20 December 1945

RESTRICTED

From: Chief, Naval Technical Mission to Japan.
To: Chief of Naval Operations.

Subject: Target Report - Japanese Antennae.

Reference: (a) "Intelligence Targets Japan" (DNI) of 4 Sept. 1945.

1. Subject report, dealing with Target E-16 of Fascicle E-1 of reference (a), is submitted herewith.

2. The investigation of the target and preparation of the report were accomplished by Lieut. E.E. Schwalm, USNR, assisted by Lieut A.A. Lang, USNR, Lieut. W. G. Lamb, USNR, and Lt.(jg) S.H. Kadish, USNR, as interpreter and translator.

C. G. GRIMES
Captain, USN
JAPANESE ANTENNAE

"INTELLIGENCE TARGETS JAPAN" (DNI) OF 4 SEPT. 1945
FASCICLE E-1, TARGET E-16

DECEMBER 1945

U.S. NAVAL TECHNICAL MISSION TO JAPAN
ELECTRONICS TARGETS
JAPANESE ANTENNAE

Radar antennae in use were of five principal types: mattress arrays, ladder type broad-side arrays, Yagi and Yagi arrays, horns, and parabolic reflectors. In general, mattress and ladder type broad-side arrays were used with air search radars, Yagi arrays with AA fire control and searchlight control radars, and horns with centimeter equipments. Parabolic reflectors had not come into general use at the end of the war but had been adopted for use on several pieces of new equipment.

A broad band antenna (145mc to 155mc) for use with IFF equipment is described, as is a large cylindrical antenna 19 meters high and 17 meters in diameter. RCM antennae and an antenna for underwater long wave radio reception are discussed.

RDF and airborne antennae are only summarized. Detailed descriptions and analyses are available in NavTechJap Reports, "Japanese Airborne Radar", Index No. E-02, and "Japanese Radio and Radar Direction Finders", Index No. E-05.

The antennae inspected were without exception of simple design and mediocre construction. No unusual or exceptionally high performance antennae or components were found in production model equipments or in laboratories.
TABLE OF CONTENTS

Summary .. Page 1
List of Illustrations ... Page 3
List of Enclosures ... Page 3
References ... Page 4
Introduction .. Page 5

The Report

Part I - General

A. RDF Antennae .. Page 7
B. Airborne Antennae ... Page 7
C. Underwater Antennae .. Page 7
D. Rotation Systems, Duplexers, and Rotary Joints Page 7
E. Miscellaneous .. Page 7

Part II - Air Search Radar Antennae

A. Mattress Type Arrays ... Page 8
B. Ladder Type Broadside Array ... Page 9
C. Yagi Arrays ... Page 13
D. Cylindrical Array .. Page 13

Part III - Surface Search and Fire Control Radar Antennae

A. Yagi Arrays ... Page 13
B. Horns ... Page 15
C. Parabolic Reflectors .. Page 15

Part IV - Broad Band Antennae .. Page 17

Part V - RCM Antennae ... Page 17
LIST OF ILLUSTRATIONS

Fig. 1 Flight Deck Installation of Type 21 Radar on CV KATSURAGI Page 10
Fig. 2 Type 13 Radar Antenna Installed on Mainsmast of CV KATSURAGI Page 10
Fig. 3 Type 13 and 22 Radar Antennae on Foremast of DD HANAZUKI Page 11
Fig. 4 Type 13 Radar Antenna on Mainsmast of DD HANAZUKI Page 11
Fig. 5 Type 13 Radar Antenna as Installed on a Submarine Page 12
Fig. 6 Diagram of Experimental Cylindrical Antenna Array Page 12
Fig. 7 Type 32d Radar Antenna Page 14
Fig. 8 Type 22 Radar Antenna Modified for Fire Control on DD HANAZUKI Page 14
Fig. 9 Diagram of Broad Band Antenna Array Page 16
Fig. 10 Impedance Diagram of Broad Band Antenna Page 16
Fig. 11 RCM Antennae on a Submarine Page 18
Fig. 12 Racquet Type Antenna for Radar Intercept Receiver Page 18
Fig. 13 RCM Antennae on Submarine Page 20

LIST OF ENCLOSURES

(A) List of Documents Forwarded to WDC Through ATIS Page 21

(B) Block Diagram of GYOKU 3 Radar Showing Goniometer Coupled Theta Type Antenna Page 23

