Alcohols 106
2.4.2 Effect of Viscosity 129
2.4.3 Effect of Solids 155
APPIENDIX 2.1. 166
References. 215
3. MECHANICALLY AGITATED VESSEL 217
3:1 Introduction 21.7
3.2 Experimental Set-Up and Procedure. 217
3.2.1 Procedure 213
3.2.2 Method of Calculation 219
3.3 Results and Discussion 221
3.3.1 Effect of Total Pressure. 27.1
3.3.2 Effect of Agitator Rpm or Power/Volume. 223
3.3.3 Effect of Solid Concentration 224
3.3.4 Effect of Solids Particle Size. 225
APPENDIX 3.1. 232
References 245
4. CONIINUOUS COCURRENT DOWNFLOW BITBBIE COLIMN 246
4.1 Introduction 246
4.2 Experimental Setup and Procedure 246
4.3 Resules and Discussion 249
References. $25 . ?$
CONCLUSION. 254
NOMENCLATURE. 255

1. CONTINUOUS COCURRENT BUBBLE COLIMN

1.1 Incroduction

Bubble columns have many important industrial applications, though their scaleup and the design is difficult because of the complexity of the flow pattern characteristics. The aim of these epxeriments was to study the hydrodynamic and mixing characteristics in a . 152 m diameter by 3.35 m tall, cocurrent, continuous bubble column. This was done by measuring the phase holdup and the axial heat dispersion coefficient, respectively. The holdup was analyzed using the hydrostatic head techniques, and the dispersion coefficients were analyzed using an axial dispersion model. The effect of a wide range of physical parameters, such as gas velocity, liquid velocity, surface tension, viscosity, and electrolytes concentrations were studied. The data were compared to the existing data wherever possible, and they were analyzed with the help of flow regime characteristics.

1.2 Experimental Setup and Procedure

1.2.1 Experimental Setup

The experiments are carried out in a . 152 meter diameter *3.35 meter tall bubble colum. The schematic diagram of the setup is shown in Figure 1.1. The abbreviations of the figure are explained in Tabie 1.1. The bubble column has four major sections:

1. Conical bottom section for gas inlet and uniform distribution.
2. . 3 meter long calming section filled with copper Raschig rings for mixing of gas and slurry.
3. Main test section.
4. Heat source at the top.

	DEFINITIOAS FOR FIGURE 1.1
A	Agitator
B1, 82	Ball Valves
$B F 1, B F 2$	Backflushing System
C	Condensate
CBS	Conical Bottom Section
CS	Calming Section
CWI. CWO	Cooling hater Inlet and Outlet
D1. D2	Distributor Plates
G1. G2	Pressure Gauges
HE	Shell and Tube ileat Exchanger $1^{\prime \prime}$ UD SS tubes on the tube (slurry side) Heat triensfer area $25 \mathrm{ft}^{2}$ $14^{\prime \prime} 00,6 \mathrm{ft}$ long Black iron shell side (cooling wàter)
LT-L5	2 '0D, Schedule 80, PVC pipes
M1, M2	Manometers
P	Galigher Horizontal Centrifugal Pump
Pl-P6	Fressure Taps
R	feservoir (550 liter, plastic)
RR	Gas Rotameter
S1	Steam Inlet
S1-S6	Sampling Taps
TS	Main Test Section
T, FI	Transducer and Flow Indicator (ultrasonic)
4	Thermocouple Holes

Two perforated plate distributors are provided. One having holes of 0.5 mm diameter, is used between the conical bottom section and the calming section, while the one having 1.0 cm holes is fitted between the calming section and the test section.

Four pressure taps, two at the bottom and two at the top; each pair .61 meter (2.0 ft) apart, are provided. Each pair is attached to different mercury manometer to avoid any dynamic lag. To overcome the difficulty of plugging these manometer lines a water backflushing system is used. In addition to the pressure taps, six sampling tubes, .61 meter apart from each other, are inserted to collect solid-1iquid samples. Each tube has five holes of 5 mo diameter each, along the length to ensure radially averaged phase concentration at each location. The solid phase concentration will be measured gravimetrically.

For heat tracer experiments, ten iron-constantan thermocouples are connected to the test section. First eight are .3 m (1 ft) apart and the last three are .15 m apart from each other. In addition to the above mentioned thermocouples, the inlet and outlet temperatures of liquid, inlet and outlet temperatures of heat exchanger cooling water are also measured with the help of thermocouples. All the thermocouples are connected to a digital display meter which is capable of reading the temperatures up to first digit. A stainless steel coil heated with steam is used to provide 74 kilowatts of heat into flowing fluid.

The gas phase used is always air. Air inlet pressure is maintained constant with the help of pressure regulator. The gas phase flow rate is measured with the help of calibrated rotameter, while the liquid flow rate is measured with the help of an ultrasonic flow measuring device. Colum is insulated with fiberglass insulation material to prevent the heat

10sses. All the experiments are carried out near atmospheric pressure, in a continuous and steady state manner.

The surface tension is measured by du-Nouy method. (1.B1) In this method a platinum-iridium ring of precisely known dimensions is suspended from counter-balanced lever-arm. The arm is held horizontal by torsion applied to a taut stainless steel wire, to which it is clamped. Increasing the torsion in the wire raises the arm and the ring, which carries with it the film of liquid in which it is inmersed. The force necessary to pull the test ring free from the surface film is measured directly in dynes/cm. This "apparent" reading is converted to "absolute" value by a correction chart. The viscosity is measured on Brookfield LVT type viscometer. This instrument rotates the spindle in the fluid at a constant speed, and measures the torque necessary to overcome the resultant viscous drag. For given speed and spindle, it produces dial readings proportional to the viscosity. $(1.32,1.33)$

1.2.2 Analysis

The analysis of the raw data has been done separately for the holdup and the axial dispersion coefficient as described below.

1.2.2.1 Holdup

To determine the gas holdup, the manometer readings are first converted to absolute pressure by a simple hydrostatic head technique. To get the values of gas holdup in gas-liquid systems, two equations are used.

$$
\begin{equation*}
\varepsilon_{G}+\varepsilon_{L}=1.0 \tag{1.2.1}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{d p}{d x}=\left(\varepsilon_{G} \rho_{G}+\varepsilon_{L} \rho_{L}+\varepsilon_{s} \rho_{s}\right)+\Delta p_{t p} \tag{1,2,2}
\end{equation*}
$$

where $\Delta p_{t p}$ is the frictional pressure drop and $d p / d x$ is the pressure gradient. It is found that the frictional pressure drop is negligible and pressure shows linear dependency with length. To ensure this, gas holdup is calculated in two ways. One is already mentioned above. In the other method, the holdup is calculated in the following manner
where $H H$ is the hydrostatic head. The holdup values calculated by both the methods match well (within $\pm 1 \%$) indicating a negligible frictional pressure drop and negligible linear variation in holdud values.

To determine the solid and liquid holdup in three phase systems, solid-liquid samples will be collected at several locations along the length of the column. By measuring the weight and the volume of the slurry, density will be obtained. After filtering and drying the samples, it is possible to calculate the relative volume fraction of liquid and the solid. By knowing this quantity, following three equations will be solved simultaneously to get the values of individual phase holdup.

$$
\begin{gather*}
\varepsilon_{G}+\varepsilon_{L}+\varepsilon_{s}=1.0 \tag{1.2.4}\\
-\mathrm{dp} / \mathrm{dx}=\varepsilon_{G} \rho_{G}+\varepsilon_{L} \rho_{L}+\varepsilon_{s} \rho_{s} \tag{1.2.5}\\
\varepsilon_{s} / \varepsilon_{L}=\text { known quantity } \tag{1.2.6}
\end{gather*}
$$

1.2.2.2 Axial Dispersion Coefficient

The axial dispersion coefficient is analyzed using the axial dispersion model, using heat as a tracer. The method involves a continuous addition of heat as a tracer under steady state conditions. In some cases, significant fluctuations are observed in temperature. These fluctuations are more pronounced in the upper section of the column. To take Into account the fluctuations, the average of 25 to 30 values noted at one point, are taken.

The overall energy balance on three phase system, based on the following assumptions can be written as:

1. Heat losses from tube wall are negligible:
2. At any given point, gas, liquid, and solid phase tempratures are the same.
3. Constant physical properties.
4. Steady state flow.
5. The thermal conductivity and the density of the gas phase are small compared to that of liquid and solid, and therefore can be neglected.
6. The molecular thermal conductivity is negligible compared to axial dispersion coefficient of heat.
7. No chemical reaction is occurring.
8. The latent heat of vaporization is negligible.
9. Gas phase backmixing is relatively small.
1.0. Solid-liquid mixture behaves as a homogeneous slurry.

Based on these assumptions, the following equation is obtained:

$$
\begin{equation*}
-\left(D_{S L}{ }^{p}{ }_{S L} c_{P S L} \varepsilon_{S L}\right) \frac{d^{2} T}{d x}+\left(p_{S L} v_{S L} c_{P S L}\right) \frac{d T}{d x}=0 \tag{1.2.7}
\end{equation*}
$$

For gas-liquid systems, the equation simplifies to:

$$
\begin{equation*}
-\left(D_{L} \rho_{L} C_{P_{L}} \varepsilon_{L}\right) \frac{d^{2} T}{d x^{2}}+\left(\rho_{L} V_{L} c_{P_{L}}\right) \frac{d T}{d x}=0 \tag{1.2.8}
\end{equation*}
$$

Solution of this equation is obtained using the boundary conditions,

$$
\begin{equation*}
\text { 1) at } x=x_{c}, T=T_{c} \quad \text { 2) at } x=x_{h}, T=T_{h} \tag{1.2.9}
\end{equation*}
$$

The equation is solved numerically by a pattern grid search method available as a package program on University of Pittsburgh computer library.

1.3 Results and Discussion

As indicated in the last report, the experiments are being carried out in a cocurrent, continuous bubble column, having diameter of .152 m . The phase holdups and the axial heat dispersion coefficients are measured with the help of the hydrostatic head technique, and the axial dispersion model respectively.

The effect of the liquid properties have been studied using different alcohol solutions, carboxy methyl cellulose (CMC) solutions, and electrolyte solutions. The results obtained are summarized in the following sections.

1.3.1 Effect of Surface Tension

The effect of surfactants is not clearly understood. Many investigators have tried different surfactants with entirely opposite conclusions. While Botton et al. ${ }^{(1.1)}$ and Miller ${ }^{(1.2)}$ reported no effect of surface tension, Schugerl et al., (1.3) Todt et al. ${ }^{(1.4)}$ observed a significant
increase in the gas holdup with a decrease in the surface tension. Recently Oels et al. ${ }^{(1.5)}$ carried out experiments with dilute solutions of alcohols and found a significant increase in the values of gas holdup. Bach and Pilhofer ${ }^{(1.6)}$ observed no effect of surface tension on gas holdup for pure liquids but they noted a different behavior for liquid mixtures and electrolyte solutions. The addition of electrolytes increases the gas holdup as noted by Akita and Yoshida, (1.7) Hikita et al., (1.8) Freedman and Davidson, (1.9) etc. Freedman and Davidson observed that the addition of electrolytes postponed the appearance of large bubbles in the colum. Electrolytes and/or alcohol additives probably stabilize the bubble size by formation of an ionic and/or polar double layer at the interface which depresses the coalescence rate.

In SRC-II reaction, where the surface tension of the liquid phase Is very low, there is a possibility that the value of the gas holdup and the dispersion coefficient may show entirely different behavior in the presence of long chain carbon molecules. It is assumed that, the surface tension behavior in the $S R C-I I$ reactor can be fairly simulated by $C_{3}-C_{4}$ alcohols. In addition, the bubble columns have been recently used as bioreactors for the production of alcoholic beverages, and single cell proteins. The substrate in these reactors can be fairly simulated with the help of alcohol solutions. (1.3)

The alcohol solution studied and their physical properties are tabulated in Table 1.2. All the concentrations of the alcohol solutions mentioned hereafter are in vol \%.

TABLE 1.2
PHYSICAL PROPERTIES: ALCOHOL SOLUTIONS

	ρ_{L}	σ_{L}	μ_{L}
	$\mathrm{~g} / \mathrm{cc}$	dynes/cm	cP

The only work reported on these type of culture media, is by Schugerl and coworkers. ($1.3,1.4,1.5$) But the relative range of gas and ifquid velocities studied is low $\left(\mathrm{V}_{\mathrm{G}}<6.0 \mathrm{~cm} / \mathrm{s}, \mathrm{V}_{\mathrm{L}}<3.0 \mathrm{~cm} / \mathrm{s}\right)$.

The experiments were carried out at atmospheric pressure, at gas velocities ranging from $3.0-30.0 \mathrm{~cm} / \mathrm{s}$, and the $1 q i u i d$ velocities ranging from $2 \cdot 0-15.0 \mathrm{~cm} / \mathrm{s}$. Following results are obtained.

1.3.1.1 Gas Holdup

Gas holdup shows an increase with an increase in the gas velocity, but shows a decrease with an increase in the liquid velocity, as illustrated in Figure 1.2, but the effect of liquid velocity becomes insignificant at higher liquid velocities. The effect of alcohol concentration on the gas holdup is observed to be insignificant as shown in Figure 1.3, but the effect of the type of alcohol is predominant as shown in Figure 1.4. The gas holdup increased in the following order,

```
methanol < ethanol < propanol < butanol
```


FIGURE 1.2

gas holdup vs superficial gas velocityialcohol solutionsj
FIGURE 1.4

The experimental data are compared with the values calculated with the help of different existing correlations, and all the tabulated results are shown in Appendix 1.I. The values are compared with the values obtained with the correlations by Akita and Yoshida, (1.7) Hikita et al., (1.8) Kumar et al., (1.10) Miller, (1.2) and Schugerl et al. (1.3) It is generally observed that none of the correlation was satisfactory in predicting the values of gas holdup. The equation by Schugerl et al. (103) predicts reasonable values for low gas velocity range, but is not applicable for high gas velocities. A typical comparison plot is shown in Figure 1.5. To study this strange behavior, flow regimes are tested, and some surprising results are found.

1.3.1.2 F1ow Regimes

The gas holdup depends on the physical properties of the liquid phase, bubble density, bubble size and the coalescence rate. Schugerl et al. (1.3) observed that in the presence of alcohol solutions, the effect of distributor plate is also important. Present experiments are carried out with perforated plates having holes of 0.5 m diameter. Berghmans (1.11) has derived a criterion for the stability of the bubbles for small viscosity liquids. He based his criterion on relative magnitude of buoyancy, interfacial and gravitational forces. For this perforated plate, it is observed that the bubbles are below the boundary of stable and unstable region indicating that the bubble size is not solely governed by the dynamic equilibrium. Therefore, the bubble size depends essentially on the type of system being used. This observation is also supported by Schugeri et al., (1.3) who indicated that for perforated plate distributors having holes of diameter greater than 0.5 mm , will be on the boundary of the stable and unstable region.

FIGURE 1.5

To see the regime ini which most of the data lie, the flow regime diagrams are prepared, where drift flux as a function of gas holdup is plotted. As shown in Figure 1.6, the drift flux diagram clearly shows the transition. For methanol solution, the transition from the bubbly flow is much earlier than the propanol solution. The dotted line indicates the direction of the probable points, if flooding is avoided and the bubbly flow regime can be maintained. It should be noted that both the alochols are hardly distinguishable from each other in the bubbly flow regime but their behavior is drastically different in the churn turbulent regime. Also, it is interesting to note that the surface tension for both the solutions is almost equal to each other. When the same drift flux graph is plotted for three different solutions of propanol, as shown in Figure 1.7 , it can be easily seen that they cannot be distinguished from each other. The surface tension for these three solutions varies from 44 to 68 dynes/cm. Therefore, it can be concluded that the surface tension is not the deciding criterion in these solutions.

In alcohol solutions it is generally believed that the coalescence rate is reduced due to a layer of oriented dipole molecules at the surface of the bubble. The rise velocity of the same diameter bubble may not be the same in the presence of surfactants. The tinterface of the bubble is mobile, and an internal circulation movement exists in a bubble which always reduces the drag on the bubble. Therefore, the velocity predicted by Stoke's law may not be a correct indication of true value. Oels et al. (1.5) have explained the behavior of bubbles in water containing surfactants. They reported that the surfactants are absorbed at the top of the bubble and are being transported to the rear by an interfacial flow. Therefore, surfactant gets enriched at the rear and a surface tension

gradient is formed. They categorized the bubbles in three regions depending upon their circulation. The surface tension gradient of the bubble essentially depends on the type of the alcohol, and as the chain length of the alcohol increases, the rigidity of bubble will increase, causing a reduction in the bubble rise velocity, and hence an increase in the gas holdup.

From the flow regime charts, it is observed that most of the data lie in the churn turbulent regime. To analyze these data, a theory by Zuber and Findiey ${ }^{(1.12)}$ is used which is designed for the churn turbulent regime.

