UNPRESENTED PAPERS

PROBLEMS ASSOCIATED WITH THE ANALYSIS OF SYNFUELS † PRODUCT, PROCESS, AND WASTEWATER STREAMS

by: H. C. Higman, D. K. Rohrbaugh, R. H. Colleton, and R. A. Auel Hittman Associates, Inc. Columbia, MD 21045

ABSTRACT

Hittman Associates, Inc., as part of an environmental assessment of coal liquefaction technology sponsored by the U.S. Environmental Protection Agency (EPA), performed various analyses on samples from the Solvent Refined Coal II (SRC-II) plant in Ft. Lewis, Washington, and the Exxon Donor Solvent Plant (EDS) plant in Baytown, Texas. This paper describes several of the problems encountered in these analyses and methods taken to mitigate them. Recommendations are made on approaches for avoiding such problems.

INTRODUCTION

Though there exist standard methodologies for the analysis of pure organic extracts, the complex nature of the product and process streams from synfuels plants cause specific problems which are often complicated by the analytical requirements of the particular study. This paper addresses several problems encountered in the analyses of samples from the SRC-II pilot plant in Ft. Lewis, Washington, and the EDS facility in Baytown, Texas: (1) the analysis of products and effluents to determine process variability over a finite time period; (2) the analysis of volatile organic compounds from heavily loaded sample matrices; (3) the analysis of phenolics from heavily loaded phenolic streams; and (4) the analysis of sulfides, cyanide, thiosulfates, and thiocyanates from heavily loaded aqueous streams.

PROBLEM AREAS

REPRODUCIBILITY IN PROCESS VARIABILITY STUDIES

It is necessary to use a consistent approach in analyzing samples for process variability. For the Ft. Lewis effort, two sets of two samples of a heavy distillate stream were obtained over a 3-day period. This procedure provided a set of 12 discrete samples for studying process variability with built-in controls for sampling and analytical variability. The heavy distillate stream is a very complex sample matrix containing several hundred discrete components which range in concentration from the parts-per-billion level to several percent of the overall mixture. Analytical options included: (1) several types of fractionation procedures such as the Level 1 Assessment protocol, which yields seven discrete fractions from a silicic acid column; (2) fractionation by Florisil chromatography followed by chemical and further column separation to achieve separations by class for sulfur, nitrogen, and polycyclic aromatic hydrocarbons; and (3) analysis of the gross mixture for major constituents. To eliminate variations which would be introduced by fractionation and concentration procedures, it was decided to analyze the gross mixtures and to use the data obtained to define process, sampling, and analytical variability.

With mixtures of this complexity, capillary gas chromatography provides the most effective separation. It can be coupled with mass spectrometry to obtain as much qualitative information as possible about the major constituents of the mixture. Figure 1 shows the region of the total ion reconstructed chromatogram of a typical sample from the heavy distillate series. The broad peaks are not a function of poor chromatography but, rather, indicate co-eluting components. Several of the major components are identified.

Figure 1. Total Ion Reconstructed Chromatogram of Heavy Distillate Sample from SRC Pilot Plant.

Figure 2 shows four separate total ion chromatograms of different samples taken the same day. The run-to-run reproducibility of these samples is good and can be used effectively for comparison purposes.

Figure 2. Comparison of Process Variability Samples.

Figure 3 shows selected extracted ion chromatographic profiles (EICP) of the molecular ions for naphthothiophene, dibenzothiophene, phenanthrene/ anthracene, and a series of C_2 biphenyls and acenaphthenes. Using EICP, it is possible to discriminate between species in the mixture, while components co-elute when gas chromatography is used alone.

Figure 4 shows another example of co-eluting species. In this case, pyrene and fluoranthene co-elute with substituted phenanthrene/anthracene components and with a series of C_2 carbazoles.

By using the extracted ion chromatographic profiles for various components and analyzing the mass spectral data, it is possible to identify a discrete set of components. The areas of peaks from the extracted ion chromatographic profiles can be integrated to generate quantitative data for specific components from the gross sample. The most commonly used calculation involves obtaining integrated peak areas from known amounts of standards and comparing these peak areas to those of a known amount of internal standard. From these data, it is possible to calculate the relative response factor (RRF). The amount of specific components present can then be determined using the equation below. For gas chromatography, this is an excellent and extremely reproducible calculation because the detectors used are very stable.

$$RRF = \frac{\text{amount } d_{10} \times \text{Area Std.}}{\text{amount Std.}}$$

$$Amount X = \frac{\text{Area}_{x}}{\text{Area } d_{10}} \times 1/\text{RRF } \times D$$

$$d_{10}$$

Where: Std. = compound of interest d₁₀ = internal standard D = dilution factor

When used in conjunction with mass spectrometry, this method yields acceptable reproducibility. However, mass spectrometry is not as stable a detector and is more sensitive to changes in relative concentration of the sample and internal standard than is gas chromatography. This means that RRF values must be calculated very frequently if acceptable quantitative data are to be obtained for repetitive studies. Additionally, the overall sensitivity of the mass spectrometer can change dramatically over short periods of time.

