CHARACTERIZATION OF COAL GASIFICATION ASH LEACHATE USING THE RCRA EXTRACTION PROCEDURE

by

Kar Y. Yu, TRW and Guy M. Crawford, Radian

ABSTRACT

Gasification ash constitutes the single largest solid waste stream from coal gasification facilities, and its disposal is subject to regulations promulgated under RCRA. Ashes from Lurgi gasifier, Wellman-Galusha gasifier and Texaco gasifier were subjected to the RCRA Extraction Procedure test. The results are reviewed in light of similar data on boiler ashes. Those findings indicate that these materials will not be considered toxic based on the 100X primary drinking water standard criteria.

1.0 INTRODUCTION

The Resource Conservation and Recovery Act of 1976 directs the Environmental Protection Agency to promulgate regulations to insure the proper disposal of solid wastes for the protection of both human health and the environment. With the recent reemphasis on America's coal resources, coal gasification may soon be providing a large amount of America's energy needs. As with all non-renewable energy resources, wastes will be generated in the production of the coal gas. Future commercial-scale gasifiers will need to be designed, constructed, and operated to protect human health and the environment. Solid wastes in the form of slags or ashes are produced from all coal gasification facilities. The proper disposal of these solid wastes will be a portion of this environmental protection.

To anticipate possible problems with solids disposal, the EPA has set forth a procedure to test the potential hazard of solid waste—the EP Toxicity Test.¹

2.0 WASTE COLLECTION

Three coal gasifiers were sampled and the solid wastes subjected to the EP Toxicity Test. The data was compared to previous extraction tests performed on two ashes from a coal-fired boiler. To investigate the distribution of extractable metals among different sizes of ash, the Lurgi ash samples were divided into three size fractions; triplicates of each fraction were subjected to the EP test.

2.1 The Texaco Gasifier

Coarse slag was collected at the sieve screen used to separate the coarse slag from the slag water as the slag was blown down from the gasifier. A composited sample was taken over a 16-hour sampling period during gasification of a western subbituminous coal under conditions typical of a commercial operation.

2.2 The Wellman-Galusha Gasifier

Gasifier ash was sampled as the ash was transferred from the bottom of the gasifier to a storage bin. A dewatered composite sample was taken over a 12-hour sampling period. Cyclone dust samples were taken from the bottom

of cyclone by raking the solid from the trough and allowing excess water to drain. Sampling was conducted during the gasification of a North Dakota lignite.

2.3 The Lurgi Gasifier

Unquenched Lurgi ash of three U.S. coals (Rosebud, Illinois #5 and Illinois #6) were furnished by the Peabody Company. The ashes were collected during a trial run at the Westfield gasification facility.

2.4 The Coal-Fired Steam Station

Precipitator ash was taken from the ash silo prior to removal by truck. Bottom ash was taken from the sluice pipe as it empties into the ash pond. A western lignite is normal boiler feed for the station.

3.0 RCRA TESTING PROCEDURE

The prescribed procedure is designed to roughly approximate the extracting of soluble material with rainwater. The solid is extracted with a sixteenfold excess of leaching solution at a pH of 5.0 for a 24-hour time period at room temperature. Following the extraction period the sample is filtered and the final aqueous volume is made to 20 times the sample weight. The procedure followed is listed in Table 1. The extract is then analyzed for 8 metals which are listed in the EP and other constituents. Results are compared with the National Interium Primary Drinking Water Standards (NIPDWS) for eight metals:

arsenic	lead
parium	mercury
cadmium	selenium
chromium	silver

4.0 RESULTS AND DISCUSSION

Table 2 presents a comparison of the extract characteristics and the drinking water standards. Although the coal-fired boiler and the gasifiers operate at different conditions, the RCRA extract characteristics are in general quite similar. When compared to the 100X primary drinking water standards, none of the wastes analyzed are considered hazardous. This result is similar to those presented by other investigators working with different coal gasification ashes⁽³⁾ and boiler ashes⁽⁴⁾.

TABLE 1. RCRA EXTRACTION PROCEDURE⁽²⁾

- Weight 100g solid into extractor
- Add 1600 ml deionized water
- Measure the pH

If less than 5.0, continue with extraction
If greater than 5.0, add 0.5N ultrex acetic acid until
pH 5.0. Check and readjust pH at intervals of 15,
30, 60, 120 minutes, if pH rises above 5.2.

- Extraction by shaking or stirring for 24 hours at $20^{\circ}-40^{\circ}C$

- Filter through 0.45 micron filter

- Dilute to 2000 ml with deionized water

CHARACTERISTICS OF WASTE EXTRACTS USING THE RCRA EXTRACTION PROCEDURE TABLE 2.

•

						Cone	centrati	lon, µg,	71					
	Ag	As	Ba*	cđ	ч С	Hg	Ъb	se	B*	Сп	Mn*	Ъĩ	n*	Zn*
Lurgi–Rosebud														
3/8"-20 .mesh	<0.2	ř	0.5	<0.1	90	<0.4	<0.2	1 >	0.55	2.7	3.22	34	<0.5	0.124
20-100 mesh	<0.2	7	1.0	1.1	9 V	<0.4	1.0	T>	1.48	5.4	5.83	80	<0.5	0.157
	<0.2	ო	2.3	2.0	9 >	<0.4	1. 8	Ţ	1. 85	13 . 3	9.25	138	<0.5	0.321
Lurgi-Illinois #5				•		-								
3/8"-20 mesh	<0.2	ľ	<0.2	52	2J	<0.4	6.0	T>	0.28	5.6	0.39	4240	<0.5	37.1
20-100 mesh	<0.2	Ļ	0.8	32	ო	<0.4	3.1	~1 ~	0.77	6.5	1.15	442	<0.5	28.5
<100 mesh	J.6	ო	1.0	26	4	<0.4	4.4	m	Q.49	5.1	2.50	441	<0.5	9.2
Lurgi-Illinois #6	•				•									
3/8"-20 mesh	0,9	4	<0.2	13	ę	<0.4	1.3	m	0.04	≺2	0.28	ġţ	<0.5	4.27
20-100 mesh	1.4	ŗ	<0.2	5.1	m	<0.4	Т• Э́	T >	0.25	77 V	0.39	56	<0.5	2.84
<100 mesh	<0.2	T≻	<0.2	4.3	~5 ~	<0.4	1 .6	Ťv	0.20	~~	0.71	72	<0.5	1.13
Wellman-Galusha, ash	Ļ	19	1. 0	<i>د</i> ۲	-	<0.6	7	14	ł	1	ł	I	Į	ł
Wellman-Galusha, dust	۲ ۲	33	1.O	Ļ	н	<0.3	8	Q	ł	ł	Ĩ	I I	I I	I -
Texaco, slag	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27 V	0.19	37	4	<0.2	27 ~	1 >	-	Ĩ	•	• .	1	1
Boiler bottom ash	с Т	Ч.	0.28	<0.3	е >	<0.2	€ V	Ţ	ł	ł	. 1	1	ł	
Boiler fly ash	10	വ	0.44	5.3	16	<0.2	e S	77	I	1	ł	1 1	ł	I
100x primary drinking water	5000	5000	100	1000	5000	200	5000	1.000	1	1 1	ł	1	1	ł
	-	÷												

456

*Values in mg/l

--

As expected, partly due to the larger surface area and partly due to the volatility of trace metals, the boiler fly ash contains slightly more extractable metals than the boiler bottom ash. For the Lurgi samples leachate metal concentrations were observed to be inversely proportional to the particle (ash) size for the Rosebud coal, but not necessarily for Illinois #5 or #6, suggesting surface phenomena could be one of the major factors controlling the leachability of metals in Lurgi gasifier ash.

As discussed before the Lurgi samples analyzed are unquenched ashes. Quenched ash is likely to contain even less extractable metals because a portion of the total extractable metals will be carried away by the quench water. However, all proposed commercial Lurgi plants plan to recycle process wastewater as quench water, and to achieve zero discharge (especially in the east where solar evaporation is not feasible) it has been proposed to evaporate the gas liquor in a forced evaporator, and to use the concentrated brine to moisten the ash. It is uncertain whether the practice would make the ash hazardous.

Table 3 presents the characteristics of Lurgi gas liquor, expressed in terms of μ g/g of coal; also presented in Table 3 are the leachable metal contents of coal. As a worst case approach, one may assume all trace metals in the gas liquor ends up in the RCRA leachate, i.e.

Total leachable metal = extractable metal + soluble metal Comparing the extractable metal (from ash) and the soluble metal (from gas liquor) data indicates that adding the soluble metal content will increase the extractable Se by $1\frac{1}{2}$ times, the largest increase among all eight metals. Even so, the leachate concentration is calculated as seen in Table 4, to be 7 µg/1, still below the 100X primary drinking water standard. The RCRA leachate characteristics for Lurgi ash and boiler ash calculated based on this worst case scenario are presented in Table 4. Again, none of the metals exceeds the 100X drinking water standards.

Still, there are coals that contain much higher metal contents than the coals used in these studies. Table 5 presents the characteristics of the coals used in these studies and the maximum metal concentrations in coals

EXTRACTABLE AND LIQUOR METAL CONCENTRATION IN COALS USED IN DIFFERENT GASIFIERS AND BOILER . ÷ TABLE 3.

			1-+~1	+400400		2/2/2			Ash Content
Gaeifier - Coal	Âq	As	Ba	Cđ	Cr.	Hq Hq	qa	Se	#
Tvtvartahle Metale Conc *							v		
Turrai - Rosebud	< 0.52	7.7	5.0	5.2	<15	<1.0	4.6	<2.6	12.9
TLLINOIS #5	4.1	7.7	2.6	130	13	<1.0	11	7.7	10.1
Illinois #6	3°0	10	< 0.52	34	7.7	<1.0	4.1	7.7	9.2
Texaco - Western								:	
Subbituminous	<4.3	<4.3	0.41	80	8.6	<0.43	<4.3	<22	10.8
Wellman-Galusha					•				
(ash) No. Dakota Lignite	<1.4	26	1400	< 9.5	1.4	<0.82	ນ. ດ	19	6.8
(dust) No. Dakota Lignite	<1.4	45	1400	<1.4	1.4	<0.41	TT	8.2	6.8
Boiler (bottom ash)	<4.3	<4.3	1.2	<1.3	<13	<0.86	<13	<4.3	21.6
Western Lignite	(ç	, 	· · · ·	ç		0 	ب م	21.6
Boiler (fly asn) Western Lignite	0 8	77	ר. 	5 Y	00	00 • 0 (0	
Soluble Metal Conc.**	×								
Lurgi Liquor - Rosebud	0.041	0.41	<0.01	0.26	3°2	0.15	0.32	0.13	
Illinois #6	0.31	1.1	<0.2	<0.21	<0.21	1.25	6 . 3	10.5	
Total Leachable Metal Conc. ***									
Lurgi (maximum)	4.4	11.1	<6.1	130	6T>	<2.3	17	18 .	
Boiler bottom ash	<4.6	<5.4	<1.4	<1.6	<17	<2.1	<19	<15	
Boiler fly ash	8.9	23	<2.1	23	74	<2.1	<19	61	
*Extractable metal conc. = 20	x RCRA 1	eachate	conc. x	% ash ir	ı coal				

***Total leachable metal conc. = extractable metal conc. + soluble metal conc.

coal feed

**Soluble metal conc = liquor conc. x liquor quantity

Metals,	Lea Lurgi Ash	achate Characteristics, Boiler Bottom Ash	* µg/l Boiler Fly Ash
Ag	17	<1.1	2.1
As	4.3	<1.3	5.3
Ba ^{**}	<2.4	<0.32	<0.49
Cđ	50	<0.37	5.3
Cr	<7.4	<3.9	17
Hg	<0.87	<0.49	<0.49
Pb	6.6	<4.4	<4.4
Se	7.0	<3.5	4°4

r= 0

TABLE 4. PREDICTED LEACHATE CHARACTERISTICS FOR LURGI ASH AND BOILER ASHES WHEN CO-DISPOSED WITH BRINE FROM CONCENTRATING LURGI GAS LIQUOR

*Conc. = total extractable metal conc. \div (20 x % ash) **Ba values in µg/ml; all other in µg/l

METAL CONCENTRATIONS IN VARIOUS COALS AND RCRA LEACHATE CHARACTERISTICS BASED ON WORST CASE OIL TABLE 5.