(C) Schematic Diagram of Temporarily Designated Type 3, Mark 1, Model 1 (11K) Radar Antenna Page 24

(D) Installation Diagram of Temporarily Designated Type 3, Mark 1, Model 3 (13) Radar Antenna Page 25

(E) Schematic Diagram of Temporarily Designated Type 3, Mark 1, Model 3 (13) Radar Antenna Page 26

(F) Schematic Diagram of Transmitting Antenna, Mark 4, Model 2, Modification 2 (S24) Radar Page 27

(G) Schematic Diagram of Receiving Antenna, Mark 4, Model 2, Modification 2 (S24) Radar (part 1) Page 28

(H) Schematic Diagram of Receiving Antenna, Mark 4, Model 2, Modification 2 (S24) Radar (part 2) Page 29

(I) Schematic Diagram Antenna, Mark 4, Model 1 (33) Radar Page 30

(J) Installation Diagram of Transmitting Antenna, Mark 4, Model 3, Modification 1 (12) Radar Page 31

(K) Installation Diagram of Receiving Antenna, Mark 4, Model 3, Modification 1 (12) Radar Page 32

(L) Block Diagram of (PTC) Radar Intercept Receiver Showing Theta and Racquet Type Antennae Page 33

(M) Table of Japanese Naval Radars Page 35

(N) Assembly and Foundation Diagram of Radar Antenna, Mark 4, Model 2, Modification 2 (S24) Page 37
REFERENCES

Location of Target:

1. Headquarters of Second Naval Technical Institute, Kanagawa, YOKOHAMA.
2. Meguro Laboratory of Second Naval Technical Institute, Meguro, TOKYO.
3. Tsukishima Naval Radar Experimental Station, TOKYO.
4. Naval Fighter Director Station, CHIGASAKI, Kanagawa Ken.
5. Yokosuka Naval Base, YOKOSUKA.
6. Kure Navy Yard, KURE.

Japanese Personnel Interrogated:

3. Capt. and Dr. Y. ITO: Head of First and Second Sections of Second Naval Technical Institute (Fundamental research). Specialist on centimeter techniques.
5. Lt. Comdr. (Technical) S. KATSURAI: Designer of (51), (61), and (63) radars.
9. Dr. K. TAKAYANAGI: Consultant on radar to Vice Adm. NAWA.
INTRODUCTION

The report which follows describes findings concerning Japanese antennae. Preliminary investigation disclosed that the antennae of primary interest were those in design and test stage. Therefore the bulk of the data presented on experimental antennae has been collected from the designers of Japanese naval radar equipment and their consultants.

Various laboratories, test stations, and pieces of equipment were inspected in order to verify the information given by the interrogated personnel. Operational data on experimental antennae could not be verified because such equipment had either been destroyed or rendered inoperative prior to the arrival of the investigators in the target areas.

The documents listed in this report have not been translated. They will be available at the Washington Document Center.
THE REPORT

PART I - GENERAL

A. **RDF Antennae**

Although the Japanese have done considerable research on radio direction finders, all antennae inspected appear to be conventional in design. Since the antennae are the most important components of RDF equipments, they are discussed in NavTechJap Report, "Japanese Radio and Radar Direction Finders", Index No. E-05.

B. **Airborne Antennae**

A considerable amount of research was done on airborne antennae. The bulk of this research effort was directed toward the improvement of Yagi and doublet type antennae and the adaptation of these types to new radar equipments. Of principal interest is a revolving beam type antenna used with the Gyoku 3 radar installed in night fighter aircraft. It uses an omnidirectional Theta type antenna and doublet antenna with a goniometer coupler to produce the revolving beam. Enclosure (B) is a block diagram of the Gyoku 3 radar and includes a sketch of this antenna.

C. **Underwater Antennae**

Japanese submarines were equipped with a receiver for underwater reception of a long wave signal (17.3 kc) from a transmitter on land. The original antenna used was the standard RDF loop. Later installations used a small compact dust core antenna which was suited to mass production. This antenna is discussed in NavTechJap Report, "Japanese Sonar and Asdic", Index No. E-10. Pertinent documents are as follows:

- NavTechJap Documents No. ND21-6007
 - (See Enclosure (A)) ND21-6142
 - ND21-6266

D. **Rotation Systems, Duplexers, and Rotary Joints**

Antenna rotating systems were very elementary. Hand train was the principal method used. Most search sets were equipped with a motor to turn the antenna for continuous search. Synchro control of the antenna was used on only one piece of equipment, the (22) modified for fire control use on ships. This synchro system was custom built for each installation.