The drift flux of the gas is defined as the volumetric flux of gas relative to the surface moving at an average velocity. If the total phase velocity V_{T}, is defined as

$$
\begin{equation*}
v_{T}=V_{G}+v_{L} \tag{1.3.1}
\end{equation*}
$$

Drift filux can be defined as,

$$
\begin{equation*}
v_{C D}=v_{G} \pm \varepsilon_{G} v_{G} \tag{1.3.2}
\end{equation*}
$$

or,

$$
\begin{equation*}
v_{C D}=v_{G}\left(1-\varepsilon_{G}\right) \pm v_{L} \varepsilon_{G} \tag{1:3.3}
\end{equation*}
$$

where + ve sign corresponds to the countercurrent flow and the - ve sign corresponds to the cocurrent flow. Zuber and Findley ${ }^{(1.12)}$ modified this approach for the churn turbulent flow. For cocurrent flow, equation (1.s.2) can be written as,

$$
\begin{equation*}
\frac{v_{G}}{\varepsilon_{G}}=V_{T}+v_{C D} \tag{1.3.4}
\end{equation*}
$$

or,

$$
\begin{equation*}
\frac{\left\langle v_{G}\right\rangle}{\left\langle\varepsilon_{G}\right\rangle}=\frac{\left\langle V_{T} \varepsilon_{G}\right\rangle}{\left\langle\varepsilon_{G}\right\rangle}+\frac{\left\langle v_{C D} \varepsilon_{G}\right\rangle}{\left\langle\varepsilon_{G}\right\rangle} \tag{1.3.5}
\end{equation*}
$$

where < > bracket indicates the average value along the cross section. If we define

$$
\begin{equation*}
C_{0}=\frac{\left\langle\varepsilon_{G} V_{T}\right\rangle}{\left\langle\varepsilon_{G} V_{T}\right\rangle} \tag{1.3.6}
\end{equation*}
$$

as a distribution parameter, which is a rough indication of nonuniform radial distribution, equation (1.3.5) can be written as,

$$
\begin{equation*}
\frac{\left\langle\nabla_{G}\right\rangle}{\left\langle\varepsilon_{G}\right\rangle}=C_{0}\left\langle V_{T}\right\rangle+\frac{\left\langle\varepsilon_{G}{ }_{C D}\right\rangle}{\left\langle\varepsilon_{G}\right\rangle} \tag{1.3.7}
\end{equation*}
$$

If the value of drift flux velocity is constant, or very small compared to the value of $\left\langle V_{T}\right\rangle$, by plotting the graph of V_{G} / ε_{G} versus V_{T}, the value of C_{0} can be obtained.

Figure 1.8 shows the graph of bubble rise velocity as a function of total velocity for 0.5% butanol. It can be easily seen that most of the data can be linearly correlated. At low gas velocity, it shows a maximur. with respect to the bubble rise velocity indicating a transition from bubble flow to the churn turbulent flow. Figure 1.9 shows the same graph for all the propanol solutions. It can be easily seen that just one line can be drawn through all the data. When the data for all the four alcohols are fitted with the following equation,

FIGURE 1.9

$$
\begin{equation*}
v_{G} / \varepsilon_{G}=c_{1}+c_{0}\left(v_{G}+v_{L}\right) \tag{1.3.8}
\end{equation*}
$$

where C_{1} is a constant, the following values as indicated in Table 1.3 are obtained. From this table it can be clearly seen that the values of the distribution parameter increase significantly with a decrease in the chain length.
table 1.3
COEFFICIENTS OF ZUBER-FINDLEY'S EOUATION

	C_{0}	C_{1}
Butano1	1.23	.095
Propanol	1.28	.095
Ethanol	1.66	.086
Methanol	2.41	.071

It can, therefore, be concluded that the increase in the nonuniformity of the distribution causes a decrease in the holdup value. Though it cannot be proved at the moment, it is believed that the value of C_{1} is some indication of the bubble size. It is interesting to note that the value of C_{1} essentially remains independent of the type of the alcohol. Zuber and Findley ${ }^{(1.12)}$ have reported that if the value of C_{1} is much less than ($\mathrm{V}_{\mathrm{G}}+\mathrm{V}_{\mathrm{L}}$), gas holdup can be calculated by a simple relationship as follows,

$$
\begin{equation*}
\varepsilon_{G}=\frac{v_{G}}{C_{0}\left(V_{G}+V_{L}\right)} \tag{1.3.9}
\end{equation*}
$$

It is observed that for this set of experiments, the value of C_{1} is signifficantly less than $\left(V_{G}+V_{L}\right)$. The holdup values calculated, based on the
above correlation, reasonably ($\pm 10 \%$) matched with the experimental data.
Since the effect of surface tension on the holdup has been found to be negligible, the gas holdup is empirically correlated with the superficial gas velocity and the carbon number, which is the number of carbon atoms in the alcohol. The following equation is obtained.

$$
\begin{equation*}
\varepsilon_{G}=.75\left(V_{G}\right) .557\left(C_{N}\right) .26 \tag{1.3.10}
\end{equation*}
$$

The parity plot for this correlation is shown in Figure 1.10. The data fits reasonably well with the equation. After application of the statistical F test, it is found that 90% of the data fit within the range of $\pm 5 \%$. When the data by Schugerl et al. (1.3) for perforated plates is tested, it is found that their data fit within $\pm 10 \%$ range.

1.3.1.3 Dispersion Coefficient

The heat dispersion coefficients are obtained using a steady state method. The dispersion coefficients showed a very strange behavior. The dispersion coefficients for 3.0% propanol solution are shown in Figure 1.11. The dispersion coefficients are shown as a function of superficial gas velocity. It can be easily seen that the value of dispersion is negifgible at low gas velocities, and can be approximated as zero. The value is very low at very low gas velocities due to the suppression of coalescence. But once the flow enters in the heterogeneous or churn turbulent regime, the value of dispersion coefficient suddenly shoots up. Though it should be noted that the behavior of dispersion coefficient in bubbly flow regime is unpredictable. Especially at low liquid velocities, dispersion coefficient shows a maximum with respect to gas velocity. The

EXPERIMENTAL VALUE
COMPARISON OF EXPERIMENTAL AND PREDICTED GAS HOLDUP[ALCOHOL SOLUTIONS]
FIGURE 1.10

effect of liquid velocity at high gas flow rates, however, is insignificant. In the case of homogeneous flow, where very high values of gas holdup exist, and the distribution of bubbles is almost uniform (as in the case of butanol or propanol as explained in the previous section, there is hardly any liquid recirculation due to the lack of nonunfform radial distribution. Therefore the value of the dispersion remains low. Still, the existence of a maximum at low Ilquid velocity cannot be explained satisfactorily. Recently Konig et al. (1.13) explained the maximum based on the fact that at low gas velocities, the bubble density in the swarm is low, therefore eddies due to single bubbles can propagate for longer ilstances and may overlap. Hence, the intensity of backmixing is higher than that at higher bubble density. Probably, at high Iiquid velocitiles, the bubbles do not have an opportunity to form eddies and propagat:e, and therefore, they just rise in uniform fashion. The effect of concentration on the backmixing is negligible. The datal for methanol solution is shown in Figure 1.12. The behavior is similar to water, indicating an absence of radial uniformity throughout the range of gas velocity under consideration: The effect of Ilquid velocity is also negligible. The values for the methanol solution are lower than the propanol solutions at high gas velocities. It should be noted that the dispersion coefficient values are based on the overall cross sectional area. When the values of dispersion coefficients are calculated based on the available liquid area ($D_{L} X \varepsilon_{L}$), and compared with each other, it is found that the effect of the type of alcohol is also insignificant, at higher gas velocifies.

The values of the experimental data have been compared with the values predicted by the correlations of Baird and Rice, (1.14) Joshi, (1.15)

figure 1.12

Deckwer et al., (1.16) and Field and Davidson. (1.17) The values do not match with any of the correlations at low gas velocities, but at high gas velocitles, the values based on the total cross sectional area match reasonably well with correlation by Baird and Rice. An empirical correlation, similar to Baird and Rice is fitted, and the following equation is obtained

$$
\begin{equation*}
D_{L} \varepsilon_{L}=1.42 d_{c}^{1.33}\left(V_{G}-\frac{\varepsilon_{G} V_{L}}{\left(1-\varepsilon_{G}\right)}\right) \tag{1.3.11}
\end{equation*}
$$

The parity plot is shown in Figure 1.13. The data fit reasonably well. The statistical F test shows that 90% of the data fits within $\pm \mathbf{~} 4 \%$ region.

It is interesting to note that when the data for the gas velocity greater than $8.0 \mathrm{~cm} / \mathrm{s}$ are correlated with a similar type of equation, the error is reduced to $\pm 9 \%$, indicating a relative uncertainty in the bubbly flow regime in alcohol solutions.

1.3.2 Effect of Viscosity

An increase in the viscosity for Newtonian liquids, normally decreases the gas holdup. Most of the work has been carried out with glycerol solutions or sugar solutions. Many investigators have reported a maximum with respect to viscosity near the vicinity of three centiooise (Eissa and Schugerl, (1.18) Bach and Pilhofer, (1.6) Buchholz et al. (1.20) This is explained on the basis of hindered gas bubble motion in the viscous fluids, in which at relatively low viscosities, drag forces are not large enough to cuase bubble coalescence. These moderate forces contribute to more uniform distribution of bubbles and hence higher holdup. Nishikawa

et al., (1.21) and Nakanoh and Yosh1da ${ }^{(1.22)}$ have reported the holdup values in the non-Newtonian medium. They observed higher values of gas holdup with respect to the values predicted by Akita and Yoshida's ${ }^{\text {(1.7) }}$ correlation. No explanation is given.

Cova ${ }^{(1.23)}$ and Aoyama et al. ${ }^{(1.24)}$ reported that the axial dispersion coefficient is Independent of the viscosity, while Pilhofer et al. (1.25) noted a dependency of dispersion coefficient on the liquid viscosity in the two phase systems. Towell and Ackerman ${ }^{(1.26)}$ also indicated that an increase in the ilquid viscosity reduces the dispersion. The effect of non-Newtonian medium has been recently studied by tibrecht and Baykara, (1.27) but their analysis is restricted to dilute polymer solutions. They concluded that the terminal mixing time is a function of the liquid rheological properties.

To study the effect of viscosity, present experiments were carried out with carboxy methyl cellulose (CMC) solutions in water, ranging from 50 ppm to 2300 ppm . The solutions behave as non-Newtonian liquids, and the:lr flow behavior index and the consistency index were calculated with the help of Brookfield LVT type viscometer as explained in the experimental section. The values of the consistency index and flow behavior index are given in Table 1.4

The rheological properties of the solutions are sensitive to the mixing techniques and therefore the same ppm solution can give different viscosity values. The type of CMC used was 7 H 4 (high molecular weight). The densities and surface tensions of the solutions are similar to water and therefore are not mentioned. The apparent viscosity is calculated with the help of the equation derived by Nashikawa et al. (1.21) They reported

TABLE 1.4
RHEOLOGICAL PROPERTIES OF CMC SOLUTIONS

Solution	Consistency Index $\left.\mathrm{K} \mathrm{(Nt} \mathrm{Bec/m}^{2}\right)$	Fiow Behavior Index (n)
50 ppm	.002	1.000
500 ppm	.0045	1.000
1000 ppm	.0076	1.000
$1200 \mathrm{ppm} \mathrm{@} 25^{\circ} \mathrm{C}$.0116	1.000
@ $35^{\circ} \mathrm{C}$.0147	1.000
$1800 \mathrm{ppm} \mathrm{@} 25^{\circ} \mathrm{C}$.0324	0.964
C $35^{\circ} \mathrm{C}$.0262	0.966
2300 ppm @ $25^{\circ} \mathrm{C}$.0598	0.952
@ $35^{\circ} \mathrm{C}$.038	0.946

that the average shear rate in the bubble colum is calculated by

$$
\begin{equation*}
\dot{\nu}=50 \mathrm{~V}_{\mathrm{G}} \tag{1.3.12}
\end{equation*}
$$

where V_{G} is in cm / s. The apparent viscosity is calculated by the equation,

$$
\begin{equation*}
\mu=k(\dot{v})^{n-1} \tag{1.3.13}
\end{equation*}
$$

The following results are obtained.

1.3.2.1 Gas Holdup

The gas holdup shows an increase with an increase in the gas velocity, but remains essentially independent of the liquid velocity as shown in Figure 1.14. For all the solutions, from 50 ppm to 2300 ppm, the gas holdup shows the same behavior. When gas holdup is plotted as a function apparent viscosity, it is observed that the gas holdup shows a maximum with respect to the viscosity in the vicinity of 3 cP . The value is close to the one observed by other Investigators $(1.18,1.19,1.20)$ for Newtonian

GAS HOLDUP VS SUPERFICIAL GAS VELOC[TY[50 PPM CMC GUMI
FIGURE 1.14
liquids. The similar observation is probably a result of Newtonian liquidIIke behavior of CMC solution at low concentrations. From Figure 1.15, it can be seen that the maximum shifts on the right side as the gas velocity Increases. The gas holdup data are compared with the values obtained with the help of different correlations. A typical comparison is shown in Figure 1.16. It can be seen that the values observed for 50 ppm solutions are higher than predicted by Akita and Yoshida, (1.7) and Hikita et al., (1.8) as reported earlier. ($1.21,1.22$) The correlation proposed by Schumpe and Deckwer ${ }^{(1,28)}$ is strictly applicable for the CMC solutions, but it is IImited to gas velocity of $15 \mathrm{~cm} / \mathrm{s}$. They observed a negligible effect of the viscosity on the gas holdup. The values predicted by their equation, match reasonably well at low gas velocities, but predict much higher values at high gas velocities. The comparison of the holdup values with different correlated values is shown in Appendix 1.1, in tabulated form.

1.3.2.2 Flow Regimes

To analyze the data, flow regime maps are prepared as shown in Figure 1.17. In this figure, the drift flux is plotted as a function of the gas holdup. It can be easily seen that the transition from homogeneous to heterogeneous flow drastically changes the value of drift flux. There is a point of inflection where this transition takes place. For the 2300 ppm solution, the transition is earlier than the 50 ppm solution. It should be noced that the data points for both solutions cannot be distinguished from each other in the homogeneous flow regime. The transition Is within the range of 7 to 15% holdup value.

Since most of the data lie in the churn turbulent regime, it was decided to use the theory developed by Zuber and Findley. (1.12) The

FIGTRE 1.16
bubble rise velocity $\left(u_{G} / \varepsilon_{G}\right)$ is plotted as a function of the total phase velocity, V_{T}, as shown in Figures 1.18 and 1.19 , for 50 ppm solution and 2300 ppm solution respectively. It can be seen that the data show fajrly Inear relationship, but the fluctuation along the Iine are much more compared to the alcohol solutions for 2300 ppm solution, the fluctuations are comparatively less. When the data for all the solutions are fitted with a linear relationship, with the help of least squart fit, following coefficients are obtained as shown in Table 1.6. It is observed that the value of the distribution parameter C_{0} remains essentially independent of the concentration of the CMC. This indicates that the radial distribution does not change with the change in the CMC concentration. However, the value of C_{1}, which is an indication of the bubble size, increases sipnificantly with an increase in the concentration. The value of C_{1} changes from . 104 for 50 ppm to 0.328 for 2300 ppm . This is in agreement with the

TABLE 1.5
ZUBER-FINDLEY'S COEFFICIENTS FOR CMC SOLUTIONS

Concentration (ppm)	C_{0}	C_{1}
50	.104	2.36
500	.116	2.93
1000	.138	2.76
1200	.260	2.64
1800	.288	2.75
2300	.328	2.72

work reported earlier by Bach and Pilhofer, (1.19) that the bubble size shows an increase with an increase in the viscosity of the solution.

bubble rise velocity vs [VG+VL] $\{2300$ PPM CMC GLMJ

FIGURE 1.19

1.3.2.3 Dispersion Coefficient

The aispersion coefficient values for 50 ppm solution are plotted as a function of the gas velocity in Figure 1.20. The values show an increase with an increase in the gas velocity, but show no effect of the liquid velocity. The values of dispersion coefficient are slightly higher than the values of air-water. When the values of dispersion coefficient are plotted as a function of the apparent viscosity, it is observed that a maximum exists with respect to the apparent viscosity in the vicinity of 4.5 cP (Figure 1.21). This can be qualitatively explained with the help of distribution parameters. The axial backmixing in the bubble columns is caused by two phenomena. One, the bubbles carry large amounts of dead water in their wakes, and when the bubbles leave the top surface, that liquid is recirculated. Second, nonunfform radial distribution of the gas holdup causes recirculation eddies in the liquid phase and hence causes a backmixing. As the bubble size increases, the amount of water carried in the form of wakes decreases, causing a reduction in the value of the dispersion coefficient. If Table 1.6 is observed carefully, it can be seer that the value of C_{1} increases with an increase in the concentration, indicating an increase in the bubble size, but the value of C_{0} shows a maximum for 500 ppm solution, after which the value essentially remains constant. An increase in the value of C_{0}, is a direct indication of the nonuniform distribution. Comparative increase in the value of C_{0} is much more than the increase in the value of C_{1}, when the concentration is increased from 50 ppm to 500 ppm , indicating that the increase in the viscosity (or increase in the bubble diameter) is more than compensated by an increase in the nonuniform distribution causing a maximum with respect to the apparent viscosity. It can be seen that the peak is much more

DISPERSION COEFFICIENT VS SUPERFICIAL GAS VELOCITY[50 PPM CMC GUM]
DISPERSION COEFFICIENT VS SUPERFICIAL GAS VELOCITY[50 PPM CMC GUM] SUPERFICIAL GAS VELOCITY[METERS/SECJ
$\begin{array}{lllllll}0.00 & 0.05 & 0.10 & 0.15 & 0.20 & 0.25 & 0.30\end{array}$
-
$*$

sharp at the low gas velocity after which it tends to flatten out.
The values of the dispersion coefficients are compared with the values obtained by different correlations that have been reported earlier. The values show slightly higher values than the ones predicted by neckwer et al. (1.16) and Baird and Rice. (1.14) The comparisons of the values are tabulated along with the slip velocity and the single bubble rise velocity (calculated with the help of the method proposed by Clift et al.) (1.29) and shown in the Appendix 1.2.

