Purified gas made per square foot of equivalent grate area (area	
internal horizontal section), dry gas basis	
Purilled gas vield her 2 000 nounds of cost.	1,450
Saturated at 60° F. and 30 inches mercury pressure	27 25
Dry gas at 60° F. and 30 inches mercury pressuredo.	ÇΤ • () 0 ∰
Tar yield per short ton of coal	370 راح
Tar yield per short ton of coal	112.2
For wild non 1 000 orbits for the second sec	14.0
Tar yield per 1,000 cubic feet of purified gas dry basisdo.	0.655
Benzine (light oil) yield per short ton of coallb.	0.655 48.4
Benzine (light oil) yield per short ton of coal	6.9
Benzine (light oil) yield per 1,000 cubic feet of purified gas.	0.9
dry basisgal.	0 20-
	0.323

Although the generators were operated at a mean hourly production of 1,450 cubic feet of gas per hour per square foot of equivalent grate area, the rated capacity is said to be 1,812 cubic feet per hour.

Capacity of the Lurgi generator, and standard water-gas sets compared

************************* The capacity of the gas-generating plant at Bohlen is approximately 5,670 million cubic feet of city gas per year. The plant comprises 10 generators, 5 of which were built in 1940 and 5 in 1944. The newer ones are improved as to the charging hopper, ash reservoir, grate-driving mechanism, and carbon scrapers Although each generator is said to have a rated capacity of 111,600 cubic feet of purified gas per hour, they are actually producing 94,500 cubic feet per hour when operating at apparent capacity. It is also noted that thus far a generator could be operated 250 consecutive days, which included "time out" for 30 miscellaneous shut-downs totaling 90 hours. The total time lost for major and minor repairs is approximately 2,000 hours per year. It was stated by German engineers that some of the loss of time due to shut-down was occasioned by the war and use of slave labor. Accordingly, estimates based upon the actual capacity to produce gas must take into consideration necessary shut-down time. The dry purified gas has a calorific value of 438 B.t.u. per cubic foot, as shown above; hence, true capacity comparison can best be made upon the basis of a chosen standard calorific value. Such a comparison is made in table 1.

The values used in making this comparison are not the possible maximum but represent results attainable in good gas-works practice. The table shows that on the therm basis the Lurgi process, making gas at 20 atmospheres pressure, is comparable, as to daily capacity, with a standard water-gas generator of the same inside diameter. The capacities given in columns (5) and (2) of the table are not strictly comparable, because in a carbureted water-gas set not all the gas is made in the generator. However, because one of the unique features of the Lurgi process is the possibility of producing city gas without the use of oil for enrichment, it is interesting to make the comparison. In the carbureted gas shown in column (2), approximately 3.3 gallons of gas oil are consumed in the carbureting step per 1,000 cubic feet of finished gas, and in making a carbureted water gas of 483 B.t.u. per cubic foot, the oil required would be 2.2 gallons. Thus, the possibility exists of reducing the enricher-oil requirements by the latter amount in making city gas.

- 14 -

1768

ercen C

C. H.

Mean h
Cubi
foot
area
Ther
of e

The

1 1

Lurgi

b/ B.t

Note-S

great syste Lurgi heret bed), react of th high condi per 1

1768

I.C. 7415

Composition of water gas and Lurgi pressure gas and the comparative production capacitya/ of the respective generators

