Part A: Flow System

Purpose

The aim of this experimental study is to provide better understanding of the hydrodynamic and mixing properties. Though many studies have been reported in bubble column, most of the studies have been carried out in batch bubble columns. Also, the relative ranges of the parameters studied (e.g. $u_{c} \leq 10.0$ cm/s, $u_{1} \leq 3.0-4.0$ cm/s) were small. It has been proposed to study the gas holdup as an indicator of the hydrodynamic behavior, and heat dispersion coefficient as an indicator of the mixing behavior. A large number of correlations for both of these properties have been reported in the literature, and have been compiled together by Shah et al. (1981). However, a large scatter in the reported data does not allow a

a single correlation. The large scatter is mainly due to the extreme sensitivity of both of these parameters to the material system, and to the trace impurities, which is not well understood.

The ranges of the parameters to be studied have been given in Table 1. It has been proposed to change the viscosity by using water soluble polymer solutions. The reasons for using polymer solutions are: 1) very small quantity of polymer is needed to change the viscosity significantly without changing other physical properties of water, and 2) polymer solutions show non-Newtonian behavior, so the values of holdup and dispersion coefficients can be compared with the Newtonian liquids having the same apparent viscosity.

For changing the surface tension, propanol and higher alcohols have been proposed to use. The advantage of using high alcohols is that very small quantities are needed for changing the surface tension significantly.

TABLE 1		
RANGES OF THE PARAMETERS		
Parameter	Range	
Superficial gas velocity, cm/s	1.0-30.0	
Superficial liquid velocity, cm/s	0.0-15.0	
Viscosity, cp	1.0-20.0	
Surface tension, dynes/cm	45.0-70.0	

Experimental Setup

The schematic diagram of the experimental setup is shown in Figure 1. The experiments have been carried out in a 15.2 cm diameter x 305.0 cm height, vertical, cocurrent bubble column. The column has four major sections:

1) Conical bottom section for the gas inlet and distribution

2) 30.0 cm tall calming section packed with Raschig rings for mixing of gas and slurry

3) Main test section below the heater

4) Heating coil at the top

Two distributor plates, one between test section and calming section and the other between calming section and conical bottom section, are used to ensure uniform flow at the bottom of the test section. Four pressure taps have been used to measure the pressure along the length of the column. To ensure that all the connecting lines are filled with water, a backflushing system is used.

For heat tracer experiments, eleven iron-constantan thermocouples, located 30.0 cm apart from each other along the length of the column are used. All thermocouples are connected to a single digital readout device. A shell and tube heat exchanger is located in the outlet line of the column to cool the heated liquid to the desired inlet temperature during the steady state heat tracer experiments. A steam heated coil is used to provide about 74 kilowatt heat into the flowing liquid system.

Gas and liquid flow rates are measured by a rotameter and an ultrasonic device respectively. To ensure that the gas pressure is kept constant, a pressure regulator is attached before the rotameter. All the experiments are carried out in a continuous and steady state manner. Column is insulated with fiberglass insulation material to prevent heat losses during the experiments with heat input.

DEFINITIONS FOR FIGURE 1

•

Α	Agitator
B1, B2	Ball Valves
BF1, BF2	Backflushing System
С	Condensate
CBS	Conical Bottom Section
CS	Calming Section
CWI, CWO	Cooling Water Inlet and Outlet
D1, D2	Distributor Plates
G1, G2	Pressure Gauges
HE	Shell and Tube Heat Exchanger 1" OD SS tubes on the tube (slurry side) Heat transfer area 25 ft ² 14" OD, 6 ft long Black iron shell side (cooling water)
L1-L 5	2" OD, Schedule 80, PVC pipes
M1, M2	Manometers
<u>P</u>	Galigher Horizontal Centrifugal Pump
P1-P6	Pressure Taps
R	Reservoir (550 liter, plastic)
RR	Gas Rotameter
SI	Steam Inlet
S1-S6	Sampling Taps
TS	Main Test Section
T, FI	Transducer and Flow Indicator (ultrasonic)
द	Thermocouple Holes

Analysis of Raw Data

The mamometric readings are converted to absolute pressures by a simple hydrostatic head technique. Pressures are observed to be linear with respect to height. This proves that the frictional pressure drop is negligible and there is no local variation of the holdup. The final form of the equation can be written as

$$\varepsilon_{\rm G} = \frac{\rm HH}{\rm HH}_{\rm V_{\rm G}=0}^{\rm HH}$$
(1)

where HH is the hydrostatic head, at any height and $HH|_{V_G=0}$ is the hydrostatic head at zero gas velocity.

The measured temperatures along the length of the column are correlated with the help of axial dispersion model. The assumptions made during this analysis are listed somewhere else.² The final equation can be written as,

$$-A \frac{dT^2}{dZ^2} + B \frac{dT}{dZ} = 0$$
 (2)

where

$$A = D_{L} \rho_{L} C_{PL} \varepsilon_{L}$$
$$B = \rho_{L} V_{I} C_{PI}$$

Different boundary conditions have been tried, with approximately the same results. Final boundary conditions are,

$$Q Z = Z_{C}, T = T_{C}$$
(3)
 $Q Z = Z_{H}, T = T_{H}$

The analytical solution results in the following relationship,

$$\frac{T-T_{c}}{T_{H}-T_{c}} = \frac{\exp\left[\frac{V_{L}}{D_{L}\varepsilon_{L}} (Z-Z_{c})\right] - 1}{\exp\left[\frac{V_{L}}{D_{L}\varepsilon_{L}} (Z_{H}-Z_{c})\right] - 1}$$
(4)

The value of D_L is optimized from the given data, with the help of computer.

The calculated dispersion coefficient data are found to be independent of the heat input to the system.

Results and Discussion

So far four different systems have been studied, whose physical properties are shown in Table 2. In Tables 3 to 6, the qas holdup values obtained in this study are compared with those obtained from the correlations of Akita and Yoshida (1973), $^{(3)}$ and Hikita et al. (1980). $^{(4)}$ In Tables 7 to 10, the values of heat dispersion coefficients obtained in this study are tabulated, and compared with those obtained from the correlations of Deckwer et al. (1974), $^{(5)}$ Baird and Rice (1975), $^{(6)}$ Joshi (1980), $^{(7)}$ and Field and Davidson (1980). $^{(8)}$

Effect of Viscosity: Effect of viscosity has been studied with the help of water soluble CMC polymer (carboxy methyl cellulose) solutions. Two different concentrations are prepared and their consistency index is calculated with the help of Brookfield viscometer. It is observed that the consistency index was close to 1, and the apparent viscosity did not change significantly with shear rate. The gas holdup is plotted against superficial gas velocity for 50 ppm CMC solution (Fig. 2). As can be seen, the

	T	ABLE 2	
	PHYSICAL PROPER	TIES OF THE LIQ	UIDS
System	Viscosity kg∙m/sec	Density kg/m ³	Surface TensionNt/m
50 ppm CMC	0.002	1000.0	0.0695
1000 ppm CMC	0.0076	1000.1	0.068
0.5% propanol	0.001	1000.0	0.0641
1.0% propanol	0.001	1000.0	0.0579

holdup for zero liquid velocity is significantly different from the ones for other liquid velocities. For non-zero liquid velocities, the das holdup is independent of liquid velocity. Figure 3 compares the data for 50 ppm, with those obtained from Akita and Yoshida $(1973)^{(3)}$ and Hikita et al. $(1980)^{(4)}$ correlations. The experimental values are consistently higher than both of these correlations. This is in agreement with the observations made by Nishikawa et al. (1977).⁽⁹⁾ The data for 1000 ppm CMC solution are compared with those of air-water and 50 ppm CMC solution in Figure 4. Both the CMC solutions show higher values of gas holdup than air-water. It is believed that, CMC solutions show maximum with respect to the gas holdup as a function of apparent viscosity. Though more data are needed to reach the conclusion, Bucholtz et al. $(1978)^{(10)}$ observed similar maximum in Newtonian (glycerol) medium near the viscosity of 2 c^D.

For 50 ppm CMC solution, the heat dispersion coefficient as a function of gas velocity is plotted in Figure 5. Considerable scattering is observed, probably due to the temperature averaging technique which is employed in measuring the temperatures. The dispersion coefficients for CMC solutions are compared with air-water values (Figure 6), surprisingly it is found that the values are higher than the air-water data. This is believed to be

due to the effect of irregular bubble shape and stream formation which are observed by Shumpe and Deckwer $(1980)^{(11)}$ in the CMC solutions.

Effect of Surface Tension: Effect of surface tension is studied by using two different concentrations of propanol. The results for both the gas holdup and the dispersion coefficients are surprising. The gas holdup for 0.5% propanol, as a function of gas velocity is plotted in Figure 7. The liquid velocity has clear effect on the holdup values, though the effect becomes insignificant at higher liquid velocities. When the experimental values of gas holdup for 1.0% propanol are compared with Akita and Yoshida (1973) and Hikita et al. (1980) correlations, it is found that the experimental values are considerably higher than air-water data (Figure 8) and those predicted by the correlations. This can be explained on the basis of drift flux theory. When drift flux is plotted as a function of gas holdup (Figure 9) all the data are found to fall below the bubbly regime line (Equation of that line is drift flux (m/s) = .18 ϵ_{G} m/s). When the same experiments are carried out in 30 cm diameter bubble column, it is observed that very tiny bubbles are formed with uniform distribution. Also the system showed some foaming characteristics.

When the dispersion coefficients are plotted as a function of superficial gas velocity, for 1.0% propanol solution, negligible (almost zero) values of dispersion coefficients are observed at low gas velocities (<5.0 cm/s) but as the gas velocity is increased further, tremendous increase in dispersion coefficient with significant scattering is noted (Figure 10). When the overall value of dispersion coefficient (product of dispersion coefficient and liquid holdup) is plotted as a function of gas velocity (Figure 11) two distinct regions are observed.

This can be qualitatively explained on the basis that, at low gas velocity, due to the dynamic surface tension effect $(C_3H_7$ -chain is attached

TABLE 3: Gas Holdup for 50 ppm CMC Solution

.