1.3.3 Effect of Electrolyte Solutions

The effect of the electrolyte solutions on the gas holdup has been studied by many investigators. Akita and Yoshida ${ }^{(1.7)}$ have reported overall 25% increase in the holdup values after the addition of an electrolyte, for otherwise identicial physical properties. Hikita et al. (1.8) have correlated their holdup data with the ionic strength of the electrolyte solution. Freedman and Davidson ${ }^{(1.9)}$ reported that an addition of electrolyte postponed the appearance of large bubbles in the colum and is reflected by the increased voidage at the values of V_{G} between 5 and $10 \mathrm{~cm} / \mathrm{s}$. This is supported by Braulick et al. (1.30) who observed swarms of minute or 'ionic' bubbles in the presence of electrolytes, whose extent of the formation is function of both concentration and gas velocity. It is generally believed that the addition of the electrolyte into a solution Induces a non-coalescing behavior, by virtue of an ionic double polar layer between the gas phase and the liquid phase. Schugerl et al. (1.3) measured the values of dispersion coefficients in the presence of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solutions, but the results are inconclusive.

Present experiments are carried out to see the effect of electrolyte solutions as a non-coalescing medium on the gas holdup and axial dispersion coefficient. The study is done with the help of four different solutions of sodium chloride. The concentration ranges from .05 molar to 1.0 molar solution. The physical properties of the solutions are given in Table 1.6.

TABLE 1.6
PHYSICAL PROPERTIES OF NaCI SOLUTIONS

Concentration	ρ_{L} $(\mathrm{~g} / \mathrm{cc})$	σ_{L} $($ dynes $/ \mathrm{cm})$	μ_{L} (cP)
0.05 M	0.998	70.50	1.05
0.2 M	1.018	72.15	1.22
0.5 M	1.045	71.25	1.23
1.0 M	1.065	73.50	1.29

The following results are obtained.

1.3.3.1 Gas Holdup

Gas holdup shows an increase with an increase in the gas velocity, but shows an independence with respect to the liquid velocity. The values of the gas holdup for .05 M solution are shown in Figure 1.22. The gas holdup values also remain independent of the concentration. The experimental values are compared with different correlations in Figure 1.23. The values reasonably match with the correlations by Akita and Yoshida ${ }^{(1.6)}$ and Hikita et al. (1.7)

1.3.3.2 Flow Regimes

The flow regime maps are prepared with the help of drift flux thoery. The drift flux plotted as a function of the gas holdup is shown In Figure 1.24. The transition from the bubbly flow regime to the churn

FIGURE 1.23

turbulent regime can be clearly seen. There is some effect of concentration on the transition, where for .05 M solution, the transition is eariler than . 5 M solution. Up to the transition region, both the solutions show aimilar behavior. The value of the gas holdup at which the transition takes place, ranges from 15% to 20%, as opposed to 6% to 10% for CMC solution. This is a clear indication of the non-coalescing behavior of the solution, where even at high values of gas holdup bubble size essentially remains dependent on the gas distributor size rather than the dynamic equilibrium.

Since all the data lie in the churn turbulent regime, ZuberFindley's ${ }^{(1.12)}$ approach is employed again. Figure 1.25 shows the plot of the bubble rise velocity as a function of the total phase velocity for .05 M NaCl solution. A linear straight line can be easily fitted through all the points irrespective of the liquid velocity. When the same graph is prepared for .05 M and 0.5 M solutions together, it is observed that the effect of concentration on the bubble rise velocity is negligible (Figure 1.26). A stralght line can be easily fitted through all the points. The Zuber-Findley coefficients are calculated by using a least square fit and following values as indicated in Table 1.7 are obtained.

It can be seen from the table that the values of C_{0} and C_{1} do not change significantly with change in the concentration. Therefore an overall straight line is fitted, and the coefficients are calculated. From the values of the coefficients, it is observed that the values of C_{1} are relatively smaller than the ones obtained in the case of alcohol solutions. This is a probable indication of smaller bubble size than

BUBBLE RISE VELOCITY VS [VG+VL) $10.05 \mathrm{~m} \cdot \mathrm{NACL}$ SOLUTION]

FIGURE 1.25

bubble rise velocity vs tvg+VLi to.05 and 0.5 m nacl solution]
FIGIRE 1.26

TABLE 1.7
ZUBER-FINDLEY COEFFICIENTS FOR NaC1 SOLUTIONS

Concentration	C_{0}	C_{1}
0.05 M	2.76	.028
0.2 M	3.07	.026
0.5 M	2.67	.019
1.0 M	2.28	.017
Overal1	2.76	.020

the alcohol solutions. The values of C_{o} are however, much larger than propanol or butanol solutions, indicating a nonuniform radial distribution of the bubbles. The values of C_{1} show a steady increase in the value with decrease in the concentration, but apparently this does not reflect in the holdup values.

1.3.3.3 Dispersion Coefficient

The values of dispersion coefficient for .05 M are plotted as a function of the gas velocity in Figure 1.27. The dispersion coefficients show an increase with increasing gas velocity but remain independent of the liquid velocity. The dispersion coefficient values for 1.0 M NaCl solution are compared with the air-water data in Figure 1.28. It can be seen that the values of NaCl are slightly higher than the alr-water data. As indicated earlier in the Section 1.3.1, these values are based on the overall cross sectional area of the column. If the values are calculated based on the cross sectional area available to the Ifquid phase ($D_{L} E_{L}$), both the systems show comparable values.

figure 1.28

It is interesting to note that though both electrolyte and alcohol solutions produce small bubbles due to non-coalescing tendencies, the dispersion coefficints show an entirely different trend. Higher alcohol (Propanol and butanol) solutions show almost zero values of the dispersion coefficlents at low gas velocities, while the electrolyte solutions behave similar to the air-water system. This can be explained on the basis of the dist:ribution parameter. If the values of the C_{0} for propanol and butanol solutions and the electrolyte solutions are compared with each other, f.t can be clearly seen that along with producing small bubbles, the alcohol solutions also maintain a uniform radial distribution, which is a significant contributing factor for the dispersion, while NaCl solutions have highly nonuniform radial distribution causing a significant increase in the value of the dispersion coefficient. It should be clarified that though it is mentioned earlier that the small bubbles can carry more water In the form of wakes, and hence create a higher backmixing, a special situation is created when relatively large values of holdups are obtained at low gas velocities. Due to high density of small bubbles, the microscopic eddies created by these bubbles do not propagate. In addition, if the bubbles have uniform radial distribution, the two phase flow behaves as a single phase flow causing a negligible backmixing.

APPENDIX 1.1

0.25027
0.22971
0.22893
0.21437
0.20284
0.19108
0.18171
0.17591
0.25539
0.23989
0.23129
0.21956
0.20537
0.19639
0.18777
0.18151
0.25274
0.24200 0.24200
0.23606 0.22017 0.20658
0.20357
管 0.25059
0.23505 N
N

0镸 0.20840
0.19838

S：CTEPENT CGRRELATIOKS

al	36．${ }^{\text {d }}$	$0 \mathrm{O} \cdot \mathrm{B}$	IT 5	JL	DUS	UT	45
CM＋ 2 ／S		［4．4こ15	$2 \mathrm{~m}+2 / 5$	C\％＋2／5	\＃	\％／．／5	W／S
EXD？．	DECKYER	KalRo－fire	JGËHi	D－DAUIDS			

 1 0.280093
0.29213 0.01541
0.01521
0.01460
0.01380
0.01335
0.01297
0.01265
0.01252
0.01647
0.01525
0.01442
$0.013 E 3$
0.01334
0.01302 $\begin{array}{ll}0.01302 & 0.27548 \\ 0.01271 & 0.27151\end{array}$ $0.01257 \quad 0.26989$ $0.01650 \quad 0.28848$ $\begin{array}{ll}0.10526 & 0.29076 \\ 0.01843 & 0.29200\end{array}$ 0.013850 .28573 $0.01340 \quad 0.28025$ $0.01304 \quad 0.27573$ 0.2701^{4} 0.2 geg B 0.29375
0.29206 0.26590 0.20054 0.275 F 0.2724

 154．38925

$$
\begin{aligned}
& 5 \frac{0}{x} \\
& 5 \frac{n}{x}
\end{aligned}
$$ $\begin{array}{ll}153.02203 & 0.0!259 \\ 156.089!5 & 0.01650\end{array}$ $202.435 .19 \quad 0.01526$ $255.098230 .0: 114$

青

IIJ $=:=$
 $\begin{array}{lll}334.56322 & 0.02380 & 0.28512 \\ 379.16157 & 0.01335 & 0.27977 \\ & 0.01297 & 0.27697\end{array}$ $\begin{array}{lll}221.20177 & 0.01297 & 0.27287 \\ & 557.78187 & 0.01265 \\ 0.257092\end{array}$ $\begin{array}{lll}474.09544 & 0.01252 & 0.265!5 \\ 10!.77995 & 0.01647 & 0.28892\end{array}$ $\begin{array}{ll}0.01647 & 0.28692 \\ 0.01525 & 0.29078\end{array}$ 0.014420 .29210 $\begin{array}{ll}0.017 \mathrm{EJ} & 0.28569 \\ 0.01339 & 0.29001\end{array}$ $41.724873 \quad 0.61302 \quad 0.27548$

 165 0．02920 $\quad 0.02570$
0.05500 ＊ 0.05500
0.08700 0.08709
0.12370 0.16230 0.20800
0.25500 0.25500
0.27950 0.0281 0.02811
0.05400 0.08600 ．0ebo 0.16900 0.160160
0.201500 0.24600 0.25900
0.02800 0.02810 0.05370 0.08540 0.12000
0.15000 0.15800
0.10300

conparisom of the holour data hith existimg correlations

NSM/S)	(4. (H/S)	Expri	AMITA/YOSHIDA 		MERSMmen	NLTAR	MILLER	SCHUEERL
0.02776	0.06261	0.09						
0.05339	0.06261	0.09845	0.07221	0.07855	0.07475	0.11250	0.04034	0.19706
0.08567	0.05251	0.231039	0.11437	0.11420	0.11877	0.19294	0.07122	0.37546
0.12154	0,06261	0.39802	0.190	0.14965	0.15880	0.26516	0.10403	0.62958
0.15983	0.06261	0.43776	. 21	0.18299	0.19200	0.31623	0.13418	0.95675
0.20175	0.06261	0.44999	0.23834		0.21327	0.34059	0.16406	1.37627
0.24635	0.06261	0.46772	0.23971	0.27713	0.24377	0.34219	0.18334	1.87095
0.26989	0.06261	0.49156	0.26961	0.29241	0.26477	0.32670	0.21971	2.45394
0.02750	0.09473	0.09662	0.07168	0.07836	0.27459	0.31561	0.22961	2.74025
0.05301	0.09473	0.19016	0.11443	0.11446	0.1178	0.11155	0.03418	0.20452
0.08412	0.09473	0.27575	0.15240	0.14996	0.15587	0.19189	0.06058	0.38997
0.11843	0.09473	0.33627	0.18415	0.18330	0.18762	0.26328	0.08990	0.65858
0.15598	0.09473	0.38580	0.21157	0.21538	0.21497	0.31302	0.11916	0.98980
0.19566	0.09473	0.41573	0.23910	0.24650	0.23814	0.33927	0.14657	1.38895
0.23876	0.09473	0.42859	0.25634	0.27728	0.25913	0.37006	. 19634	1.63721
0.26094	0.09473	0.44510	0.26595	0.23242	0.26854	0.31988	0.20595	2.71112
0.02794	0.13183	0.08500	0.07256	0.07952	0.07536	0.11313	0.03006	0.21736
0.05286	0.13183	0.13514	0.11423	0.11476	0.11711	0.19151	0.05423	0.45386
0.08350	0.13183	0.21278	0.15175	0.15027	0.15458	0.28213	0.07925	0.67241
0.11673	0.13183	0.29287	0.18277	0.18342	0.18523	0.31119	0.10527	1.09944
0.15311	0.13183	0.34361	0.20968	0.21538	0.21184	0.33814	0.12968	1.40809
0.19077	0.13183	0.35012	0.23216	0.24586	0.23359	0.34378	0.15216	1,86872
0.23173	0.13183	0.37479	0.25312	0.27634	0.25422	0.33298	0.17562	2.47624
0.02731	0.15326	0.09479	0.07132	0.07839	0.07336	0.11090	0.02757	0.20258
0.05197	0.15326	0.16142	0.11295	0.11467	0.11503	0.18903	0.04982	0.41751
0.08140	0.15326	0.22073	0.14950	0.14977	0.15117	0.25811	0.07450	0.68063
0.11407	0.15326	0.28370	0.18055	0.18278	0.18195	0.30820	0.09805	0.98847
0.14925	0.15326	0.33444	0.20708	0.21441	0.20807	0.33641	0.12208	1.37722
0.18477	0.15326	0.35339	0.22908	0.24436	0.22924	0.34406	0.14408	1.82452
0.22226	0.15326	0.38457	0.24864	0.27363	0.24804	0.33853	0.16364	2.28392

0.02790	0.06274	0.09764	0.07354	0.08070	0.07643	0.11685	0.04012	0.21030
0.05370	0.06274	0.21819	0.11686	0.11742	0.12109	0.1994	0.07186	0.39745
0.08642	0.06274	0.33690	0.15651	0.15390	0.18193	0.27349	0.10401	0.66399
0.12161	0.06274	0.40421	0.18860	0.18816	0.19409	0.32080	0.13610	1.00785
0.16087	0.06274	0.44337	0.21668	0.22117	0.22246	0.34248	0.16418	1.44117
0.2044	0.06274	0.47397	0.24176	0.25322	0.24811	0.33964	0.19176	1.98021
0.24790	0.06274	0.49783	0.26245	0.28506	0.26808	0.32147	0.21745	2.55659
0.26839	0.06274	0.49906	0.27108	0.30043	0.27591	0.31136	0.23108	2.85440
0.02762	0.09626	0.11049	0.07297	0.08057	0.07556	0.11581	0.03422	0.21817
0.05314	0.09626	0.18942	0.11606	0.11789	0.11555	0.19789	0.06106	0.41405
0.08445	0.09676	0.28611	0.15444	0.15421	0.15627	0.26991	0.08944	0.68801
0.11632	0.09626	0.34508	0.18427	0.18909	0.18836	0.31555	0.11677	1.0005
0.15663	0.09626	0.35281	0.21394	0.22162	0.21768	0.34144	0.14394	1.46451
0.19588	0.09626	0.42807	0.23723	0.25349	0.24048	0.34183	0.16973	1.94485
0.23902	0.09626	0.47152	0.25850	0.28505	0.26154	0.32578	0.19350	2.46704
0.26108	0.09626	0.47213	0.26806	0.30058	0.27087	0.31495	0.20806	2.80765
0.02809	0.12974	0.08050	0.07392	0.08073	0.07705	0.11755	0.03017	0.23235
0.05311	0.12974	0.18147	0.11602	0.11797	0.11928	0.19782	0.05477	0.42107
0.08339	0.12974	0.25551	0.15332	0.15429	0.15635	0.26794	0.08062	0.70514
0.11628	0.12974	0.31487	0.18424	0.18821	0.18682	0.31551	0.10549	1.04548
0.15251	0.12974	0.34302	0.21122	0.22095	0.21351	0.34015	0.13122	1.48004
0.19100	0.12974	0.37300	0.23501	0.25292	0.23707	0.34264	0.15501	1.98076
0.23261	0.12974	0.42012	0.25558	0.28395	0.25718	0.32877	0.17808	2.59783
0.02747	0.16136	0.07071	0.07268	0.08035	0.07500	0.11528	0.02705	0.23489
0.05209	0.16136	0.16495	0.11454	0.11784	0.11690	0.19494	0.04892	0.42108
0.08132	0.16136	0.25674	0.15109	0.15384	0.15295	0.26401	0.07234	0.66357
0.11252	0.16136	0.25612	0.18106	0.18714	0.18219	0.31140	0.09481	1.04873
0.14626	0.16136	0.29468	0.20696	0.21904	0.20748	0.33766	0.11696	1.47395
0.18335	0.16136	0.32465	0.23027	0.25039	0.23044	0.34376	0.14027	1,98263
0.22292	0.16136	0.36566	0.25100	0.28118	0.25082	0.33301	0.16100	2.48748

COMPARISOM OF The holdip data MITH EXistimg correlations

Ve(H/S) 	U(M/S)	EXPTL	MITA/YOSHIDA	HIRITA	NERSHAKN	RUMAR	HILLER	SCHLEETL
0.02821	0.05324	0.11437	0.07585	0.08417			0.040es	
0.05424	0.06324	0.23039	0.11993	0.08417	0.07933	0.12396	0.04085	0.22013
0.08649	0.06324	0.32678	0.15928	0.16040	0.16504	0.20343	0.07243	0.42915
0.12132	0.06324	0.38571	0.19129	0.19634	0.19678	0.37665	0.10428	0.72905
0.16233	0.06324	0.43052	0.22070	0.23050	0.22740	0.34395	0.15829	1.10359
0.20379	0.06324	0.44894	0.24480	0.26401	0.25098	0.33586	0.19460	2.16804
0.24863	0.06324	0.48332	0.26601	0.29701	0.27216	0.31391	0.22101	2.81177
0.27211	0.06324	0.49069	0.27584	0.31337	0.28185	0.30256	0.23084	3.16727
0.02841	0.10463	0.07017	0.07625	0.08423	0.07997	0.12471	0.03375	0.30263
0.05348	0.10463	0.18435	0.11886	0.12280	0.12283	0.20739	0.06011	0.45125
0.08467	0.10483	0.27582	0.15736	0.16082	0.16154	0.27908	0.08736	0.75935
0.11920	0.10463	0.32678	0.18956	0.19656	0.19378	0.32483	0.11456	1.15254
0.15843	0.10463	0.35808	0.21688	0.23084	0.22089	0.34332	0.14188	1.62835
0.19729	0.10463	0.40781	0.24115	0.26447	0.24506	0.33828	0.18615	2.18262
0.23733	0.10463	0.43237	0.26097	0.29650	0.26403	0.31982	0.19097	2.75457
0.25962	0.10463	0.41865	0.27071	0.31271	0.27363	0.30834	0.20071	3.19186
0.02776	0.12722	0.08244	0.07493	0.08107	0.07784	0.12223	0.03055	0.24596
0.05280	0.12722	0.17944	0.11786	0.12280	0.12116	0.20543	0.05411	0.45311
0.08209	0.12722	0.23899	0.15458	0.16016	0.15735	0.27434	0.07958	0.77017
0.11381	0.12722	0.33169	0.18505	0.19491	0.18723	0.31972	0.10505	1.12540
0.14948	0.12722	0.35484	0.21222	0.22879	0.21420	0.34187	0.12972	1.49348
0.16646	0.12722	0.36729	0.23520	0.26124	0.23667	0.34149	0.15270	2.09277
0.22659	0.12722	0.39001	0.25597	0.29335	0.25706	0.32538	0.17597	2.67078
0.24743	0.12722	0.40597	0.26548	0.30919	0.28639	0.31453	0.18548	2.98004
0.02705	0.16893	0.07938	0.07348	0.08368	0.07589	0.11953	0.02598	0.24200
0.05123	0.16893	0.15857	0.11556	0.12233	0.11784	0.20092	0.04681	0.44827
0.08044	0.16893	0.20277	0.15278	0.15982	0.15456	0.27120	0.07028	0.77023
0.11019	0.16893	0.27828	0.18193	0.19377	0.18270	0.31589	0.09193	1.09319
0.14363	0.16893	0.32739	0.20816	0.22693	0.20843	0.33999	0.11316	1.48936
0.18043	0.16893	0.36177	0.23172	0.25966	0.23166	0.34278	0.13672	1.99639
0.22177	0.16893	0.39737	0.25366	0.23250	0.25362	0.32778	0.15866	2.59005