		\$ is .		·		
	1.0	a la de la	Lur	gi high	i-pressure	gas .
			(20 8	a tmospi	eres pre	ssure)
				1 7		Purified
	Ordinary	Carbureted				gas at
		water gas		Duni	Purified	
			l .		i contract of the contract of	
		Coke				generator
	fuel	fuel	gas	gas	005-ilee	capacity
Percent:	and No.	1.1		1		
00p + H ₂ S	5.5	4.4	33.7	9.1	0.0	9.1
Illuminants		i		6	1	.6
02	1 0	.0	.2	. 2	.2.	. 2
ී co	40.0	32.0	12.1	16.7	18.4	16.7
E2		35.0				
CHL	.8	14.8				
No	3.5				.1.2	1.1
	100.0			100.0		100.0
B.t.u.b/ dry gas	303	•		- 438	483	438
Mean hourly capacity2/:	;)-) .	. ,-	1		:	
Cubic feet per square		,				
foot of equivalent grate				-		
#A	2,290	2,890	2 100	1 532	1 302	1,810
area	,-99.	£.,090	.000 وع	ニーランプ		010
Therms per square foot		1000		· C 87	6 127	1 7 07
🥻 of equivalent grate area	b.96,	16.45	<u> </u>	0. (2	6.73	7.93

The above capacities are based upon results attainable with generators having an internal diameter of approximately 9 feet; that of the Lurgi generator is 8.85 feet.

b/ B.t.u. perscubic foot, high value 60° F., 30 inches Hg.

Note-Since the initial preparation of this publication, Dr. Hubmann has advised the Bureau of Mines that it is his recollection that results of tests made at Brux (Most), Czecheslevakia, indicated a much higher production per hour per square foot of equivalent grate area than the 7.93 therms given in column 6 above.

At first it may seem inconsistent that the gas-making capacity of the turgi generator, making gas continuously as described, is not appreciably Steater than that of a modern water-gas set; the elimination of the cyclic system common to water-gas practice and the use of pressure both favor the light process. The use of fine coal, the high moisture content of the coal Leretofore used; and the thinness of the hot zone (reaction zone of the fuel (med), all tend to influence capacity adversely. The rate at which the gas centions occur at the relatively low temperatures that usually prevail in most the fuel bed (below 1,800° F.) in the Lurgi process are not compatible with trates of flow through the fuel bed. If higher temperatures are employed, conditions are less favorable for the production of CH4, and more 02 is required 1,000 cubic feet of gas made.

- 15 -

750 370

4.0 655

6.9

323

,450 ted

5 tox aper

Braunkohle Used in Germany

In certain sections of Germany, a technique for making gas has developed that is radically different from that employed in this country, largely for two reasons, viz., (a) the coals available are much like lignite and therefore are ill-suited for use in the ordinary water-gas generator; and (b) the lack of ample supply of petroleum makes it highly desirable that the oil and tar content of their coal be recovered, either before its use in making gas or in the gasification steps.

It was necessary to use a coal, initially containing up to 50 percent of moisture, which does not form coke but which slacks upon being heated. Advantage was taken of the property which the low-grade lignitic fuels have of being more reactive than the higher-grade coals. Thus, the Lurgi process was developed to use a particular fuel under a prescribed set of conditions. A representative composition of the German Braunkohle (brown coal) is as follows:

Moisture	. Dercant			Dry	
Volatile matter Fixed carbon	· por cerre)2.U			
Ash			79.0	87.8	-
		100.0		12.2	
Calorific value	, Otto	5,120	9,600		٠,
Combustible sulfur	percent.	1.81	3.4	3.78	
Sulfur in ash Tar (by Fischer assay)	3.		1.4	1.56	
	· · · · · ·	V•90	13.0	14.44	

To recover as much tar and oil as possible in gasifying the above, it was found to be desirable to remove the gas from the fuel bed at a relatively low temperature (approximately 300° C.), and this can best be accomplished when the fuel charged into the generator contains an appreciable amount of moisture. Coal containing 18 to 25 percent of moisture is preferred to dry coal when gasification is carried on in the Lurgi generator.