	T ALD																																								
H93	A) CHIKITA E	0.04127	0.07193	0.10568	0.14139	0.17852	0.21681	0.25604	0.27588	0.25587	0.21650	0.17836	0.14118	0.10548	0.07180	0.04122	0.04123	0.07184	0.10553	0.14118	0.17820	0.21643	0.25571	0.27560	0.04117	0.07179	0.10537	0.14083	0.17772	0.21577	0.25467	0*57440	0 - 04124	0.07152	0-10470	0.13944	0.17567	0.21327	0.25051	0.26962	
EG 4	AKITA/YOSHIC	0.02704	0.06157	0.10121	0a14067	0.17762	0.21133	0.24189	0,25368	0.23997	0.21052	0.17635	0.13996	0.10137	0.06190	0.02695	0.02658	0.06034	0.09948	0.13779	0.17354	0.20607	0.23555	0.24900	0.02632	16650°0	0.09820	0.13586	0.17107	0.20275	0.23.4	0.24585	0.02640	0.05859	0.09556	0.13155	0.16596	0.19792	0.22487	0.23786	
VG(M/S)		0-01001	0.02634	0.05146	0.08560	0.12885	0.18126	0.24299	0.27132	0.23862	18671.0	0.12714	008488	0.05158	0.02652	86600"0	0.00982	0.02568	0.05020	0.08273	0.12342	0.17210	0.22887	0.25973	0.00972	0.02545	0.04927	0.08084	0.12022	0.16736	0.22199	0.25218	Q.00975	0-02475	0.04738	0.07674	0.11380	0.15867	0.20669	0.23392	
ASLCN/S)		0.0000	0.0000	0.0000	0.0000	00000	0.0000	0.0000	0.03374	0.03374	4.03374	0.03374	1 .03374	0.03374	1 .03374	4103374	05451	0.05451	4.05451	0.05451	0.05451	0.05451	0.05451	0.05451	0.07943	6+01943	8 .07943	6.07943	6+010+3	6+670-0	0.07943	6+610*¢	1×12496	G.12896	0.12896	0.12896	0.12896	9.12896	0.12896	8.12896	
EG	또한 한 번 또 한 번 또 한 번 또 한 번 한 번 한 번 한 번 한 번	0.10504	0.17945	0.21665	0.24559	0.27452	0.30759	0.34066	0.31172	0.28692	0.26625	0.20425	0.21665	0.19598	0.18772	0.10918	0.68851	0.17531	0.19598	0.21252	0.22078	0.30346	0.27865	0.29932	0.08024	0.17118	0.19185	0.17531	0.22492	0,74145	88219	0.27452	0.06784	0.15051	0.17945	0.20425	0.21252	0.24559	0.24972	0.27039	
PAV		1.86528	1.75779	1.69508	1.61447	1.53385	1.46219	1.39053	1.89215	1.87871	1.85184	1.86528	1.89215	1.86528	1.83840	1.99964	2.15192	2-15640	2.12057	2.17431	2.25045	2-30867	2.34450	2.39825	2.33555	2-29076	2.39377	2.52813	2.63114	2.71624	2.81.T	2.86404	2.22358	2.72968	3.02527	3.38805	3.56272	3.62543	4.03299	4.14496	
4		-0-07402	-0.02027	-0.00236	-0.02027	-0-03819	-0.03819	-0.03819	0.44552	0.37386	0.30220	0.12305	0.21262	0.15888	0.08722	0-08722	0.17679	A8575-0	17195-0	0.49926	0.58884	0.89339	0.82173	0.91131	0.35594	0-51718	0-66050	0.73216	0.98297	1.09056	1.26961	1.32335	0.21262	9223939	1.25169	1-66374	1.86080	2.07578	2-41617	2 - 57740	
P.3	1		0.84673	0.86464	0.84673	0.82381	0.82881	0.82881	0.90047	0.90047	0.82881	0.86464	0.84673	0.79298	0.79298	0.82881	0.97213	2407.1	1.04171	1 2 2 2 7 7	1-2224	27669	1.38418	1,42001	1 1 1 3 3 7	40000	E4066-1	1.50958	1.59916	1.70665	1 . 8495	1.88580	0.99005	1-65290	1-91954	2.35159	2.53074	222780	7.06819	3-15776	化解释剂的特殊剂的
P.2	4		2.66870	2.52538	2.18206	2.23874	2-09542	1.95210	2.79410	2.17619	01461.5	2.90159	2.90159	2.86576	2.86576	3.13449	3.33155	40400.5	2.15240	2.15240	3.22406	2.15240	20770 E	34615 6		21246	61104.5	3-56445	3.60028	1.68985	3.76151	E4077 - F	3.43904	AF 797 . F	06101.4	16464.4	4.585AD	4.35.71	. 97973	5.10514	
Pl		######################################	2110000	900000	9107C . C	3-10.604	2.96272	2 81940	3 42851	3.46634	2.48225	3 . 571 8 3	2.50766	09299 E	3.60766	1.94804	01701.2	7075 C		00000 C	3977C C		1331202		- 10 - C	1131211	2 1 5 1 0 2 5 1 0 2 5 5 1 0 2 5 5 1 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2000205	11245.4	4.37 RON	4.37800	4-46758	4.25260	4.57507	4.80796	5-11252	5.27275	2121292	5.66788	5.73954	

¢

.

TABLE 4: Gas Holdup for 1000 ppm CMC Solution

2

•

	(IR																																								
EGH	JA) CHIKITA ET	0.03859	0.06726	0.09884	0.13225	0.16702	0.20288	0.23967	0.25834	0.03837	0.06689	0.09824	0.13150	0.16602	0.20183	0-23851	0.25716	0.03832	0 - 0 6677	0.0980.0	9-11126	0.16567	0.20122	0-23766	0.25611	0-03826	0.06666	06190	0.13084	0.16507	0.23732	0.23655	0.25481	0-03829	0=06655	29790-0	P. 0.1 10 7 1	0-16412	15991.0	0.23395	
EGA	CAKITA/YOSHI	0.02171	0.05061	0.08525	0.12085	0.15509	0.18691	0.21616	0.22996	0.02293	0.05321	0.08842	0.12512	0.15904	0.19224	0.22161	0.23522	0-02239	0-05194	0-08674	0.12243	0.15598	0.18738	0-21588	0.22897	0.02214	0.05119	0.08567	0.12039	0.15355	0.00057	0-21274	0.22574	0.02228	0.05087	0.08483	0.11878	0.15142	0.18351	0.20893	
VGCH/S)		0-00982	0.02582	0.05047	0-08384	0.12613	0.17723	0.23732	0.27107	0.01043	0.02744	0.05307	0.08851	0.13180	0.18715	0.25019	0+28498	0.01016	0.02665	0.05168	0.08555	0-12739	0-17810	0.23668	0.26852	0.0103	0.02618	0.05081	0.08335	0.12397	0.00307	0.22954	0.26033	0.01011	0°02598	0.05012	0.08164	0.12102	0.17113	0.22111	网络哈姆利利日阿利利利利利利
VSLCH/S)		0.00000	0000000	0.0000	0.0000.0	0.0000.0	00000 * 0	0.0000	0000000	0.02567	0.02567	0.02567	0.02567	0.02567	0.02567	0.02567	0.02567	0.04682	0.04682	0.04682	0.04682	0.04682	0.04682	0.04682	0.04682	0.07654	0.07654	0.07654	0+07654	0.07654	0.00024	0.07654	0.07654	0.09812	0.09812	0.09812	0.09812	21860-0	0.09812	0+09812	
EG	14 19 19 19 19 19 19 19 19 19 19 19 19 19 1	0.08851	0.12984	0.16291	0.19185	0.22492	0.24972	0.27452	0.29519	16001.0	0.12984	0.17118	0.20012	0.22492	0.25799	0.29106	0.29932	0.08438	0.13398	0.15465	0.18358	0.21665	0.23318	0.25799	0.27865	0.08851	0.12984	0.15051	0.17945	0.21252	0.22492	0.24559	0.27039	0.05957	0.10504	0.14225	0.15465	0.18772	0.23318	0.22078	- 4 3 法证明计算法 4 4 10
PAV	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.93694	1.84736	1.77570	1.71300	1.64134	1.58759	1.53385	1.48906	1.99068	1=91454	1.90111	1.84288	1.85184	1.74883	1.75331	1.75779	2.11161	2.12952	2.16535	2.15640	2.22358	2+25941	2.31315	2.36690	2.31315	2.35794	2.40273	2.53261	2.63562	2.68489	2.79238	2.86852	2.22806	2.54157	2.69385	2.95361	3.12381	3.20442	3.62991	7 # 11 11 11 11 11 11 11 11 11 11 11 11 1
4		-0-03819	-0.03819	-0-03819	-0-03819	-0-03819	-0.03819	-0*03819	-0.03819	0.05139	0.05139	0.12305	0.14096	0.21262	0.19471	0.26637	0.28428	0.14096	0.26637	0.35594	0.40969	0.55301	0.62467	0.73216	0.82173	C085E.0	0.48135	0.57092	0.76799	0.96505	1.05463	1.19795	1.30544	0.17679	0.60675	0.83965	1.16212	1.37710	1.53833	1.98621	
р3 ,	s I	0.82881	0.82881	0.82881	0.82881	0.82881	0.82881	0.82881	0.82881	0.81090	0.77507	0.79298	0.75715	0.79298	0.70341	0.72132	0.79298	0.91839	0.99005	1.07962	1.06171	1.16920	1.24086	1.31252	1.40209	1.15128	1.20503	1.27669	1.45584	1.56333	1.54541	1.72456	1.83580	1.04379	1.36626	1.59916	1.77831	2.047.33	2.17244	2.56657	
P 2		3.04491	2.86576	2.72244	2.59704	2.45372	2.34623	2.23874	2.14916	3.15240	3°00808	2.97325	2.86576	2.82993	2.68661	2.68661	2.63287	3.27781	3.24198	3.20615	3.20615	3 * 2 2 4 0 6	3.22406	3.25989	3.29572	3.47487	3.49279	3.51070	3.58236	3.63611	3.72568	3.77943	3.81526	3.43904	3.70777	3.77943	4.04815	4.17356	4 • 245,22	4.60352	******
1 4		3.91221	3.73306	3.58974	3.46434	3.32102	3.21353	3.10604	3.01646	3.94804	3.82264	3.71515	3.60766	3.57183	3.41059	3.33893	3.32102	4.10928	4.01970	4.01970	3.94804	3.94804	3.94804	3 • 94 804	3.94804	4.28843	4 • 25 260	4.25260	4.32426	4.37800	4 • 41 383	4.46758	4.46758	4.25260	4.48549	4.55715	4 • 82 5 8 B	4.89754	4.86171	5.36333	

.