COMPARISOM OF THE HOLDRP RATA HITH EXISTING CORRELATIONS 0.5 I ETHANRL SRUUTION

COMPARISDM OF THE hOLDUP DATA MITH EXISTIGG CORRELATIONS

COAPARISD OF THE hOLDUP DATA MITH EXISTHM CORRELations

50 PM CHC SOLUTLON

0.02798	0.00000	0.12137	0.08485	0.07477	0.05770	0.11260	0.06485	0.05163
0.04545	0.00000	0.20813	0.09326	0.08858	0.09710	0.1693 i	0.09326	0.09172
0.05885	0.00000	0.25301	0.12345	0.12505	0.12823	0.23083	0.12345	0.12899
0.05354	0.00000	0.28714	0.14895	0.14863	0.15454	0.27865	0.14895	0.16576
0.11836	0.00000	0.32127	0.17107	0.17081	0.17735	0.31311	0.17107	0.20243
0.14630	0.00000	0.35026	0.19050	0.19155	0.15753	0.33435	0.15050	0.23819
0.17441	0.00000	0.39928	0.20815	0.21137	0.21566	0.34347	0.20815	0.27626
0.26354	0.03374	0.29535	0.25339	0.27430	0.25001	0.31712	0.21835	0.39371
0.24532	0.03374	0.28287	0.24367	0.28000	0.25036	0.32756	0.20857	0.35545
0.20135	0.03374	0.25850	0.22288	0.23213	0.22983	0.34254	0.18288	0.31080
0.15777	0.03374	0.20547	0.19807	0.20206	0.20400	0.33951	0.15807	0.25447
0.11945	0.03374	0.21275	0.17157	0.17204	0.17678	0.31324	0.12867	0.20261
0.08505	0.03374	0.95572	0.14072	0.14055	0.14625	0.26355	0.10078	0.15338
$0.0535 E$	0.03374	0.18963	0.10454	0.10776	0.10914	0.15235	0.96554	0.10453
0.02789	0.03374	0.10795	0.05477	0.07467	0.05747	0.11225	0.04040	0.06145
0.02745	0.05451	0.08724	0.06395	0.07470	0.06612	0.11073	0.03461	0.05065
0.05232	0.05451	0.17317	0.10265	0.10835	0.10586	0.18857	0.05038	0.10253
0.08374	0.05451	0.18389	0.13942	$0.14: 86$	$0.1432 E$	0.26145	0.09942	0.15137
0.11798	0.05451	0.21340	0.16956	0.17333	0.17400	0.31163	0.11498	0.2005 !
0.15537	0.05451	0.22132	0.19654	0.20356	0.200 E 3	0.33881	0.14154	0.25125
0.19573	0.05451	0.29506	0.2185	0.23314	$0.2235 E$	0.34337	0.16496	0.36362
0.23522	0.05451	0.28044	0.24055	0.26234	0.24455	0.33050	0.19055	0.35792
0.26157	0.05451	0.25019	0.25052	0.27673	0.25420	0.32047	0.20052	0.385 5 5
0.02716	0.07543	0.07331	0.05344	0.07459	0.06528	0.10957	0.03000	0.05013
0.05222	0.07543	0.17581	0.10275	0.10976	0.10539	0.18870	0.05400	0.10278
0.08234	0.07843	0.19085	0.1385 i	0.14238	0.14157	0.25993	0.0758 E	0.15018
0.11550	0.07943	0.18231	0.16880	0.17395	0.17167	0.31001	0.10380	0.1984
0.15311	0.07943	0.22437	0.19509	0.20438	0.19776	0.33767	0.12759	0.24823
0.19275	0.07943	0.23938	0.21838	0.23412	0.22084	0.34369	0.15088	0.29887
0.23515	0.07843	0.27617	0.23917	0.26323	0.24141	0.33228	0.17417	0.35298
0.25748	0.07943	0.27190	0.24853	0.27772	0.25098	0.32240	0.18393	0.38924
0.02726	0.12895	0.05288	0.08361	0.07471	0.06547	0.10985	0.02486	0.05030
0.05127	0.12885	0.15495	0.10145	0.10997	0.10309	0.1850 E	0.04458	0.10124
0.08072	0.12896	0.17439	0.13634	0.14246	0.13775	0.25556	0.06534	0.14688
0.11212	0.12896	0.20182	0.18525	0.87351	0.16589	0.30484	0.08775	0.19230
0.14716	0.12855	0.20974	0.18117	$0.203 E 2$	0.19161	$0.3348!$	0.10867	0.24034
0.18578	0.12895	0.27800	0.21455	0.23353	0.21484	0.34406	0.12959	0.29098
0.23280	0.12898	0.25179	0.23348	0.26162	0.23277	0.33650	0.14848	0.33771
0.24316	0.12795	0.26337	0.24273	0.27572	0.24176	0.32881	0.15773	0.36280

COMPARISON Of THI HOLDUP bata uIth Existimg correlations

500 PPM CHC SOLUTIDN

Von/S	UL (M/S)	EXPTL	AMITA/YOSHIDA	HIKITA	MERSMAN	RLutar	HILIER	BECKHER
0.04518	0.00000	0.16740	0.08289	0.09359	0.09652	0.16791	0.08299	0.09127
0.06862	0.00000	0.18514	0.11122	0.11876	0.11590	0.22932	0.11122	0.12857
0.09308	0.00000	0.19371	0.13523	0.14132	0.14065	0.27724	0.13523	0.16511
0.11858	0.00000	0.25351	0.15625	0.16223	0.16234	0.31178	0.15623	$0.20: 45$
0.14539	0.00000	0.29345	0.17497	0.18197	0.18189	0.33349	0.17497	0.23795
0.17287	0.00000	0.30447	0.19169	0.20088	0.19850	0.34315	0.19169	0.27427
0.16735	0.00000	0.32833	0.19966	0.21005	0.20709	0.34405	0.15966	0.25258
0.02777	0.02312	0.11171	0.05703	0.07053	0.05956	0.11139	0.03515	0.06123
0.05225	0.02312	0.14252	0.09218	0.10204	0.09589	0.18814	0.05093	0.10282
0.08238	0.02312	0.20044	0.12586	0.13328	0.13039	0.25932	0.08711	0.15025
0.11725	0.02312	0.22798	0.15516	0.16259	0.16032	0.31027	0.11266	0.19848
0.15483	0.02312	0.25123	0.18097	0.19081	0.18658	0.33811	0.13597	0.25057
0.19562	0.02312	0.28182	0.20400	0.21835	$0.2098{ }^{\circ}$	0.34345	0.15800	0.30354
0.23948	0.02312	0.29345	0.22472	0.24546	0.23081	0.33053	0.18222	0.35630
0.26259	0.02312	0.29529	0.23437	0.25891	0.24052	0.32054	0.19437	0.38642
0.02953	0.03033	0.11538	0.06162	0.07196	0.06627	0.11808	0.03662	0.06439
0.05608	0.03033	0.13680	0.09532	0.10385	0.10615	0.19521	0.06307	0.10895
0.09505	0.03033	0.19677	0.13449	0.13572	0.14264	0.27118	0.09189	0.15921
0.12541	0.03033	0.21880	0.16446	0.16560	0.17336	0.31916	0.11898	0.21080
0.16561	0.03033	0.22581	0.19155	0.19450	0.20139	0.34212	0.14405	0.26610
0.20852	0.03033	0.26102	0.21432	0.22250	0.22414	0.34081	0.16682	0.32043
0.25526	0.03033	0.28611	0.23512	0.25014	0.24504	0.32336	0.19012	0.37754
0.27890	0.03033	0.29712	0.24451	0.26378	0.25430	0.31222	0.19951	0.40598
0.02784	0.05585	0.10520	$0.0573 i$	0.07075	0.05016	0.11197	0.02794	0.06154
0.05350	0.05585	0.18453	0.09374	0.10277	0.09798	0.18156	0.04998	0.10484
0.08395	0.05595	0.20778	0.12675	0.13432	0.13123	0.26115	0.07179	0.15169
0.11831	0.05595	0.23960	0.15597	0.16417	0.16009	0.31142	0.09557	0.20097
0.15567	0.05585	0.25612	0.18149	0.15295	0.18623	0.33845	0.11649	0.25169
0.19736	0.05585	0.24938	0.20488	0.22127	0.20988	0.34328	0.13739	0.30575
0.24109	0.05595	0.27203	0.22542	0.24898	0.23025	0.33026	0.16042	0.36027
0.26327	0.05595	0.28469	0.23465	0.26271	0.23924	0.32022	0.16865	0.38724
0.62855	0.08305	0.08846	0.05989	0.07170	0.06356	0.11464	0.02624	0.06264
0.05473	0.08305	0.13864	0.08766	0.10451	0.10280	0.19583	0.04766	0.1058 :
0.08685	0.08305	0.16984	0.13243	0.13684	0.13836	0.26729	0.06553	0.15555
0.12221	0.04305	0.19371	0.16211	0.16718	0.16838	0.31605	0.05911	0.20638
0.15089	0.09305	0.21145	0.18812	0.19842	0.19455	0.34059	0.11312	0.25856
0.20170	0.011305	0.23532	0.21089	0.22475	0.21693	0.34245	0.13589	0.31124
0.24611	0.03305	0.25123	0.23141	0.25278	0.23763	0.32740	0.15541	0.36679
0.25526	0.01305	0.26224	0.23677	0.26619	0.24036	0.32148	0.16177	0.38239

comparison of the hoinup data uith existing correlatidns
1000 PPK CNC SOLUTION
\&

0.02917	0.02567	0.10001	0.04087	0.05153	0.04850	0.11673	0.01712	0.05974
0.05501	0.02567	0.16266	0.06856	0.08862	0.07414	0.19625	0.03043	0.10725
0.08703	0.02567	0.16813	0.08617	0.11573	0.10311	0.26749	0.04555	0.15623
0.12373	0.02567	0.19572	0.12184	0.14126	0.13024	0.31750	0.05058	0.20845
0.16227	0.02567	0.22227	0.14416	0.15572	0.15306	0.34097	0.07511	0.26040
0.20775	0.02567	0.25207	0.16826	0.18978	0.17657	0.34123	0.09126	0.31853
0.25468	0.02557	0.27823	0.18553	0.21339	0.19852	$0.323 E 1$	0.10563	0.37708
0.27853	0.02557	$0.2570 E$	0.19459	0.22509	0.20577	0.31201	0.11218	0.40674
0.02541	0.04582	0.08602	0.03596	0.05145	0.04296	0.11407	0.01485	$0.0623 E$
0.05414	0.04682	0.13346	0.06772	0.08302	0.07241	0.19393	0.02547	0.10585
0.08591	0.04682	0.1814	0.09530	0.11646	0.10112	$0.2 E 547$	0.04030	0.15453
0.12152	0.04682	$0.1809 i$	0.12043	0.14228	0.12718	0.31532	0.05356	0.20542
0.15985	0.04682	0.2143 E	0.14276	0.16708	0.14989	0.34016	0.05551	0.25695
$0.20: 58$	0.04662	0.23382	0.16346	0.19132	0.17089	0.34250	0.07971	0.31109
0.24611	0.046 E 2	0.25572	0.18224	0.21516	0.18882	0.32761	0.09345	$0.3684:$
0.26900	0.04682	0.27640	0.19050	0.22652	C. 19851	0.31696	0.09965	0.35413
0.02805	0.07654	0.05272	0.03954	0.06136	0.04228	0.11284	0.01286	0.06175
0.05365	0.07654	0.12677	0.06728	0.0853	0.07142	0.19271	0.02353	0.10513
0.08538	0.07654	0.14745	0.09489	0.11704	0.10002	0.26448	0.03551	0.15390
0.12001	0.07654	0.17968	0.11547	0.14256	0.12511	0.31378	0.04758	0.20335
0.15773	0.07654	0.20349	0.14173	0.16753	0.14764	0.33950	0.05048	0.25441
0.19899	0.07654	0.20767	0.16228	0.19235	0.16642	0.34253	0.07228	0.30781
0.24287	0.07654	0.23555	0.18057	0.21632	0.18720	0.32503	0.08472	0.35246
0.26549	0.07654	0.25587	0.18951	0.22810	0.19577	0.31882	0.08361	$0.3859!$
0.02 E 24	0.09612	0.05500	0.03875	0.06140	0.04263	0.11345	0.01154	0.06207
0.05354	0.05812	0.10305	0.05714	0.08946	0.07110	0.19230	0.02183	0.10495
0.08482	0.098:2	0.14684	0.08445	0.11713	0.09922	$0.2 E 347$	0.03320	0.15239
0.11871	0.09612	0.16327	0.11862	0.14297	0.12357	0.31241	0.04487	0.20152
0.15518	0.05612	0.18577	0.14034	0.16772	0.14543	0.33853	0.05534	0.25103
0.19823	0.09812	0.20545	0.16153	$0.1821 E$	0.16787	0.34304	0.06818	0.30685
0.23603	0.09812	0.21923	0.17823	0.21504	0.18327	0.33192	0.07823	0.3540 E

CTiparism of the holdup data hith existimg correlailans

COAPRAISOW OF THE hCidup data hith exisilimg correlaticus

0.02949	0.02445	0.07377	0.04897	0.105571	0.05315	0.11763	0.02459	0.06433
0.05496	0.02445	0.09947	0.08015	0.09459	0.08598	0.19582	0.04328	0.10718
0.09776	0.02445	0.12395	0.11163	0.12371	0.11912	0.26844	0.06413	0.15731
0.12411	0.02445	0.16372	0.13955	0.15107	0.14830	0.31788	0.08455	0.20943
0.16454	0.02445	0.19677	0.16441	0.17740	0.17403	0.34150	0.10441	0.26339
0.20850	0.02445	0.22309	0.18697	0.20312	0.19734	0.34117	0.12197	0.31983
0.25592	0.02445	0.23654	0.20746	0.22844	0.21838	0.32340	0.14246	0.37835
0.28025	0.02445	0.25735	0.21679	0.24094	0.22778	0.31198	0.15179	0.40760
0.02804	0.04190	0.05092	0.04554	0.05462	0.04831	0.11208	0.01960	0.05171
0.05311	0.04190	0.09335	0.07605	0.09364	0.08013	0.19015	0.03543	0.10421
0.09461	0.04190	0.11538	0.10633	0.12262	0.11147	0.26199	0.05258	0.15266
0.11931	0.04190	0.14414	0.13305	0.14984	0.13881	0.31218	0.07056	0.20235
0.15717	0.04150	0.16128	0.15699	0.17607	0.16309	0.33889	0.08699	0.25367
0.15905	0.04190	0.15065	0.17906	0.20176	0.18561	0.34312	0.10406	0.30789
0.24472	0.04190	0.14659	0.19938	0.22712	0.20037	0.32896	0.12188	0.36471
0.26647	0.04190	0.23104	0.20801	0.23948	0.21468	0.31902	0.12801	0.39109
0.02881	0.07193	0.03276	0.04802	0.06574	0.05146	0.11524	0.01833	0.06310
0.05465	0.07193	0.10131	0.07981	0.09543	0.08478	0.19496	0.03356	0.10568
0.086993	0.07193	0.11844	0.11092	0.12508	0.11697	0.26695	0.04967	0.15608
0.12248	0.07193	0.14598	0.13822	0.15293	0.14485	0.31600	0.06697	0.20675
0.16100	0.07193	0.17168	0.16240	0.17972	0.16928	0.34048	0.08365	0.25872
0.20294	0.07193	0.19860	0.18433	0.20592	0.19139	0.34233	0.09933	0.31281
0.24812	0.07193	0.22675	0.20432	0.23173	0.21148	0.32696	0.11682	0.36836
0.27101	0.07193	0.22859	0.21333	0.24440	0.22036	0.31629	0.12333	0.39655
0.02737	0.08893	0.04562	0.04462	0.06449	0.04661	0.10973	0.01556	0.06051
0.05294	0.08893	-0.01740	0.07587	0.09432	0.07933	0.18967	0.02899	0.10393
0.08318	0.08893	0.10743	0.10510	0.12342	0.10885	0.25930	0.04385	0.15054
0.11777	0.08893	0.13313	0.13164	0.15095	0.13573	0.30998	0.05789	0.19952
0.15256	0.08893	0.15516	0.15430	0.17699	0.15808	0.33696	0.07305	0.24755
0.19217	0.08893	0.18086	0.17569	0.20274	0.17948	0.34384	0.08819	0.29914
0.23427	0.08893	0.19432	0.19501	0.22798	0.19869	0.33327	0.10251	0.35189
0.25683	0.08893	0.20044	0.20426	0.24059	0.20794	0.32352	0.10926	0.37945