.

				Metals				
	Ag	As	Ba 🤾	Cđ	Cr	Нg	Чď	Se
Coal Characteristics, µg/g								
Rosebud (5)	0.06	.1.2	. 87	0.4	4	0.11	0.51	0.33
Illinois #6 ⁽⁵⁾		J. 0	i i	<0.4	20	1.1	TO	I. 3
Western Subbituminous (Texaco)	0•3	6.0>	320	0.2	34	τ.0	\overline{V}	1.7
Lignite (Wellman-Galusha)	Ч	6.5	1300	0.4	10.	0.39	2	г н -
Maximum Conc. in Coal ⁽⁶⁾	0:08	120	1600	. 26	60	1.6	220	8.1
Predicted Max. Leachate Char	acterist	tics, µ	T/E		-			
Lurgi	2.2	470	43000	3300*	<88>	52	240	- 18
Техасо	I	≤270	950	4800*	7.1	< 32	<110	<5
Wellman-Galusha, ash	ł	<19	340	<20	<18	<0.82	<330	<8.1
dust	[92	540	350	96	<0.82	<330	16
							•	

.

*Value exceeded the 100x drinking water standards

.

•

• •

4ºU

found in open literature.⁽⁶⁾ The leachability characteristics of other coals is not known, but as a first approximation one may assume the leachable metal content is proportional to the total metal content. The predicted maximum leachate characteristics thus derived are presented in Table 5. As the predictions indicate, only cadmium in both the Lurgi ash and Texaco slag exceed the 100X drinking water limit. It should be emphasized that the above assumption is very conservative as, undoubtedly, other factors such as mineralogy will play a major role in controlling the leachable metals. Furthermore, it is uncommon to encounter coals with as high a Cd concentration (26 ppm). Of the samples analyzed by Gluskoter, et al,⁽⁶⁾ only about 6% had Cd values in that range, with over 90% having less than 1 ppm Cd.

Additional data on the leachate characteristics of other coals/gasifiers are expected to be available by next year. As an ongoing EPA program, Radian is presently testing the ash collected from a Lurgi facility in Kosovo, Yugoslavia, and TRW is scheduled to sample a Koppers-Totzek facility in Modderfontein, South Africa, early next year.

5.0 CONCLUSION

The RCRA EP Toxicity Test as performed on the ashes from a Lurgi gasifier, a Texaco gasifier and a Wellman-Galusha gasifier indicates these materials will not be considered hazardous wastes based on the toxicity criterion alone. Based on the metal contents in the ash and in the Lurgi gas liquor, co-disposal of the gas liquor with the gasifier ash also will not be considered hazardous. However, Lurgi gas liquors are known to contain aromatic organics, some of which are priority pollutants. Unless these organics are removed prior to co-disposal with ash, EPA may eventually list this as a hazardous waste. ACKNOWLEDGMENT

The authors wish to thank the Peabody Company for supplying the Lurgi gasifier ash samples; to Ms. Cheryl May who, at Radian, supervised the analysis for the Texaco gasifier samples; Wellman-Galusha gasifier samples and the boiler ash samples; and to Mr. Dave Ringwald who, at TRW, supervised the analysis for the Lurgi sample. REFERENCE

- EPA Report, Test Methods for the Evaluation of Solid Wastes, Physical/ Chemical Methods, SW-846, US EPA, 1979.
- 2. Federal Register, May 9, 1980.
- 3. Boston, C. R. and Boegly, W. J., Jr. Leachate Studies on Coal and Coal Conversion Wastes, NTIS CONF-790571-1, 1979.
- 4. Tennessee Valley Authority. Draft Environmental Impact Statement, Coal Gasification Project, 1980.
- 5. Ghassemi, M., et al. Environmental Assessment Report Lurgi Coal Gasification Systems for SNG, EPA 600/7-79-120, May 1979.
- Gluskoter, H. J., et al. Trace Elements in Coal: Occurrent and Distribution, Illinois State Geological Survey, Circular 499, Urbana, IL 61801, 1977.

COMPARISON OF COAL CONVERSION WASTEWATERS

By

Robert V. Collins, Kenneth W. Lee, and D. Scott Lewis Radian Corporation 8501 MoPac Austin, TX 78758

This paper presents the analytical results obtained from the aqueous process condensates from an oxygen-blown, lignite-fired Lurgi gasifier, an air-blown, bituminous-fired Chapman gasifier and a coke oven process. Results show that strong similarities exist between the two gasifier process condensates. These similarities include both gross chemical parameters and the concentrations of specific organic compounds. Extraction of the three condensates using diisopropyl ether resulted in a 99+ percent removal of total phenols and a 75 percent average removal of the total organic carbon (TOC). Further extraction with an exhaustive technique only removed an average of 9 percent of the remaining TOC from the two gasifier waters. The <500 MW to >500 MW ratio was approximately two for the remaining refractory organics. The results of a brief study using activated carbon to remove the refractory organics indicated that the TOC levels could be further reduced, but the levels remained relatively high. The occurrences of eight nitrogencontaining organic species were compared using a gas chromatograph equipped with a Hall Electrolytic Conductivity Detector in the nitrogen-specific mode. The occurrences of phenolic species were also compared using a gas chromatograph equipped with a flame ionization detector. The three process condensates contained the same phenolic and nitrogen heterocyclic compounds.

COMPARISON OF COAL CONVERSION WASTEWATERS

INTRODUCTION.

Three coal conversion process condensates were characterized as part of Radian Corporation's overall effort to perform a comprehensive environmental assessment of low- and medium-Btu coal gasification technology for the U.S. Environmental Protection Agency. The overall program is being directed by the Fuel Process Branch of EPA's Industrial Environmental Research Laboratory in Research Triangle Park, North Carolina.

The objective of this study was to compare the composition of the condensates and to screen for possible steps in treatability. The three aqueous condensates and the reasons they were chosen are as follows:

Wastewater

Lurgi (Process Gondensate)

Chapman (Recycled Process Condensate)

Coke Oven (Process Condensate Spray Down)

Rationale

Proposed for commercial plants in the United States

Currently available in the United States and possible similarities in composition to Lurgi

Extensive data available on treatability and possible similarities in composition to Lurgi

PROCESS DESCRIPTIONS

The three processes will be described briefly in this section. Where the samples orginated in the processes will be shown.

In Figure 1, a schematic diagram of the Lurgi Gasification Process is illustrated. The main points to notice are the quench and cooling towers which condense water along with the organic and inorganic components from the product gas, and the separator where the aqueous layer is separated from the

Schematic diagram of the Lurgi Gasification Process. Figure 1.

tars and oils. The Lurgi condensate was obtained from the exit point of the aqueous layer from the separator. The plant sampled for this study was an oxygen-blown, lignite-fired Lurgi gasification plant in the Kosovo Region of Yugoslavia.

The Chapman-Wilputte Gasification Process is illustrated in Figure 2. The aqueous layer after separation of the tars and oils is recirculated to the gas quenching/cooling processes. A grab sample of the wastewater was obtained from the aqueous layer in the separation tank. The plant sampled was located near Kingsport, Tennessee and was equipped with an air-blown, bituminous-fired Chapman gasifier.

The coke oven system is illustrated in Figure 3. Even though coking may at first appear to be very different from a gasification process, there are many similarities. The design is different from either a Lurgi or Chapman facility but, again, as illustrated, there is a gas quenching and cooling system to cool the gases and remove water, tars, and oils. The quench liquor is sent to a separator where tars/oils are separated from the aqueous layer. Part of the water layer is recirculated and the rest is treated. The condensate sample was obtained at the point where the excess aqueous layer exits the separator.

RESULTS AND DISCUSSION

The following subsections will detail the results of the different types of analyses and will contain brief discussions on treatability. These sections will include:

- water quality parameters,
- extractions of organics,
- concentrations of phenols,

Figure 2. Flow diagram of Chapman facility.

Figure 3. Flow diagram of coke oven.

- concentrations of nitrogen-containing organics,
- molecular weight distribution of refractory compounds, and
- removal of refractories.

Water Quality Parameters

The water quality parameters for all three process condensates are listed in Table 1. In general, the parameters are very similar for the condensates from the two gasification processes using two different coals (lignite and bituminous). The water quality parameters for the coke oven process condensate are generally lower than the other two process condensates.

Biological oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) are specific measurements where the process condensates of the Lurgi and Chapman gasification processes are similar. The differences among the three condensates may be caused by the types of coal being used. For instance, the lignite from the Kosovo region of Yugoslavia used in the Lurgi Process may contain much less phosphorous than the coal for the Chapman Process. Of course, differences in the process conditions may also affect the composition of the aqueous condensate. Differences may also be caused by Chapman recirculating the water, whereas the Lurgi does not recirculate it. Therefore, higher levels would be expected in the Chapman aqueous condensate. To test the process effects would require using the same coal at both facilities.

Extractions of Organics

Two extraction procedures were used on the three aqueous condensates. The first extraction procedure was designed to mimic the Phenosolvan Process used by Lurgi to remove phenols from process wastewaters. Three volumes of diisopropyl ether (each equal to 1/3 the sample volume) were added, one at a time, to the aqueous condensate. The samples were then shaken vigorously WATER QUALITY PARAMETERS FOR THREE COAL CONVERSION AQUEOUS PROCESS CONDENSATES

Table 1.