Other Reported Data on the Lurgi Gas-making Process

Although other lines of research were directed to high-temperature gasification of coal, even to the slagging-type producer, the Lurgi process was developed along a different line, i.e., gasification at relatively low temperatures was of most concern. The difficulties experienced in the early stages of experiments to make gas with oxygen were largely due to excessively high temperatures and resultant clinker troubles. It was evident that the even though it was anticipated that the cost of oxygen would be lowered in due time. Furthermore, the low ash-softening temperature of the available coals important factors appear to have been uppermost in the minds of those responsible for the development of the Lurgi process, namely, the conservation and

producti then ope clent so Still ar colin the H2 to co ratio is

Ext Coubic for reported

Gasifica low tar

> N₂ CH E₀ CO

> > Б. Э.

0₂ B.

Incents 1 cents 1

erator compos brium

I,C. 7415

eloped for erefore lack tar or in

ent of Advan-

ss was . A follows:

2 .0 .660 .78 .2 .56

tively hed of

was temly sively the minimul in du coals other espon n and production of oil. In that process, not only were oil and tar recovered, but when operating at about 20 atmospheres pressure the methane formed was sufficient so that the purified gas could be used as city gas without enrichment. Still another important factor is the difference in volumetric ratio of H2 to C0 in the gas made at low temperatures; the fatter temperatures favor a higher H2 to C0 ratio and the production of more C02. A gas with a high H2 to C0 ratio is desirable for the synthesis of certain liquid fuels:

Experiments with brown coal containing 18 percent of moisture; using 110 cubic feet of 02 per 1,000 cubic feet of dry, crude gas made, gave results reported as follows:

Gasification at moderate pressure below 10 atmospheres of a lignitic coal of low tar content:

			to a series	• • • • • • •	- • • •			· Raw C	02-free
. :	41-1		·					gas	gas
	CO						.percent	28.0	0.0
	co					or a large selection	da.	. 16.0	22.2
	ਜ਼-			· 				70.0	09.7
	. дот			13.55.5		atan atan ata ata	da.	3.0	4.2
	Un4	• • • • • •		• • • • • • • • • •			do.	3.0	4.2
	. ₁₈ 5							100.0	100.0
	On used a	ner l.	000 cubic	feet of g	as made	∂	cu.it.	110	153
	B.t.u. po	er cub	ic foot o	f dry gas : ted	at 60°	F., and	L 30		340.0
	R t u n	er cub	ic foot o	f saturated	i gas :	at 60° F	., and		334.0

It was estimated that the oxygen, costing 2 Pf. per cubic meter (22.6 cents per 1,000 cubic feet), increased the cost of the CO2-free gas by 3.3 cents per 1,000 cubic feet.

The influence of pressure on the composition of gas made in a Lurgi generator has been discussed, but the data of table 2 are presented to show the compositions of gases, raw and CO2-free, made at low temperatures when equilibrium conditions prevail.

TABLE 2. - Gasification of carbon at different pressures at 1,340° F. (theoretical values).

	, at , A		34.38
Gasifying pressure	l atmos.	10 atmos.	20 atmos
Composition of raw gas, volume percent:			
°°2	11.3	27.5	31.8
00	49.0	25.8	20.2
H ₂	37.0	30.4	25.8
O荆 ₄ ,,	2.7	16.3	22.2
	100.0	100.0	100.0
Composition of CO2-free gas, volume percent:			
003	0.0	0.0	0.0
CO	55.2	35.6	29.7
Н2	41.7	42:0-	37.8
СН4	3.1	22.4	32.5
A Commence of the Commence of	100.0	100.0	100.0
High calorific value of the dry raw gas at			- 33
60° F ber chift.	308,	. 348	375
High calorific value of the dry CO2-free gas			
at 60° Fdo.	347.	480	550
02 used per 1,000 cubic feet of dry 002-free			
gascu.ft.	164.	124	102
the state of the s		· · · · · · · · · · · · · · · · · · ·	-
Actual toute made on a medemate -collegeric			

Actual tests made on a moderate scale for a number of different fuels gave results as shown in table 3:

The second of th

Fuel U Test r Absolu Fuel (tion Raw S

(

inch
a/ Re
b/ Te
c/ Te
d/ Te
d/ Te
e/ Te

inch _pher high

inte resu

TABLE 3. - Results obtained in a small generator with an internal sectional area of approximately 10.765 square feet and using different fuelsa/

			; · · · · · · · · · · · · · · · · · · ·	•		
	Semi	-coke	Anthracite, 6% vol.c/	Brov (Sax	m coal	Brown coale
Fuel used	(bree	2	3	4	5	6
Test number		18	26	26	30	26
Absolute pressureatmospheres Fuel charged per square foot sec- tional area per hourlb.	22.5	20.5			104.5	94.3
Raw gas composition: CO ₂ H ₂ Spercent Tlluminantsdo.	25.5 2	35.2		31,9 .6	38.2 .9	32.1
02do. codo.	21.0	.2 17.0 34.0 13.3	9.7. 43.1	17.2	10.9	15.5 39.0 12.8
CH ₁ do.		100.0		100.0	100.0	100.0
Scrubbed gas composition: CO2 H ₂ Spercent Illuminantsdo COdo do COdo	27. 66.0	3.0 4 3 25.6 50.9 19.8	3.0 .4 .1 14.5 64.7 17.3	24.5 51.8	1.3 .2 17.4 58.2	.6
4	100.0	7 .200.00	100.0	100.0	/ 100 10	_
Calculated heating value of the scrubbed dry gas, 60° F., 30 inches Hg.,B.t.u. per cu.ft	3.3/		441	46	L 473	450
inches Hg.,B.t.u. per curre	n engi	neer. (tto Hubman	n.		_

a/Results according to the German engineer, Otto Hubmann.
b/ Tests 1 and 2 were made with "Grudekoks," which is carbonized brown coal.

C/ Test 3 was made with a noncoking coal of higher rank than brown coal.

I/ Tests 4 and 5 employed Saxony brown coal.

e/ Test 6 was with German brown coal.

The second second second second These tests indicated that using a dust-free coal, size 0.12- to 0.31inch, moderately high gas-making rates could be obtained at 20 or more atmospheres pressure, and that the drop in pressure through the fuel bed was not high, being of the order of 2 inches of water with a bed 9 feet deep.

Results obtained under test conditions on the small generator having an internal diameter of approximately 4 feet, which are said to be "average results", are as follows: .

Fuel used, dried and screened brown coal. Distillation (carbonization) yields: Tar.....weight percent 10.2 Water of distillation.....do. Water (moisture in coal)......do. 27.4 Coke (char)......do. Gas and remainder.....do.

31.8 20.2 25.8 22.2

0.0 29.7 37.8 32.5 100.0

375

550

uels

and the state of the	
Proximate analysis of coal:	
Moisturepercent 27.4	33
Volatile, plus fixed carbon	建
Ashdo. 5.1	100
$\overline{100.0}$	1
Elementary analysis of coal:	, O
Carbonpercent 49.0	7,000 402 33.00
Hydrogendo. 3.4	
Sulfur (combustible)do. 0.7	- 10°
Oxygen and nitrogendo, 14.4	300
Ashdo. 5.1	
Moisturedo. 27.4	- ,700
$\frac{21.7}{100.0}$	- 7
Screen analysis (converted from original data, which was given in	- ij
metric units):	- 100 200
Size	. 4
Through 0.315-inch on 0.197-inchpercent 39.2	-4
Through 0.197-inch on 0.079-inch	
Through 0.079-inch on 0.039-inchdo. 2.5	1
Through 0.039-inch on 0.020-inchdo. 0.7	: 17.93 : 13.
Through 0.020-inchdo. 0.8	1.7
· · · · · · · · · · · · · · · · · · ·	ij
Calorific value of the coal:	
Calorific value of the coal: High value	
Low value	
Coal gasified per 24 hours	
Coal gasified per hour per square foot of internal sec-	ં કેલ મામ
tional area of the generator	
Composition of gas made:	
Raw Scrubbed	
CO ₂ + H ₂ Svolume percent 30.6 3.0	
0	• ,
Uxygendo1 .1	
Carbon monoxide 23.1 Hydrogen 47.7	
Methanedo. 16.3 22.8	÷
Nitrogendo. 1.9 2.6	
100.0 100.0	
Calorific value, dry gas at 60° F. and 30 inches	
mercuryB.t.u. per cu.ft. 351 474	
Specific gravity, dry gas	,
Hydrogen sulfide, grains per 100 cubic feet 287 0.0	
Ammonia, per 100 cubic feet scrubbed gas producedgrains 0.0074	
Oxygen used per 1,000 cubic feet of dry scrubbed gas	
madecu.ft. 150	
Steam used per 1,000 cubic feet of dry scrubbed gas made.lb. 60	
Tar recovered - 72 percent of the total tar content of the coal.	1.
A reported heat balance in gasifying brown coal in the test generator shown as follows:	r is