COMPARISON OF THE HOLDAP DATA MITH EXistimg carpelatiows

VG(H/S)	UL(H/S)	EXPIL	axita/yushida	hinjia	MERSMANM	кUKAR	MILIER	DECIUER
0.02934	0.02271	0.04650	0.04688	0.06462	0.05085	0.11683	0.02313	0.06405
0.05507	0.02271	0.09734	0.07763	0.09310	0.08351	0.18573	0.04076	0.10735
0.08769	0.02271	0.12981	0.10838	0.12176	0.11587	0.26791	0.06088	0.15720
0.12387	0.02271	0.14634	0.13565	0.14868	0.14425	0.31706	0.08065	0.20868
0.1634	0.02271	0.18065	0.16003	0.17460	0.16939	0.34108	0.09878	0.26194
0.20710	0.02271	0.21740	0.18240	0.19995	0.19252	0.34160	0.11740	0.31806
0.25401	0.02271	0.24374	0.20269	0.22487	0.21335	0.32458	0.13519	0.37603
0.27993	0.02271	0.25292	0.21263	0.23732	0.22376	0.31245	0.14513	0.40722
0.02775	0.04149	0.09918	0.04174	0.06277	0.04414	0.11101	0.01674	0.06119
0.05253	0.04149	0.10102	0.07036	0.09105	0.07389	0.18847	0.03036	0.10327
0.08340	0.04149	0.13226	0.09896	0.11927	0.10329	0.25964	0.04583	0.15087
0.11824	0.04149	0.15553	0.12508	0.14590	0.13018	0.31098	0.06133	0.20088
0.15609	0.04149	0.16594	0.14847	0.17153	0.15400	0.33844	0.07597	0.25225
0.19720	0.04149	0.20147	0.16980	0.19651	0.17560	0.34337	0.09230	0.30554
0.24186	0.04149	0.20147	0.18949	0.22128	0.19560	0.33023	0.10699	0.36122
0.26472	0.04149	0.25599	0.19849	0.23348	0.20456	0.31990	0.11349	0.38898
0.02851	0.06599	0.05998	0.04577	0.06443	0.04904	0.11396	0.01733	0.06257
0.05744	0.06598	0.08754	0.08013	0.09689	0.08506	0.20196	0.03325	0.11111
0.08653	0.06588	0.11327	0.10741	0.12306	0.11331	0.26584	0.04804	0.15550
0.12196	0.06598	0.14206	0.13434	0.15050	0.14086	0.53518	0.06434	0.20603
0.16059	0.06598	0.16594	0.15842	0.17695	0.16530	0.34022	0.08092	0.25819
0.20212	0.06598	0.18677	0.18004	0.20275	0.18705	0.34257	0.09504	0.31176
0.24656	0.06598	0.20576	0.19968	0.22812	0.20869	0.32793	0.11218	0.36697
0.27010	0.06598	0.22352	0.20836	0.24074	0.21597	0.31705	0.14896	0.39545
0.02708	0.08984	-0.01108	0.04088	0.06272	0.04269	0.10865	0.01338	0.05998
0.05169	0.08984	0.02751	0.06949	0.09158	0.07204	0.18617	0.02449	0.10192
0.08168	0.08984	0.05989	0.09752	0.11997	0.10042	0.25636	0.03752	0.14832
0.11478	0.08984	0.08632	0.12271	0.14664	0.12575	0.30710	0.05021	0.19604
0.15077	0.08984	0.12552	0.14543	0.17233	0.14646	0.33609	0.06293	0.24517
0.15040	0.08984	0.11878	0.16551	0.19758	0.16951	0.34396	0.07651	0.29687
0.23281	0.08984	0.12000	0.18574	0.22237	0.18883	0.33388	0.09074	0.35010
0.25503	0.08584	0.11327	0.19478	0.23469	0.19782	0.32438	0.09728	0.37734

COMPGRISBM OF THE HOLDUP DATA HITH EXISTIMG CDRRELATIONS 0.05 M MACL SOLUTLON

VG(H/S)	ULIM/S)	EXPTL:	AMITA/YOSHIDA	HIMITA	MERSMAMM	NUMAR	MILLER	PECKMED
0.02900	0.04357	0.12069	0.07258	0.07658	0.07681	0.11471	0.04570	0.06345
0.05573	0.04357	0.16874	0.11543	0.11095	0.12179	0.15609	0.07918	0.10841
. 0.08921	0.04357	0.19672	0.15434	0.14522	0.16208	0.26912	0.11434	0.15944
0.12565	0.04357	0.22044	0.18632	0.17734	0.19452	0.31763	0.14632	0.21114
0.16572	0.04357	0.23991	0.21398	0.20830	0.22249	0.34128	0.17648	0.26493
0.20855	0.04357	0.25511	0.23793	0.23848	0.24642	0.34171	0.20293	0.31988
0.25542	0.04357	0.26657	0.25962	0.28827	0.26821	0.32504	0.22962	0.37774
0.28943	0.04357	0.28857	0.27320	0.28887	0.28165	0.30938	0.24820	0.41851
0.02790	0.06252	0.08541	0.07047	0.07658	0.07321	0.11089	0.03922	0.06147
0.05337	0.06252	0.16753	0.11218	0.11133	0.11601	0.18978	0.06843	0.10463
0.08476	0.06252	0.17969	0.14980	0.14574	0.15410	0.26110	0.09980	0.15286
0.11958	0.06252	0.19429	0.18153	0.17810	0.18605	0.31153	0.12903	0.20273
0.15783	0.06252	0.23200	0.20900	0.20929	0.21366	0.33868	0.15900	0.25454
0.19847	0.06252	0.24660	0.23271	0.23964	0.23718	0.34338	0.18521	0.30716
0.24279	0.06252	0.25329	0.25415	0.26959	0.25856	0.33055	0.20915	0.36235
0.26571	0.05252	0.28553	0.26390	0.28438	0.26818	0.32030	0.22350	0.39017
0.02822	0.08588	0.09879	0.07108	0.07636	0.07443	0.11199	0.03483	0.66204
0.05119	0.08589	0.15597	0.11331	0.11136	0.11789	0.19199	0.06206	0.10594
0.08604	0.08588	0.19611	0.15113	0.14586	0.15623	0.26346	0.09238	0.15478
0.12131	0.08588	0.21801	0.18291	0.17830	0.18823	0.31334	0.12041	0.20513
0.15362	0.08588	0.21801	0.21015	0.20948	0.21547	0.33936	0.14765	0.25691
0.20097	0.08588	0.23504	0.23402	0.23989	0.23923	0.34306	0.17402	0.31032
0.24492	0.08588	0.26241	0.25510	0.26971	0.26007	0.32965	0.20010	0.36496
0.26727	0.08588	0.28952	0.26453	0.28431	0.26927	0.31957	0.20553	0.39206
0.02740	0.10231	0.06169	0.06948	0.07633	0.07174	0.10911	0.03198	0.06056
0.05225	0.10231	0.13955	0.11060	0.11151	0.11322	0.18672	0.05685	0.10282
0.08281	0.10231	0.17361	0.14755	0.14594	0.15021	0.25704	0.08380	0.14969
0.11614	0.10231	0.18516	0.17873	0.17828	0.18130	0.30774	0.11123	0.19794
0.15224	0.10231	0.21375	0.20535	0.20926	0.20763	0.33629	0.13535	0.24713
0.19049	0.10231	0.22592	0.22840	0.23923	0.23025	0.34401	0.15840	0.29698
0.23172	0.10231	0.24650	0.24915	0.26875	0.25067	0.33489	0.18415	0.34875
0.25344	0.10231	0.28606	0.25878	0.28340	0.26016	0.32593	0.19378	0.37534

COMPARISOA OF THE HOLDUP DATA MITH EXISTIMG CORRELATIONS

Comparisom of the hoddup data hith existimg compelations

CDAPARISDA OF THE HDLDUP DATA WITH EXISIIAG CORRELATIDNS

COMParison of dispersian coefficient data hith different correations

WG M/S	$\begin{gathered} n \\ n / s \end{gathered}$	$\begin{gathered} \mathrm{DLL} \\ \mathrm{CHF}_{\mathrm{H}+2 / 2 / 5} \\ \text { EXPTL } \end{gathered}$	$\stackrel{\text { DLD }}{\text { EM* } 2 / 5}$ DECKEER	$\begin{gathered} \text { DL } \\ \text { CH*2/S } \\ \text { ROIPD-RICE } \end{gathered}$	$\begin{gathered} \text { DLJ } \\ \text { CYuz2/S } \\ \text { yロumi } \end{gathered}$	$\begin{gathered} \text { DLF } \\ \text { CWH2/S } \end{gathered}$	$\begin{aligned} & \text { DNS } \\ & \text { H } \end{aligned}$	UT M/S	US
0.05400	0.05919	700.00000	152.4423	170.58042	148.62058	97.48496	0.00566	0.23283	0.19781
0.08930	0.05919	117.60000	189.11582 273.26410	207.47033	195.20909	76.77676	0.00523	0.23460	0.16987
0.12240	0.05919	202.20000	24.2645950	273.52108	205.96676	177.37896	0.00492	0.23596	0.14724
0.16250	0.05919	318.50000	272.03171	302.83194	171.92164	274.26747	0.00474	0.23680	0.13559
0.20440	0.05919	601.10000	293.42466	327.42375	230.17558	349.43782	0.00458	0.23755	0.12850
0.24940	0.05919	561,60000	313.33849	356.31364	299.30417	398.01965	0.00446	0.23815	0.12016
0.27400	0.05919	679.60000	323.21804	368,04761	317.86837	416.17	0.00430	0.23869	0.11851
0.02800	0.10470	0.00000	152.26499	157.68746	176.82142	128.03522		.2304	0.11525
0.05320	0.10470	0.00000	188.18662	151.76995	294.31120	242.76876	0.00524	0.23456	0.20132
0.08121	0.10812	371.80000	216.37598	215.04408	239.72503	99.93608	0.00498	0.23570	0.15305
0.02850	0.10470	0.00000	153.15696	159.28809	175.78616	122.69846	0.00565	0.23287	0.159136
0.05330	0.10470	0.00000	188.30328	190.00158	220.17823	142.53914	0.00524	0.23457	0.17756
0.08470	0.10470	219.50000	219.40142	224.26172	217.92247	126.91042	0.00496	0.23581	0.16079
0.11940	0.10470	265.00000	245.72500	254.41980	190.21729	214.59063	0.00476	0.23673	0.14850
0.15630	0.10470	255.70000	268.56189	283.78412	176.84500	277.33671	0.00460	0.23745	0.14106
0.19700	0.10470	700.00000	289.87568	307.15510	229.71539	317.66595	0.00448	0.23806	0.13224
0.23800	0.10470	575.60000	308.53775	332.83062	289.69780	361.95642	0.00438	0.23856	0.12840
0,26020	0.10470	700.00000	317.75275	342.12996	301.48908	376.19379	0.00433	0.23880	0.12448
0.02600	0.13240	0.00000	152.26499	149.29370	199.76671	144.14086	0.00566	0.23282	0.20251
0.05330	0.13240	0.00000	188.30328	189.66165	200.92609	88.76624	0.00524	0.23457	0.18528
0.08315	0.13240	0.00000	218.08826	209.42614	248.84705	120.91854	0.00497	0.23577	0.16344
0.11600	0.13240	290.00000	243.39355	238.08654	236.79163	163.86921	0.00477	0.23656	0.15162
0.15160	0.13240	343.90000	265.86958	270.24263	80.71558	251.32587	0.00462	0.23737	0.14563
0.19070	0.13240	611.50000	286.78315	291.53506	194.51557	289.296 .37	0.00450	0.23758	0.13626
0.23000	0.13240	572.80000	305.07604	318.84471	280.03330	339.60754	0.00440	0.23847	0.13314
0.25160	0.13240	607.30000	314.24793	324.94456	279.22346	347.78477	0.00435	0.23871	0.12782

comparison of dispersion coefficient data hith

VG ${ }_{\text {W/S }}$	$\underset{N / S}{u}$	$\begin{gathered} \text { DL } \\ \substack{\text { CH+2/5 } \\ \text { EXPIL }} \end{gathered}$	MLD Chatis DECMUER		$\begin{aligned} & \text { CHJJ } \\ & \text { CH*2/S } \\ & \text { JOSHI } \end{aligned}$	$\begin{gathered} \text { DLF } \\ \text { CMAR2/S } \\ \text { IELD-DANIDSDN } \end{gathered}$	$\begin{gathered} \text { WNS } \\ \text { H } \end{gathered}$	$\begin{aligned} & \text { uT } \\ & n / \mathrm{S} \end{aligned}$	$\begin{aligned} & \text { US } \\ & \text { M/S } \end{aligned}$		
0.02825	0.05700	700.00000	152.71230		169.11221		151.38440	99.65033	0.00393	0.20900	0.17420
0.05450	0.05700	264.00000	189.69189	205.37882	156.33523	59.62758	0.00364	0.21054	0.14759		
0.08650	0.05700	216.20000	220.92926	237.29465	207.65477	172.13863	0.00344	0.21161	0.12849		
0.12300	0.05700	285.00000	246.14561	273.13563	95.92046	261.72309	0.00330	0.21242	0.12102		
0.16200	0.05700	313.90000	271.75521	301.94321	200.41562	314.63023	0.00319	0.21306	0.11351		
0.20400	0.05700	732.30000	293.23505	329.41006	262.50852	361.12048	0.00310	0.21358	0.10873		
0.24900	0.05700	631.50000	313.17256	359.23396	323.64074	409.36534	0.00303	0.21403	0.10798		
0.27300	0.05700	705.20000	322.82829	370.84345	339.80967	426.69185	0.00300	0.21424	0.10522		
0.02840	0.12040	0.00000	152.97941	146.66372	203.07818	152.93094	0.00393	0.20901	0.17757		
0.05620	0.12040	0.00000	191.62444	189.13397	213.01568	115.77373	0.00362	0.21061	0.15942		
0.08310	0.12040	181.10000	218.02498	202.93609	254.91335	141.82691	0.00346	0.21152	0.14014		
0.11540	0.14200	462,60000	242.97737	236.48051	203.16846	189.57397	0.00332	0.21228	0.13839		
0.15030	0.14200	366.70000	265.11504	259.91825	154.01041	239.13083	0.00322	0.21289	0.12926		
0.18800	0.14200	599.80000	285.43683	287.63877	235.94780	293.85680	0.00313	0.21339	0.12421		
0.22680	0.14200	530.10000	303.66877	313.38134	294.83918	338.78134	0.00306	0.21362	0.12059		
0.24760	0.14200	703.90000	312,58039	318.59769	293.57898	345.30414	0.00303	0.21402	0.11577		

CDIPARISOM OF GISPERSIOM COEFFICIENT DATA WITH DIFFERENT CORRELATIDNS

$\begin{aligned} & \text { VG } \\ & \mathrm{M} / \mathrm{S} \end{aligned}$	$\begin{gathered} u \\ \mathrm{~m} / \mathrm{s} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{C}_{\mathrm{H}+2}+2 / \mathrm{S} \\ \text { EXPTL } \end{gathered}$		$\begin{gathered} \text { MB } \\ \text { CHE2/S } \\ \text { BAIRD-RICE } \end{gathered}$	$\begin{gathered} \text { Ril. } \\ \text { Chin2/5 } \\ \text { JOSHI } \end{gathered}$	$\begin{gathered} \text { MLF } \\ \text { Chw+2/S } \\ \text { ELD-DAUIDSD } \end{gathered}$	$\begin{gathered} \mathrm{Z}, \mathrm{~S} \\ \mathrm{n} \end{gathered}$	$\begin{aligned} & \text { UI } \\ & \text { H/S } \end{aligned}$	$\begin{aligned} & \text { US } \\ & \mathrm{H} / \mathrm{S} \end{aligned}$
0.02700		153.80000	150.44853	168.04842	142.91296	88.76789	0.00568	0.23272	0.20006
0.05340	0.06260	151.40000	188.41980	205.66017	195.06730	83.52803	0.00524	0.23457	0.17131
0.08567	0.06260	119.80000	220.22743	237.67255	214.56103	156.18750	0.00495	0.23585	0.14872
0.12200	0.06260	166.80000	247.47803	268.66993	191.95656	236.63004	0.00474	0.23679	0.13558
0.16000	0.05265	325,50000	270.64344	301.17527	183.42499	305.79681	0.00458	0.23751	0.13127
0.20200	0.06260	700.00000	292.28321	330.27637	261.47845	357.10175	0.00447	0.23813	0.12687
0.24640	0.06260	556.30000	312.08964	357.83634	316.01376	402.11720	0.00436	0.23866	0.12441
0.27000	0.06260	495.30000	321.65326	368.58791	329.60884	418.13236	0.00431	0.23850	0.12053
0.02750	0.08470	0.00000	151.36230	162.55630	149.40018	84.19381	0.00567	0.23277	0.20365
0.05300	0.09470	0.00000	187.95287	194.51547	208.22827	122.60170	0.00524	0.23455	0.17755
0.08400	0.05470	360.10000	218.80139	227.74814	208.80271	143.64178	0.00456	0.23579	0.15989
0.11800	0.09470	258.60000	244.77044	257.64989	176.55781	222.62356	0.00476	0.23670	0.14770
0.15600	0.09470	355.70000	268.39167	286.40536	171.17459	281.10905	0.00461	0.23745	0.13892
0.15660	0.09470	432.30000	289.38927	311.50389	237.49380	325.52613	0.00448	0.23805	0.13157
0.24000	0.05470	649.50000	309.39096	341.69330	308.10440	377.54041	0.00437	0.23859	0.12972
0.26000	0.09470	515.90000	317.67214	352.94849	327.53027	335.39738	0.00433	0.238180	0.12820
0.02790	0.13200	0.00000	152.08532	156.24467	165.16226	92.74608	0.00566	0.23281	0.20639 :
0.05290	0.13200	0.00000	187.83577	200.04614	153.98159	159.09268	0.00524	0.23455	0.19435
0.08350	0.13200	289.20000	218.37074	212.01335	241.60240	93.70707	0.00496	0.23578	0.16436
0.11700	0.13200	277.00000	244.08397	262.84482	238.66746	260.28215	0.00477	0.23668	0.16732
0.15300	0.13200	533.10000	266.67733	272.00175	138.59791	255.46735	0.00462	0.23739	0.14564
0.19000	0.13200	531.80000	286.43534	300.39974	255.88632	310.77136	0.00450	0.23797	0.14137
0.23200	0.13200	428.30000	305.94894	333.87759	332.65170	369.96501	0.00439	0.23850	0.14169
0.02730	0.15300	0.00000	150.99814	141.02972	215.15734	155.11691	0.00568	0.23275	0.20364
0.05200	0.15300	0.00000	186.77512	181.54267	217.94130	123.40073	0.00525	0.23450	0.18842
0.08140	0.15300	0.00000	216.54291	209.28727	232.59120	44.61773	0.00498	0.23571	0.17116
0.11400	0.15300	475.30000	242.00654	231.1450i	245.23960	143.85879	0.00478	0.23661	0.15592
0.14500	0.15300	700,00000	264.35613	261.68411	172.25913	234.07963	0.00463	0.23732	0.14887
0.18500	0.15300	364.60000	283.92562	290.32451	244.89270	293.37846	0.00451	0.23790	0.14445