TABLE 5: Gas Holdup for 0.5% Propanol

	4L.)																																					
E GN	DAN CHIKITA ET	********	0.07551	0.09279	0.11032	0.12766	0.14387	0.04317	0.07529	0.11009	0.14815	0.15705	0.22715	0,20033	0,28924	0,04369	11470.0	0,11026	0.14739	0.18595	0,2250	0,26616	0.28669	0.04318	105/0.0	0040100	0.18481	0.22342	0.26339	0.04310	0,07482	0,10936	0.14578	0,18344	0.22137	0,25998		,
EGA	CAKI TA/YOSHIC	######################################	0.06540	0.09013	0.11265	0.13510	0.15729	0.03004	0.00730	0.10958	0,15054	0,18756	0,22120	0,25115	0,26499	0,02969	0,06655	0,10750	0.14724	0,18393	0,21655	0-24620	0,25968	11050.0	100000		0.18111	0.21254	0.24171	0.02951	0,06503	0,10425	0,14275	0,17816	0,20900	0,23672		
		884144444444 0 00992	0.02664	0.03856	0.05333	0.07091	0.09150	0.00996	0,02013	0,05114	0,08483	0,12631	0,17641	0,23431	0,26630	0,00963	0,02572	0,04970	0.08169	0.12167	0,16869	0,22372	0,25362				0.11017	0.16216	0.21449	0.00976	0.02497	0,04751	0.07758	0,11458	0,15664	0,20462		
			0.0000	0.0000	0.0000	0.0000	0.0000	0,06261	0,06241	0,06261	0.06261	0,06261	0,04261	0,06261	0,95261	0 . 69 4 7 3	E1+60 0	0 • 09473	0+0473	0.09473	52840 0	52869 0					0.13163	0,13183	0,13183	0,15326	0,15326	0.15326	0,15326	0,15326	0,15326	0,15326	带 的复数 法财产的 医胆酸盐	
		12964	0.31999	0.40266	0.52667	0,45401	0,78295	0.10504	0,21665	0.32412	0,39853	0.42746	0*45440	0,47293	0 49774	0,09264	0.19185	0.27039	0,53239	0,36199	99/28 0	0.43954	0.45227				0.34470	0.36959	0,36959	0,09264	0.15051	0,22078	0.29104	0.32826	0.35306	0,39440		
		:	1.48010	1,30095	1.03471	0,76798	0.44030	2,13848	2.04443	1.93246	1,87871	1,96381	2,02451	2,10205	2,13400	2,39377	2,36242	2,44095	2,57292	2,67593		2,93570	2.001.04			C 1020 2	3,18203	3,53565	3,48813	2.41616	2,79686	3,20442	3,45971	3,71052	a 14040	4,51670		
2		:#####################################	-0.02027	=0.02027	-0.02027	•0.02027	-0.02027	0.21262	0.37386	0.46135	0.60675	0.75007	0.89339	1.01860	1.09046	0.44552	0.62467	0.91131	1,16212	1,37710	1.62791	1.75331	1.56050	950F1 °0	0,000/5	1 11200	1.76914	2.20119	2.34451	0.48135	0.98297	1.53833	1.96829	2,29076	2.77447	3,24026		
2	1		0.84473	0.64673	0 04673	0.84673	0.84673	0,95422	1,00796	1.04379	1,07962	1,25677	1,25677	1,34635	1.42001	1,24086	1,31252	1,52750	1,70665	1,06788	2,02912	2,13661	2.24410	0,93630				2.65614	2.88904	1.24066	1 74248	2,19035	2.47699	2,83529	3,20317	3,67730		
2			2,16700	1.60878	1.26924	0.76971	0.21434	3,29572	3.02700	2,79410	2,61495	2,61495	2,70453	2.74056	2,75827	3,51070	3,38530	3,33155	3,36738	3.40321	3.60028	3 67 94	3.70777	3,25989	1010.5			. 35271	44228	3_52862	3.79734	4,17356	4.15271	4 51394	4 92599	5,28429		
1			2.92689	2.56859	2.03114	1.47577	0.92041	4.09136	3.74889	3,41059	3,21353	3,23144	3 24936	3,30310	3,26727	4,37800	4.12719	4.07345	4 ° 05553	4,05553	4.10928	2000 ° 7	4.23468	4 10928	4 57000			93337	5.07669	4.41363	4.66464	4.91545	5,04056	5,20209	5,57631	5,86495		

•

TABLE 6: Gas Holdup for 1.0% Propanol

.

	ALJ																																			
EGH	DA) CHIKITA ET	0-04412	0.05999	0.07686	0.09431	0.10965	CPE 40 . 0	0.07661	0.11267	0-15077	0-19042	0.23114	0.27317	0 2 2 4 1 2	0-04385	0-07642	0.11221	0.15045	0.18932	0.22944	0.27072	0.29157	49640-0	0.07633	0.11178	0.14900	0-18770	0.22756	0.26796	0.04384	0-07605	0-11109	0-14760	0.18531	0.22427	U-26409
ទី១១	CAKITA/YOSHIC	0.03011	0.04830	0.06915	0+160-0	0.11614	0.03041	0.06829	0.11112	0-15167	0.18939	0.22384	0.25314	0.26571	0.03013	0.06731	0.10865	0-14670	0.18547	0-21791	0.24756	0.26099	0.03059	0.06696	0-10718	0.14592	0.18196	0-21467	0.24349	0.02999	0.06572	0.10497	0.14253	0.17727	0.20928	0.23810
へいったしのう	94 20 21 22 23 23 24 20 24 20 25 25 25 25 25 25 25 25 25 25 25 25 25	0.00986	0.01706	0.02669	0.03886	0.05515	1660000	0.02626	0.05159	0.08487	0.12712	0.17875	0.23577	0.26488	0.00987	0.02577	0.04988	0.08020	0.12211	0.16879	0.22383	0.25358	0.0104	0.02561	0.04888	0.07948	0.11776	0.16356	0.21544	0.00982	0.02500	0 * 0 * 0 * 0	0*07640	0.11212	0.15515	0=20478 ====================================
(S/W) 15A	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00000	0.0000	0.0000	0.0000	0.0000.0	0.06274	0.06274	0.06274	0.06274	0.06274	0.06274	0.06274	0.06274	0.09626	0.09626	0.09626	0.09626	0.09626	0.09626	0.09626	0.09626	0.12974	0.12974	0.12974	0.12974	0.12974	0.12974	42621°0	0.16136	0-16136	0.16136	0.16136	0.16136	0.16136	4. 16136 :====================================
59	riis fi if	0.13398	0.22905	0.34479	0.47293	0.76229	0.10504	0.22078	0.33652	0.40266	0.44813	0.47707	0.50187	0.50600	0.09264	0.19185	0.28279	0.34893	0.39026	0.42746	0.48120	0.47707	0.08438	0.18358	0.25385	0.31172	0.34479	0.37786	0.38199	0.07611	0.17118	0.27039	0.27452	0.29932	0.31999	0,36546 ###################################
PAV	11 11 11 11 11 11 11 11 11 11 11 11 11	1.97277	1.68613	1.41740	1.15763	0.50374	2.16535	2.00860	1.82049	1.87423	1.87423	1.92798	2.01308	2.23701	2.35794	2.36242	2.44304	2.56844	2.61771	2.83717	2.94913	3.03423	2.07578	2.48334	2.80134	3.10141	3.28952	3.43732	3.66574	2.40721	2.84612	3.29400	3.76427	4.13600	4.36442	4.56596
P.4	# 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-0.02027	-0-02027	-0.02027	-0-02027	-0-02027	0.23054	6086E.0	0.40969	0.62467	0.73216	0.85756	0.98297	1.23378	0.44552	0.62467	16110.0	1.19795	1.44876	1.64582	1.87872	1.96829	0.08722	0.73216	1.21586	1.64582	1.91455	2.12953	2.45200	0.40969	1.05463	1.66374	2.25493	2.64906	2.93570	3 • 2 2 2 3 4 • • • • • • • • • • • • • • • • • • •
P3	s I sssssssssss	0.84673	0.84673	0.84673	0.84673	0.84673	0.99005	0.99005	0.95422	1.07962	1.09754	1.18711	1.31252	1.50958	1.24086	1.31252	1.52750	1.68873	1.50958	2.06495	2.19035	2.27993	1+006-0	1.42001	1.83205	2.20827	2.40533	2.58448	2.94278	1.20503	1.76039	2.35159	2.69197	3.19359	3.48023	3.73104
P 2	d 1920 1920 1920 1920 1920 1920 1920 1920	3.33155	2.59704	2.02376	1.54005	0.17851	3.33155	2.99117	2.63287	2.57912	2.54329	2,54329	2.61495	2.82993	3.36738	3.38530	3,31364	3.36738	3.42113	3.51070	3.60028	3.65402	3.25989	3.51070	3.70777	3°92275	4.08398	4.20939	4.13773	3.60028	3.92275	4.33479	4.71101	5.01556	5.15888	5 . 33803
P1	11 13 14 14 14 17 18 18 18 18 18 19 19 19 10 19	3.73306	3.32102	2.81940	2.26403	1.00998	4 .10 928	3.71515	3.28519	3.21353	3.12395	3.12395	3.14187	3.37476	. 4.37800	4.12719	4.01970	4.01970	96160**	4.12719	4.12719	4.23468	4.05553	4.27051	4.44966	4.62881	- 4.75422	4 • 82588	5.13043	4.41383	4.64673	4.82588	5.39916	5.68580	5.88286	5 - 97244 ***************

.

.