The RRF method was used to generate the data in Table 1. Several representative concentrations for components found in the heavy distillates are shown. Samples A and B are one pair and C and D are a second pair. A and B were taken at the same time, C and D at different times, during the same day. These data were obtained as part of the process variability study and are, we feel, representative in light of the complexity of the sample matrix.

The values in Table 2 were derived by using the data obtained for standards normally used in the generation of RRF values. In this case, these data were used to calculate a working standard curve by least squares linear regression (LSLR) analysis. A second set of least squares linear regression lines were calculated using the data but normalizing the output of the internal standard to a set figure and adjusting the areas of the known compounds to reflect this normalization. All of the lines used had a correlation coefficient exceeding the 95 percent confidence level. Generally, the values obtained for analytical pairs are in better agreement for the normalized lines.

	Sa	mple	Sai	nple	
Component	A	В	C	D	
Fluorene	2.17	2.36	2.12	1.50	
Carbazole	5.67	6.67	7.55	5.68	
Dibenzothiophene	8.46	8.96	9.20	8.36	
Phenanthrene/Anthracene	20.02	22.64	24.46	20.88	
Pyrene	11.66	13.68	13.28	11.37	
Chrysene	1.09	1.57	1.73	1.21	
Benzo(a)Pyrene/Benzo(e)Pyrene [B(a)P + B(e)P]	.83	• . 56	.85	. 38	

TABLE 1. COMPARISON OF VALUES OBTAINED BY RRF CALCULATION (g/kg)

TABLE 2. COMPARISON OF SAMPLES BY LSLR AND NORMALIZED LSLR

	\mathbf{LS}	LR	LSI	LR-N	LS	LR	LSL	R-N	
Component	A	B	A	В	C	D	C	D	
Fluorene	2.04	1.81	1.74	1.89	1.23	1.07	1.44	1.21	
Carbazole	4.95	4.68	4.48	5.27	4.47	3.40	5.59	4.48	
Dibenzothicphene	7.27	6.20	6.67	7.06	5.42	4.90	7.25	6.59	
Phenanthrene/ Anthracene	16.99	15.41	15.27	17.27	13.15	11.96	16.56	15.93	
Pyrene	13.27	12.47	14.8	17.39	9.58	8.69	15.08	14.42	
Chrysene	1.32	1.49	1.09	1.58	1.28	1.04	1.44	1.22	
B(a)P + B(e)P	.40	.49	.31	.47	.52	.34	.48	.34	

Table 3 shows a comparison of the three methods used for quantitation of these selected compounds. The values shown represent a percentage variation from an average value for the paired samples. Using the LSLR data does little to alter the measurements obtained by RRF values when the data are very close, as in the A-B pair for fluorene and in the dibenzothiophene pairs. However, for data which show large variations by the RRF method, such as chrysene and B(a)P+B(e)P, the data obtained by LSLR analysis are more precise. Overall, for the full set of reported components (40-50 in all), the normalized LSLR data sets proved to be more precise. It is our experience that the use of normalized least square linear regression analysis for measurements requiring higher precision than a normal screening technique is a useful alternative to standard procedures. The data from screening analyses could also be calculated by this type of analysis to afford more consistent results.

TABLE 3. COMPARISON OF METHODS BY PERCENTAGE DEVIATION FROM AVERAGE

		RRF		LSLR	LSI	LR-N
Component	AB	CD	AB	CD	AB	CD
Fluorene	4.4	17.1	5.6	7.0	3.8	8.3
Carbazole	8.1	14.0	2.9	13.0	8.1	11.0
Dibenzothiophene	2.8	4.7	7.8	5.0	2.9	4.77
Phenanthrene/ Anthracene	6.13	7.9	5.1	4.8	6.1	1.9
Pyrene	8	7.78	3.1	4.9	8.0	2.2
Chrysene	18.0	17.6	5.6	10.0	6.4	10
B(a)P + B(e)P	24	39	11	20	9.5	17