COMPHISDM OF IISPERSION CDEFFICIENT OATA MITH

CCAFPARISDM DF DISPERSION COEFFICIEMT DATA MITH DIFFERENT CORRELATIONS

$\begin{aligned} & \text { VG } \\ & \text { n/5 } \end{aligned}$	$\begin{gathered} \text { UL } \\ \text { H/S } \end{gathered}$	$\begin{gathered} \text { ML } \\ \text { CH*2/S } \\ \text { EXPTL } \end{gathered}$	DLD Chne2/5 DECKMER	$\begin{gathered} \text { DLB } \\ \text { CKE:2/S } \\ \text { BAIRD-RICE } \end{gathered}$	$\begin{gathered} \text { DLJ } \\ \text { CH:2/S } \\ \text { JOSHI } F 1 \end{gathered}$	$\begin{aligned} & \text { DLF } \\ & \text { CM:2/S } \\ & \text { LD-DAVIDSON } \end{aligned}$	$\begin{gathered} \text { DVS } \\ \mathbf{n} \end{gathered}$	$\begin{aligned} & \text { UT } \\ & \text { W/S } \end{aligned}$	$\begin{aligned} & \text { US } \\ & \text { H/S } \end{aligned}$
0.02820	0.06320	405.20000	152.62305	167.36712	162.27622	118.58634	0.00478	0.22158	0.18578
0.05420	0.08320	55.20000	189.34867	203.64575	203.00521	103.24977	0.00442	0.22324	0.15938
0.08650	0.06320	109.70000	220.92926	237.65254	206.14362	168.87726	0.00418	0.22442	0.14077
0.12130	0.06320	330.00000	247.00854	269.17301	158.35591	247.03933	0.00401	0.22526	0.13046
0.16230	0.06320	527.90000	271.92118	303.47360	213.71648	315.30297	0.00388	0.22599	0.12553
0.20400	0.06320	700.00000	293.23505	330.58453	270.03878	360.89441	0.00377	0.22655	0.11993
0.24860	0.06320	700.00000	313.00645	356.52004	315.99633	402.18600	0.00368	0.22704	0.11592
0.27200	0.06320	700.00000	322.43758	368.82012	335.67251	421.06368	0.00364	0.22726	0.11405
0.02840	0.10460	0.00000	152.97941	173.73742	185.32647	169.10043	0.00478	0.22160	0.20345
0.05350	0.10460	62.80000	188.53616	189.06127	217.09169	136.06482	0.00443	0.22321	0.16799
0.08470	0.10460	151.10000	219.40142	221.45918	220.34197	121.22842	0.00419	0.22437	0.15110
0.11900	0.10460	462.50000	245.45304	253.98340	170.11942	221.64891	0.00402	0.22522	0.14127
0.15640	0.10460	575.50000	268.61858	285.23793	209.91608	286.40084	0.00389	0.22590	0.13506
0.19730	0.10460	700.00000	290.02127	312.54336	269.34530	333.76224	0.00379	0.22647	0.12902
0.23700	0.10460	538.90000	308.10934	335.07010	307.48880	369.99113	0.00370	0.22692	0.12400
0.25960	0.10460	676.40000	317.51077	354.79235	350.81140	403.25685	0.00366	0.22715	0.12746
0.02780	0.12720	0.00000	151.90522	154.84210	168.19552	100.71696	0.00479	0.22155	0.19497
0.05280	0.12720	0.00000	187.71852	182.22058	224.03058	143.17116	0.00443	0.22318	0.17214
0.08210	0.12720	168.90000	217.15566	217.39754	206.16348	135.40521	0.00421	0.22429	0.15923
0.11400	0.12720	277.80000	242.00064	244.72342	178.16492	205.77121	0.00404	0.22511	0.14754
0.14950	0.12720	327.30000	264.64854	257.57878	225.84055	217.53317	0.00391	0.22578	0.13210
0.18650	0.12720	476.20000	284.68326	301.20588	269.33847	317.15477	0.00381	0.22633	0.13532
0.22660	0.12720	700.00000	303.58037	324.76101	308.95148	355.37098	0.00372	0.22681	0.12987
0.24740	0.12720	589.30000	312.50705	335.80105	325.95186	372.63020	0.00368	0.22703	0.12739
0.02710	0.16900	0.00000	150.63219	140.98993	205.86713	135.75360	0.00480	0.22148	0.15635
0.05120	0.16900	0.00000	185.82195	158.01877	265.18009	189.46072	0.00445	0.22310	0.17410
0.08044	0.16900	0.00000	215.69680	198.66994	250.41404	121.45009	0.00422	0.22424	0.16283
0.11020	0.16900	0.00000	239.30834	218.92680	260.39920	82.30593	0.00406	0.22503	0.14990
0.14360	0.16900	392.30000	261.15532	240.52654	254.69386	174.94453	0.00393	0.22568	0.13991
0.18040	0.16900	584.90000	281.57622	271.76824	135.78862	257.12576	0.00383	0.22625	0.13527
0.22200	0.16900	472.00000	301.53268	298.00228	257.75347	307.02291	0.00373	0.22676	0.12984

CONPARISDM DF VISPERSION CUEFFICIENT DATA WITH DIFFEREMT COMAELATIONS

U		d	M0	BLB	日.J	M.F	WS	UT	US
		CHEETS	CHE*2/S	CHNN2/5	CH+2/2/5	chareze/s	H	H/S	H/S
H/S		$\begin{gathered} \text { CHETS } \\ \text { EXPTL } \end{gathered}$	DECRMER	BAIRD-RICE	NO5HI	20-DAvtisman			
		Ex=	xıxx=						
0.02860	0.04110	129.80000	153.68711	176.19319	153.99852	110.98754	0.00581	0.23501	0.19473
0.05516	0.04110	151.80000	190.44691	196.69672	275.60930	216.56134	0.00536	0.23878	0.14157
0.89170	0.04110	400.60000	471.10076	593.69709	637.47530	735.39407	0.00385	0.24422	0.14983
0.12700	0.04110	482.50000	250.78014	291.19699	178.43849	291.58283	0.00487	0.23506	0.14129
0.16600	0.04110	479.00000	273.95144	322.12350	255.77158	346.85643	0.00471	0.23978	0.13724
0.20400	0.04110	449.10000	293.23505	347.28879	293.97281	387.46946	0.00460	0.24033	0.13350 0.13242
0.27300	0.04110	457.50000	322.82829	387.57159	366.73126	449.83666	0.00414	0.24111	0.20555
0.02805	0.09750	0.00000	152.35467	163.35235	150.08120	82.03894	0.00583	0.235673	0.18910
0.05400	0.09750	0.00000	189.11582	205.78224	100.73116	151.38386 145.51310	0.00510	0.23799	0.16138
0.08567	0.09750	166.30000	220.22743	228.72632	209.89891	145.513.84311	0.00490	0.23892	0.15226
0.12060	0.09750	241.80000	246.53724	263.12385	70.46710	239.84311 299.54191	0.00474	0.23955	0.14552
0.15860	0.09750	275.10000	269.85966	293.97369	230.32276	358.14676	0.00461	0.24027	0.14440
0.15970	0.09750	335.40000	291.16076	326.62563 353.49177	305.33497	400.54941	0.00450	0.24079	0.14160
0.24260	0.09750	483.40000	310.49305	353.48177 362.01628	348.95200	411.70853	0.00445	0.24103	0.13593
0.26500	0.09750	577.00000	315.67528	362.01626	354.31502	41.1005	0.014	0.2103	

Companisow of gispersion coefficient data uith alfferent cormelations

COMPARISON OF DISPERSIDN COEFFICIENT DATA Mith DIFFERENT CORRELATIONS

VG H/S	$\begin{gathered} \text { U } \\ M / S \end{gathered}$	CHET2/S EXPIL	DLD CH+2/S DECKHER	$\begin{gathered} \text { DLB } \\ \text { CMI+2/S } \\ \text { BAIRD-RICE } \end{gathered}$	$\begin{aligned} & \text { D.J } \\ & \text { CM\&2/S } \\ & \text { J0SH11 } \end{aligned}$	DLFCW+12/SFIELD-DAVIDSDA	$\begin{gathered} \text { DUS } \\ h \end{gathered}$	$\begin{array}{ll} \text { UII } \\ \text { M/S } \end{array}$	$\begin{aligned} & \text { US } \\ & \text { M/S } \end{aligned}$
0.26900	0.03370	449.30000	321.25964	394.29646	395.58863	466.39113	0.00525	0.24916	0.16221
0.24530	0.03370	449.80000	311.62917	382.30246	382.41457	450.28198	0.00531	0.24892	0.16584
0.20140	0.03370	520.80000	291.93643	357.48341	352.96878	415.82638	0.00544	0.24838	0.17112
0.15800	0.03370	276.50000	269.52233	330.09747	326.92218	380.92214	0.00560	0.24772	0.18391
0.11950	0.03370	292.70000	245.78289	298.53278	276.77766	329,40406	0.00579	0.24696	0.18144
0.08570	0.03370	342.40000	220.25287	265.35926	224.28042	274.36051	0.00502	0.24605	0.18526
0.05360	0.03370	309.20000	188.65238	222.58599	75.73761	174.49689	0.00637	0.24475	0.18591
0.02790	0.03370	188.30000	152.08532	179.14981	106.84447	89.08739	0.00689	0.24293	0.20792
0.02750	0.05450	221.40000	151.36230	175.27712	96.68731	123.31043	0.00691	0.24289	0.21439
0.05230	0.05450	186.20000	187.13002	214.48516	101.56078	153.43664	0.00633	0.24469	0.19039
0.08370	0.05450	266.90000	218.54321	257.22416	217.01386	258.81541	0.00604	0.24599	0.18566
0.11800	0.05450	334.70000	244.77044	291.95863	274.86123	318.17670	0.00580	0.24693	0.18136
0.15500	0.05450	369.50000	267.82269	322.75985	321.29986	367.24012	0.00561	0.24767	0.17985
0.19600	0.05450	434.40000	289.38927	348.83960	337.84294	395.76753	0.00546	0.24831	0.16275
0.23900	0.05450	405.00000	309.96485	374.32204	381.19873	438.76846	0.00533	0.24885	0.16636
0.26200	0.05450	444.30000	318.47647	386.50011	356.08863	455.81914	0.00527	0.24909	0.16437
0.02716	0.07940	291.40000	150.74216	169.31981	105.44699	117.16176	0.00692	0.24286	0.21679
0.05220	0.07940	187.20000	187.01187	204.19930	169.87942	100.76735	0.00639	0.24468	0.18966
0.08290	0.07940	324.10000	217.85168	249.17370	210.78600	242.97418	0.00605	0.24596	0.18645
0.11650	0.07940	339.00000	243.73925	287.70543	290.59682	317.57110	0.00581	0.24689	0.18853
0.15300	0.07940	378.60000	266.67733	315.26101	319.94089	354.76506	0.00562	0.24764	0.17896
0.19300	0.07940	349.90000	287.91999	343.43917	358.02649	396.83519	0.00547	0.24827	0.17590
0.23500	0.00000	1.00000	307.24888	383.93877	461.02718	504.83678	119.34810	7.00978	6.25629

VG n/5	$\begin{gathered} \mathrm{n} \\ \mathrm{~m} / \mathrm{S} \end{gathered}$	DL $\mathrm{CH}+42 / 5$ CHDTL EXPTL				$\begin{gathered} \text { DLF } \\ C^{x}+2 / 2 / S \\ E L:-3 A U Y \text { InSIN } \end{gathered}$	DUS	$\begin{array}{ll} U T \\ M / S \end{array}$	$\begin{aligned} & 45 \\ & !/ / 5 \end{aligned}$
0.02900	0.03030	263.90000	154.03249	182.2102:	121.15731	E4.59203	0.00893	0.25199	0.21396
0.05610	0.03030	358.00000	19!.54186	231.27945	! 19.53 ig ?	225.50502	0.00756	0.25355	0.211820
0.08910	0.07930	221.00000	223.09897	259.97509	22E. Rga! ${ }^{\text {a }}$	$279.66!79$	0.00716	0.255is	0.19147
0.12500	0.03030	318.00000	229.46584	303.93955	275.06:86	335.18098	0.00687	0.25609	0.19640
0.16700	0.03030	431.20000	274.45494	335.35982	325.91525	3E5.48922	0.00554	0.25699	0.18417
0.20900	0.03030	438.10000	295,58759	362.83055	356.3E615	422.09025	0.00EC6	0.25750	0.17679
0.25500	0.03030	409.60000	315.64301	388.16978	295.4053	457.24613	0.00631	0.25804	0.17120
0.27990	0.03030	404.20500	325.15265	200.21201	400.72278	473.86510	$0.006 z^{4}$	0.25828	0.16883
0.02900	0.08310	207.20000	154.03349	171.73993	103.E3z07	90.53372	$0.098 i 9$	0.25199	0.27209
0.05500	0.08310	232.20000	190.26443	215.67507	162.077 ${ }^{\text {¢ }}$	i86.16569	0.00758	0.25380	0.20754
0.08700	0.08310	343.20000	221.34987	256.19075	239.70241	262.53659	0.00718	0.25508	0.19934
0.12200	0.08310	321.00000	247.47603	250.71547	290.34025	317.939 ${ }^{10}$	0.00689	0.25602	0.19324
0.16100	0.08310	354.20000	271.20448	322.17208	333.83245	366.11445	0.00567	0.25676	j. 18914
0.20200	0.08310	429.90000	292.28321	349.01161	366.39727	404.16528	1.00549	0.25741	0.18325
0.24600	0.06310	486.20000	311.92936	374.54134	398.23356	440.42406	0.00533	0.25794	0.17956
0.25960	0.08310	447.90000	317.268¢	350.92194	40c.65C91	488.7!09!	0.80630	0.25808	0.17694

COMPARISOM OF DISPERSIOM COEFFICIENT DATA GITH DIFFERENT CORRELATIONS
1200 PPM CHC SOLUTIOW

		DL	DLD	DL. ${ }^{\text {c }}$	MJ	MF	DVS	UT	US
M/S					CHayls			H/5	/5
	W/S	$\begin{array}{r} C_{H}+Z_{2 / 5} \\ \text { EXPIL } \end{array}$	$\begin{aligned} & \text { CHFH2/S } \\ & \text { DECKUER } \end{aligned}$	$\begin{aligned} & \text { CNAN2/S } \\ & \text { BAIRD-RICE } \end{aligned}$	$\begin{gathered} \text { CHA2/5 } \\ \text { JOSHI f } \end{gathered}$	CIELD-DAVIDSDN	M		
				187	107.59277	145.36226	0.01059	0.26567	0.23278
0.02950	0.02040	147.40000	154.90390	187.77665	173.15447	219.91714	0.00982	0.26749	0.21778
0.05540	0.02040	221.60000	190.71996	272.47503	238.958232	289.77435	0.00929	0.28860	0.21099
0.08600	0.02040	231.80000	222.18626	305.56075	274.18908	335.32994	0.00891	0.26977	0.19729
0.12400	0.02040	237.20000	248.80957 272.58301	33.50301	323.35091	385.74903	0.00862	0.27054	0.19899
0.16350	0.02040	274.40000 395.80000	272.58301 295.68090	365.39916	356.01124	425.37352	0.00837	0.27122	0.15013
0.20320	0.02040	356.00000 329.20000	295.68090 315.39773	350.44223	386.94994	460.67625	0.00818	0.27176	0.18632
0.25440	0.02040	329.20000 358.20000	324.95874	402.37761	399.03439	476.18014	0.00809	0.27201	0.18120
0.27860	0.02040	198.20000	153.15696	171.65099	126.53556	57.74246	0.01063	0.26557	0.23406
0.02850	0.07810	194.20000 260.70000	189.85256	220.91118	200.55770	212.49384	0.00584	0.26745	0.22722
0.05464	0.07810	260.70000 253.20000	221.34987	264.84539	278.73555	294.74085	0.00930	0.26877	0.22834
0.08700	0.07810	253.20000 391.60000	247.85233	296.67601	309.35740	334.37601	0.00893	0.26974	0.21578
0.12256	0.07810	391.60000 400.70000	271.75521	327.23781	346.45544	377.75642	0.00863	0.27051	0.20987
0.16200	0.07810	400.70000 382.40000	292.90261	353.12272	373.63743	411.68139	0.00840	0.27114	0.20057
0.20330	0.07810 0.07810	382.40000 353.80000	313.17256	379.80454	407.57311	449.85858	0.00820	0.27170	0.19870
0.24900	0.07810	317.20000	322.04581	389,28620	413.44499	460.08732	0.00812	0.27193	0.18957
0.27100	0.07810	317.2000							