жнин и кан на н		10	010	DLB	01J	DLF CHAN2/S	5 NQ	-40 -3	US #/S	
8/8	R/S	CH++2/S EXPTL	CR442/5 DECKNER	DAIRD-RICE		ELD-DAVIDSON	C 11			
) fra 11 a f					176 AN 204	3100C.751	0.00700.0	0.24004	0.21280	
0.01000	0.03370	188.30000	108.40216	118.04005 147.00499	202-40680	184.44380	0.00695	0.24274	0.19081	
0.02600	0.03370	309.42000 217 40000	105.58710	219-52160	84.62515	175.44409	0.00641	0.24462	0.18978	
0.05100	01550-0	00001 - 745	218.80130	263.32807	219.27373	270.05061	0.00604	0.24600	0.18487	
0.08400	0.03370	274.50000	250.12678	305.57913	297.59562	346.37635	0.00575	0.24711	0.18923	
0002100		520.8000	280.05323	343.22186	334.75797	395.26907	0.00551	0.24806	1121-0	
001100		140.0000	A08.10934	378.15893	379.21012	445.32196	0.00533	0.24882	0.16872	
0.23700		00005 077	321.65326	394.95226	397.17546	462 * 62 994	0.00525	0.24917	0.16309	
0.0012.0			108-40216	115.63819	163.26413	154.41648	0-00780	0.24004	0.21974	
0001000		00000-00-	148-58642	157.42180	211-64159	190.23679	0.00695	0.24274	0.19447	
0.02600	0.05420	00000 774	184.37330	210.10044	135.84975	138.83512	0.00643	0.24456	0.18974	
0005000		00004	217-04834	255.35058	214.10533	255.67392	0.00606	0.24593	0.19616	
0.08200	0.00420	269.5000	248-14561	297.53860	288.72449	330.01957	0.00577	0.24704	0.18459	
0.12300		424.50000	276-64743	329.85553	312.66442	369.55336	0.00555	0.24794	0.16405	
001/100		405.30000	11722-FDF	368.44201	376.76917	431.76794	0.00536	0.24871	0.17051	
0.22100		00000 . 444	316.86366	384.74707	394.99026	453.82443	0.00528	0.24905	0.16591	
0.25800			108-40216	110.33405	166.85073	147.13956	0-00780	0 .24004	0.22263	
0001000	0+610-0	00000 100	146.47548	138-91940	234.04603	208.81491	0.00698	0.24263	0.19552	
0.02500	0+0+0+0	00007 107	183.14819	198.92768	178.08382	14.04011	0.00644	0.24451	0.19080	
0.04400	0 10 10 0	00001-725	215-30673	251.10294	241.56693	261.16174	0.00607	0.24586	0.19697	
0.08000			245.45304	287.44086	281.40369	312.03793	0.00579	0.24695	0.18347	
0.11400		00000 075	273.95144	325 . 56 493	336.00088	371.31993	0.00557	0.24786	0.17947	
0.16600		247.40000	29663.005	358.46868	373.06488	416.50127	0.00538	0.24862	0.16952	
0-22000	0+610-0		20102 6000	376.29338	191.81367	442.92053	0.00530	0.24897	0.16975	
0.25000	046/0*0		2410/0010 146.47568	114 . 64265	254.95100	213.94988	0.00698	0.24263	0.20193	
0.2500	00671-0	77000 ···	101000101	179.04371	224 64098	152+24782	0.00646	0 *24445	0.19441	
0.04800	00621-0		1010 1010 1010 1010 1010 1010 1010 101	224.50872	139.32859	183.99164	0.00611	0.24572	0.18816	
0.01600	0.621.0	358.0000	74760°117	73575.076	279.27651	285,38756	0.00583	0.24681	0.18682	
00E11°0	0.12900	196.2000	L0847*147		374.67219	339.46646	0.00560	0.24771	0.17835	
0.15700	0.12900	312-00000	266. 35844	500477005 171 TET01	279.10586	394.70174	0-00543	0.24842	0.17785	
0.20400	0.12900	400 \$50000	CUC62.695	04144470 20100 730	394.57589	414.12266	0.00535	0.24875	0.17269	
0.23100	0.12900	444* 30000	315154605							化化学学生
an national and a state	证则称目认好的移致目的									

TABLE 7: Dispersion Coefficient for 50 ppm CMC Solution

\$

H 11 14 14 14 14 14 14 14 14 14 14 14 14	
US #/S	0.23714 0.23714 0.22922 0.22922 0.20799 0.20799 0.20799 0.22733 0.22733 0.22733 0.22733 0.22733 0.227345 0.22745 0.22345 0.22345 0.22345 0.22345 0.22345 0.22345 0.22345 0.22345 0.222642 0.22642 0.22264
UT M/S	0.255893 0.255894 0.255894 0.255894 0.255894 0.255895 0.255895 0.255893 0.255895858585 0.255895 0.2558958585858585858585858585858585858585
ÜV S M	0.01078 0.01078 0.000827 0.00789 0.00789 0.00739 0.00739 0.007356 0.007356 0.007358 0.007358 0.007358 0.007358 0.00727 0.007398 0.007398 0.007278 0.007278 0.007398 0.007278 0.007778 0.00778 0.00778 0.007778 0.007778 0.007778 0.00778 0.0077
0LF CM++2/S (ELO-0AVIDSON	129.83075 137.89705 292.01771 292.01771 292.01771 295.65574 455.65530 455.65530 455.65530 64.31275 64.31275 285.95077 285.95077 285.35366 455.15505 455.15505 455.15505 455.15505 455.15505 455.15505 455.05215 113.80864 455.05236 455.05536 455.05547 455.05536 455.05547455.05547 455.05547 455.05547455.05547 455.05547455.05547 455.05547455.05547 455.05547455.05547 455.05547455.05547 455.05547455.0554
0LJ CM++2/S JOSHI F1	130.37698 105.53948 245.37365 344.18165 344.18165 386.24043 408.71986 101.14319 101.14319 191.79147 252.050899 348.12992 388.92774 405.21125 133.889986 133.889986 133.88992 394.51488 200.65311 352.82340 352.83340 352.43340 352.83340 352.83340 352.83340 352.83340 352.83340 352.83340 352.83340 352.8340 352.8340 352.8340 352.4340 352.8340 352.8400 352.8400 352.8400 352.8400 352.8400 352.8400 352.8400 352.8400 352.8400 352.8400 352.84000 352.84000 352.84000000000000000000000000000000000000
DLB CM++2/S BAIRD-RICE	127.27788 181.11384 271.60128 311.22178 311.22178 384.57421 404.39334 125.94677 221.57895 221.57895 341.69266 376.48740 392.87604 118.08302 165.84714 214.48740 393.59529 383.59529 383.59529 383.59529 383.59529 382.06752 291.82834 251.84485 291.82834 251.84485 291.82834 291.82834 291.82834 291.82834 292.84485 292.84485 291.74948 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 292.84485 293.59523 382.957348 293.59523 382.957348 293.82553 382.9557348 293.82553 293.82553 293.835553 293.835553 293.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.83567 203.8357 203.835777 203.835777 203.835777 203.83577777 203.83577777777777777777777777777777777777
DLD CH++2/S DECKHER	108.40216 150.44853 2522.18626 253.35965 284.43117 313.17256 148.586417 148.586417 148.58642 148
DL CM++2/S EXPTL	1666.80000 349.80000 349.80000 275.30000 290.30000 180.60000 180.60000 296.40000 296.30000 296.30000 296.30000 296.30000 296.30000 296.30000 296.30000 296.40000 296.40000 296.40000 296.30000 296.40000 296.40000 296.40000 296.40000 20000 20000 219.50000 219.50000 219.50000 211.70000 211.70000 211.70000 211.70000
yL M/S	$\begin{array}{c} 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 25 & 7 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
У. М. С	0.01000 0.013100 0.013100 0.13100 0.13100 0.254900 0.02600 0.05100 0.05100 0.017700 0.017700 0.017700 0.017700 0.01270000000000000000000000000000000000
	" 15 ["]

.

.

•

TABLE 8: Dispersion Coefficient for 1000 ppm CMC Solution

US M/S	0.15485 0.15485 0.15485 0.15485 0.11748 0.11796 0.11796 0.11796 0.11796 0.15387 0.14178 0.14178 0.14178 0.14178 0.14178 0.14878 0.14878 0.15519 0.15632 0.15787 0.15787 0.15787 0.15787 0.15632 0.15632 0.157877 0.15787 0.157
UT N/S	0.229666 0.2329666 0.2329666 0.2329696 0.233296 0.233296 0.233299 0.233299 0.233299 0.233492 0.2334492 0.2334492 0.2334492 0.2334492 0.2334492 0.2334492 0.2
DVS M	0.00449 0.00543 0.00543 0.00449 0.00449 0.00449 0.0044117 0.004117 0.004117 0.004117 0.004117 0.004113 0.004113 0.004134 0.004134 0.004134 0.004134 0.004136 0.004136 0.004136 0.004136 0.004136 0.004136 0.004136 0.004136 0.004136 0.004136 0.004137 0.004136 0.004136 0.004136 0.004137 0.004136 0.004136 0.004137 000000000000000000000000000000000000
DLF CM++2/S ELO-DAVIDSON	208.0877 242.42034 242.42034 174.01049 215.45202 315.27903 315.27903 315.27903 315.27903 210.52534 210.52534 210.52594 251.56658 313.05989 317.69989 331.66491 264.91 264.912 253.83652 253.85502 253.85502 253.85502 253.85502 253.85502 253.85503 313.66491 253.85503 313.66491 253.85503 313.66491 253.85503 313.66491 253.85503 313.66491 253.85503 313.66491 253.85503 313.66491 253.85503 313.66491 253.85503 313.66491 253.85503 313.66491 253.85503 2553.85503 2555.85503 2553.85503 2553.85503 2553.85503 255553.85503 25553.85503 25553.85503 25553.85503 255553.85503
DLJ CM++2/S JOSHI FI	215.896476 289.886476 289.886473 286.86413 286.86473 286.64773 286.64773 286.84773 286.84773 286.84773 286.84773 286.84773 298.828613 245.29580 272.64799 272.64734 302.5455 312.2455 312.2455 312.2455 312.2455 312.2455 312.5555 312.5555 312.5555 312.5555 312.5555 312.5555 312.5555 312.5555 312.5555 312.55555 312.55555 312.55555 312.555555 312.555555 312.5555555 312.55555
OLB CM++2/S BAIRD-RICE	85.63543 126.973524 168.82289 263.7690938 263.7690938 263.769094 3472.54016 364.67016 354.23358 224.22828 88.04828 141.91582 194.67728 342.77417 772.47131 742.47131 742.47131 286.28128 311.51803 111.51803 2125.6523 125.6523 125.6523 143.16466 155.8523 125.6523 125.6523 125.6523 125.6523 125.6523 125.6523 125.6523 125.6523 125.6523 125.6523 125.6523 143.16588 301.06581 268.231888 301.06581
DLD CH++2/S DECKWER	10.55775 149.53775 2195.53775 2195.53775 296.53775 290.33448 320.7512 200.33448 320.7515 320.7255 148.20926 148.20926 148.20926 148.20926 148.20926 148.20926 149.2515 215.51591 215.51591 215.251591 215.251591 215.51591 2
DL CM++2/S Exptl	0.00000 161.00000 316.00000 544.70000 544.70000 544.70000 695.00000 0.00000 0.00000 0.00000 542.60000 554.00000 554.00000 554.00000 554.00000 554.00000 554.00000 554.00000 554.00000 554.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.00000 551.000000 551.000000 551.0000000000
VL N/S	0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06270 0.06630 0.06630 0.06630 0.09630 0.09630 0.12900 0.12900 0.12900 0.12900 0.12900 0.12900 0.16100 0.1611000 0.1611000 0.1611000 0.1611000 0.16110000000000
VG M/S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