Duplexers were of conventional design in all equipments in which they were used except for the single horn modification of the (22 Kai 3) radar which used a polarization shifting duplexer.

No unique or particularly efficient rotary joints have been discovered. Rotary joints and duplexers are described in detail in NavTechJap Report, "Japanese R.F. Transmission Lines, Wave Guides, Wave Guide Fittings, and Dielectric Materials", Index No. E-20.

E. **Miscellaneous**

No antennae have been developed which permit simultaneous transmission and
reception or which permit simultaneous lobe comparison.

No information is available which indicates that any work was done on variable frequency antennes.

No data has been discovered which indicates that any work was in progress on rapid scan antennes or on wave guide dielectric lens antenne.

Of general interest are theoretical studies on various types of antennee contained in the following documents:

NavTechJap Documents No. ND21-6000 to ND21-6044
ND21-6000.14 ND21-6046
(See Enclosure (A))
ND21-6002 ND21-6047
ND21-6015 ND21-6048
ND21-6043

PART II - AIR SEARCH RADAR ANTENNAE

Air search radar antennee were, with two exceptions, of conventional types familiar to any technician acquainted with American radars. The types of antennee most commonly used were mattress arrays of several sizes and configurations and a ladder type broadside array. Yagi arrays and parabolic antennee were used to a lesser extent on those radars which were used for purposes in addition to detection of aircraft. Duplexing systems in use are standard in every respect.

A. Mattress Type Arrays

Matress type arrays were used on the following radars:

Type 2 Mark 1 Model 1
Type 2 Mark 1 Model 1 Modification 1 (11-1)
Type 2 Mark 1 Model 1 Modification 2 (11-2)
Type 2 Mark 1 Model 1 Modification 3 (11-3)
Prototype Air Warning Radar (11-3 Kai)
Type 3 Mark 1 Model 1 (11 K)
Type 2 Mark 1 Model 2 (12)
Type 2 Mark 1 Model 2 Modification 2 (12-2)
Prototype Mark 6 Model 2 (62)
Prototype Mark 6 Model 3 (63)
Radar to Guide Boats (TH)
Type 2 Mark 2 Model 1 (21)
Type 2 Mark 2 Model 1 Modification 1 (21 Kai 1)
Type 2 Mark 2 Model 1 Modification 2 (21 Kai 2)
Type 2 Mark 2 Model 1 Modification 3 (21 Kai 3)
Type 2 Mark 2 Model 1 Modification 4 (21 Kai 4)
Type 2 Mark 2 Model 1 Modification 5 (21 Kai 5)

The antennee used with all of the above radars are of conventional design except that used with the (62) and (TH) radars. All consisted of end-fed dipoles in various combinations using parallel wire feeders to the elements. Wire mesh was used as a reflecting surface. They were all horizontally polarized.

The (62) and (TH) radars used a vertically polarized broad band antenna which is discussed in Part IV.

The Type 2, Mark 1, Model 1 radar and modifications were equipped with large mattress arrays approximately 25 feet wide and 15 feet high. The characteristics of these antennee are well known since equipments of this series were
captured early in the war. All of these antennae have separate transmitting and receiving arrays except the (11-3 Kai) which employed duplexing. Enclosure (M), "Table of Japanese Naval Radars", shows the type of antenna used with each radar and lists the salient characteristics of these antennae.

The (11 K) radar used an antenna composed of an array four elements wide and six high. Duplexing was employed. Enclosure (C) is a schematic diagram of this antenna. It shows the arrangement of the radiating elements and the sizes of the various components. Performance data is available in Enclosure (M). Additional information on this antenna is available in NavTechJap Document No. ND21-6277 (See Enclosure (A)).