3,420 4,860±390 6,160 Coke Oven 69±1 570 241±18 0.2Ì 0.21 2,850±0 3,160 <0.5 1,140 700 4,870 4,700 20 18 Aqueous Process Condensates 15,900 28,500±1,100 9,430 2,130±110 540 8,130±90 9,420 <0.5 1,450 207±12 5.48 5.48 Chapman 59±1 48,600 42,300 11 <0.02 83 <10 0.12 0.08 4,340 4,010 .<0.5 12,200 20,200 6,490 3,030 917 2,010 1,890 417 402 Lurgi Total Phosphate-Phosphorous Water Quality Parameters Fotal Acid Hydrolyzable Total Kjeldahl Nitrogen Phosphate-Phosphorous Nitrate-Nitrogen (mg/R)011 and Grease NH3-Nitrogen Thiocyanate Cyanide Sulfide Pheno1 TDS TVDS TVSS COD BOD TOC TSS

1 1 17

471

for two minutes and allowed to stand in a separatory funnel until the layers separated. Then the ether layer was removed.

The second extraction procedure followed the above steps except that methylene chloride and diethyl ether substituted for the diisopropyl ether and the aqueous layer was extracted at both pH equal to <2 and >12. This procedure will be labeled the "analytical extraction" procedure. This procedure was used to show if changes in pH and solvent would increase the amount of organics removed from the aqueous layer.

In Table 2, the effects of the two sequential extractions on selected water quality parameters are listed. The diisopropyl ether (DIPE) extraction eliminated greater than 99+ percent of the phenol (phenolic content) from all three process condensates. The oil and grease measurements also dropped below the detection level of 10 mg/ ℓ for all the condensates. The BOD, COD, and TOC values were reduced significantly by the DIPE extraction.. The exhaustive, analytical extraction did not significantly reduce the values of the water quality parameters when applied to the waters after DIPE extraction.

The organic carbon left in the aqueous phase after the two extractions was classified as refractory organic compounds. These refractories are important because Phenosolvan treatment alone leaves them in the aqueous phase and they must be addressed in further treatment steps. The relative amounts of refractories (non-extractables) as measured by TOC are graphically illustrated in Figure 4. The refractories must be very polar and/or ionic in nature since both the extraction procedures (including pH adjustment) would not remove them.

For further characterization of the refractories, the molecular weight distribution above and below 500 was determined by gel permeation chromatography. This separation, as measured by TOC, is illustrated in Figure 5 for the aqueous condensates of the gasification processes. The relative

Table 2. VEREECTS OF THE DIFF EXTRACTION AND THE ANALYTICAL EXTRACTION (SEQUENTIAL) ON SELECTED WATER QUALITY PARAMETERS IN THE THREE AQUEOUS PROCESS CONDENSATES

,

No tor				Proce	ess Conden	sate			
Maler Onalirv		Lurg1 (1	ng/k)	<u> </u>	hapman (mg	. (8)	· Colt	e Oven	(mg/l)
Parameters	Raw	DIPE	Analytica]	L Raw	DIPE	Analytica	1 Raw	DIPE	Analytic
BOD	12,200	3,080	ND*	15,900	2,800	QN	3,420	727	UN
COD	20,200	4,940	4,270	28,500±1,100	15,500	7,230	4,860±390	2,770	1,690
TOC	6,490	2,010	1,894	9,430	3,290	1,830	6,160	602	477
Pheno1.	3,030	8	ON 6	2,130±10	3.0	ND	1,140	6	4 ND
Oil & Gas	116	<10	ON ·	540	<10	QN	200	<10	10

*Not Determined

Molecular weight distribution of refractory organics. Figure 5.

amounts of the refractories and their molecular weight distribution are the same within experimental error for the Lurgi and Chapman waters. This strongly suggests that the Chapman aqueous condensate, after DIPE extraction to mimic phenol removed by Phenosolvan, can be used as a model for treatment studies of Lurgi-produced wastewater.

Concentrations of Phenols and Nitrogen-Containing Compounds

Another indication that the aqueous process condensates are similar is the distribution of phenolic and nitrogen-containing compounds. Most of these compounds were removed by the DIPE extraction; therefore, an analysis of the DIPE layer was performed.

Figure 6 compares a standard consisting of 11 phenolic compounds to the organics extracted by DIPE from the LURGI wastewater. These chromatograms were produced by a gas chromatograph equipped with a flame ionization detector. The shaded peaks in the DIPE extract match the retention times of the phenolic standards. This suggests that the major portion of organics in the Lurgi wastewater is phenols. Similar results were observed for the Chapman and coke oven process condensates.

Table 3 contains a list of the concentrations of the phenolic compounds found in the three process condensates. The phenolic species show a very strong correlation even in concentrations between the two gasification processes. Again, as in the water quality parameters, the coke oven phenolics were found at lower concentrations than those in the gasification condensates. The same species, however, were present in all three aqueous process condensates.

Trace species in the form of nitrogen-containing compounds were analyzed in the DIPE extracts of all three process condensates. The results of the semiquantitative analysis are listed in Table 4. Even at trace levels, all three aqueous process condensates contained the same nitrogen heterocyclic compounds. Even though the data is semiquantitative, the relative

476

*See Table 3 for the names of the phenols.

Figure 6.

Chromatograms of DIPE extractable organics from Lurgi wastewater and an eleven compound standard of phenols.

	Aqu	leous Process Condensate	
Compound	Lurgi (mg/&)	Chapman (mg/2)	Coke Oven (mg/l)
Phenol	1,740+100	1,460+170	888452
o-Cresol	406+27	420 <u>+</u> 54.	70.0+2.3
m&p-Cresol.	1,040+60	1,120+120	279 <u>+</u> 14
2,6-Dimethylphenol	33.1 <u>+</u> 10.0	19.1 <u>+</u> 0.2	2.2 ± 1.0
2,4-Dimethylphenol	172+17	196±27	14.5 <u>+</u> 0.1
3,5-Dimethylphenol	266 <u>+</u> 21	172±24	23.4 <u>+</u> 0.8
3,4-Dimethylphenol	271 <u>+</u> 24	681 <u>+</u> 82	41.5+1.3
1&2-Naphtho1	13.0+30.6	14.5 <u>+</u> 0.3	4.5
p-Pheny1pheno1	<10 ⁻²	<1.0 ⁻²	<10 ⁻²

NITROGEN-CONTAINING ORGANIC COMPOUNDS IN THE DIPE EXTRACTS OF THE THREE AQUEOUS PROCESS CONDENSATES (SEMIQUANTITATIVE DATA) Table 4.

-		Aqueous Process Condensate	-
Compounds*	Lurgi. (mg/l)	Chapman (mg/L)	Coke Oven (mg/l)
· · ·			
Pyridine	12	2	11
2-Methylpyridine	19	2	11
3-Methylpyridine	45	11	12
Ethy1/Dimethy1pyridines	2	T	i
Trimethy1/Ethy1methy1pyridines	27	17	28
C4-pyr1dines	18	17	14
Quinoline	6	10	30

479

"All compounds quantified as pyridine.

concentrations of the compounds within each of the condensate extracts are virtually identical as listed in Table 4.

Removal of Refractory Compounds by Activated Carbon

The graph in Figure 7 illustrates the removal of the refractory compounds with activated carbon. TOC measurements indicated the amounts of organics remaining in the water after the addition of varying amounts of activated carbon. The initial amount of activated carbon (0.005 g/mL) removed most of the organic matter that could be removed. Additional amounts of activated carbon, up to a ratio of 0.1 g activated carbon per milliliter of wastewater, did not significantly increase the amount of refractory compounds removed. The activated carbon was effective in taking out the color species in the wastewater.

CONCLUSIONS

4. 2

The following statements summarize the conclusions of this brief study.

- Water quality parameters are similar in the three aqueous process condensates with coke oven condensates having lower values.
- The same phenolic compounds were found in each process condensate. Levels of these compounds were similar in the gasification condensates. The coke oven condensate had lower levels of phenols.
- The same trace nitrogen species were found in all three condensates.
- Levels of nonextractable organics were similar in the Chapman and Lurgi condensates.

- Treatability of gasification wastewaters:
 - may not be similar to coke oven treat-
 - ment because of nonextractables;
 - may not be sufficiently polished by activated carbon due to high residual TOC levels; and
 - can be studied using the Chapman process condensate as a good model for the Lurgi wastewater.

Session IV: ENVIRONMENTAL CONTROL

Forest O. Mixon, Jr., Chairman Research Triangle Institute Research Triangle Park, North Carolina

RANKING OF POTENTIAL POLLUTANTS FROM

COAL GASIFICATION PROCESSES

by

Duane G. Nichols David A. Green

Research Triangle Institute P. O. Box 12194 Research Triangle Park, N. C. 27709

ABSTRACT

Potential pollutants associated with coal gasification processes were studied based on data from the EPA environmental assessment research program. An environmental assessment methodology based on health and ecological Multimedia Environmental Goals (MEGs) is described and applied to product, byproduct, process and waste streams. A list of chemical species that were measured or qualitatively identified in coal gasification streams is given. Maximum concentrations of each quantitated species in each medium (solid, liquid, gas, tar) are given. Production factors have been computed and normalized on the basis of coal input rate to facilitate comparisons. Chemical species have been ranked by potential hazard to health and ecology. Priorities for monitoring, regulation and control technology development may be established from these lists.

Duane G. Nichols is now with the Conoco Coal Development Company, Research Division, Library, PA.

RANKING OF POTENTIAL POLLUTANTS FROM COAL GASIFICATION PROCESSES

INTRODUCTION

This study was initiated to compile the various source and laboratory (experimental) test results on potentially hazardous species which have been obtained under the EPA synthetic fuels environmental assessment program. The compilation has been developed in the form of listed chemical constituents which are ranked on the basis of their potential hazard. Since the data represent various gasifiers, coal types, operating conditions and configurations, and since the effluents are variable in their physical and chemical nature and their quantity, a systematic approach was needed to place the results on a common basis for comparison and/or ranking.

The information and results are needed to help provide direction to future environmental assessment activities, to focus EPA and interagency health/ecological effects testing on compounds and mixtures of greatest concern, and to assist EPA program and regional offices in the establishment of appropriate regulations, criteria, guidelines and permit policies.

The achievement and maintenance of an acceptable (or quality) environment must from a practical viewpoint involve the establishment of maximum allowable concentrations of chemical contaminants in the air, water, and land which constitute the natural environment. Such concentrations may be referred to as Multimedia Environmental Goals (MEG) values. Discharge MEGs (DMEGs) represent approximate concentrations for contaminants in source emissions to air, water or land which will not evoke significant harmful or irreversible responses in exposed humans or ecology when these exposures are limited to short duration. DMEGs for human health and ecology have been developed for use in assessing the impact of effluent discharges.¹⁻⁴

A number of coal gasification operations are currently active around the world. Direct coal and (oil shale) liquefaction may be proved to be technically feasible and economically acceptable in the future; these alternatives may require special processing of the potential product to meet acceptable market specifications, and significant costs may be incurred to accommodate process residuals.

In this study, the chemical analyses of coal gasification product, byproduct, discharge and process streams sampled and analyzed by the Radian Corporation during four source testing programs have been subjected to an environmental assessment analysis based upon multimedia environmental goals. A similar analysis of data obtained from the laboratory coal gasification system at Research Triangle Institute (RTI) has also been conducted.