TABLE 9 - Dispersion Coefficients for 0.5% Propanol

TABLE 10 - Dispersion Coefficients for 1.0 Propanol

'n,

17 17 17 17 17 17 17 17 17 17 17 17 17 1	JS 4/S
0 1) 21	
a shi ta	UT M/S
C M 7 0 9 99 91 91 91 91 91 91 91 91 91 91 91 9	S N N
"여위하기 그는 유민이가 다 아파 아파	DLF CM++2/S FIELD-DAVIDSON
H # # # # # # # # # # # # # # # # # # #	DLJ CM++2/S JOSHI
4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	DLB CM++2/S Baird-rice
19 84 84 84 84 84 84 84 84 84 84 84 84 84	DLD CM++2/S Deckwer
0.99 fol #1 44 aa	DL CM++2/S EXPTL
11 11 11 11 11 11 11 11 11 11 11 11 11	VL M/S
e () () () () () () () () () () () () ()	VG M/S

0.19485	0.16648	0-14325	0.13239	0.12564	0.12151	0.11796	0.11748	0.19828	0.17351	0.15387	0.14178	0.13514	0.13025	0.12120	0.12200	0.20095	0.17551	0.16013	0.14878	0.14310	0.13766	0.13739	0.2021	0.17787	0.15571	0.15632	0.15196	0.14832	0.14032
0.22666	0.22926	0.23107	0.23239	0.23344	0.23432	0.23506	0.23536	0.22663	0.22922	0.23098	0.23229	0 • 23335	0.23418	0.23492	0.23525	0.22667	0-22920	0.23098	0.23222	0.23324	0.23410	0.23483	0 + 2 2 5 4 4	0.22794	0.22963	0.23212	0.23311	0.23397	0.23469
0.00610	0.00543	0.00500	0.00471	0.00449	0.00432	0.00417	0.00411	0.00611	0.00544	0.00503	E1400.0	0.00451	0-00434	0.00420	0.00413	0.00610	0.00545	0.00503	0.00475	0.00453	0.00436	0.00421	0.00600	0.00537	0.00497	0.00477	0-00456	0.00438	0.00424
208.08777	242.34858	242.42034	174.01049	215.45202	315.27903	384.37288	412.89243	210.52531	248.32936	251.56658	212.09693	164.32545	279.69989	337.77976	378.06787	211.70369	262.33636	259.73051	232.33152	54.96502	255.25719	347.41786	211-66491	268.48527	300.22206	239.45908	105.52407	253.82862	313.87693
215.89632	263.86476	289.88679	278.56413	235.13573	169-89305	286.64773	322.49627	230+89580	277.17593	298.32281	293.27255	252 。 77274	78.28613	235.38071	300.36182	245*29552	300.53845	312,24234	308.62082	270.47890	159.76904	302.54536	257.93710	316.63187	355.99361	318.45203	274.48458	190.09623	277.02343
85*83543	126.97524	168.8289	218.05038	263.76809	307.63964	347.24016	364.93758	22.22828	88.04824	141.91582	194.67824	245.60081	287.60128	319.81562	342.77417	11.47131	96.48128	111.51803	173.14039	228,84352	273.84026	320 . 65955	93.89221	125.65239	143.16466	155.86201	218.15849	268,23188	301.06581
108.29473	149.07512	186.53775	219.91310	250.78014	280.33448	308.10934	320.07286	107.93507	148.20826	184.37330	217.24291	248.14561	275.57545	302.87131	315.64301	108.40216	147.82814	184.37330	215,30673	244.77044	272.85781	299.27444	107.75432	146.67568	181.15268	212.51697	240.59127	268.39167	294.18065
0000000	0000000	161.00000	316.80000	499.00000	544.73000	700.00000	696.00000	0.0000	0 • 0000 0	0*00000	108.40000	376.20000	462-60000	687.90000	554.00000	0 • 0 0 0 0 0	0.0000.0	0.0000	458.90000	410.10000	515.00000	695.00000	0.0000	0.00000	0.00000	279.60000	464.20000	497.60000	558.70000
0.06270	0.06270	0.06270	0.06270	0.06270	0.06270	0.06270	0.06270	0.09670	0.09670	0.09670	0.09630	0.09630	0.09630	0.09630	0.09630	0.13000	0.051.0	0.13000	0.12900	0.12970	0.12970	0.12970	0.16100	0.16100	0.16100	0.16140	0.16140	0.16140	0-16140
16600.0	0.02626	0.05180	0.08530	0.12700	0.17800	0.23700	0.26600	0.00987	0.02580	0.05000	0.08220	0.12300	0.16900	0.22500	0.25500	0.01000	0.02560	0.05000	0.08000	0.11800	0.16400	0.21700	0.00982	0.02500	0.04740	0.07690	0.11200	0.15600	0-20600

•

,

17

.

DISPERSION COEFFICIENT VS SUPERFICIAL GAS VELOCITYISO PPM CMC GUMI FIGURE 5

FIGURE 6

DISPERSION COEFFICIENT VS SUPERFICIAL GAS VELOCITY(1000 PPM CMC GUM) SUPERFICIAL GAS VELOCITY [METERS/SEC]

FIGURE 8

FIGURE 10

DISPERSION COEFFICIENT VS SUPERFICIAL GAS VELOCITY(1.07 PROPANOL) FIGURE 11

to air bubble while -OH molecules are attracted towards water) the air bubble carries significant amounts of liquid with it. Therefore, the whole medium behaves as a pseudo-homogeneous single phase system, but as the gas velocity is further increased, the liquid which is being carried by bubbles becomes unstable, and the medium no longer remains homogeneous, and liquid is no longer being carried out throughout the length of the column, and the recirculation starts. Similar observations are noted when the experiments are carried out in 30 cm diameter column. Further studies are needed to prove this qualitative explanation.

Part B: Batch Bubble Column

Purpose

The main emphasis of the proposed study in this part is to understand the hydrodynamics and mass transfer occurring in nonaqueous systems in batch bubble columns. Most of the studies reported in the literature are carried out for air-water systems. It is planned to study the gas holdup, volumetric mass transfer coefficient and interfacial area in a batch bubble column. Disengagement techniques coupled with a photographic method for bubble size determination and sulfite oxidation method for interfacial area determination will be used to get the contribution of large and small bubbles to the actual interacial area or conversion. This will also give the rise velocities and gas holdup for the individual bubble classes. The volumetric mass transfer coefficient will be measured by recording the profile of oxygen physically absorbed in the liquid phase. The critical velocity required to completely suspend the solids will be determined by following the variation in pressure drop along the length of the column. Table 11 gives a list of liquids, solids and ranges of the parameters to be studied in future experiments.

The aqueous solutions of certain polymers have a non-Newtonian rheology and they will be studied in comparsion with Newtonian nonaqueous systems having the same viscosity. Aqueous solutions of alcohols will be used to study the effect of surface tension on the hydrodynamic parameters. Certain alcohol solutions (e.g. propanol) have a tendency to foam and the foaming can actually be observed in this glass bubble column. An attempt will be made to cover as much wide range of viscosities and surface tensions as possible.

TABLE 11

Types of Liquids non-Newtonian

- 1. Dilute polymer solutions (CMC)
- 2. Polyethylene glycol solutions

Newtonian

- 1. Glycerine in water solutions
- 2. Sugar solutions
- 3. n-propanol solutions

Types of Solids

- 1. Glass beads or crushed glass
- 2. Coal
- 3. Alumina
- 4. Silica
- 5. Metal beads or powders

Ranges of Parameters

Liquid viscosity:	1-200 cP
Liquid surface tension:	45-72 dynes/cm
Superficial gas velocity:	0-30 cm/sec
Particle size:	5-5000 microns
Solid specific gravity:	1.2-5.0

······································	TABLE 12	
	CMC Solutions	
<u>wt%</u>	<u>Viscosity (cp)</u>	Surface Tension (dynes/cm)
0.15	14.0	52.3
0.20	20.4	52.3
0,25	31.2	59.2
	n-Propanol Solutions	
0.0 (water)	1.0	72.0
0.5	1.0	64.2
1.0	1.0	60.9
1.5	1.0	56.1

Experimental Setup

A schematic diagram of the experimental setup is shown in Figure 12. The glass column used in these experiments is 1.0 ft in diameter and 8.0 ft in height. Pressure taps and sampling ports are located along the length of the column as shown. A diagram of the pressure measurement system is given in Figure 13. By opening and closing the proper valves, the pressure can be read from any of the pressure taps.

Air from the house line is fed through a filter, a pressure regulator, and a rotameter before entering the column. The conical section is two feet in height and is packed with Berl saddles. The cone is separated from the column by a perforated plate with 1.0 mm holes acting as a gas distributor. The conical section serves as a calming section and a uniform gas distribution is obtained. A wide range of air velocities can be achieved by adjusting the air regulator and the valves leading to the rotameter and the conical section.

FIGURE 12 - Experimental Setup

.

FIGURE 13 - Pressure Measurement System

Procedure

First the column is filled to the desired height with liquids; usually three different initial heights are used for each liquid studied. Next, the air flow is adjusted at the desired value. The pressure is measured from six pressure taps along the length of the column with the help of the pressure measurement system shown in Figure 13. The pressure lines are backflushed to be sure they are filled with water. Then the pressure measurements are repeated for different air flow rates. A sample of each liquid is taken in order to determine its viscosity and surface tension.