The remaining mattress antenna of note is the one used with the (21) shipborne radar and its modifications. The first antenna of this series consisted of two separate transmitting and receiving arrays, each consisting of an array six elements wide and two high. This antenna was also used on the (12) and (12-2) land based radars. It was replaced on these pieces of equipment by the standard ladder type antenna because of its poor stability characteristics. In an effort to improve the performance of the (21) radar an antenna consisting of a transmitting array four elements wide and two high and a receiving array three elements wide and two high was designed. The next modification was an array four elements wide and three high which employed duplexing. This antenna was then modified to become array four elements wide and four high. The (21 Kai 4) and (21 Kai 5) radars used this antenna. Figure 1 shows an antenna of this type as installed on the flight deck of CV KATSURAGI. It was intended to install a horizontally polarized version of the broad beam antenna used with the (62) radar with the (21 Kai 5) radar. (See Part IV.) No shipborne installations had been made.

In spite of the numerous antenna modifications, the (21) radar and its modifications were never as successful as desired because the antenna was extremely difficult to tune and the rotary joint was unsatisfactory.

This antenna was also tested for use with a radar intercept receiver. NavTechJap Document No. ND21-6222, (Enclosure (A)), gives the results of this test.

Enclosure (M) gives performance data on these antennae.

Additional information on mattress arrays is available in the following documents, which are described in Enclosure (A):

NavTechJap Documents No. ND21-6065
ND21-6089
ND21-6090

B. Ladder Type Broadside Array

The ladder type broadside array was used on the following radars:

Type 2, Mark 1, Model 2, Modification 3 (12 Kai 3)
Type 3, Mark 1, Model 3 (13)
Type 3, Mark 1, Model 3, Modification 3 (13-3)

This array was used on 150 mc radars. It consists of an array of four steps of two elements backed by parasitic reflections. This array was considered very efficient. The (13) radar was the primary shipborne air search radar. Figure 2 shows the (13) antenna installed on the mainmast (looking aft) of CV KATSURAGI.

Figure 3 is a view of the foremast (looking aft) of DD HANAZUKI showing the (13) and (22) radar antennae. Figure 4 shows a mainmast installation of a/ (13) antenna on the same ship.
Figure 1
FLIGHT DECK INSTALLATION OF TYPE 21 RADAR
ON CV KATSURAGI

Figure 2
TYPE 13 RADAR ANTENNA INSTALLED ON MAINMAST
OF CV KATSURAGI
Figure 3
TYPE 13 AND 12 RADAR ANTENNAS ON FOREMAST
OF DD HANAZUKI

Figure 4
TYPE 13 RADAR ANTENNA ON MAINmast OF DD HANAZUKI
Figure 5
TYPE 13 RADAR ANTENNA AS INSTALLED ON A SUBMARINE

Figure 6
DIAGRAM OF EXPERIMENTAL CYLINDRICAL ANTENNA ARRAY
Enclosure (D) is an installation diagram of the (13) antenna. Enclosure (E) is a schematic diagram of the same antenna. These diagrams may be consulted for construction details of this antenna. See Enclosure (H) for performance data. Additional data is available in the following documents listed in Enclosure (A):

NavTechJap Documents No. ND21-6216

ND21-6216.9

C. YAGI Arrays

Yagi arrays were used principally on searchlight control and AA fire control radars. The only applications of this type of array for search purposes were on the (13) radar installation on submarines and on the Mark 1, Model 4 (14) radar which employs lobe switching. Figure 5 shows a (13) installation on a submarine.

D. Cylindrical Array

A large 6 meter cylindrical antenna was designed for 360 degree electrical scanning. This antenna is 19 meters high and 17 meters in diameter. It is composed of 24 vertical elements arranged as shown in Figure 6. It is horizontally polarized. A rotating goniometer located in the center of the array two meters from the base sweeps the beam by shifting the phase of the various elements. The main lobe is 18 degrees in the horizontal plane. The principal minor lobes are two 12% back lobes (one on each side) and two 9% side lobes in front. The theoretical gain is 18.7 db.; actual overall gain is about 16 db. This antenna has not progressed beyond the experimental stage. Since the only antenna built has been destroyed additional data is not available.

PART III. SURFACE SEARCH AND FIRE CONTROL RADAR ANTENNAE

A. YAGI Arrays

Yagi arrays were most frequently used on land based radars for searchlight control and AA fire control. When accurate bearing and position angle data were desired, the comparison method, using Yagi receiving arrays, was considered the most practicable. Lobing was always accomplished with receiving arrays only, on the theory that more accurate bearing determination was possible when lobing only with receiving antennas.