Radian Corporation Source Tests

The Radian Corporation has conducted source tests at four operating coal gasification facilities. Two Wellman-Galusha units located at York, PA and Ft. Snelling, MN were sampled as well as a Lurgi gasifier in Kosovo, Yugoslavia and a Chapman (Wilputte) gasifier located at Kingsport, TN. A variety of products, byproducts, process streams and effluents were sampled at the different sites. The sampling strategies did not yield data that were directly comparable. Sampling was not meant to be exhaustive but was designed to focus on streams of potential environmental significance.

The Wellman-Galusha gasifier at York, PA converts anthracite coal into fuel gas used for brick manufacturing at the Glen Gery Brick Company.⁵ Data on five different streams were available for this study: two solid wastes, the gasifier ash and cyclone dust, one liquid stream, the ash sluice water and two gaseous streams, the poke hole gas and coal hopper gas.

The Wellman-Galusha gasifier at Ft. Snelling, MN uses North Dakota Indian Head lignite as a feedstock for low Btu gas production. Data on seven different streams were available for this study: two solid streams, the gasifier ash and cyclone dust, three liquid streams, the cyclone quench water, ash sluice water, and service water and two gas streams, the product gas and the coal bin vent gas. As no flow rate was available for the coal bin vent gas, a limited environmental assessment approach to gaseous effluents was taken.

The Chapman (Wilputte) gasifier at Kingsport, TN converts low sulfur Virginia bituminous coal to low Btu guel gas.⁶ Data on four effluent streams were available. Three solid streams--the cyclone dust, gasifier

100

. . . .

ash, and hyproduct tar, two gaseous streams--the coal feeder vent gas and separator vent gas and the separator liquor, a recycled aqueous stream were sampled.

Data on 18 gaseous streams and three liquid streams sampled at the Lurgi gasifier at Kosovo, Yugoslavia, $^{7-9}$ were used in this study. This plant converts Yugoslavian lignite to medium Btu fuel gas. Of the gaseous streams, eight were discharges and 10 were process streams. The gaseous discharges were the autoclave vent gas, coal bunker vent gas, CO_2 -rich Rectisol gas, tar tank vent gas, medium oil tank vent gas, phenolic water tank vent gas, degassing column gas and gasoline tank vent gas. The cyanic water and the inlet and outlet from the Phenolsolvan unit are aqueous process streams that were sampled. No solid stream data were available.

RTI Gasifier Tests¹⁰⁻¹²

Data from 10 selected semicontinuous, fixed-bed tests of the RTI laboratory gasifier were analyzed in detail. In each case the solid gasifier ash and the aqueous condensate stream were the two discharges sampled. Two additional streams, the product gas and the byproduct tar (considered a solid) were also sampled. The 10 selected tests involved steam/air gasification of North Dakota Beulah/Zap lignite, Montana Rosebud/ McKay and Wyoming Smith/Roland subbituminous coals, Illinois No.6 and Western Kentucky No.9 bituminous coals and Pennsylvania Bottom Red Ash anthracite.

ASSESSMENT METHODOLOGY

Multimedia Environmental Goals (MEGs) form the basis for the environmental assessment methodology developed under the guidance of the Fuel Process Branch of EPA/IERL/RTP. Each component or species is assigned <u>discharge multimedia environmental goal</u> (DMEG) and <u>ambient multimedia</u> <u>environmental goal</u> (AMEG) values.¹⁻⁴ Individual DMEG values for a substance are related to the health or ecological effects of that substance; DMEG is the estimated concentration of the substance which would cause minimal adverse effects to a healthy receptor (man, animal, plant) which is exposed only once, or intermittently for short time periods. (AMEG

values are similar except that they are based upon a continuous, rather than single or intermittent, exposure period.

DMEG values generally carry two subscripts, be they explicit or implicit. The first defines whether the value refers to air (a), water (w), or land (1); the second, whether the value refers to human health (h) or the ecological environment (e). In this study the health-based DMEG values were used primarily. The ecology-based DMEG values were used only to generate a comparative ranking of pollutants. No AMEGs were used in this study.

<u>Discharge severity</u> (DS) is a measure (index) of the degree to which the concentration of a particular substance is at a potentially hazardous level in a discharge (effluent.)¹³ DS is dimensionless. It is computed as the concentration of the substance in a discharge divided by the DMEG value for that substance. DS may thus carry two subscripts, in general; one represents the phase and the other whether the potential harmful effects are health or ecological in nature.

Production factors based on coal input rates have been developed from the chemical analytical data available. These production factors have the dimensions of mass/mass; specifically, the units µg produced/g coal input have been used. Production in all measured product, byproduct and discharge streams is included in these figures and maxima among all sources considered in the study were selected.

ASSESSMENT RESULTS

The complex heterogeneous nature of coal gives rise to a wide variety of organic compounds in the streams resulting from coal conversion processes. Table 1 lists the organic compounds identified during the four Radian Corporation source tests as well as those identified from operation of the RTI laboratory gasifier over the last four years. Within each MEG category, the compounds that have been quantitated are given first, followed by those that have been identified but not measured. In addition, a large number of inorganic compounds and elements have also been identified.

The maximum concentrations measured in the various media are presented in Tables 2 through 4. Because of their particular properties, tars have been considered to be a separate medium in these tables. The concentration

TABLE 1. ORGANIC COMPOUNDS IDENTIFIED IN COAL GASIFICATION STREAMS

MEG	Category	Nате		MEG	Category	Name	MEG	Category	Name
1	Alinhatic	Hydrocarbons		5.	Alcohols		10.	Amines	· · ·
1.	mothane	inger dear bono			aliphat	ic alcohols		aniline	•
	athane				>0~			Calky	laniline
	ethane	· · ·	·		aliphat	ic alcohols		CZ-alky	laniline
	propane	,	1		>C			aminoto	luene
	Ducanes				alkvlat	cohols >C_		benzof	uoreneamine
	1500064				alkvlal	cohols >Co		methy]	minoace-
	aikanes	>6			41169144	-13		nant	thvlene
	methyic	ycionexane						יקבונ	nny rene
	alkanes	<u>>C13</u>			3,3,3-1	.cimecnyi-		metnyue	
	C ₂ -hydr	ocarbons			1-16	X2DOL			
	C _n -hydr	ocarbons		_				Denzia	ine
	C ⁴ -hydr	ocarbons		7.	Aldenydes	Ketones		I-amino	mapricnatene
	C ⁵ hvdr	ocarbons			acetopi	ienone		methyla	minonaphthal
	athylen						•	aminot	etralin 🦾
	nyanyia	na			acetal	lehyde			
	propyre	inc mo			hutanal			diphen	ylamine
	acetyle				pentau	1		N-meth	vl-o-toluidin
-	pnenyie	letyrene	•		n-hever	121			
					-hent		13	Thiols, S	ulfides, and
	n-penta	ne					14.	Niewlf	ides
	isopent	ane				 1 =		mather	ethiol
	n-hexar	1e			n-dous:				thinl
	2-methy	lpentane			unceca	1514 		eulane	onethicl
	3-methy	71pentane			dodeca	181. 1.1		propyl	GIIG LII I U I
•	n-hepta	ene •	•		benzal	ienyce		_ - /	
	n-octar	le			dimeth	yibenzaldehyde		2,3,4-	crithiapentar
		ae .	-		aceton	e ·		dimeth	yl sulfide
	n-deca	ne.			methyl	isopropyl keton	e	dimeth	yl disulfide
	n-inde				butano	ne .		trithi	ahexane
	n-dade				1-ohen	v1-1-propanone		dipher	ryl disulfide
					2-pest	anone		• • •	•••
	n-cria				o-hvdr	oxvacerophenone	≥ 15.	. Benzene.	Substituted
	n-tetr	zdecane			m-hydr	ovvacetonhenone		Benzer	e Hydrocarbo
	n-pent	adecane	•		hongon	hannna	-	benzer	
•	n-hexa	decane			0 62.00		-		withonzone
	methyl	cyclobutane			3-2700	renone		2 - 11	Wibenzene
	cyclop	entane			Denzor	Tuorenone			(y I DEnzene
	cycloh	exane			dinydr	oxyanthradulnot	16	toider	18
	dimeth	ylcyclohexane			tetrat	ydroanthraduind	ne	etnyii	Jenzene
	trimet	hylcyclohexan	e		phenar	thridone		styre	ne
	cycloo	ctane				A • 1 · · · · · ·		G3-Dei	nzene
	dimeth	vldecahydro-	•	8.	Carboxyli	c Acias and		C ₄ -be	nzene
	nao	hthalene		•	Deriva	tives		. bipne	nyl
	hutene	·			phthal	ic acids		biphe	nylene
	ienhut	ene	•		phthal	ic esters		diphe	nyImethane
	hovens				adipat	e esters		indan	• • •
	1-2025				• phtha	ate esters	•	C _a -al	kylindane
	7-bene 1-bene		-		>C_ al	iphatic esters		C2-a1	kylindane
		ly1-1-Ducene	•		. 6	.,		měthy	lindane
	1,3-00	tadiene			aceti	· acid		vlen	es
	pentac	liene			honzo	ic acid		0-11	ene
	cyclog	pentene						. u=nyi m_ am	d n- yvlene
	cycloł	lexene			Denzal	The ,		111- CI	and athvi
	cyclo	pentadiene			ecnyl	GUELGLE		Ay i Ci	a una congre
	ethyne	2			etnyl	Denzyi acetate	-		hudnonanhthal
	propyr	ne .			metny	L Denzoate		tetra	myuronahnuna
			•		isobu	yi cinnamate			
2	Alkvi Ha	lides			dibut	yi phthalate		methy	Istyrene
-	dichl.	oromethane			(a	rtifact)		ethyl	styrene
,	(a.	rtifact)			diiso	outyl phthalate	1	n-pro	pylbenzene
	رد. بر است	loromethene			·(a	rtifact)		isopi	copylbenzene
	· · · · · · · · · · · · · · · · · · ·	rtifart)			dicve	lohexyl phthala	te -	1.2-0	iimethylbenze
	(a	1 4446667 - 4674667	40		(a	rtifact)		t-bui	ylbenzene
	Cardo	u cecracalori			,-			n-net	itylbenzene
	(a	TILIACE)		0	Nitriloc			2 5-1	limethvl-l-
_				3.	,	toluere	-		isonronvihenz
3	. Ethers	-	•		Lyailu /L	antanityila)			
	aniso	les	-		(0	enzonn crine)		CELE	
	methy	lanisole .	,	·		• • • • •		o-et	nyrcordene
					.aceto	nitrile		m-et	nyitoluene
,	dieth	vlether		•	cyano	butadiene		trim	ethylbenzene
	p	1_2_pronvey1a	ther		2.2	dicyanobiphenyJ	L	1,2,	4-trimethyl-
	pneny		70						benzene
	1-met	noxynaphtnale			• .	•		1.3.	5-trimethylbe
	Z-met	noxynaphthale	ne		• • •	•		ول وب 44 م	ethylbenzene
	3,6-d	imethoxyphena	ntnrene		· л	20		· - 41	athylhenzene
•	2-met	hoxyfluorene			40	· در		<u>m-ur</u>	othy i hongone
								.p-di	eeny ruenzene

TABLE 1 (continued).

