

Fischer-Tropsch Reactors

Ben Jager

Sasol Process Development Twente (SPDT) University of Twente: Chemical Technology PO Box 217 7500 AE Enschede, The Netherlands

Presented at the AIChE Meeting, New Orleans March 31st to April 4th , 2003

Copyright Sasol, 2003

Fischer-Tropsch technology

- Converts synthesis gas to liquid hydrocarbons
- $2H_2 + CO \rightarrow -CH_2 + H_2O$
- Product spectrum depends on:
 - temperature, catalyst, pressure, gas composition
- High temperature Fischer-Tropsch
 - 350 °C: gasoline and light olefins
- Low temperature Fischer-Tropsch
 - ~ 250 °C: distillate and waxes

Fischer-Tropsch product Distribution

Product Distribution for Fe-catalyst (per 100 carbon atoms)

Product	Low Temperature 220 - 250 ⁰ C	High Temperature 330 – 350 ⁰ C
CH ₄	4	7
C ₂₋₄ olefins	4	24
C ₂₋₄ paraffins	4	6
Gasoline	18	36
Distillate	19	12
Oils and waxes	48	9
Oxygenates	3	6

Worldwide Interest in Fischer-Tropsch

LTFT

- Conversion: stranded, remote NG to superior diesel
- Several projects under consideration
- Sasol Qatar Petroleum: Oryx plant for start up in 2006
- ~ \$ 25 000 per daily barrel <u>total</u> project cost

HTFT

- Less interest
- Complex product slate
- Techno-economic feasibility studies more complex
- Initial investment higher
- Provides interesting opportunities

Design Issues

- Catalytic process
- Process conditions
- LTFT Three phase
 - Multi Tubular Fixed Bed or Slurry Phase Reactors
 - hydrodynamics
 - solid separation
- HTFT Two phase
- Heat removal highly exothermal

Multi Tubular Fixed Bed Reactors

- Since 2nd WW used commercially by:
 - Sasol: Arge process (Fe)
 - Shell: SMDS process (Co)
- Heat removal through tube walls
- Gas recycle
 - Enhances heat transfer
 - Conversions: per pass, overall
 - Recompression costs
- Liquid recycle
 - Need for effective distributor
- Pressure drop

Multi Tubular Fixed Bed Reactors (cont.)

Axial and radial temperature profiles

- catalyst activity
- temperature level
- gas & liquid flows
- tube diameters
- Optimise max. ave. and peak temperatures
- Plug flow?
- Cost of reactor
 - Mechanically complex
 - Scale up
 - Catalyst replacement

Slurry Phase Reactor

- Well mixed reactor
- High average temperature and reaction rates
- CSTR behaviour conversion, selectivity
- Easier control
 - virtually isothermal operation
- Higher volumetric conversion rates
- On-line catalyst removal and addition
 - selectivity control

Slurry Phase Reactor (cont.)

- Lower operating cost
 - 70% less catalyst consumption
 - reduced maintenance costs
- Lower capital cost
 - simpler construction
- Solid Separation
 - internal devices
 - crucial development
 - optimisation of catalyst properties
 - effective and relatively cheap

Slurry Phase Reactor (cont.)

- High reactor capacity
- Good turndown ratio
- pressure drop reduced 65-85%
- Plug flow behaviour
 - staging in reactors
 - interstage fresh feed
 - series operation with water knock out

LTFT Catalysts

- Cobalt or Iron based
- Oxidized by water
- Co cat has longer life but more expensive
- Fe cat inhibited by water
- Fe cat has water gas shift activity
- Co cat more active at higher conversions
- Recycles or series reactors
- Water gas shift activity for low H₂/CO gas

LTFT Catalysts (cont).

Cobalt based

- conversion proportional to H₂/CO
- selectivity(α) benefits from:
 - low H₂/CO
 - High partial pressure CO
- Iron based
 - conversion proportional to pp (CO+H₂)
 - selectivity benefits from
 - low H₂/CO
 - low temperature

Catalysts particle size and activity

Multi tubular fixed bed reactor

- Diameter > 1mm for acceptable pressure drop
- Effectiveness factor below unity
- Selectivity negatively affected by CO and H2 diffusivities
 - higher pressure for Co cat
 - lower temperature for Fe cat
- H₂/CO difficult to adjust
- Limited benefit from catalyst activity increases

Catalysts particle size and activity (cont).

Slurry phase reactor

- 20 μm < diameter < 200 μm
 - lower limit due to solid separation
 - upper limit by
 - suspension of particles
 - effectiveness factor
- Effectiveness factor close to unity
- Effective use of increases in catalyst activity
- Benefits selectivity for Co catalyst

Reactor Capacities

Capacities bbl/day

	<u>MTFBR</u>	<u>SPR</u>
Present	3 000	3 000
Announced	9 000	17 000
Potential	10 – 15 000	> 30 000

• Shop fabrication vs. on site assembly

Sasol's 2 500 bbl/day commercial Slurry Phase Distillate reactor

Reactor Capacities (cont).

Multi tubular fixed bed reactor :

- Series reactors: 3 into 1
- Higher capacities due to :
 - better catalyst
 - optimised process conditions
 - optimised reactor
- Size limited by shop fabrication and transport limitations

Reactor Capacities (cont).

Slurry phase reactors :

- Higher capacities due to:
 - simpler construction for easier scale up
 - higher activity catalyst can be utilized
 - internal staging plug flow
 - interstage fresh gas feed optimal use of reactor volume
 - series reactor configuration with condensing trains
 - reduces recycles
 - higher partial pressures of reagents
 - inter reactor fresh gas feed
- Optimisation of gas loop
- Especially valid for multi reactor plants
- Heat removal becomes limiting
- Early on learning curve

Fischer-Tropsch reactors

Sasol Advanced Synthol Reactor

- 19 Synthol Circulating Fluidised Bed reactors used during 1955 – 2000
- 16 CFB replaced by SAS reactors:
 - Four 8 m reactors of 11 000bbl/day
 - Four 10 m reactors of 20 000bbl/day

Sasol Advanced Synthol Reactor

(cont).

For the same capacity, the relative reactor sizes are:

Sasol Advanced Synthol Reactor (cont).

- SAS reactors:
 - simpler structure and support
 - no circulating catalyst
 - all catalyst in use all the time
 - catalyst consumption reduced to 40%
 - easier to operate
 - cheaper 40%
 - less maintenance 15%
 - more heat transfer surface
 - greater capacity

Sasol Advanced Synthol Reactor (cont).

- SAS design geared to replace existing CFB reactors
- Catalyst not used optimally
- Fe cat inhibited by water
- Parallel operations recycles
- Low conversions per pass
 - Recycle
 - Series reactors
- Interstage removal of water
- Can use higher activity catalyst
- > 20 000bbl/day reactors indicated

In Conclusion

- GTL technology at early stage of development
- Incentive for improved FT technology
- New FT reactors early on learning curve
- Opportunities from
 - better use of more active catalysts
 - series in stead of parallel configurations
 - debottlenecking new limiting mechanisms
 - e.g. heat removal
 - heat management in GTL plants
- Optimal FT reactor design not in isolation Part of philosophy of overall plant design
- Early on learning curve opportunities