Yagi arrays were used on the following radars:

Prototype Mark 4, Model 3
Prototype Mark 4, Model 3, Modification 1
Prototype Mark 4, Model 3, Modification 2
Prototype Mark 4, Model 1
Prototype Mark 4, Model 2
Type 3, Mark 1, Model 3 when installed on submarines

Figure 7 shows a typical installation of the (S24) radar antenna to control an AA battery. Enclosures (N), (P), (G), and (H) are assembly and schematic diagrams of the transmitting and receiving arrays of the antenna shown in Figure 7.

Enclosure (I) is a schematic diagram of the (S3) radar antenna. This radar is the Japanese copy of the U.S. SCR 266.

Enclosures (J) and (K) are installation diagrams of the (L2) searchlight control radar transmitting and receiving arrays.

Performance and operational data on all the antennae discussed above are available in Enclosure (M).
Figure 7
TYPE 32A RADAR ANTENNA

Figure 8
TYPE 22 RADAR ANTENNA MODIFIED FOR FIRE CONTROL ON H.M.S. ANZIO
(looking Aft)
B. Horns

Horn type antennae were used on all 10cm radars which were operational at the end of the war. This type was favored over shallow parabolic dishes because of the resultant reduction in the number and size of side lobes. The first 10cm radar used a deep parabola 1.7 meters long and 0.8 meters in diameter at the open end. Because this antenna was too heavy and unwieldy for shipboard use, the shorter horn was developed.

Horn type antennae are used on the following radars:

- Prototype Mark 2, Model 2, Modification 2 (22 Kai 2)
- Prototype Mark 2, Model 2, Modification 3 (22 Kai 4)
- Prototype Mark 3, Model 2 (105 S2)
- Prototype Mark 3, Model 3 (105 S1)

Two horns were usually used, one for transmitting and one for receiving. However, some (22 Kai 3) radars installed on submarines used a single horn for both transmitting and receiving with a unique duplexing system which is described in NavTechJap Report, "Japanese R.F. Transmission Lines, Wave Guides, Wave Guide Fittings, and Dielectric Materials", Index No. E-20. The (105S2) and (105S1) experimental radars used three horn antennae, one for transmitting and two for receiving.

The (22) series radars were the only ones available for shipborne fire control. Installations intended for this purpose incorporated an enlarged and extended receiving horn in order to reduce to the size of the main lobe. Figure 8 shows a modified (22 Kai 4) radar antenna as installed on DD HAYA-ZUKI.

It was the intention of designers to use horn type antennae on the projected X band radars.

Enclosure (M) gives performance data on the horn type antennae listed above.

Additional data is available in the following documents, listed also in Enclosure (A):

- NavTechJap Documents No. ND21-6216.4
- ND21-6231.1
 to ND21-6231.4
- ND21-6232.1
 to ND21-6232.11
- ND21-6237

C. Parabolic Reflectors

New development tended toward the use of parabolic reflectors where bearing and elevation accuracy was desired. Horn type antennae were unsatisfactory for fire control.

Parabolic reflectors were used on the following radars, all of which were experimental types:

- Anti-Surface Warning Radar
 Type 3, Mark 2, Model 3 (76)
 Prototype Mark 2, Model 4 (24)
 Prototype Radar for AA Control (S8A)
 Prototype Mark 6, Model 1 (S8B)
 Prototype Mark 3, Model 1 (S8C)
Figure 9
BROAD BAND ANTENNA ARRAY

Figure 10
FREQUENCY VS IMPEDANCE
IMPEDANCE DIAGRAM OF BROAD BAND ANTENNA
The (F8) and (23) radars used separate transmitting and receiving antennae 1.7 meters in diameter. The (24) radar used two antennae 2 meters in diameter.

The latest 10cm radar (220), intended as a replacement for the (22) radar on ships, has a 1.7 meter disk, a metaking dipole and duplexing. This equipment was in the test stage at the end of the war. It has been reconditioned and shipped to the United States for analysis.

The (61) radar used a 0.7 meter disk which had a rotating dipole, hence rotating polarization. It was designed as a land based height finding radar. Its counterpart for ship board installation was the (23) radar which had a 1.7 meter disk and rotating dipole.

Nothing new or unconventional has been found in any part of the reflector systems. They were all of simplified design, were custom built, and were of wire mesh construction, except the (220) antenna which was made of perforated sheet metal. No evidence was found of the use of truncated parabolic reflectors. Performance data is available in Enclosure (h).