.

,

MEG	Category Name	MEG	Category Name	MEC	<u> Category Name</u>
15.	(Continued)	18.	(Continued)	21.	(Continued)
	methyltetrahydro-		o-cresol		chrysene
	naphthalene		m-cresol		methyl crysene
	dimethyltetrahydro-		p-cresol		pyrene
	naphthalene		o-ethylphenol		I-methyl pyrene
	trimethyltetrahydro-		m-ethylphenol		dibenz(a,h)-
	naphthalene		p-ethylphenol		anthracene
	1,2,3,4-tetrahydro-		o-allylphenol		benzo(a)pyrene
	naphthalene		m-phenylphenol		perylene
	5,8-dimethyl-l-n-		2,3-xyleno1		-benzo(e)pyrene
	octy1-1,2,3,4-		2,4-xylendi		benzoperylene
	cetranydronaphthalene				benzo(g,h,i)perylene
			3 Aurylanal		
	hvdronanhthalene		3.5-xylenol		cycloburzdibenzene
	methylhinhenyl		3-methyl-6-ethyl-		
	3-methylbiphenyl		phenol		othylasphthalong
	diphenvlethane		2-methyl-4-ethyl-		isonronyl-
	di(ethylphenyl)ethane		pheno1		nanhthalene
	stilbene(1,2 diphenyl-		4-tert-buty1-o-cresol		1-methy1-7-isopropy1-
	ethene)		di-t-buytl-4-ethyl-		naphthalene
	methylphenylethyne		phenol		1,2-dihydrg-3,5,8-
	diphenylethyne		trimethylphenol		trimethylnaphthalene
	1,2-diphenylpropane		2-hydroxynaphthalene		2-benzylnaphthalene
	dixylylethane		methylhydroxy-		dimethylnaphthalene
	o-te rp henyl		naphthalene		1,4-dimethylnaphthalene
	m-terphenyl		hydroxyfluorene		2,3-dimethylnaphthalene
	p-terphenyl	20	Désétes sur est l'		2,6-dimethylnaphthalene
	dimethylindan	40.	DINICROCRESO		trimethylnaphthalena
	pentamethylindan		none		3-methylacenaphthalene
	metny-1,2,3-dinydro-	21	Fused Polycyclic		ethylanthracene
	dimethalizione	-1.	Hydrocarbons		1-metnylphenanthrene
	trimethylindene		naphthalene		j-metnyiphenzathrene
			higher aromatics		-, J-methy iphenanthrane
16.	Polychlorinated		methyInaphthalene		trans-G-n conenvintene
	biphenyls (PCB)		1-methylnaphthalene		anthrene
	none		2-methylnaphthalene		8-n-butylphenanthrene
			C ₂ alkylnaphthalene		2,7-dimethylphenan-
17.	Dinitrotoluenes		anthracene		threae
	none		C ₂ -alkylanthracene		1,2-benzanthracene
			9-methyl anthracene		hexahydro-1,2-benz-
18.	Phenois		prenanthrene		anthracene
	pnenois C. silvitabasel		acenaphthelene		methy1-1,2-benzan-
			C_alkylacenanhtha_		
	C ₃ -alkylphenol	-			2,J-Denzantnracene
	isonronvinhenol		Calkylacena-		(hepithiecene)
	n-pronvlohenol		ohthene		a,4-benzophenzachtene
	cresol		C ₂ -alkylace-		threne
	xylenol		³ naphthene		5.8-dimethy1-3.4-benzo-
	2,4,6-trimethylphenol		binaphthyl		phenanthrene
	1-naphtho1		methylacenaphthy-		9,10-benzophenanthrene
	1-acenaphtho1_	•	lene		(triphenylene)
	C ₂ -alkylacenaphthol		methylacenaphthene		1,2,3,4-tetrahydro-
	C3-alkylacenephthol		Lishi2:3 rings		9,10-benzo-
	C2-alkyInydroxy-		7 12-dimethylborzo-		phenanthrene
	C _alkylbydeoxy_		(a)anthracone		2-metnyi-y,10-benzo-
	5 ^{-arty myeroxy}		methyl phenanthra-		2-m-hevenerral or a
	Calkylhydroxynyrene		cene		e-n-nevyhertrene
	C-alkylnaphthol		methyltriphenvlene		
	hydroxyacenaphthene		triphenylene		
	hydroxyanthracene		C _{le} H _{lo} :4 rings		
	hydroxybenzofluorene		3-methylcholanth-		
	methylacenaphthol		rene		
	methyInaphthol	,	benzo(c)phenan-		
	Indanol		threne		

.

Jan

Table 1 (continued).

MEG	Category Name	MEG	Category	Name	MEG	Category	Name
22.	Fused Non-Alternant	23.	(Continued)		24.	(Continued)	
	Polycyclic Hydrocarbons		2-hydroxy-4-p	henyl-		furan	
	indene		pyridine			2-methylben:	zofuran
	Cindene		2-hvdroxv-6-0	henvl-		3-methylben	zofuran
	G ² -alkylindene		nvridine		-	5-methylben	zofuran
	fruorene		3 4-dinbervin	wridine		7-methylben	205117212
	methylindene		honoopyriding	y		3 3-dibudro	-2-mathr1-
	methy i fildene		2 22 dimention	_1. 1		J,J-arayaro	
	methy i i ruorene		∠ ₂ ∠ =uimetnyi			denzorur.	
	benzoriuorene		CThALTCAAT			dimechyiben	Soruran Ibaarafaara
	(fluoranthene)		metny1-3-ally	Inyaro-		3,0-dimethy	Loenzoruran
	 benzo(b)fluorene 		indole			alhyarometh	yrbuenar-
	benzo(a)fluorene		3-methy1-3-al	lydihydro-		benzoiur	20
	benzo(k)fluoranthene		indole	•		xanthene	
	benzo(b)fluoranthene		phenylindole	•			· · · · ·
	indeno(1,2,3-cd)pyrene		3-methy1-2-ph	ienylindole	25.	Heterocycli	c Sulfur
			3,37-biindoly	r1		Compound	S
	1-methylfluorene		isoquinoline			thiophen	e
	dimethylfluorene		3-methylquind	line		C ₂ -thiop	nenes
	1.2.3.4-retrahvdro-		6-methylouino	line		méthylth	iophene
	fluoranthere		ethylguinolin	le		dimethvl	thiophene
	TTAA f GITAILA		3-n-pronvl and	noline		benzothi	ophene
22	Votomovelie Nituagon		4-n-propylau	incline			
. 23.			8-n-nropyiqui			trathy	Ithionhene
	compounds	•	9-u-brobhrder			t contony	1thiophene
	pyriaine		dimethyiquine			TSOULODA	renrobuene
· _	C ₂ -alkylpyridine		2,6-dimethyld	furnorrue		ethylthi	opneae
•	C ₃ -alkylpyridine		methylphenylo	ininoxatine		2-n-prop	yr-3-1200ury
	C _A -alkylpyridine		4-styrylquind	oline		thiop	hene
	methylpyridine		3-methylbenzo	oquinoline		methylbe	nzothiophene
	(picolines)		benzimidazole	3		dimethyl	benzothiophe
	dimethylpyroline		methylbenzimi	idazole	•	trimethy	1benzo-
	quinolines		2-ethylbenzis	nidazole		thiop	hene
	C _e -alkylquinolines		benzylbenzimi	idazole		benzodit	hiophene
	C ₂ -alkylouinolines		benzothiazole	3	•	methylbe	nzodi-
	2 ⁴ methylquinoline	_	2-methy1-5-ph	ienyl-	•	thiop	hene
	acridine		tetrazole			dibenzot	hiophene
	C _==1kylacridine		diphenvloxazo	le		methyldi	benzo-
	C _{alkylachidine}		dimethylactic	line		thiop	ћеле
			acridone			dihydrod	imechvithier
			1 2 3 4_tetts	hvdro-	- ·	thion	hette
			1,2,0,7-00010			dimathyl	thisindene
	metny lacriaine					- thi event	hona ·
*	ainyaroacriaine			1y 1-		LUZGABII (Heate .
	metnyibenzophen-		carbazore				:
	anthradine	•	vinyiphenyica	aroazoie		•	
	benzophenanthridine		1,4-dinyaro-	2,3-			
	benzoquinoline		benzo(b)ca	arbazole			
•	(phenanthridine)	-	2-amino-4-phe	anyl-6-			
	methylbenzoquinoline		methyl-py	rimidine			
	indole		2-amino-5-ch	loro-4,6-		•	
	methylindole		dimethylp	yrimidine			
	carbazole		4-(1,2,3,4-t	etrahydro-2-			•
	methylcarbazole		naphthyl).	-morpholine		,	
	pyrroline		3-benzylinder	ne phthal-			• • •
			imide	• .		•	
	pyrroie	21	Heterocyclic	Axvaen			• •
	mechylpyrrole	67.	Compounde	ov) den		-	
	4-acetylpyridine		COMPOUNDS	volano '			
	trimethylpyridine		meeny (a10)	AU I dile	-		•
	2,4-dimethyl-6-ethyl-		Denzotural	n.			
-	pyridine		aipenzotu	ran			• *

Note: Compounds are listed by MEG category with those which have been quantitated followed by those for which qualitative identifications are available.

Gas (Product)			Gas (Discharge)			
Carbon Dioxide	4.7E8	RTI	Carbon Dioxide .	1.1E9	K	
Carbon Monoxide	3.0E8	RTI	Ammonia	3.2E8	ĸ	
Methane	3.6E7	RTI	C ₆ + hydrocarbons	2.9E8	ĸ	
Hydrogen	2.7E7	RTI	Benzene	1.3E8	ĸ	
Hydrogen Sulfide	1.7E7	ŔTI	Methane	5.4E7	K	
Benzene	3.3E6	RTI	Hydrogen Sulfide	3.0E7	K	
Thiophene	2.3E6	RTI	Ethanethiol	2.7E7	ĸ	
Toluene	1.3E6	RTI	Phenols	2.6E7	K	
Ethane	1.3E6	RTI	Ethane	2.1E7	K	
Ethylene	9.4E5	RTI	Methanethiol	1.1E7	ĸ	

TABLE 2. MAXIMUM CONCENTRATIONS REPORTED FOR GASEOUS STREAMS FROM COAL GASIFICATION ($\mu g/m^3)$

RTI = Research Triangle Institute.

K = Kosovo Gasification Plant.