The sampling ports will be used to take samples directly from the column. This will be utilized in future work for determining the solid fraction as a function of height in the column.

Results and Discussion of Up to Date Work

This work includes holdup data for aqueous solutions of carboxy methyl cellulose (CMC) and n-propanol. The range of viscosities and surface tension covered in this study is shown in Table 12.

The pressure along the axis of the column is measured manometrically and is coverted to absolute pressure by hydrostatic correction. Pressure varies along the length of the column in a linear fashion and the pressure gradient in the column is measured by fitting a straight line through the pressure readings. The holdup is then calculated by using

$$-\frac{dP}{dX} = \varepsilon_L \rho_L$$

 $\epsilon_{g} = 1 + \frac{1}{\rho_{1}} \frac{dP}{dX}$

or

This method assumes no local variation of the holdup and negligible frictional drop.

The holdup values are compared with the correlations of Akita and Yoshida, $^{(3)}$ Hikita et al., $^{(4)}$ and Joshi and Sharma, $^{(12)}$ in the case of n-propanol-water solutions. In the case of aqueous solutions of CMC the gas holdup values are compared with the correlation of Deckwer et al. $^{(13)}$ in addition to the other correlations mentioned. Tables (13-15) and (16-18) include these values tabulated for three CMC concentrations and three propanol concentrations. The air-water data in these tables refer to the correlation of Joshi and Sharma. $^{(12)}$

The apparent viscosity varies from 14.0 cP to 31.2 cP for the aqueous solutions of CMC gum. Higher gas holdup values are observed at low gas velocities because of the distributor plate design, this effect diminishes at higher gas velocities, and the holdup becomes less than that predicted by Akita and Yoshida, (3) Deckwer et al. (13) and Joshi and Sharma's (12) correlation for air-water. Deckwer et al.⁽¹³⁾ have developed a unified correlation for highly viscous CMC solutions. They found no effect of viscosity on gas holdup above an apparent viscosity of 50 cP. The maximum viscosity used here was 31.2 cP and hence a dependence of gas holdup with an increase in apparent viscosity is observed. At higher gas velocities the correlation by Deckwer et al.⁽¹³⁾ tends to predict larger gas holdup values. Actually at higher gas velocities the holdup seems to flatten out. In all three CMC solutions the observed bubble size distribution was heterogeneous even at low gas velocities. The bubbly flow regime was never observed in this column which is evident from the fact that there is no flat portion in the graph of bubble rise velocity vs. V_{G} (Figures 14-16). The gas holdup data at various superficial gas velocities are compared with

	VRISE(CM/SEC)		12.03681	25.76950	38.25016	E 2 2 E 1 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	47.5509R	55-69910	61.32315	63-61813	70-61581	12-83467	21-28203	39.65875	51.91417	58-04737	66-49607	83-96941	100-59527	109.33396	106-79148	41-77099	37.61808	57.20494	65 . 51465	65 . 86574	93.58854	92 69764	100.34935	106.09365	105.15598
	V DR IFT (CM/SEC)		0.74476	1.68502	2.77090	3.71873	4 TI328	6-04538	7.48853	8.58974	9+53363	0.81249	1.82212	3-46180	5-44798	7.59369	10.22452	14.24542	16.94964	18.54174	19.65851	2.04117	3.16133	6.18408	B.07223	10.35039	14.45781	15.34735	16.49574	17.93977	19,30154
	VG(CM/SEC)		1919761	1.81251	3.00734	4.14731	5.30517	6.90020	8.73187	10.23702	11.36166	0.87169	2.01241	3.83209	6-18481	8.98421	12.61938	18.18270	21.57833	23.66564	25.97780	2.15205	3.48400	7.05389	9.42938	12.86205	17.86992	19.41279	20.81209	22 . 86952	25.47130
	HOLDUP	DE CKWER ET AL.	0.02201	0.04316	0.06537	0.08508	0.10411	0.12916	0.15666	0.17848	0.19441	0.02368	0.04702	0.07974	0.11807	0.16036	0.21188	0.28587	0.32896	0.35483	0.38302	0.04968	0.07375	0.13151	0.16685	0.21522	0.28183	0.30163	0.31935	0.34501	0.37688
0.03523 AEWTCN/P 0.01400 KG/CM*SEC)	HOLDUP	AKITA EYOSHIDA	0.02192	0.04523	0.06811	0.08667	0.101.0	0 • 12274	0.14207	0.15601	0.16549	0.02378	0.04936	0.08181	0+1143T	0.14452	0.17531	0 - 21130	0.22900	0.23872	0 • 24865	0.05217	0.07621	0.12448	0.14872	0.17712	0.23954	0.21802	0.22523	0.23511	0 a 24654
TENTION= Iscosity=	HOLDUP	AIK-WATER	0.02524	0.05390	0.08350	0-10330	0.13964	0.15754	0.18397	0.20282	0*21550	0-02746	9.05915	0.10174	0.14597	0.18729	0.22845	0.21398	0.29496	0.30603	0.31697	0.06273	0.09424	0.15992	0.19299	0.23082	0.27183	0.28236	0.29057	0.30195	0.31468
SURFACE LIQUID V	HOLOUP	EXPERIMENTAL	0=06626	0.07034	0.07862	0.10334	0.11157	0.12388	0.14239	0.16091	0.16089	n.96792	0.09456	0.09663	0.11914	0.15477	0.18978	0.21654	0.21451	Q.21651	0.24326	0.05152	0.09262	0.12331	0.14393	0.19528	0.19094	0.20942	0 * 20 7 4 0	0.21556	0+24222

TABLE 13 - Holdup and Gas Velocities for 0.15 wt% CMC Solution

	VALSELUNZSEC)	3766 11		C0-1-07	30.44608	49.25961	17.79069	56.18944	65.75291	71.52240	74.81030	20.00077	2e.23330	37.03627	50.38264	60.00648	70-34303	73.52962	92.79272	96 • 384 97	101.29637	91.14130	12.63335	28.58721	49.77098	57.35840	70.89742	84。51384	96.54714	100-92457	110-36107	
	VDRIFTCCM/SEC)	1 76/21			2.¢215	3 - 90649	3.52478	5.83432	7.83211	8 • 9 4 2 6 5	9.67876	0.82930	2.03444	3.47495	5.22887	6.97061	8 . 79546	10.63377	13.53895	15.30353	16.46158	17.03421	0.95328	2.40233	4.99474	8.26967	10.95433	13.89265	15.64275	18.52924	20.14003	
	V GC CM/ SE C)	0.79612			66766 • 2	4.27802	4.84333	6+61249	9.08828	10.47753	11.42296	0.86617	2.20615	3.88181	5.92545	8.05073	10.30516	12.89528	16.45799	19.08048	20.68573	22.03013	1.03868	2+64752	5.63216	10-02011	13.54632	17.52717	19.63642	24.45415	26-50622	
	HOLDUP	DECKVER ET AL.			0.05410	0.08727	0.09662	0.12472	0.16188	0.18191	C.19526	0.02357	0.05072	0.08058	0.11400	0.14657	0.17945	0.21567	0.26344	0.29740	0.31776	0.33460	0.02734	0.05888	0.10934	0.17537	0.22448	0.27740	0-30448	0.36451		
0.00523 NEWTON/M 0.02040 K6/CM*SEC)	HOTOH	AKITA EYOSHIDA	6012010	06152.0	0.05401	0.08470	0.09261	0.11462	0.14014	0.15248	0.16024	0.02234	0.05058	0.07884	0.10652	0.13006	0.15192	0.17144	0.19498	0.20982	0-21010	0.22462	0.02633	0.05864	0-10290	0-14855	0-17604	0.20125		1 97552		n+647+N
TENTION= (12/05/17/=	HJENUP	ALK-WATEN	0.02.11	0.0'7 .	0.06874	0.11096	0.12204	0.15298	0.18865	0.20562	h.21616	0.02732	0.06413	0.10279	0.14159	6.17463	C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3	0.23114	0.26159	0-27994	0.28983	0.29746	8E2E0 0	0.07501	67921-0	76002-0	0.23721	1210210		1 F C S V F S	14436.0	U J J J.
SURFACE	ноголь Сталта т	EXPERIMENTAL	0.0559B	, . u 5 5 9 6	0.07853		0.0000	11768		07771.0						71751			75772 D			0.00670	0.68222	0.09261		01217 • O		0.1705		10012 i	TE 2 6 2 • 0	0 • 24Ule

.

TABLE 14 - Holdup and Gas Velocities for 0.20 wt% CMC Solution
	<pre></pre>		16.2091	26.14550	2 1 2 4 4 4	50 50505 50 50505			15360900 16360 503			52 114EC	06111000		200000 CY	66.7755D	55.4755	68-11-63	72.706.37	75-38257	80-87664	100-12411	95.567291	93.2650R	16-24156	32.60783	52.12730	69.93535	70-43854	17575-07	84.88885	101.54355	108-97196	107-63778	119.20560
	VORIFICENSECS		0.82660	1-66370	2.08737	217546	5.94707	20051-Z	6E76672	9.39162	10-86779	0.73615	2-04910	3-01451	4.05016	5.34313	6-10701	7.28666	8 66309	10.17990	11.58853	13.37675	14.18720	14.80888	0.94034	2.74024	4 · 80 924	7.56779	9.17645	10.66667	12.11766	15.68808	18.17226	19.41116	21.23642
	VGCCM/SEC)	6 6 7 7	0.87370	1.78565	3.28631	4.59317	6-75663	8-20649	8.50614	10.79515	12.88885	0.78290	2.21303	3.38308	4.35504	5.86153	6.98703	8.29742	10.05314	12.13261	14.01832	15.90251	17.33294	18-46443	1.00218	3 01 993	5.36048	8 • 63362	10.84775	12.70186	14.6437.9	19+39106	23.04627	25 •40940	27+64981
·	HOLDUP	DECKNER ET AL.	0.02372	0.04263	0.07030	0.09251	0.12695	0.14889	0.15333	0.18642	0.21559	0.02168	0.05083	0.07199	0.08856	0.11298	0.13049	0.15024	0.17585	0.20516	0.23096	0.25612	0.27487	0.28950	0.02655	0.06559	0.10500	0.15521	0.18716	0.21302	0.23938	0.30136	0.34720	0.37613	0.40312
0.00592 NEWTCN/H 0.03123 KG/CM+SEC3	ноголь	AKITA GYOSHIDA	0.02078	0.03935	0.06499	0.08376	0.10979.	0.12466	0.12753	0.14751	0.16338	0.01878	0.04719	0.06648	0.08054	0°0966	0.11227	0.12554	0.14138	0.15788	0.17117	0.18317	0.19156	0.19782	12220-0	0.06080	0.09361	0.12873	0.14794	0.16294	0.17528	G.20272	0.22034	0.23050	0.23941
TENTION= Iscosity=	ноголь	AIK-VATER	0.02752	0.05319	0.08986	0.11721	0.15528	0.17681	0.18093	0.20925	0.23108	0.02483	0.06428	0.09202	0.11250	0.14049	0.15889	0.17808	0.20064	0.22358	0.24154	0.25730	0.26894	0.27588	0.03131	0.08379	0.13164	0.18266	0.20984	0.22926	0.24700	0.28192	0.30287	0.31440	0.32415
SURFACE LIQUID V	HOLDUP	aperimental	0.05390	0.06830	19090	\$6060°0	0.11982	0.13007	0.14246	20061.0	0.15681	112550-0	0.07408	0.10895	0.07001	0.08844	0.12595	0.12182	0.13827	0.16095	0.17333	0.15883	0.18149	0.19798	0.06170	0.09261	0.10283	0.12345	0.15407	0.16023	0.17251	0.19096	0.21149	0.23606	0.23195