See NavTechJap Report, "Japanese Experimental Radar", Index No. E-12, for data on these radars.

PART IV. BROAD BAND ANTENNAE

The principal application of broad band antennae during the war was in radar intercept receivers. These are discussed in Part V.

The only other notable broad band antenna is one which was developed for use with the M13 IFF equipment. The airborne IFF equipment answered on a slightly different frequency from the radars which were used for the direction of friendly aircraft, so a broad band antenna was developed for use with this equipment. Broad band antennae were used as follows:

<table>
<thead>
<tr>
<th>Radar</th>
<th>Polarization of Antenna</th>
<th>Wave Length</th>
<th>IFF Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>(62)</td>
<td>Vertical</td>
<td>2.0 meters</td>
<td>M13</td>
</tr>
<tr>
<td>(TH)</td>
<td>Vertical</td>
<td>1.5 meters</td>
<td>M13 with 65 cm wave</td>
</tr>
<tr>
<td>(21 Kai 5)</td>
<td>Horizontal</td>
<td>1.5 meters</td>
<td>None</td>
</tr>
</tbody>
</table>

This antenna was broad banded from 145 mc to 155 mc. It consisted of 16 elements arranged as shown in Figure 9. Each element is 1.5 wave lengths long and has a characteristic impedance of 300 ohms. An input impedance curve is shown in Figure 10.

A similar antenna was built for the (21 Kai 5) radar except that it was horizontally polarized. This antenna was adopted in order to eliminate the tuning difficulties, excessive back lobe, and poor rotary joint of the antenna in use. It also had a better radiation pattern than the antenna last used.

Conventional lobing systems were used in these antennae. There was no program at the end of the war for the development of more broad band antennae. Performance data is available in Enclosure (k).

PART V. RCM ANTENNAE

Typical RCM installations consisted of two radar intercept receivers, one in the meter band and one in the centimeter band. Three antennae were used with these two receivers: an omnidirectional antenna and a directional antenna with the meter wave equipment, and a directional antenna with the centimeter wave equipment.
Figure 11
RCM ANTENNAE ON A SUBMARINE
1. Metox Omnidirectional Antenna
2. Racquet Directional Antenna
3. Parabolic Antenna

Figure 12
RACQUET TYPE ANTENNA FOR RADAR INTERCEPT RECEIVER
The meter wave equipment (E27) covered wave lengths from 0.75 meters to 4 meters. The metox omnidirectional antenna was used with this equipment to detect transmissions. The racquet type antenna was then used to determine the bearing of the transmission. The racquet antenna was sometimes placed on a rotatable pedestal and sometimes, particularly on submarines, fixed on either side of the superstructure.

The mark 49 antenna was used with the centimeter wave equipment which covered wave lengths from 0.03 meters to 0.80 meters. This antenna is a parabolic disk, 45mm in diameter. It has a crystal pickup located in front of the reflector between the antenna elements. The antenna, as used at the end of the war, was either held in the hand or fixed on either side of the superstructure.

Figure 11 shows a typical installation of RCM antennae on the superstructure of a submarine.

Figure 12 shows a racquet antenna on a rotatable pedestal. A rotatable pedestal with the Mark 49 and racquet antennae was in production but only one installation had been made at the end of the war. The prototype installation of these antennae and pedestal on a submarine is shown in Figure 13.

Two types of omnidirectional antennae were in the design stage at the end of the war. A spherical antenna was to be used with the centimeter equipment. A Theta type antenna was to be used with the (FTB) and (FTC) equipment, both new equipment in the meter band. Enclosure (L) is a schematic diagram of the (FTC) which includes a sketch of the Theta antenna and shows how it was to be used in conjunction with the racquet type antenna. No performance data on these two antennae are available.

Enclosure (M) gives performance data on the directional antennae discussed above.