Organics	·	Inorganics		
Phenol	2.8E6	RTI	Ammonia	7.9E6 RTI
Cresols	1.5E6	RTI	Sulfate	2.8E6 Ft. Snlg.
Xylenols	3.75E5	RTI.	Sodium	1.7E6 Ft. Snlg.
2,4,6-Trimethylphenol	1.8E4	RTI	Cyanide	1.0E6 RTI
1-Methylnaphthalene	4.8E2	RTI	Sulfur	9.7E5 Ft. Snlg.
2-Methylnaphthalene	2.2E2	RTI	Thiocyanate	2.7E5 RTI
Chrysene	1.6E2	RTI	Calcium	2.2E5 Ft. Snlg.
Phenanthrene	9.6E1	RTI	Sulfite	4.7E4 Ft. Snlg.
Acenaphthene	5.7E1	RTI	Sulfite	4.7E4 Ft. Snlg.
Fluorene	5.7E1	RTI	Nitrate	1.7E4 GG
			· ·	,

TABLE 3. MAXIMUM CONCENTRATIONS REPORTED FOR LIQUID DISCHARGES FROM COAL GASIFICATION ($\mu g/\mbox{\sc b}$)

-RTI = Research Triangle Institute.

GG = Glen Gery Gasification Plant.

Solid (Discharge)			Tar (Byproducts)			
Potassium	4.0E5	Chapman	Xylenols	1.2E5	RTI	
Silicon	1.4E5	Ft. Snlg.	Cresols	6.7E4	RTI	
Iron	9.0E4	Ft. Snlg.	Naphthalene	5.7E4	RTI	
Aluminum	8.8E4	Ft. Snlg.	Benzofluorene	3.4E4	RTI	
Calcium	5.0E4	Ft. Snlg.	Phthalate Esters	3.0E4	Chapman	
Rubidium	2.0E4	Chapman	2,4,6-Trimethylphenol	2.4E4	RTI	
Sodium	1.8E4	Ft. Snlg.	Pyrene	2.4E4	RTI	
Sulfur	1.5E4	GG	Phenanthrene	2.3E4	RTI	
Magnesium	1.3E4	Ft. Snlg.	Anthracene	2.3E4	RTI	
Barium	5.5E3	Ft. Snlg.	Phenols	2.2E4	RTI	

TABLE 4. MAXIMUM CONCENTRATIONS REPORTED FOR SELECTED COAL GASIFICATION STREAMS ($\mu g/g)$

RTI = Research Triangle Institute

GG = Glen Gery Gasification Plant.

maxima are tabulated without regard to stream flow rate or potential dilution effects, as such they represent a measure of potential acute exposure hazard. Long-term effects may be gauged more realistically by consideration of actual mass emissions.

For each source considered, the mass flow rates in all product, byproduct and discharge streams were summed for each chemical species quantitated. These sums were then normalized by dividing by the coal input rate for each source to obtain production factors. Process streams which do not leave the facility were excluded from this analysis to avoid counting the same material more than once as it moves through the gasification facility. For the 14 source compilations (four from Radian plus 10 from RTI) maximum production factors for each chemical species quantitated were determined. These factors are listed in Table 5 accompanied by an entry referring to the source upon which they are based. While those values have been normalized on the basis of coal input, it must be remembered that different streams were sampled at different locations and different chemical analytical strategies were adopted for different samples.

Priorities for monitoring, regulation; and control technology development may be established from a ranking of the potential hazards associated with individual chemical species. Discharge severity can be used for this purpose. Table 6 lists those species of potential health hazard. Discharge severities of less than one represent minimal hazards; species in this category have been omitted from the table. The remaining species are ranked by the order of magnitude of their discharge severity. Primary consideration should be given to controlling those species occupying the highest positions on the list.

A similar ranking is presented in Table 7. Here, ecological DMEG values have been used in the calculation of discharge severities. Considerable differences in pollutant rankings occur between the two tables; a rational approach to pollutant control would emphasize the entries of highest discharge severity on both bases.

DISCUSSION

The processing of coal to yield gaseous fuels generates substances which are known to be hazardous. Among the wide spectrum of products, byproducts, process intermediates and waste streams are substances noted

MEG Category	Chemical Name	Production Factor (ug/g coal input)	MEG Category	Chemical Name	Production Factor
01A	Methane	1.2F5 R41	180	Nanhthol	1 857 (
ATO	Ethane	3.4E3 R21	180	Methylnaphthol	2 BE2 C
ATO	Propane	4.2E2 R21	180	Co-Alkylnaphthol	3-0FT C
01A	n-Butane	1.7E2 R21	180	Hydroxyacenaphthylene	7.4E-3 C
ATO	i-Butane	1.7E2 R21	180	Hydroxyacenaphthene	3.0ET C
ATO	Pentanes	1.2Е-б К	180	Methylhydroxyacenaphthene	9.0E1 C
01A	C ₆ Alkanes	4.9E1 C	180	C ₂ -Alkylhydroxyacenaphthene	1.6E2 C
OTA	>C13 Alkanes	9-2E1 C	180	C ₃ -Alkylhydroxyacenaphthene	7.0E1 C
UIA/B	Ethane & Ethylene	1.0E-7 K	180	Hydroxyanthracene	1.5EZ C
018	Etnylene	2.4£3 R21	180	C ₅ -Alkylhydroxyanthracene	2.0E2 C
UIB	Propylene Acctu3enc	4.9E2 R21	180	C2-Alkylhydroxypyrene	2.1E2 C
010	Phenylagetylopo	3.1C1 K21	184	Hydroxydenzoriuorene	3.5E2 C
010	Anicolog	2.JE-1 L 9 /E2 C	200	Vinitrocresol Namhthalana	3./EU C
450	Methylanisole	3 55-1 0	214	C_AltyInachthalana	2.324 K21
05A	>Cc Alinhatic Alcohols	3 452 0	214	1=Wothy inclusione	J.UE2 C
05A	>C12 Aliphatic Alcohols	6-2E-2 C	214	2-Methylnanhthalene	3 352 821
07B	Acetophenone	3.2E-2 C	21A	Acenanhthylene	4 3F2 C
08A	Phthallic Acid*	1.0E1 C	21A	Acenanhthene	1.5F2 C
08D	Phthallic Esters*	3.0E3 C	· 21A	Phenanthrene	7.6E2 R21
08D	Adipate Esters	2.2E3 C	21A	9-Methvianthracene	5.3EZ R21
080	>Co Aliphatic Esters	4.8E2 C	27A	Anthracene	5.9EZ R41
09B	Benzonitrile	2.0E-1 C	21A	CieHig: 3 rings	2.0E-1 R35
09B	Cyanotoluene	1.6E-1 C	21A	Binaphthyl	2.8E-1 C
100	Aniline	8.9E0 R21	21A	Methylacenaphthylene	2.8E2 C
100	Benzidine	2.0E1 R23	21A	Methylacenaphthene	6.3ET C
100	Aminonaphthalene	1.0E2 C	21A	C ₂ -Alkylacenaphthene	1.2E2 C
100	Metnylaminonaphtnalene	1.1E-1 C	21A	C ₃ -Alkylacenaphthene	5.1E1 C
100	Aminotetraiin C Alludanilin	9.UE1 C	21A	C2-Alkylanthracene	8.0ET C
100			21A	Higner Aromatics	6.9E-9 K
TOC	Benzoflugrenesmine		210	Benzla JAnthracene	1.0EZ KZI
100	Methylbenzofluoreneamine	2.057 C	210 218	Chrysone	2.952 6
TOC	Methylaminoacenaphthylene	2.0ET C	21B	Pyrana	7 252 841
100	Aminotoluene	4.8E-1 C	218	C-H-: 4 rings	4 3F-1 R35
13A	Methanethiol ·	7.8ET R36	21B	7.12-dimethylbenz(a)	4102 1 100
13A	C ₂ H ₆ S	1.0E2 R41		Anthracene	3.3E-1 FS
15A	Bēnžene	3.8E4 R35	21B	3-Methylcholanthrene	9.6E-3 FS
15A	ToTuene	2.2E3 R35	2 1 B	Benzo(c)Phenanthrene	2.0E0 FS
15A	Ethybenzene	2.3E2 R2T	21B	MethyIphenanthracene	2.1E2 C
15A	Biphenyl	9.2E1 R41	21B.	Methylchrysene	5.4E2 C
15A	Uipneny imethane	6.5E0 R25	215	Methylpyrene	3.8E2 C
104/0	- Aikyidenzene	4.2EU C	218	Methyltriphenylene	1.2E2 C
158	Yulance		210	Uibenzo(a,n)Anthracene	9.3EI R2I
758	Indap		216	Benzo(a)Pyrene	1.2E2 R21
15B/4		1 252 041	216	Benzo (e) Pyrane	0.9E1 K21
158/A	Ca-Benzenes	8 4F2 DA1	210	Perylene Bonzo(a h i)Domilona	
15B	Tetrahydronaphthalene	6.6E2 C	210	Benzonerviere	4.0E1 NAJ
16A	Polychlorinated Biohenvis*	3.1E-2 FS	224	Fluorene	2 6F2 821
17A	Dinitrotoluenes	4.5E0 FS	22A	Indene	4-4E2 R41
18A	Phenol	1.6E3 R35	22A	Methylindene	1.5ET C
18A	Cresols	1.6E3 R50	22A	C, Alkylindene	3.7E1 C
18A	Xylenols	1.3E3 R35	22A -	C2 Alkylindene_	1.4E0 C
18A	Trimethylphenol	1.7E2 R43	22B	Benzo(a)Fluorene	8.6E1 R21
104	u-isopropyiphenol	1.7E2 R51	22B	Benzo(b) Fluorene	5.6E1 R21
18A TOA	C2-Alkylphenol	6.8E2 C	228	Fluoranthene	1.0E3 R41
100	Ca Alkylphenol	I.UEZ C	228	Benzofluorene	3.8EZ C
190	Jedanol	3.82-1 6	220	Benzo(n)Fluoranthene	5.3ET K21
100	111111111111	3.UE1 (j	226	Benzo(D)riuoranthene	LUEZ KZI

. -

TABLE 5. MAXIMUM TOTAL PRODUCTION FACTORS FOR CHEMICAL SPECIES DETERMINED IN MEASURED PRODUCT, BYPRODUCT AND DISCHARGE STREAMS FROM COAL GASIFIERS

TABLE 5. MAXIMUM TOTAL PRODUCTION FACTORS FOR CHEMICAL SPECIES DETERMINED IN MEASURED PRODUCT, BYPRODUCT AND DISCHARGE STREAMS FROM COAL GASIFIERS (continued)