TABLE 15 - Holdup and Gas Velocities for 0.25% CMC Solution

VRISE(CN/SEC) 13.34696 16.13949 16.86431 16.86431 9.59817 9.59817 21.84676 22.69626 19.35960 2.53047 6.97416 6.97416 10.225559 18.33584 24.39452 26.49157 29.42215 32.98830 2.00631 23.52424 19.74815 0.56015 **VDRIFT(CM/SEC)** 0.14178 0.71362 1.52652 2.13560 2.13560 2.13560 3.65328 3.65328 3.35538 3.35538 3.35538 4.83948 4.83948 4.83948 5.82007 3.70612 0.23497 0.96344 1.90648 4.31427 4.53139 4.93130 5.42717 8-18423 8-68556 6.09674 6.55160 .29411 VG CCM/SEC) 0.85095 2.66954 4.03155 4.03155 4.03155 4.03155 6.954835 0.564835 0.564835 0.564835 0.52433 0.52493 0.52493 0.52293 0.52293 8.54289 10.21075 11.38266 12.41191 14.62003 16.05550 17.93464 19.46999 0.15353 ET AL. 0*1541°0 0*17810 0*17810 0.08426 0.11953 0.11953 0.13898 0.16997 0.16497 0.10440 0.02982 0.02982 0.05660 0.00570 0.02231 0.04390 0.04390 0.05928 0.09215 G.25814 0.28266 0.30236 0.23906 DECKNER 0.08313 010010 0.20902 HOLDUP NENTON/N KG/CM+SEC) AKITA EYOSHIDA ногочр 6.00690 0.63278 0.63278 0.10737 0.11451 0.112454 0.125455 0.155826 0.15082 0.15082 0.04447 0.08258 0.16007 0.13664 0.23335 0.24326 0.25510 0.19996 0.21631 0.17917 0.19657 0.20747 n.r.561 0.00100 0.07199 0.15849 U.22640 0.24679 0.25859 0.20251 SURFACE TENTION= LIQUID VISCASITT= 0.18143 нагоч EXPERIMENTAL

0.07652 0.119752 0.119752 0.22680 0.22986 0.223457 0.223457 0.223457 0.223737 0.23737 0.33257

ноголь

0.49819 1.44968 0.30378 0.10359 TABLE 16 - Holdup and Gas Velocities for 0.5 wt% n-Propanol Solutions

0.16555 0.24673 0.38027 0.46372 0.51705

0.52321 0.50880

0.26398

0.21227

0.554569 0.54365 0.55390 0.55187

	VRISECCM/SEC)	2 • 66708	7.93246	10.63022	10.08094	11.29408	12.95493	12.76275	1.86836	8 . 10040	13.53922	15.28899	17.77014	15.86000	15.88291	16-69483	17-03637	17-79959	20.21520	11.61759	15-94727	15.66807	17.51600	17-72036	19-26357	21.26269	22.20763		00710477	33.96410	41.27842	41.68952	48.92420
	VDRIFT(CM/SEC)	.0.19300	0.75759	1.46599	1.52400	1.90247	2.49075	2.59322	0.15441	0.74755	2.10900	2.70724	3-44246	3.28900	3.52104	3.89296	4.16111	4.34267	4.95087	1.35299	2.30030	3.21167	3 80238	4.35524	4°19334	5.31501	5-59436	A.19515			T/87C=AT	10 -31029	12.12797
	V GC CM/ SE C)	0.20945	0-04014	1.5401	1.6/140	01124-2	3.36457	3.03156 7.1257	5869T•n	12668-0	2.01348	3021202	4 - 5 5 9 4 5	4.65566	5•26893	6-18776	6.87934	7.51829	8.66485	1.56337	2.78757	4.50966	5.58048	7.70853	8.97273	10.51385	11.53429	12.77300	18.39575	20 B 21 77			11101-07
	HOLDUP Deckher et al.	0.00735			0.4400		19710.0			28220.0	02820			0.07354	0.11333		0.12884	0.13857	0.15567	0-03823	0.06142	0.09113	0.10852	0.14144	0.16019	0.18243	0.19682	0.21400	1,299,41				20T4C*A
0.00609 NEWTCN/M 0.00100 KG/CM+SEC)	HOLDUP Akita eyoshida	0-01923 0-01182				1.1106	0 1 1 A A A				722010		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0 • 1 4 0 0 0	0• 15808	0.10019	0 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	0.05663	0 • U8814	0 • 12236	0.13976	0.16851	1470T•N	0.19847	0 + 20778	0.21821	0.25674	0.27022	n. 28117		
TENTICH= (TSCOSITY=	HULDUP AIR-KATCS	9.07639 0.02678	0.95235	0.05546	0.06950	09160-0	0-09746	0.09560	0-02611	0.07419	76760-0	0.11.975			0 1 2 2 1 0		12/61-0	1007°0	10501+0	0.04719	0-0-0-0	U.11558	0.13559	0.10115	47107 °C	0.20634	0.21735	0.22995	0.27542	0.29069	0.30267	0.32010	
SURFACE LIQUIN V	HALNUP Experimental	6-10/40	0-16424	0-18554	P 21443	0.25971	0.23454	1000 0	0-10287	E0261-6	0.22395	0-26277	0-29355	11176	0.37086													86714.0	0-54162	0.53466	0.55185	0-54590	

TABLE 17 - Holdup and Gas Velocities for 1.0 wt% n-Propanol Solution

.

•

.

VRISË (CM/SEC)	8.36660	13.81345	17.44643	22.91479	17.26815	6.14968	12.05243	13.31979	15.82813	15-99676	17.06295
VDRIF1(C#/SEC)	1 .47044	3.09383	4.23577	5.48296	4.31700	6.80213	2.36935	3.09323	2.88868	3.72404	4.1335B
UP VG (CM/SEC)	WER ET AL. 492 1.90351	397 4.68175	862 10.20490	842 13.83039	487 8.61046	537 0.94839	3.24676	729 4.88422	3.80199	360 5.90038	114 7.02981
0,07642 NEWTCN/M 0,01109 KG/(M+SEC) HOLDU HOLDUP	AKITA GYOSHIDA DECKW	0.12481 0.093	0.196.36 0.178	0.228	0.17833 0.154	0-025	0.04760				0.15945
SURFACE TENTIC'I= LIJULU VISCUSITY= LIJULU VISCUSITY=	EXPERIMENTAL ALPHATER								0 30009 0 10172 02	37747+0 37647*()	0.41199 0.15955 0.41199 0.15955

•

.

.

TABLE 18 - Holdup and Gas Velocities for 1.5 wt% n-Propanol Solution

•

FIGURE 15

FIGURE 17

FIGURE 19

FIGURE 21

FIGURE 22

FIGURE 23

those for air-water system and predicted from the correlation of Deckwer et al. (13) as shown in Figures 17-22.

Aqueous solutions of n-propanol (0.5 wt%, 1.0 wt% and 1.5 wt%) are used to study the effect of surface tension. Surprisingly very high gas holdup values are realized even at low gas velocities compared to those predicted by the correlations of Akita and Yoshita, (3) Hikita et al. (4)and Joshi and Sharma.⁽¹²⁾ The gas holdup against the superficial gas velocity is plotted in Figures 23-25. Figures 26-28 represent the plots of bubble rise velocity against the superficial gas velocity for the three concentrations of propanol solutions. From the flat portion of graphs of V_{rise} vs. V_{G} (Figures 26-28), bubbly flow regime is indicated. The bubble size distribution (visually observed) is very homogeneous and even at high gas velocities no large bubbles are observed. The reason for such high gas holdup values is discussed in Part A. No increase in gas holdup is observed with an increase in propanol concentration. This might be because of the fact that the dynamic surface tension effect discussed in Part A does not vary proportionately with the propanol concentration. Each experiment is carried out using three different initial liquid heights and gas holdup does not change with small changes in hydrostatic head.

Part C: Measurements of Mass Transfer Coefficients in Three Phase Agitated Reactor System under High Pressure, High Temperature Conditions

Many industrial processes like hydrogenation of fatty oils, oxydesulfurization, fermentation, etc. involve three phase, high pressure, high temperature agitated reactors. A knowledge of the values of gas-liquidsolid mass transfer coefficients is important to have an order of magnitude estimates of the transport rates and relative mass transfer resistances. Hence, in this project work, measurements of mass transfer coefficients are being carried out for a three phase agitated reactor system under high pressure, high temperature conditions.

The flow diagram of the apparatus is shown in Figure 29. The basic technique involves batch absorption of the solute gas in initially solute free liquid containing solids. Measurement of total pressure of the gas phase with respect to time, as the absorption proceeds, is used to calculate the mass transfer coefficients. A pressure transducer is used to carry out these measurements with good accuracy.