Additional data on RCM antennae is available in the following documents listed also in Enclosure (A):

NavTechJap Documents No. ND21-6116
ND21-6154
ND21-6216.18
ND21-6234.1 to
ND21-6234.10
ND21-6276
ND21-6280
Figure 1

RM ANTENNAE ON SUBMARINE

1. Underwater Antenna for Long Wave Receiver
2. Metox Antenna
3-4. Racquet and Mark 49 Antennae Mounted on Rotatable Pedestal
5. Type 3, Mark 1, Model 3 Radar Receiving Antenna
6. Racquet Antenna (Standard Installation)
7. Radio and Type 3, Mark 1, Model 3 Radar Transmitting Antenna
ENCLOSURE (A)

LIST OF DOCUMENTS FORWARDED TO WGO THROUGH ATIS

<table>
<thead>
<tr>
<th>NavTechJap No.</th>
<th>Name</th>
<th>ATIS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND21-6007</td>
<td>Results of Experiments Designed to Determine Depths of Underwater Radio Reception Using a Watertight Antenna.</td>
<td>3413</td>
</tr>
<tr>
<td>ND21-6142</td>
<td>Experimental Underwater Receiving Antenna, Type 3, Experiments on.</td>
<td>3415</td>
</tr>
<tr>
<td>ND21-6268</td>
<td>Powdered Cores for High Frequency.</td>
<td>3477</td>
</tr>
<tr>
<td>ND21-6000 to ND21-6000.14</td>
<td>Studies of Electromagnetic Field Disturbances, Parts 1 to 13.</td>
<td>3232</td>
</tr>
<tr>
<td>ND21-6002</td>
<td>Studies on Spherically Polarized Electromagnetic Waves.</td>
<td>3255</td>
</tr>
<tr>
<td>ND21-6043</td>
<td>Radiation Characteristics of the Polyphase Vertical Antenna.</td>
<td>3260</td>
</tr>
<tr>
<td>ND21-6044</td>
<td>Radiation Characteristics of the Star and Ring Shaped Polyphase Horizontal Antennae</td>
<td>3261</td>
</tr>
<tr>
<td>ND21-6046</td>
<td>Radiation Resistance of the Rotating Oscillation Antenna.</td>
<td>3262</td>
</tr>
<tr>
<td>ND21-6047</td>
<td>The Rotating Oscillation (Infinite Phase) Antenna.</td>
<td>3263</td>
</tr>
<tr>
<td>ND21-6048</td>
<td>Horizontally Fixed Symmetrical Polyphase Antenna.</td>
<td>3264</td>
</tr>
<tr>
<td>ND21-6277</td>
<td>Modifications in the Installation of the Temporarily Designated Type 3, Mark 1, Model 1 Radar.</td>
<td>3367</td>
</tr>
<tr>
<td>ND21-6222</td>
<td>Performance Tests on the Type 2, Mark 2, Model 1 Antenna.</td>
<td>3533</td>
</tr>
<tr>
<td>ND21-6065</td>
<td>Antenna Arrays with Closely Spaced Elements.</td>
<td>3266</td>
</tr>
<tr>
<td>ND21-6089</td>
<td>Instruction Book on Antenna Switching Device used with Temporarily Designated Type 3, Mark 2, Model 1 Radar.</td>
<td>3344</td>
</tr>
<tr>
<td>ND21-6090</td>
<td>Antenna Coupling Device used with Type 2, Mark 2, Model 1 Radar.</td>
<td>3345</td>
</tr>
<tr>
<td>ND21-6216.6</td>
<td>Report on Installation of Temporarily Designated Type 3, Mark 1, Model 3, Radar Antenna Rotation Mechanism on Special Picket Boats.</td>
<td>3404</td>
</tr>
<tr>
<td>ND21-6216.9</td>
<td>Installation Report on (13) Radar Antenna.</td>
<td>3404</td>
</tr>
<tr>
<td>ND21-6231.1 to ND21-6231.4</td>
<td>Radar Mark 2, Model 2 Installation and wiring plans.</td>
<td>3364</td>
</tr>
</tbody>
</table>
ENCLOSURE (A), continued