MEG <u>Category</u>		Chemical Name	Production Factor (µg/g coal input)	MEG <u>Category</u>	Chemical Name		Production Factor (ug/g coal input)
220		Indeno(1.2.3-CD)Pyrene	4.6E1 R21	48	Phosphate ·		9.6ET GG
23A		Pyridine	1.6E-1 C	49	Arsenic	· · ·	2.7E1 GS
23A		Methylovridine	7.1E-1 C	50	Anticony		1.3F1 C
23A		CAlkvInvridine	2.8E0 C	51	Bismuth	-	1.7E0 GG
230		C2_Albulowiding	1 257 C	63	Sulfine		7 653 85
228		C_AthuTauridino	2 057 0	55	Sulfato	· · ·	· 7 053 55
224			1 052 0	53			
230				55	Juitice		1.2EU F3
230		ACTIGINE	9.021 C	53 .		•	4.1E4 RC3
230	•	Metnyiquinoithe	B.UEI C	33	Carbonyl Sulfice		1.3E3 R3U
238	·. ·	C2-Alkyloutnoltne	2.3E2 C	53	Carbon Disultide		2.8E2 KOU
.238		C3-Alkylquinoiine	1.1E2 C	53	Sultur Dioxide		1.760 0
238		Metnylacridine	4.0E1 C	53	intocyanate	÷ • .	5.9EZ K21
23B		Benzophenanthridine	9.6E-2 C	54	Selenium		4.4E1 FS
23B		Methylbenzophenanthridine	4.8E-2 C	55 ·	Tellurium		. 2.0E-2 GG
238		C ₂ -Alkylacridine	9.0E1 C	56	Fluorine	•	1.7E2 FS
23B		C ₃ -Alkylacridine	6.0ET C	56	Fluoride	•	5.9E0 GE
238		Běnzoquinoline	7.0E1 C	57	Chlorine		4.8E3 R21
238		Methylbenzoquinoline	3.0E2 C	57	Chloride	•	2.8E3 R50
238		C ₂ -Alkylbenzoquinoline	6.0E1 C	58	Bromine	•	2.9E1 GG
23B		DThydroacridine	2.2E-1 FS	58 .	Bromide	•	5.8E-1 C
230		Indole	1.9EO R21	5 9	Iodine		5.0E1 GG
23C		Carbazole	5.3E1 R50	59	Iodide		5.0E-2 R50
23C		Methylcarbazole	2.0ET C	60	Scandium	•	3.5E0 FS
230		Pyrroline	4.0E-2 C	· 61	Yttrium		5.OEI FS
24A		Benzofuran	1.3E2 R25	62	Titanium ·		3.8E3 FS
24B		Dibenzofuran	2.7E2 R21	63	Zirconium		1.5E2 FS
25A		Thiophene	3.7E3 R51	64	Hafnium	• . '	8.6E-1 FS
25A		Methylthiophene	2.9E2 R41	- 65	Vanadium		3.5E2 FS
25A		Dimethylthiophene	5.0E7 R41	6 6	Niobium	•	2.6E1 FS
25A		CThiophenes	3.3E2 R23	68	Chromium		5.5E2 R50
25B		Benzothiophene	2.6E2 R41	69	Molybdenum		1.4E1 GG
27		Lithium	4.1E1 FS	70	Tungsten	•••	8.7E-1 FS
28		Sodium	1.5E4 FS	71	Manganese		1.9E2 FS
29		Potassium	7.3E3 FS	72	Iron	•	7.6E4 FS
30		Rubidium	T.2E3 C	72	Iron Carbony1**	•	1.1E0 GG
31		Cesium	6.8E0 FS	74`	Cobalt		2.0E1 F5
32		Bervilium	7.6E0 FS	76	Nickel		6_4E1 FS
· 33		Magnesium	1.1E4 FS	76	Nickel Carbonv1**		2.0E-4 GG
33		Rhenium	6.1E-1 FS	78	Conner	•	1_0E2 C
34		Calcium	4 4F4 FS	79	Silver	·	8.1F-1 FS
35		Strontium	1 653 55	80	Gold		8.6F-4 GG
16		Barium	4 7E3 ES	g1 ·	Zinc	· · ·	2 0F1 F5
37		Boron	1 852 FS	82	Cadmium		6.9FT FS
38		ATuminum	7.5F4 FS	83	Marcury		1.4F1 FS
39	÷.,	Gallium	8.0F0 FS	84	Cerim	• • •	9.3ET FS
41		Thallim	4 8E-2 66	84	Lanthanum		9.3F1 FS
42		Carbon Monoride	· 0 8F5 848	84	Needvmium	· · .	2.5FT FS
12		Carbon Dioxide	1 2F6 PA8	84	Praseodymium		1 4FT FS
12		Carbonate	3 5E-4 C	84	Samarium	• •	1 IFT FS
12		Silicon	A 3E2 C	84	Byenrosium		1 2F-2 FS
45 AA		Gommanäum	1 16_1 55	9/	Exhium		1 35-3 FS
45	•		1 957 0	04	Supersium		2 0E-3 E5
40		lond	1 161 060	· 04			3 GE_3 ES
40		Armonia	1.1E1 KJU 9.953 837	04 04	Gaugi Ini Gill		2 05-2 55
41 17		ANNUMIC Cuantido	0.053 K61 2 151 849	. 04 .	Tombium	÷.	
47		Nitmagen Avide	2.151 K40 7 250 C	. 04	The lim		1 05-2 66
47		Nitrogen Uxide . Nitrogen Diguida	7.3EU 6 E 357 C	.04		• • •	2 05-2 66
4/		Nitrogen Dioxide	J.JE1 6 . 9 95 9 897	04	Viteonhium		2.35-2 00 1 05-1 62
4/			6.65-6 K21	0F	There is a second se		
4/			3.UE-4 F3	65 05		•	
4-0		rnusonorus	1./53 53	03		• •	1*421 10

* Probable Artifact ** Inferred Concentration

C = Chapman . FS = Wellman Galusha (Fort Snelling) GG = Wellman Galusha (Glen Gery) K = Kosovo R(') = RTI (Test Number)

TABLE 6. RANKING OF CHEMICAL SPECIES IN COAL GASIFICATION STREAMS RELATIVE TO THEIR ENVIRONMENTAL (HEALTH) HAZARD POTENTIAL)

Discharge Severity			Stream Type		
(Order of Magnitude)	Gaseous	Liquid	Solid	Tar	
100,000	benzo(a)pyrene+(C,D)	cresols(R43,D)(R50,D) xylenols+(R50,D)		benzo(a)pyrene +(R21,P) cresols(R51,P) xylenols+(R43,P)	
10,000	ammonia+(K,D) benzene+(K,D) carbon monoxide(G,D) ethanethiol(K,D) methanethiol(K,D)		chromium+(R43,D)***	dībenzo(a,h)anthracene+(R25,P) trīmethylphenol(R43,P)	
1,000	<pre>carbon dioxide(K,S) hydrogen cyanide+(K,D) hydrogen sulfide(R25,P) phenol+(K,D) chromium+(C,D) 7,12-dimethylbenz(a) anthracene(F,P) thiophene(R51,P)</pre>	ammonia+(R25,D) arsenic+(R50,D) chromium+(R50,D) *** cyanide+(C,S) mercury(K,S)	mercury+(G,D)	chromium+(R35,P)*** naphthoi(C,P)	
	<pre>arsenic+(F,P) carbony1 sulfide(K,S) dibenzo(a,h)anthracene+(F,P) hydrogen(R21,P) iron carbony1**(G,D) mercury+(F,P) selenium+(F,P) silver+(C,D) uranium(C,D)</pre>	benzo(a)pyrene+(R43,D phenoI+(R43,D)(R50,D) sodium(F,D)) arsenic+(R36,D) iron(F,D) potassium(C,D)	<pre>benzo(a)anthracene+(R25,P) indano1(C,P) .</pre>	
<pre>10 aluminum(F,P) aminotoluene(C,D) barium(F,P) benzo(a)anthracene+(F,P) biphenyl(F,P) cadmium+(F,P) calcium carbon disulfide(R50,P) conper>(C,D)</pre>		fluoride(C,S) selenium+(C,S) sulfide(G,D)	aluminum(F,D) barium(F,D) beryllium+(R50,D) manganese+(G,D) nickel+(R51,D) selenium+(R43,D)	arsenic+(R51,P) phenol+(R51,P) KEY	
	cresols(C,D) C ₄ -hydrocarbons(K,S)	•	Source Gasifier	Source Stream Classification	
	<pre>Lg-nydrocarbons(K,J) dinitrocresols+(F,P) iron(F,P) lithium(F,P) methane(R51,P) methane(R51,P) nickel+(F,P) nickel+(F,P) nitrogen dioxide(C,D) phenanthrene+(C,D)</pre>		G Wellman-Galusha (Glen F Wellman-Galusha (Ft. C Chapman R# RTI Run No. K Kosovo Lurgi	-Gery) D Discharge Snelling) P Product or Byproduc S Process Stream	
	phosphorus(F,F) phthalate esters*+(C,D) polychlorinated biphenyls (PCB)*+(F,P) potassium(C,D) sulfur dioxide(G,D) toluene+(K,D) xylenols+(R35,P)				
1	aminonaphthalene(C,D) benzo(c)phenanthrene(F,P) bery11ium+(F,P) chrysene+(C,D) dinitrotoluene+(F,P) indene(C,D) 3-methylcholanthrene(F,P) nitrogen oxide(C,D) strontium(F,P) xylenes(R51,P)	aminotoluene(C,S) barium(G,D) iron(G,D) lead+(R50,D) lithium(F,D)(C,D) phosphorus(C,S) sulfate(F,D)	antimony+(C,D) calcium(F,D)(C,D) copper+(C,D) lead+(G,D) lithium(G,D) phosphorus(C,D) silicon(F,D)	<pre>aminotoluene(C,P) benzofluorenamine(C,P) benzo(b)fluoranthene(R21,P) biphenyl(R36,P) cadmium(R51,P) chrysene+(R25,P) copper(C,P) lead+(C,P) 9-methylanthracene(R21,P) phenanthrane+(R21,P)(R25,P) phthalate esters*+(C,P)</pre>	

٠. ۰.

*Probable artifact. **Inferred from iron concentration. **Stainless steel laboratory reactor probably resulted in increased concentration. *Priority pollutant (consent decree compound).

TABLE 7.