COMPPRISDM OF DISPERSIDW COEFICIENT DATA MITH DIFFERENT COPRELAIIDNS

0.02500	0.04350	1.00000	154.03849	191.28236	227.87955	244.25239	473.13116	9.39212	9.39212
0.05570	0.04360	290.30000	191,06016	224.41348	147.09317	197.80340	0.00553	0.23884	0.18701
0.08920	0.04360	382.70000	223.18157	266.52134	233.16364	278.18111	0.00522	0.24014	0.18055
0.12560	0.04360	426.50000	249.86447	301.10752	289.59539	333.70596	0.00501	0.24104	0.17521
0.16570	0.04360	499.30000	273.78796	332.03600	326.57918	380.25787	0.00485	0.24183	0.17096
0.20860	0.04360	455.20000	295.40078	359.99212	362.98969	420.91324	0.00472	0.24246	0.16785
0.25540	0.04350	472.80000	315.80631	386.38142	396.37278	458.36379	0.00460	0.24300	0.16548
0.28940	0.04360	507.50000	329.10345	402.93637	414.50045	480.39563	0.00454	0.24334	0.16079
0.02820	0.08500	232.60000	152.62305	165.81167	150.89473	90.42148	0.00600	0.23655	0.20556
0.05420	0.08500	230.20000	189.34667	210.19087	111.63856	164.66191	0.00555	0.23877	0.15045
0.68600	0.08500	316. 10000	220.50701	250.61963	216.77067	246.64872	0.00525	0.24004	0.18065
0.12130	0.08500	374.00000	247.00854	286.54287	279.01112	309.27239	0.00503	0.24058	0.17574
0.15960	0.08500	373.10000	270.41987	319.93598	333.06573	364.40371	0.00487	0.24173	0.17628
0.20100	0.08500	470.10000	291.80492	347.96551	369.06562	405.09722	0.00474	0.24236	0.17254
0.24500	0.08500	500.40000	311.50335	372.63174	397.34764	438.83341	0.00453	0.24288	0.18653
0.28730	0.08500	522.90000	328.31345	392.43125	617.30101	464.58220	0.00454	0.24332	0.15852

COMHARISDM OF DISPERSION COEFFICIEMT DATA NITH DIFFERENT COMRELATIONS

[^0]

COMPARISON OF DISPERSION COEFFICIENT DATA MITH DIFFERENT CORRELATIOWS

$\begin{aligned} & \mathrm{VG} / \mathrm{S} \end{aligned}$	$u_{n / S}^{u}$	$\begin{gathered} d \\ \text { Cnet2/S } \\ \text { EXPTL } \end{gathered}$	$\begin{gathered} \text { DLD } \\ \text { CH+2/S } \\ \text { DECRMER } \end{gathered}$	$\begin{gathered} \text { DLD } \\ \text { Chin } 2 / \mathrm{S} \\ \text { BAIRD-RICE } \end{gathered}$	$\begin{aligned} & \text { OL.J } \\ & \text { CHi+2/S } \\ & \text { JOSHI } f \end{aligned}$	$\begin{gathered} \mathrm{MLF} \\ \text { CHFR2/S } \\ \text { ELD-DAUIDSD } \end{gathered}$	$\begin{gathered} \text { DNS } \\ \text { H } \end{gathered}$	H/	$\begin{aligned} & \text { us } \\ & \text { M/S } \end{aligned}$
0.02890	0.05310	160.50000	153.86300	167.30572	196.95606	168.79139	0.00614	0.23690	0.19012
0.05497	0.05310	252.90000	190.23018	211.63307	191.84983	44. 18331	0.00569	0.23867	0.17160
0.08767	0.05310	325.60000	221.91096	255.18625	149.57730	235.37058	0.00538	0.23994	0.16473
0.12370	0.05310	355.50000	248.61076	292.24925	250.20644	309.67590	0.00516	0.24088	0.16272
0.16210	0.05310	370.80000	271.81055	323.18709	301.53505	359.52124	0.00500	0.24161	0.15878
0.20430	0.05310	465.70000	293.37728	351.75165	343.42265	403.36692	0.00486	0.24223	0.15602
0.02840	0.12460	167.90000	152.97341	163.47385	64.97109	88.87657	0.00616	0.23685	0.21232
0.05360	0.12460	215.80000	188.65238	188.42147	216.87159	129.72121	0.00570	0.23860	0.18592
0.08440	0.12460	361.40000	219.14468	232.74249	155.32936	199.65683	0.00540	0.23984	0.17818
0.11700	0.12460	355.40000	244.08397	261.05782	210.54952	249.75334	0.00519	0.24073	0.16607
0.15340	0.12460	403.40000	265.90720	295.95161	292.24640	316.25573	0.00503	0.24146	0.16396
0.19220	0.12460	444.30000	287.52561	325.29100	339.77219	363.98869	0.00489	0.24207	0.16110

References

$\begin{array}{ll}1.1 \text { Botton, R., Cossert, D., and Charpentier, J., Chem. Eng. J. } 16, \\ & 107(1976) .\end{array}$
1.2 Miller, D.N., Ind. and Eng. Chem. Pro. Des. Dev. 20, 475 (1981).
1.3 Schugerl, K., Lucke, J., and Oels, U., Adv. In Biochem. Eng. 7, 1 (1977).
1.4 Todt, J., Lucke, J., Schuger1, K., and Renken, A., Chem. Eng. Sc1. 32, 369 (1977).
1.5 Oels, U., Lucke, J., Buchholz, R., and Schugerl, K., Ger. Chem. Eng. 1, 115 (1978).
1.6 Bach, H. and Pilhofer, T., Ger. Chem. Eng. 1, 270 (1973).
1.7 Akita, K, and Yoshida, F., Ind. Eng. Chem. Pro. Des. Develod. 12, 76 (1973).
1.8 Hikita, H., Asai, S., Tanigawa, K., Segawa, K., and Kitao, M., The Chem. Eng. J. 20, 59 (1980).
1.9 Freedman, W. and Davidson, J.F., Trans. Instn. Chem. Engrs., 47, T257 (1969).
1.10 Kumar, A., Dagaleesan, T., Laddha, G., and Hoelscher, H., Can. J. Chem. Eng. 54, 503 (1970).
1.11 Berghmans, J., Chem. Eng. Sci. 28, 2005 (1973).
1.12 Zuber, N. and Findlay, J., J. of Heat Transfer 87, 453 (1965).
1.13 Konig, B., Buchholz, R., Lucke, J., and Schugerl, K., Ger. Chem. Eng. 1, 199 (1978).
1.14 Baird, M. and Rice, R., The Chem. Eng. J. 9, 171 (1975).
1.15 Joshf, J., Trans. Instn. of Chem. Engrs. 58, 155 (1980).
1.16 Deckwer, W., Burchart, R., and Zoll, G., Chem. Eng. Sc1. 29, 21772187 (1974).
1.17 Field, R. and Davidson, J., Trans. Instn. of Chem. Engrs. 58, 228 (1980) .
1.18 Eissa, S. and Schugerl, K., Chem. Eng. Ser. 30, 1251 (1975).
1.19 Bach, H. and P11hofer, T., Ger. Chem. Eng. I, 270 (1978).
1.20
1.21
1.22
1.23
1.24
1.25

$$
1.26
$$

1.27
1.28
1.29
1.30
1.31
1.32
1.33 Rosen, M., Journal of Colloid and Interfacial Science 36, 350 (1971).

2. BATCH BUBBLE COLIMN

2.1 Introduction

The effect of the physical properties of the liquid phase on the hydrodynamics of bubble colums is not clearly understood. While Akita and Yoshida, (2.1) Hikita et al., (2.2) Bach and Pilhofer, (2.3) Ueyama and Miyauchi, (2.4) Schugerl et al., (2.5) and Oels et al. (2.6) have studied the effect of physical properties, a clear picture of the hydrodynamics, espec:lally of the bubble dynamics, has yet to emerge.

Aqueous solutions of alcohols have been used to lower the liquid surface tension. The operation of bioreactors and fermenters involves the use of alcohol solutions in the presence of other additives. It is desirable to know the hydrodynamics of an SRC-II reactor, where the surface tension of the liquid phase is believed to be very low. Akita and Yoshida, (2.1) Hikita et al., (2.2) and Kim et al. (2.7) have studied systems with a wide range of surface tensions ($0.0124-0.0796 \mathrm{~N} / \mathrm{m}$) and have developed correlations for the gas holdup which show only a slight dependence on the surface tension. Botton et al. (2.8) and Miller, (2.9) using continuous flow systems, have found no effect of surface tension on gas holdup. Schugerl et al. (2.5) and Oels et al. (2.6) have studied aqueous solutions of alcohols and reported a significant increase in gas holdup as the surface tension is decreased. The SRC-II reaction medium may behave like aqueous solutions of higher alcohols and therefore the hydrodynamics of these alcohol solutions at higher gas velocities have been studied in the present work. Schugerl et al. (2.5) have studied the hydrodynamics of aqueous alcohol solutions in the bubbly flow regime. In the experiments reported here, the dynamic gas disengagement technique along
with the determination of gas holdup are used to gain better insight about the bubble rise velocities and relative holdups of small and large bubbles. It is easy to obtain this information using a transparent batch bubble column.

Akita and Yoshida ${ }^{(2.1)}$ and Hikita et al. ${ }^{(2.2)}$ have observed a decrease in gas holdup with an increase in viscosity in experiments which covered viscosities over the range of 0.001 to $0.070 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{sec}$. All of these experiments were carried out in an 0.152 m diameter column. The hydrodynamics of a bubble column operating in the churn-turbulent regime is more complex than that in the bubbly flow regime and is expected to depend on the column diameter. When the viscous forces predominate and the liquid has a coalescing tendency, the bubbles try to reach the equilibrium bubble size by coalescing. As a rule of thumb, the bubble size in the columi is independent of the initial bubble size if the perforated plate has holes of diameter greater than $10^{-3} \mathrm{~m}$. Thus, the bubbles grow to reach the dynamic equilibrium size as they move up the colum. For small diameter colums (diameter up to 0.15 m), slugs are formed and the transition occurs from bubbly to slug flow. For a column diameter of 0.305 m , as used in the present work, the transition is from bubbly to churn-turbulent flow and the bubble clusters coalesce to form large, fast rising bubbles (but not slugs). The study of the hydrodynamics of large fast rising bubbles in the presence of small bubbles is only reported by Vermeer and Krishna. (2.10) Hills and Darton ${ }^{(2.11)}$ found the rise velocities of large bubbles to be as high as $1.0 \mathrm{~m} / \mathrm{s}$. Schumpe ${ }^{(2.12)}$ studied the hydrodynamics of CMC solutions in the presence of large irregular bubbles, but slugs formed due to the small column diameter. In this work, glycerine and CMC solutions are used to stady the effect of viscosity
on gas holdup and the hydrodynamics of the fast rising bubbles in Newtonian and non-Newtonian solutions.

The effect of solids on the holdup is demonstrated by the use of coal and sand of various concentrations and sizes added to an air-water system. The main objective behind analyzing air-water-solid data is to have a reference for air-CMC or glycerine solution-solid systems.

The physical properties of the aqueous alcohol, CMC, and glycerine solutions are Ilsted in Tables 2.1-2.3. Properties of the coal slurries and the coal and sand particles are given in Tables 2.4-2.6.

TABLE 2.1
PHYSICAL PROPERTIES OF ALCOHOL SOLUTIONS

Alcohol	Concentration $w t \%$	Density $\mathrm{kg} / \mathrm{m}^{3}$	Surface Tension N / m	Viscosity $\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}$
Methanol	1.0	1006	0.06674	0.00100
	5.0	1000	0.06143	0.00100
Ethanol.	1.0	995	0.06608	0.00100
n-Propanol	0.5	999	0.06416	0.00100
	1.0	998	0.06091	0.00100
	1.5	997	0.05615	0.00100
			999	0.06319
n-Butanol	0.5	996	0.04823	0.00100
	1.6			0.00100

TABLE 2.2
PHYSICAI PROPERTIES OF GLICERINE SOLUTIONS

Glycerine Concentration vol $\%$	Density kg/m	Surface Tension N / m	Viscosity $\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}$
10	1039	0.05860	0.00170
20	1071	0.05800	0.00221
30	1096	0.05760	0.00302
40	1124	0.05790	0.00423
50	1147	0.05890	0.00666
60	1168	0.05920	0.01140
70	1194	0.06720	0.02060
80	1216	0.06530	0.05040
85	1227	0.06450	0.05900
90	1228	0.06380	0.07620
95	1243	0.06410	0.14100
99.5	1249	0.06450	0.24600

TABLE 2.3
PHYSICAL PROPERTIES OF CMC SOLUTIONS

Approximate CMC Concentration $w t \%$	Density $\mathrm{kg} / \mathrm{m}^{3}$	Surface Tension	Consistency Index kg/m.8	Flow Behavior Index
$* 500 \mathrm{ppm}$	996	0.07090	0.00266	1.000
$* 1000 \mathrm{ppm}$	996	0.06990	0.00455	1.000
0.05	1000	0.07030	0.00781	1.000
0.10	1001	0.06670	0.0266	1.000
0.15	1001	0.06800	0.0590	0.975
0.20	1002	0.07030	0.0943	0.067
0.25	1002	0.07130	0.161	0.943
0.30	1001	0.07000	0.232	0.952
0.40	1002	0.06500	0.738	0.931
0.50	1008	0.07210	1.728	0.913

[^1]TABLE 2.4
PHYSICAI PROPERTIES OF COAL SLURRIES

Coal Concentration wt\%	Slurry Density	Surface Tension	Viscosity
12	$\mathrm{~kg} / \mathrm{m}^{3}$	$\mathrm{~N} / \mathrm{m}$	$\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}$
18	1027	0.07095	0.00170
25	1047	0.07069	0.00202
30	1068	0.07084	0.00270

TABLE 2.5
PHYSICAI PROPERTIES OF COAL PARTICLES
Coal Density: $1373 \mathrm{~kg} / \mathrm{m}^{3}$
Particle Size Distribution, wt\%

on 80 mesh	0.0
thru 80 on 200 mesh	6.3
thru 200 on 325 mesh	21.1
thru 325 on 625 mesh	35.2
thru 625 mesh	37.4

TABLE 2.6
PHYSICAL PROPERTIES OF SAND PARTICLES

Sand Density: $2650 \mathrm{~kg} / \mathrm{m}^{3}$

```
Sand Size Range
    Concentrations Used in the
    m x 10-6
    74-149
    250-297
    590-710
        Bubble Colum, wt%
        18, 38,47
        10, 20, 30
    10, 20
```


2.2 Experimental Setup and Procedure

A schematic diagram of the experimental setup is shown in Figure 2.1. The glass column used in these experiments is 0.305 m in diameter and 2.44 m tall. The conical section below the column is 0.610 m in height and is packed with Berl saddles. This section acts as a calming section to give a uniform gas distribution. A perforated plate having a large number of $1.6 \times 10^{-3} \mathrm{~m}$ diameter holes serves as a gas distributor and separates the cone from the column. Air is used as the gas for all experiments. From the house line, the air passes through a filter, a pressure regulator, and a rotameter before entering the column. Superficial gas velocities of up to $0.38 \mathrm{~m} / \mathrm{sec}$ can be achieved.

Pressure taps and sampling ports are located along the length of the column as shown. Pressure is measured using a transducer and chart recorder and is used in the calculation of holdup. The pressure measurement system is shown in Figure 2.2. The sampling ports allow samples to be taken directly from the column. The sampling tubes extend to the colum center and have openings along the radius of the column to take a representative sample. These are used to determine the solid fraction present in slurry systems as a function of height. Solid-liquid samples are weighed, dried in an oven to remove the liquid, and then reweighed. From the weights before drying and after drying, the ratio of solid to liquid can be found.

For each system studied, the liquid (or slurry) density, surface tension, and viscosity are measured. Densities are measured using a pycnometer. A Fisher Surface Tensiomat (Model 21) and a Brookfield Synchro-Lectric Viscometer (Model LVT) are used to measure the surface tension and viscosity, respectively.

Experimental situp.
Figure 2.1

Figure 2.2

The dynamic gas disengagement technique requires the measurement of the decilne of the aerated liquid height with time when the gas flow to the colum is suddenly stopped. This is done with the use of a video tape recorder (VTR), a color monitor and a camera. Frame-by-frame analysis is possible on a VTR with stop-action; by knowing the number of frames per second, one can determine the height as a function of time.

2.3 Analysis of Raw Data

2.3.1 Holdups

The pressure is measured at each tap along the length of the column and converted to absolute pressure by hydrostatic correction. For both the two- and three-phase systems studied, the pressure is found to vary linearly with height. Therefore, the pressure gradient can be determined by fitting a straight line through a plot of pressure vs. height.