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ND21-6232.1</td>
<td>Radar Mark 3, Model 2 Installation and Wiring Plans.</td>
<td>3406</td>
</tr>
<tr>
<td>ND21-6232.11</td>
<td>Microfilm of Instruction Book on Temporarily Designated Mark 2, Model 2 Radar.</td>
<td>3411</td>
</tr>
<tr>
<td>ND21-6116</td>
<td>Tests on Radar Intercept Procedure.</td>
<td>3525</td>
</tr>
<tr>
<td>ND21-6154</td>
<td>Schematic Diagram of Type E-27 Intercept Receiver.</td>
<td>3535</td>
</tr>
<tr>
<td>ND21-6216.18</td>
<td>Experimental Report on Submarine Intercept Receiver Covered Antenna.</td>
<td>3532</td>
</tr>
<tr>
<td>ND21-6234.1</td>
<td>Intercept Receiver and Antenna Installation Plans.</td>
<td>3534</td>
</tr>
<tr>
<td>ND21-6234.10</td>
<td>Instructions for Installing Radar and Radar Intercept Equipment - Shipboard Installations.</td>
<td>3408</td>
</tr>
<tr>
<td>ND21-6276</td>
<td>Performance of Experimental Parabolic Antenna for Radar Intercept Equipment.</td>
<td>3410</td>
</tr>
<tr>
<td>ND21-6015</td>
<td>Stimulation of Infinite Phase Oscillation from Finite Phase Oscillation.</td>
<td>3258</td>
</tr>
</tbody>
</table>
ENCLOSURE (D)

INSTALLATION DIAGRAM OF TYPE PARTLY DESIGNATED
TYPE 3, MARK 1, MODEL 3 (13) RADAR ANTENNA

25
ENCLOSURE (E)

ANTENNA MOD. 1

LAUNCHING ANTENNA

REFLECTOR ANTENNA

APPROX. 400

"TEL" WIRE

APPROX. 3-4 m

TRAP

APPROX. 3,000

INTERVAL INSULATOR

BALANCED FEED CIRCUIT

5/8 COPPER WIRE

CENTER INTERVAL IMPEDANCE 440 Ω

50 MW

4580

1650

THROUGH INSULATOR

DISCHARGE TUBE

HARD DRAWN COPPER WIRE

318 Ω IMPEDANCE

1000

RECEIVING CABLE SUPPLY 1360

TRANSMITTER

RECEIVER

RADAR ROOM

SCHEMATIC DIAGRAM OF TEMPORARILY DESIGNATED
TYPE 3, MARK 1, MODEL 3 (13) RADAR ANTENNA
ENCLOSURE (I)

SCHEMATIC DIAGRAM

ANTENNA TABLES

CONSTRUCTION & INSTALLATION
QERADAR & RADAR INTERCEPT RECEIVER

SCHEMATIC DIAGRAM ANTENNA

30
ENCLOSURE (L)

TYPE FT-E

RACKET ANTENNAS

FREQ RANGE
WAVE LENGTH
ACCURACY 10°

ai-1660 mc/sec.
37°-GAS METER

R.F. PROBE LINES
C 1560

TURN-OVER SWITCH

TURN-OVER SWITCH

G TYPE ANTENNA

UPPER LINES

DOWN LINES

TOP VIEW OF
G TYPE ANTENNA

TO HEADPHONE SLOTS

OUTPUT ROLLER
FONE SPACER
M-PHASE

TURN-OVER SWITCH

TO HEADPHONE SLOTS

OUTPUT ROLLER
FONE SPACER
M-PHASE

G STAGES WIDE-BAND INTERMEDIATE AMPLIFIER
RESET-SOUND COUNTER

6 STAGES WIDE-BAND INTERMEDIATE AMPLIFIER
RESET-SOUND COUNTER

TYPE US DYNA MOTOR

TO 14 VOLT STORAGE BATTERY

NO. 1660, 37°-GAS METER RECEIVER
SHARING PANEL AND RACKET TYPE ANTENNA
ENCLOSURE (L)

TYPE FT-E

FREQ. RANGE
81 - 400 M.C./SEC.
WAVE LENGTH
5.7 - 0.45 METERS
ACCUARACY 15°

RACKET ANTENNAS

TURN-OVER SWITCH

R.F. FEDER LINE
Z = 150Ω

TURN-OVER SWITCH

RECEIVER

TWO ELEMENTS PILO-METER

TURN-OVER SWITCH RANGED WITH ONE IN AN-TGE.

TO HEAD PHONE REC.

OUT-PUT REC. FOR SOURCE PILO-METER

PP INPUT

SORA

PP OUTPUT

SORA

TUBE CONNECT

HIGH PASS FILT.

SORA

2ND DETECTOR DIODE CONN.

SORA

LOW PASS FILT.

SORA

1ST A.K. AMPLIFIER

250V 1000 ohms

TO 12 VOLT STORAGE BATTERY

NOOR DIAGRAM OP. (FTC) RADAR INTERCEPT RECEIVER
SHOWING YERETRA AND RACKET TYPE ANTENNAS