Procedure

The steps involved in the procedure are as follows:

1. Take requisite amount of liquid in the reactor and add to it predetermined quantity of solids.

2. Degas the liquid by applying vacuum and agitation.

3. Pressurize the reactor to the desired pressure.

4. As soon as the desired pressure reaches, close the inlet valve and start agitation, and measure the total pressure of the mas phase as a function of time.

5. Utilize this knowledge of pressure as a function of time to calculate the volumetric mass transfer coefficient ' k_0a' .

A quick response pressure transducer coupled with a high speed recorder is effectively utilized to measure the gas phase pressure as a function of time.

Method of Calculations

The rate of solute gas uptake is related to the rate of change in the pressure as

$$\frac{dN}{dt} = \frac{V_g}{RT} \frac{dP}{dt}$$

where

N = number of moles of the gas
Vg = volume of the gas phase
P = pressure of the gas phase
t = time

Also,

$$-\frac{dN}{dt} = V_{\&} k_{\&} a (C^{*}-C_{b})$$

where

V_L = volume of (liquid + solid) phase
k_La = volumetric mass transfer coefficient
C* = equilibrium concentration of the solute gas
C_b = bulk concentration of the solute gas

Expressing all the concentrations in terms of pressure using Henry's law and integrating between the limits of initial and final pressure, we get

$$-\frac{P_f}{P_i} \ln \frac{P_i P_f}{P_i - P_f} = k_g a t$$

where P_f and P_i are values of the final and initial pressure and P is the value of pressure at time t. Hence, a plot of $-\frac{P_f}{P_i} \ln \frac{P-P_f}{P_i-P_f}$ versus time will be a straight line and k_g will be the slope of the line.

The linearity of this plot was excellent in all the runs.

Results and Discussion

Initially, to confirm the usefulness and applicability of the technique, data for oxygen-water-glass beads are collected. Tables 19 and 20 summarize the data for this system for various values of pressure and agitator rpm. Table 19 gives the data for oxygen-water (without any solids)

system and Table 20 gives the data for oxygen-water-glass beads (2 volume \approx solids of 75 microns average size) system. The product of mass transfer coefficient 'k_k' and interfacial area per unit volume of liquid + solid phase 'a' is determined. The total volume of liquid + solid in the vessel is. kept constant in all experiments. The gas side resistance to mass transfer is assumed to be negligible.

Data from Table 19 is plotted in Figure 30 as ' k_ga' versus total pressure at various values of rpm. The plot indicates that at higher values of rpm ' k_ga' is independent of the total pressure. This is in agreement with the findings of Teramato et al. (1974). However, at lower values of rpm (400), ' k_ga' decreases slightly (10 to 20%) with increase in the pressure and then remained constant. The order of magnitude of ' k_ga' values is in close agreement with the findings of Koetsier et al. (1973), who have reported their data for various ratios of impeller diameter to reactor diameter and rpm.

Data from Table 20 with 2 volume % solids are plotted in Figure 31 for various values of pressure and agitator rpm. It indicates that 2 volume % solids do not have any effect on k_ga' , and also, in presence of solids, k_ga' remains independent of the total pressure for high values of rpm, and for low values of rpm (400) k_ga' decreases slightly with increase in the pressure. Joosten, et al. (1977) have found a slight increase in value of k_ga' with small volume fraction of solids. However, we did not find any noticeable change (more than 15%) in k_ga' by addition of 2 volume % solids. More data are needed at higher volume % of solids to explain in clear cut terms the decrease in k_ga' with pressure at lower values of rpm.

Table 21 summarizes the effect of agitator rpm on ' k_g a' at constant value of total pressure. As expected, ' k_g a' increases slightly initially and then significantly with increase in the rpm. The power input to the agitator per unit volume of liquid + solid is measured by using a power meter. Plots of agitator rpm or power input per unit volume for the two cases of no solids and 2 volume % solids are shown in Figure 32. As shown in Figure 33 the log-log plot of ' k_g a' versus power/volume is linear as reported by Joosten et al. (1977). However the slopes of the two plots are not the same because of gas sparging and different stirrer geometry involved in the work of Joosten et al.

Currently, the experiments are being carried out for higher concentrations of solids. After that, major consideration will be given to obtain the data at high pressure and high temperature in the presence of the solids and liquids with varying properties.

Future Plan of Work

The process variables which will be studied are as follows:

- 1. Total pressure 0 to 1500 psig
- 2. Temperature 20 to 200° C
- 3. Power input or agitator rpm 400, 600, 800, 1000
- 4. Solids concentration 0 to 40 volume %
- 5. Solids particle size 75 to 500 microns

6. Solid properties - certain solids like Keisulguhr increase viscosity of liquid simulating the effect of certain mineral matters in coal liquefaction. Also, certain solids like active carbon which have a highly porous structure increase the mass transfer rates. Effect of such solids on ' k_0a ' will be studied.

7. Liquid properties - various liquids like CMC solutions, glycol etc. will be studied to see the effect of liquid properties like density, viscosity, surface tension etc.

8. Geometric parameters like ratio of impeller diameter to reactor diameter, baffled and unbaffled vessel etc. will be studied.

TABLE 19 DATA FOR OXYGEN-WATER-GLASS BEADS SYSTEM

Volume % of Solids = 0.0 Average Temperature = 23°C

.

RPM	Initial Pressure (psig)	Average Pressure (psig)	(seč-1)
	190	183.9	0.12
100	380	359.3	0.117
400	585	558.3	0.103
	790	750.5	0.101
	185	175.8	0.121
600	375	355.2	0.117
000	595	564.7	0.115
	785	745.8	0.115
	200	189.1	0.161
800	390	365.5	0.152
000	585	551.4	0.156
	790	742.6	0.154
	200	190.5	0.22
	380	363	0.224
1000	600	557.3	0.218
1000	790	738.9	0.221
	1000	947.2	0.218

.

TABLE 20

SOLIDS - GLASS BEADS OF AVERAGE 75 MICRON SIZE

Volume % of Solids = 2.0 Average Temperature = 23⁰C

RPM	Initial Pressure (psig)	Average Pressure (psig)	k _ℓ a (seč ⁻ 1)
	195	186.8	0.12
400	385	366.6	0.117
	600	572.5	0.103
	195	186.5	0.116
600	385	364.2	0.116
	595	565	0.113
	195	185.1	0.16
800	385	362.1	0.158
	595	561.6	0.156
	200	188.2	0.23
1000	370	348.8	0.22
	595	561.5	0.216

TABLE 21

EFFECT OF AGITATOR RPM OR POWER/VOLUME ON 'kga'

Average Pressure = 590 psig Average Temperature = 23⁰C

RPM	Power/Volume kw/m ³	k _o a (sec ⁻¹) <u>Without Solids</u>	koa (sec ⁻¹) With 2 Vol. % Solids
400	0.4	0.103	0.103
600	0.8	0.115	0.113
800	2.1	0.156	0.156
1000	4.0	0.218	0.216

OF MASS TRANSFER COEFFICIENTS

FIGURE 29: SCHEMATIC FLOW DIAGRAM OF THE APPARATUS FOR MEASUREMENT

FIGURE 31 - EFFECT OF TOTAL PRESSURE ON 'kga' FOR VARIOUS VALUES OF AGITATOR R.P.M.

(2 VOL. % SOLIDS)

Nomenclature

с _ь	bulk concentration of the solute gas
C*	equilibrium concentration of the solute gas
с _{рЕ}	specific heat of liquid phase
DL	dispersion coefficient of liquid phase
HH	hydrostatic head
k _l a	volumetric mass transfer coefficient
N	number of moles of the gas
Ρ	hydrostatic pressure, pressure of the gas phae (in part C)
t	time
т _с	temperature at Z _c
т _н	temperature at Z _H
٧ _g	volume of the gas phase
۷ _G	superficial gas velocity
٧ _e	volume of (liquid + solid) phase
٧٢	superficial liquid velocity
X	vertical distance
Z _c	distance from the bottom to the first thermocouple
z _H	distance from the bottom to the last thermocouple
ε _G	gas holdup
εL	liquid holdup
۹L	density of the liquid medium

70

ч

References

- Shah, Y.T., B.G. Kelkar, S.P. Godbole, and W.D. Deckwer, paper submitted to AIChE J. (1981).
- 2. Kara, S., B.G. Kelkar, and Y.T. Shah, paper submitted to Ind. Eng. Chem. Process Design Develop. (1980).
- Akita, K. and F. Yoshida, Ind. Eng. Chem. Process Design Develop., <u>12</u> 76 (1973).
- Hikita, H., S. Asai, K. Tanigawa, K. Segawa, and M. Kitao, Chem. Eng. J. <u>20</u>, 59 (1980).
- 5. Deckwer, W.-D., R. Burchart, and G. Zoll, Chem. Eng. Sci., <u>29</u>, 2177 (1974).
- 6. Baird, M.H.I. and R.G. Rice, Can. J. Chem. Eng. 54, 540 (1975).
- 7. Joshi, J.B., Tans. Instn. of Chem. Engrs. <u>58</u>, 155 (1980).
- Field, R.W. and J.F. Davidson, Trans. Inst. Chem. Engrs. <u>58</u>, 228 (1980).
- 9. Nishikawa, M., H. Kato, and K. Hashimoto, Ind. Eng. Chem. Process Design Develop. <u>16</u>, 133 (1977).
- Buchholz, H., R. Buchholz, H. Niebeshutz, and K. Schugerl, Eur. J. Appl. Microbiol. Biotechnol., <u>6</u>, 115 (1978).
- 11. Schumpe, A. and W.-D. Deckwer, Chem. Ing. Tech., <u>52</u>, 468 (1980).
- 12. Joshi, J.B. and M.M. Sharma, Trans. Instns. of Chem. Engrs., Vol. 57, pp. 244-251 (1979).
- Deckwer, W.-D., A. Schumpe and K. Nguyen-tien, private communication (1981).
- 14. Joosten, G.E.H. et al., Chem. Engg. Sci. 32, pp. 563-566 (1977).
- 15. Koetsier, W.T. et al., The Chem. Engg. Journal 5, p. 61 (1973).
- 16. Teramoto, M. et al., The Chem. Engg. Journal 8, p. 223 (1974).

Page Intentionally Left Blank