For the gas-1iquid systems, the pressure gradient is given by:

$$
\begin{equation*}
-\frac{d P}{d x}=\varepsilon_{L} \rho_{L}+\varepsilon_{G} \rho_{G} \tag{2.3.1}
\end{equation*}
$$

Since ρ_{G} is so small compared to ρ_{L} and sum of the gas and liquid holdups must be 1.0 , equation (2.3.1) can be rewritten as:

$$
\begin{equation*}
\varepsilon_{G}=I+\frac{1}{\rho_{L}} \frac{d P}{d x} \tag{2.3.2}
\end{equation*}
$$

The use of equation (2.3.1) or (2.3.2) assumes no local variation of gas holdup and negligible frictional pressure drop.

For gas-liquid-solid systems, the pressure gradient is given by:

$$
\begin{equation*}
-\frac{d P}{d x}=E_{L} \rho_{L}+E_{S} \rho_{S}+\varepsilon_{G} \rho_{G} \tag{2.3.3}
\end{equation*}
$$

As before, the term $E_{G} \rho_{G}$ can be neglected and Equation (2.3.3) rearranged to give:

$$
\begin{equation*}
-\frac{d P}{d x}=\varepsilon_{L}\left(\rho_{L}+\frac{\varepsilon_{s}}{\varepsilon_{L}} \rho_{s}\right) \tag{2.3.4}
\end{equation*}
$$

Sampling data provides the ratio of solid holdup to liquid holdup.

$$
\begin{equation*}
\frac{\text { solid volume }}{\text { Iiquid volume }}=\frac{\varepsilon_{s}}{\varepsilon_{L}} \equiv C \tag{2.3.5}
\end{equation*}
$$

The last two equations can be combined to give ε_{L}.

$$
\begin{equation*}
\varepsilon_{L}=\frac{-d P / d x}{p_{I}+C \cdot \rho_{B}} \tag{2.3.6}
\end{equation*}
$$

From equation (2.3.5):

$$
\begin{equation*}
\varepsilon_{s}=C \cdot \varepsilon_{L} \tag{2.3.7}
\end{equation*}
$$

Finally, ε_{G} is calculated by knowing that the sum of the three holdups is unity.

$$
\begin{equation*}
\varepsilon_{G}=1-\varepsilon_{S}-\varepsilon_{L} \tag{2.3.8}
\end{equation*}
$$

2.3.2 Dynamic Gas Disengagement

Measurement of the gas holdup during gas disengagement (i.e., after the gas flow to the aerated bubble column is cut off) can provide some information about the size and distribution of the gas bubbles.

The following assumptions will be made to simplify the analysis.

1. The initial bubble size distribution is axially homogeneous.
2. No significant bubble coalescence or breakup occurs during disengagement.

In the gas-liquid dispersions, any sized bubble will have an equal chance of being at any point in the aerated liquid height at the point of gas cut off. Pictorally the liquid dispersion at the point of cut off is represented in Figure 2.3. The large bubbles which rise much faster than small bubbles will be the first to disengage. All bubbles of size d_{b} rising with a rise velocity $u_{b r}$ will disengage in a time $t_{\max }$ where,

$$
\begin{equation*}
t_{\max }\left(d_{b}\right)=\frac{h(t)}{U_{b r}\left(d_{b}\right)} \tag{2.3.9}
\end{equation*}
$$

and, $h(t)$ is the height of the dispersion at time $t=t_{\text {max }}$.
At any time t, the fraction of bubbles of size d_{b} still present in the dispersion after an elapsed time t is given by ($1-t / t_{\max }$).

Now we develop the relation between dynamic gas holdup $\varepsilon_{G}(t)$ and the static holdup $\varepsilon_{G}(0)$ for uniform sized bubbles, two sized bubbles and n sized bubbles.

For the case of uniform sized bubbles, the gas holdup will decline according to

Dyramic gas disengagemont: ilspersion fust prior to gas simt-off.

FIguro 2.3

$$
\begin{equation*}
\varepsilon_{G}(t)=\varepsilon_{G}(0)\left(1-t / t_{\max }\right) \tag{2.3.10}
\end{equation*}
$$

where, $t_{\max }=\frac{h i}{U_{b r}}$ and $h 1=$ unaerated liquid height. By plotting $\varepsilon_{G}(t)$ vs t one can determine $t_{\max }$ and, therefore, $U_{b r}$.

When there are two classes of bubbles, large and small, $\varepsilon_{G}(t)$ will be given by

$$
\begin{equation*}
\varepsilon_{G}(t)=\varepsilon_{G, l}\left(1-\frac{t}{t_{\max , l}}\right)+\varepsilon_{G, s}\left(1-\frac{t}{t_{\max , s}}\right) \tag{2.3.11}
\end{equation*}
$$

when both size bubbles are disengaging and by

$$
\begin{equation*}
\varepsilon_{G}(t)=\varepsilon_{G, s}\left(I-\frac{t}{t_{\max , s}}\right) \tag{2.3.12}
\end{equation*}
$$

when all of the large bubbles have disengaged. The rise velocity of the small bubbles is calculated from

$$
\begin{equation*}
t_{\max , s}=\frac{h i}{U_{b r, 5}} \tag{2.3.13}
\end{equation*}
$$

For the large bubbles, $t_{\text {max }, \ell}$ is given by

$$
\begin{equation*}
t_{\max , l}=\frac{h(t)}{U_{b r, l}} \tag{2.3.14}
\end{equation*}
$$

where $h(t)$ is defined at the time when the expression for $E_{G}(t)$ switches from equation (2.3.11) to (2.3.12), i.e. when the last large bubble disengages. From the slope and intercept of equation (2.3.12), $\varepsilon_{G, s}$ and $U_{b r, s}$ can be calculated; with this information and the slope and intercept of equation (2.3.11), $\varepsilon_{G, \ell}$ and $U_{b r, \ell}$ are calculated.

This analysis can be extended to n distinct bubble sizes for which $\varepsilon_{G}(t)$ will be given by

$$
\begin{equation*}
\varepsilon_{G}(t)=\sum_{i=1}^{n} \varepsilon_{G, i}\left(1-\frac{t}{t_{\max , i}}\right) \tag{2.3.15}
\end{equation*}
$$

when all bubble sizes are disengaging, by

$$
\begin{equation*}
\varepsilon_{G}(t)=\sum_{i=1}^{n-1} \varepsilon_{G, i}\left(1-\frac{t}{t_{\max , i}}\right) \tag{2.3.16}
\end{equation*}
$$

when the nth sized bubbles have disengaged and so on until all bubble sizes have disengaged.

An illustrative plot of $\varepsilon_{G}(t)$ vs. t is shown in Figure 2.4 for the 5.0 wt\% methanol system. The sharp break in the curves clearly indicates the existence of two distinct bubble sizes.

2.4 Results and Discussion

2.4.1 Effect of Addition of Alcohols

Gas holdup increases with an increase in gas velocity and behaves completely different from air-water. The gas holdup can be two times that for air-water as evident from Figures 2.5 to 2.8 which depict a comparison between gas holdup data for alcohol solutions and for air-water. The gas holdup data for alcohols is compared with many existing correlations in Tables A.2.1 to A.2.8. Though Akita and Yoshida ${ }^{(2.1)}$ and Hikita et al. ${ }^{\text {(2.2) }}$ have included the effect of surface tension in their gas holdup correlations, their correlations fail to predict the observed values of high gas holdup. The semitheoretical equation proposed by Mersmann ${ }^{(2.13)}$ also fails to explain this high gas holdup. The equation proposed by Schugerl

Dymanic gas disengagement: gas holdup vs time for 5.0 wt methanol
Figare 2.4

GAS HOLDUP VS.SUPERFICIAL GAS VELOCITY FOR METHANOL-WATER.
Pigure 2.5

GAS HOLDUP VS.SUPERFICIAL GAS VELOCITY FOR (1.OWT\%)ETHANOL-WATER.

Pigure 2.6

GAS HOLDUP VS.SUPERFICIAL GAS VELOCITY FOR PROPANOL-WATER.
Figure 2.7

GAS HOLDUP VS.SUPERFICIAL GAS VELOCITY FOR BUTANOL-WATER.
Figure 2.8
et al. ${ }^{(2.5)}$ consistently predicts higher values of gas holdup than realized for any alcohol. Since it gives implausible values of gas holdup after $6-7 \mathrm{~cm} / \mathrm{sec}$, it is not valid outside the range of gas velocities they studied. The effect of alcohol concentration on the gas holdup is insignificant for propanol solutions where the surface tension varies from $0.06319 \mathrm{~N} / \mathrm{m}$ to $0.04823 \mathrm{~N} / \mathrm{m}$. The $1.6 \mathrm{wt} \mathrm{\%}$ butanol solution shows higher gas holdups than $0.5 \mathrm{wt} \mathrm{\%}$ butanol. The effect of concentration of alcohol on gas holdup can explain the results in Figure 2.5. $\quad E_{G}$ egainst V_{G} data for ($5 \mathrm{wt} \mathrm{\%}$) methanol lie above the data for $1 \mathrm{wt} \%$ methanol, but data taken at the end of the run are for a very low concentration of methanol, say *wt\%, (which is due to vaporization of methanol) and this data usually lie nearer to the air-water data. The gas holdup is greatly influenced by the type of alcohol added as shown in Figure 2.9. The gas holdup increases in the following order:

methanol < ethanol < propanol < butanol

which is in agreement with Schugerl et al. ${ }^{(2.5)}$ and 0els et al. ${ }^{\text {(2.6) }}$ From Figure 2.9 it can be seen that 1.6 wt\% butanol shows the highest gas holdups followed by propanols and $0.5 \mathrm{wt} \mathrm{\%}$ butanol (which has a surface tension higher than propanols). 0.5 wt\% butanol is followed by 1 wt\% ethanol and methanols in the gas holdup curve. The systems below a surface tension of $0.048 \mathrm{~N} / \mathrm{m}$ have not been studied because of flooding and/or foaming observed at very low gas velocities.

This strange behavior of alcohols is explained with the help of the theoretical development of Oels et al., ${ }^{(2.6)}$ Schugerl et al., (2.5) flow regime charts, graphs of bubble rise velocities against gas velocity

Figure 2.9
and the information obtained from the dynamic gas disengagement method. The unusual increase in gas holdup based on the theoretical development of Oels et al. ${ }^{(2.6)}$ and Schugerl et al. ${ }^{(2.5)}$ has been explained in Section 1.3. It is important to note that alcohol solutions with larger chain lengths and lower surface tension will behave mostly like small rigid spheres rising with very low bubble rise velocity. For aqueous solutions of C_{1}, C_{2}, and C_{3} alcohols as the gas velocity increases the bubbles coalesce and form fast rising large bubbles. The result is an increase in the rise velocity of bubble swarm as a whole and the leveling out of gas holdup. In the case of aqueous solutions of C_{4} alcohols with low surface tension, the bubbles stay as small rigid spheres, they do not coalesce and hence the gas holdup keeps on increasing with a net reduction in bubble rise velocity. Because there is no transition from the bubbly flow regime to the churn turbulent regime flooding occurs. Occurrence of foaming acts as a booster for an early flooding point. For a soltuion similar to higher alcohol solutions with a very low surface tension (near 0.025$0.03 \mathrm{~N} / \mathrm{m}$) the evaluation of a flooding chart may be very useful information as far as the hydrodynamics is concerned. In the cocurrent bubble column for a similar C_{4} alcohol solution, flooding was not observed, though there was considerable foaming. Probably, the point of flooding, enhanced by intense foaming, is present for C_{5} or C_{6} alcohols in the cocurrent bubble column.

Upon visual observation, the bubbles appeared to be small, spherical and uniformly distributed. Schugerl et al. (2.5) have reported that the size of bubbles in alcohol solutions, is mainly governed by the dynamic equilibrium between the pressure and surface tension forces, if the holes
of the perforated plate are $\geq 0.5 \mathrm{~mm}$ in diameter. As the energy input to the liquid phase is increased by increasing the superficial gas ve?r.f:y, even for a non-coalescing medium like alcohol solutions, large bubbles form and a transition from the bubbly flow regime to the churn turbulent regime is expected. Flow regime charts for alcohol solutions are shown in Figures 2.10-2.13. Data for $5 \mathrm{wt} \%$ methanol, $1 w t \%$ ethanol, $0.5 \mathrm{wt} \%$ propanol and $1.6 \mathrm{wt} \mathrm{\%}$ butanol lies solely in the bubbly flow regime. There is a transition from bubbly flow to churn turbulent flow at gas holdup of 28%, 50%, and 43% for $1 \mathrm{wt} \mathrm{\%}$ methanol, $1.0 \mathrm{wt} \%$ and $1.5 \mathrm{wt} \%$ propanol and $0.5 \mathrm{wt} \%$ butanol which is in agreement with the order in which gas noldup increases for these systems. Though the transition gas velocity for all the three cases lies near $0.10-0.12 \mathrm{~m} / \mathrm{sec}$. Dynamic gas disengagement data are avallable for methanols and butanols. For methanol, 1 wt\% and * wt\% (*: it behaves closer to the air-water data in gas holdup, drift fiux, bubble rise velocity charts), the transition from uniform bubbles to two gized bubbles occurs around $0.10 \mathrm{~m} / \mathrm{sec}$ and $0.065 \mathrm{~m} / \mathrm{sec}$ respectively. The sumarized gas disengagement data for alcohols is as shown in Table 2.7 and Figures 2.14 and 2.15. It can be seen that the relative fraction of large bubbles to small bubbles is constant for 1 wt\% methanol and levels out for * wt\%. The fraction of large bubbles for * wt\% case is larger than that for $1 w t \%$ and is closer to alr-water data. For $0.5 \mathrm{wt} \mathrm{\%}$ butanols all the data are taken in the bubbly flow regime.

The bubble rise velocity defined as $V_{M}=V_{G} / \varepsilon_{G}$ is plotted againgt: V_{G} as shown in Figures 2.16-2.19 for the alcohols. It can be seen that V_{M} is either remaining constant or increasing with gas velocity for methanal, propanol and 0.5 wt butanol. The same observation can be made looking at.

-

Fipure 2.13
TABLE 2.7

$V_{G} \mathrm{~m} / \mathrm{sec}$	DYNAMIC GAS D1.0 wt\% Methanol				IENT R	LTS FOR	ALCOHOL	OUTIO			1.0 wt\% Fthanol 0.035
					* wt\% Methanol			0.5 wt\% n-Butanol			
	0.036	0.065	0.105	0.144	0.066	0.114	0.158	0.030	0.048	0.061	
$\varepsilon_{G}(0)$	0.133	0.188	0.288	0.348	0.164	0.246	0.280	0.130	0.287	0.355	0.148
${ }^{G} \mathbf{G , B}$	$\} 0.133$	0.188	0.235	0.284	0.115	0.188	0.218	0.130	0.287	0.355	0.148
${ }^{\varepsilon}{ }_{G, \ell}$			0.053	0.064	0.049	0.058	0.062				
$\mathrm{U}_{\mathrm{br}, \mathrm{~s}}^{\mathrm{m} / \mathrm{sec}}$	$\} 0.226$	0.330	0.154	0.155	0.204	0.204	0.195	0.199	0.214	0.094	0.192
$\mathrm{Ubr,}^{\text {d }} \mathrm{m} / \mathrm{sec}$			0.405	0.413	0.961	0.958	1.25				
$V_{G} / \varepsilon_{G}(0) \mathrm{m} / \mathrm{sec}$	0.270	0.346	0.365	0.414	0.402	0.463	0.564	0.231	0.168	0.172	0.239

Figure 2.14

Figure 2.15
 （03S／W）ㅅII007ヨ＾3SIy 37日日ก日

Figure 2.19

$$
\begin{aligned}
& \text { (כヨS/W)A11507ヨ^ 3SIy 37日gn日 }
\end{aligned}
$$

dynamic gas disengagement data. The foaming and/or flooding for 1.6 wt\% butanol is observed by presence of foam layer height decline. From disengagement analysis, $1 w t \%$ methanol and * wt\% methanol have bubble rise velocities uniformly increasing with gas velocity. The bubble rise velocity for * wt\% methanol being larger at any gas velocity. This observation can be confirmed from Figure 2.16. Surface tension of ethanol solutions showed unaccountable foaming tendency, which could have been because of presence of additives in the ethanol.

After analysis of all the holdup data points for alcohol solutions, the effect of surface tension is found to be negligible. The gas holdup is correlated with the gas velocity and the number of carbon atoms in the alcohol to yield an equation:

$$
\begin{equation*}
\varepsilon_{G}=1.4156 V_{G}^{0.692}\left(c_{N}\right)^{0.213} \tag{2.4.1}
\end{equation*}
$$

The overall percent error defined as

$$
\begin{equation*}
\text { Error }=\frac{\sum^{\operatorname{ABS}\left(\varepsilon_{\mathrm{GO}_{0}}-\varepsilon_{\mathrm{Gp}}\right)}}{\varepsilon_{\mathrm{Go}}} \quad * 100.0 \tag{2.4.2}
\end{equation*}
$$

Error $1 s 13 \%$ between the correlation and the data. When the correlation developed in Section 1.3 is used, it always tends to predict lower gas holdup values and the overall percent error is as high as 21%. Figure 2.20 shows a plot of gas holdup predicted vs. gas holdup observed.

Thus, it is evident that most of the gas transported through the aqueous alcohol solutions, flows in the form of small bubbles. For lower alcohols the fraction of large bubbles is significant, being as high as

[^0]: 0.18404
 0.16437
 0.16358
 0.16560
 0.16193
 0.15847
 0.16084
 0.15200
 0.15017
 0.17584
 0.17118
 0.16837
 0.16592
 0.16370
 0.16083
 0.15957

 .00601
 .00553
 .00525
 .00504
 .00488
 .00474
 .00462
 .00457
 .00603
 .00558
 .00528
 .00507
 .00450
 .00477
 .00466
 0.00461

[^1]: *These solutions are prepared differently to yield different viscosities compared to $0.05 \mathrm{wt}, 0.1 \mathrm{wt}$ CMC solutions.