bal:

.Out

Hea the heat
tions no
presents
ciency n

Sub
rich Dar
pressure
data on
by the

by the

Composi Moist Volat Ash..

Tar con Calorií

> Size... Composi CO₂.. 02... CO.. H2...

CH4. N_2 ..

1768

Heat balance of pressure gas operation of a small test generator using screened; partly dried, brown coal containing 27 percent moisture

Inpu	t						•							
	Heat	in	the	coal			, , , , , , , , , , , , , , , , , , ,			, . ,			Percent 89.9	
	Heat	in	the	stear	a		4:	••••	· · · · ·	• • • • • •	• • • • •		$\frac{10.1}{100.0}$	
Out:		1			: .						. 4. 			,
	Heat Heat	of of	comb	oustic oustic	on of i	the s	crubb ar ar	ed ga	s				62.2 14.3	
	Combi	ısti	ble	matte	er with	ı the	ash.				· · · · ·		0.4	, '
	Pheno	ol i	n tl	ne was	sh water water	ers .							0.9	•
	Sens	ible	hea	at of	the ga	ses	and h	eat 1	óst.				. 16.2	
•	Heat	108	t ir	n stea	ım supe	erhea	ter y	entil	atio.	n lii	nes	:::::	5.4 100.0	

Heat of combustion of the gas, tar, and oil represents 76.5 percent of the heat input as coal and steam. Although the tests were made under conditions not readily obtainable in average plant operation, the results are presented to indicate that under favorable conditions high conversion efficiency may be obtained.

Subsequent to the experiments of Dr. Otto Hubmann in Germany, Dr. Friedrich Danulat of Frankfurt, a representative of the Lurgi Co., reported on the pressure gasification of coal in a Lurgi generator at a time when first-hand data on full-scale operations were available to him; some of the data reported by the latter are presented as follows:

Operations with various coals at 20 atmospheres absolute pressure:

100 100 100 100 100 100 100 100 100 100			*. *
Fuel	Brown coal	Brown coal	Hard coal
		(middle	(noncoking coal
	(Lausitz)	Germany)	from the Ruhr)
Composition:			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Moistureweight percent	27.4	. 16.9	6.6
Volatile and fixed carbondo.	67.5	72.5	88.4
Ashdo.	5.1	10.6	5.0
	. 100.0	100.0	. 100.0
Tar contentpercent by weight	10.2	14.8	0.0
Calorific value, high value			
99% 12 + 11 - 10 - 17 is 1	8520	9060	13,680
Sizeinches	0.08-0.39	0.08-0.39	0.12-0.39
omposition scrubbed, purified gas:			
2volume percent	3.0	2.3	1.0
際は工Uminants	0.5	0.9	0.3
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.1	0.2	0.0
8%° ∨U. 3. 1	22.8	22.0	27.9
H2	48.7	50.7	52.4
CHdo.	22.6	21.8	16.9
do.	- 2.3	2.1	1.5
726	100.0	100.0	100.0