7. RANKING OF CHEMICAL SPECIES IN COAL GASIFICATION STREAMS RELATIVE TO THEIR ENVIRONMENTAL (ECOLOGY) HAZARD POTENTIAL

Discharge Severity		Stream	Туре	
(Order of Magnitude)	Gaseous	Liquid	Solid	ĩar
1,000,000	•		phosphorus(C,D)	naphthalene(R21,P) ⁺
100,000	ammonia(K,D) benzene(K,D) ethylene(K,S)	ammonia(C,S),(R25,D)+		cresols(R51,P) xylenol(R43,P)÷
10,000		cyanide(C,S)+ phosphorus(C,S) phthalates(C,S)*+		benzidine(R23,P) ⁺ phenol(R51,P)+ phthalate esters(C,P) ^{*+} trimethylphenol(R43,P)
1,000	carbon monoxidē(G,IJ) hydrogen sulfide(R25,P) toluene(K,S)+	cresols(R43,49,50,D) phenol(R32,D) ⁺ phosphates(K,S) sulfide(C,S) xylenols(R50,D) ⁺	copper(C,D) ⁺ iron(F,D) mercury(G,D) ⁺	acridine(R20,P) arsenic(R21,P)+ chromium(R36,P) ^{+**} o-isopropylphenol(R51,P)
100	hydrogen cyanide(K,D)+ mercury(F,P)+ vanadium(C,D)	arsenic(R49,D)+ C ₂ -alkylphenols(C,S) Chromium(R26,D)+** copper(R49,D)+ naphthalene(C,S)+ sulfite(F,D)	aluminum(F,D) chromium(R26,D)++ silver(F,D)+	acenaphthene(R16,P) ⁺ aniline(R20,P) cadmium(R51,P) copper(C,P)+ mercury(R46,P)+ selenium(R51,P)+
10	methane(R51,P)	aluminum(F,D) barium(G,D) boron(C,S) cadmium(R16,D) calcium(F,D) Cg-alkylphencls(C,S) >Cg-alkanes(C,S) iron(G&F,D) nitrates(G,D) selenium(C,S)+ silver(C,S,F&G,D)+ sulfate(F,D) thiocyanate(R21,D) trimethylphenol(R21,D)	arsenic(G,C) ⁺ barium(F,D) calcium(C,D) cobalt(C,D) manganese(C,D) ⁺ phthalate esters potassium(C,D) titanium(F,D) vanadium(F,D)	<pre>aminonaphthalene(C,P) aminotetralin(C,P) C2-alkylacenaphthol(C,P) C2-alkylbenzoquinoline(C,P) C2-alkylhydroxypyrene(C,P) (C,D)** C5-alkylhydroxyanthracene(C,P) hydroxyanthracene(C,P) hydroxybenzofluorene(C,P) manganese(R51,P)* methylnaphthol(C,P) naphthol(C,P) nickel(R51,P)* titanium(R52,P)</pre>
. 1 	C2-alkylbenzene(C,D) C3-alkylbenzene(C,D) ethane(K,D) thiocyanate(C,D)	alkylpyridine(K,S) aniline(C,S) C ₂ -alkylaniline(C,S) dimethylpyridine(K,S) lead(K,S)+ lithium(GEF,D) mercury(K,S)+ 2-methylpyridine(K,S) 3&4-methylpyridine(K,S) pyridine(K,S) vanadium(G,D) zinc(K,S)+	antimony(C,D) ⁺ boron(F,D) cadmium(C,D) lithium(G,D) nickel(RS1,B)+ selenium(C,D)+ uranium(C,D)	acenaphthol(C,P) antimony(R49,P)+ C2-alkylacridine(C,P) C2-alkylnaphthol(C,P) C3-alkylnaphthol(C,P) C3-alkylacridine(C,P) C3-alkylacenaphthol(C,P) C3-alkylnaphthol(C,P) C3-alkylnaphthol(C,P) C3-benzoquinoline(C,P) >C9-aliphatic esters(C,P) indanol(C,P) lead(R31,P)+ methylacenaphthol(C,P)
		Source Ga	KEY sifier	Source Stream Classification
		G Wellman-Galu F Wellman-Galu C Chapman R# RTI Run No. K Kosovo Lurai	sha (Glen-Gery) sha (Ft. Snelling)	D Discharge P Product or Byproduct S Process Straam

*Probable artifact.

**Stainless steel laboratory reactor probably resulted in increased concentration.

*Priority pollutant (consent decree compound).

499

 16.

for acute and chronic toxicity as well as substances capable of causing long-term ecological damage. Indeed, one of the major goals of low Btu gasification is the production of carbon monoxide, a well-known poison even at very low levels. Trace contaminants present in coal gasification streams include some materials considered very hazardous and some considered relatively benign, as well as a large number with unquantified health and ecological effects.

From the standpoint of potential health hazard, the gaseous pollutant having the highest discharge severity in an individual stream is benzo(a)pyrene. Present at discharge severities an order of magnitude lower (10,000) but still extremely high were ammonia, benzene, carbon monoxide, ethanethiol and methanethiol. The concentrations of pollutants must be greatly reduced before any environmentally acceptable discharge can take place. Overall, 61 gaseous species were found at DS levels greater than one including 26 of the EPA priority pollutants.

Liquid pollutants representing the highest potential health hazards were cresols and xylenols. Technology exists for the recovery or treatment of these compounds. Ammonia, arsenic, chromium, cyanide, and mercury were found in liquid streams at levels two order of magnitude lower (DS = 1000) but still require high levels of control. Twenty-one species were found in liquid streams at discharge severities greater than one; these include 10 species on the EPA consent decree list.

In the solid streams, chromium (DS = 10,000), mercury (DS = 1,000), arsenic, iron and potassium (DS = 100) present the most serious health hazards. It is likely that ash and dust disposal methods will be devised to safely handle the overall material; no element specific treatment technology is available or promising. Eighteen species were found in solid streams at discharge severities exceeding one. These included 10 EPA priority pollutants.

The species present in tars which represent the highest potential health hazards are benzo(a)pyrene, cresols and xylenols (DS = 100,000). One order of magnitude less hazardous, dibenz(a,h)anthracene and trimethylphenol were found to be present. Some use for this byproduct material, perhaps involving combustion or gasification to produce more valuable chemicals may be feasible, eliminating or minimizing potential human

ፍበበ

exposure. Twenty-two species were found in the tar at DS levels greater than one. These included 11 EPA priority pollutants.

Potential ecological hazards were more severe in some cases than health hazards. Among the gas streams, three species: ammonia, benzene and ethylene were found at ecological discharge severity levels of 100,000. Phosphorus (solid phase) and naphthalene (tar) were found to have discharge severities of 1,000,000. Carbon monoxide, hydrogen sulfide and toluene were other ecologically hazardous pollutants in the gas phase (DS = 1000). Overall, 16 species were found in the gas phase at DS levels greater than one. (This listing includes species for which supplemental DMEG values were assigned). These included three EPA priority pollutants.

In the liquid phase, ammonia (DS = 10,000), and cyanide, phosphorus and phthalates (DS = 1000) were the most hazardous ecologically. Forty-two species were found in liquid streams at DS levels greater than one. These include 14 species on the EPA priority list.

In addition to phosphorus (DS = 1,000,000), copper, iron, and mercury (DS = 1000) were the most ecologically hazardous species in the solid streams. Twenty-three species were found in the solid streams at DS levels greater than one. Of these, 10 are on the EPA priority pollutant list.

Cresols and xylenols (DS = 100,000) were found in tars at DS levels one order of magnitude lower than naphthalene but still represent extremely high ecological hazards. In all, 46 species were found in tars with DS levels greater than one. These include 15 species on the EPA priority list.

Individual chemical species within the coal gasification streams considered in this analysis have been ranked in order of their <u>potential</u> hazards to health and ecology. Priorities for future monitoring and regulatory efforts can be developed on the basis of these rankings. Primary consideration must be given to expected discharges to the environment. Many product materials of an extremely hazardous nature can be used with minimal opportunities for human contact or ecological damage. Similarly, intermediates within process facilities may be more hazardous than either the starting material or the end product when considered strictly on the basis of chemical analysis. Actual efforts towards pollution control and towards the development of pollution control equipment must focus on eliminating hazardous discharges and minimizing fugitive emissions.

SUMMARY

The U.S. Environmental Protection Agency (EPA) has supported a number of research programs concerned with the environmental aspects of synthetic fuels production. An environmental assessment methodology has been applied to chemical data obtained from sampling and analysis of products, byproducts and effluents from a laboratory gasifier at Research Triangle Institute (RTI). In addition, data obtained during source tests of four operating coal gasifiers by the Radian Corporation have been similarly analyzed. Over 400 organic chemicals have been either quantitated or identified in samples obtained under these programs. Additionally, a large number of inorganic compounds and nearly all of the naturally occurring elements have been found.

Of the chemical species quantitated, 61 in the gas phase, 21 in the liquid phase, 18 in the solid phase and 22 in the tars were found at levels exceeding their health DMEG values in at least one sample. Other potentially hazardous species for which no DMEG values have been established may also be present. In addition a number of species in each phase were found at concentrations in excess of their ecology DMEG values.

The most serious hazards in the gas phase were ammonia, benzene, benzo(a)pyrene, carbon monoxide, ethanethiol, ethylene, and methanethiol. In the liquid phase ammonia, cresols, cyanide, phosphorus and xylenols were found to present the most serious hazards. The greatest hazards in the solid phase were phosphorus, chromium, copper, iron and mercury. Based on land DMEGs, the most serious pollutants in the tar were naphthalene, benzo(a)pyrene, cresols, and xylenols.

REFERENCES

- Cleland, J. G., and G. L. Kingsbury, "Multimedia Environmental Goals for Environmental Assessment, Vol. I," U.S. Environmental Protection Agency, EPA-600/7-77-136a, November 1977. (NTIS PB 276 919/AS).
- Cleland, J. G., and G. L. Kingsbury, "Multimedia Environmental Goals for Environmental Assessment, Vol.II, Meg Charts and Background Information," U.S. Environmental Protection Agency, EPA-600/7-77-136b, November 1977. (NTIS PB 276 920/AS).
- Kingsbury, G. L., et al., "Multimedia Environmental Goals for Environmental Assessment, Vol. III, MEG Charts and Background Information Summaries (Categories 1-12)," U.S. Environmental Protection Agency, EPA-600/7-79-176a, August 1979.

- 4. Kingsbury, G. L., et al., "Multimedia Environmental Goals for Environmental Assessment, Vol. IV, MEG Charts and Background Information Summaries (Categories 13-26)," U.S. Environmental Protection Agency, EPA-600/7-79-176b, August 1979.
- Thomas, W. C., et al., "Environmental Assessment: Source Test and Evaluation Report-Wellman-Galusha (Glen Gery) Low-Btu Gasification," U.S. Environmental Protection Agency, EPA-600/7-79-185, August 1979.
- 6. Page, G. C., "Environmental Assessment: Source Test and Evaluation Report-Chapman Low-Btu Gasification," U.S. Environmental Protection Agency, EPA-600/7-78-202, October 1978.
- Salja, B., et al., "Environmental and Engineering Evaluation of the Kosovo Coal Gasification Plant-Yugoslavia (Phase I)," Symposium Proceedings: Environmental Aspects of Fuel Conversion Technology, IV, (April 1979, Hollywood, FL), EPA-600/7-79-217, September 1979.
- Bombaugh, K. J., and W. E. Corbett, "Kosovo Gasification Test Program Results-Part II Data Analysis and Interpretation," Symposium Proceedings: Environmental Aspects of Fuel Conversion Technology, IV (April 1979, Hollywood, FL), EPA-600/7-79-217, September 1979.
- Bombaugh, K. J., et al., "Environmental Assessment: Source Test and Evaluation Report-Lurgi (Kosovo) Medium-Btu Gasification, Phase 1," U.S. Environmental Protection Agency, EPA-600/7-79-190, August 1979.
- Cleland, J. G., et al., "Pollutants from Synthetic Fuels Production: Facility Construction and Preliminary Tests," U.S. Environmental Protection Agency, EPA-600/7-78-171, August 1978.
- Cleland, J. G., et al., "Pollutants from Synthetic Fuels Production: Coal Gasification Screening Test Results," U.S. Environmental Protection Agency, EPA-600/7-79-200, August 1979.
- Gangwal, S. K., et al., "Pollutants from Synthetic Fuels Production: Sampling and Analysis Methods for Coal Gasification," U.S. Environmental Protection Agency, EPA-600/7-79-201, August 1979.
- 13. "Environmental Review of Synthetic Fuels," U.S. Environmental Protection Agency, Vol.2, No.4, December 1979.