METHOD/SAMPLE

INTERVAL BETWEEN COMPONENTS

	DDF	Absolute Differ-	τατρ	Absolute Differ-	T CT DN	Absolute Differ-
	<u>MMF</u>	ence	TOTIC	ence	TOTK-W	ence
Fluorene	1.50 - 2.36	.86	1.07 - 2.04	.97	1.21 - 1.84	.63
Carbazole	5.67 - 7.55	1.88	3.40 - 4.95	1.55	4.48 - 5.77	1.29
Dibenzo- thiophene	8.36 - 9.20	.84	4.90 - 7.27	2.37	6.59 - 7.06	.47
Phenan- threne/ Anthracene	20.02 -24.46	4.44	11.96 - 16.99	9 5.03	15.93 - 17.44	4 1.51
Pyrene	11.37 - 13.68	2.31	8.69 - 13.23	7 4.58	14.42 - 17.39	9 2.97
Chrysene	1.09 - 1.73	.65	1.04 - 1.49	.45	1.09 - 1.59	9.50
B(a)P + B(e)P	.3885	.47	.3456	.22	.3459	9.25

PURGE AND TRAP ANALYSIS.

The next area of difficulty is the analysis of heavily loaded process streams for volatile organics. The major problem associated with these analyses is the limited capacity of the adsorbing material to efficiently adsorb the levels of organic materials present in process streams. The adsorbent used in our synfuels studies was Tenax resin with a capacity to adsorb 1 to 2 percent of the weight of Tenax in the trap. The actual amount of Tenax is generally 0.5 gm or less. A 0.5 to 1.0 percent loading of this material would be equivalent to 2.5 to 5.0 mg capacity. Above this level, the Tenax will hold more material but with a dramatic decrease in trapping efficiency. Table 4 shows data obtained from a heavily loaded process stream from the EDS plant at Baytown, Texas. Samples B_1 through B_5 are the same sample purged at different levels of concentration. Samples A⁵ through F are different samples from the same stream.

Sample	Quantity Purged (mls)	Quantity Calculated (mg/l)	Observed Load on Tenax/(mg)	Actual Load on System (mg)
B ₁	0.25	2890	.7	.7
B ₂	1.00	2769	2.7	2.7
B ₃	2.50	1700	4.3	6.8
B ₄	5.00	997	4.5	13.5
B ₅	10.00	460	4.6	27.0
A	1.00	. 2216	2.6	2.6
В	1.00	2805	2.8	2.8
С	1.00	2642	2.6	2.6
D	5.00	1255	6.3	13.0
E	10.00	523	5.2	26.0
F	10.00	508	5.1	26.0

TABLE 4. COMPARISON OF PURGE AND TRAP DATA
BY VOLUME PURGED

As indicated in Table 4, adsorbing capacity has no real effect for the samples run at 1.0 mls. Above this level, however, the data are affected significantly. It is important to note that although the overall content of purgeable materials is extremely high, they are not readily amenable to analysis by direct aqueous injection because it does not effectively separate the many components present in these samples. Using the mass spectrometer as a detector and injecting even several μ l of

aqueous material, there are nanogram to low microgram quantities of many of the components. At levels of 2 g/l, only 2 $\mu g/\mu l$ are being analyzed by direct injection.

Table 5 shows the results obtained from a naphtha sample, which should contain a very high percentage of purgeable materials. This sample was run as a pure organic. The samples were diluted 1:10 with methanol. Two samples were run with 100 μ l of the diluate injected into 10 mls of H₂O. Two samples were run with 50 μ l of the diluate injected into a 10 ml aqueous matrix.

Sample		Analyzed (µl)	Observed Concentration (g/1)	Observed Loading Tenax (mg/l)	Actual Tenax Loading (mg/l)
Naphtha A	1	10	382	3.82	5.80
Naphtha B	3	10	297	2.97	5.80
Naphtha C	2	5	584	2.92	2.92
Naphtha D)	5	576	2.86	2.86

TABLE 5. COMPARISON OF PURGE VALUES FOR NAPHTHA

The values at a 50 μ l injection of a 1:10 aliquot are reasonable for this type of stream, indicating that approximately 75 percent of the components in the naphtha streams are purgeables.

We recommend that internal process streams be run at a volume of 0.25 to 0.50 mls of sample for purge and trap analysis except for those streams for which there is little or no chance that purgeables are present. A second run can then be made after calculation of an effective column loading. Also, we recommend that volatile organic materials such as naphtha streams be run at levels of no more than 50 μ l of a 1:10 diluate. Analytical parameters for streams with higher boiling ranges are based on volatile content. Industry literature can be used as a guide for estimating the quantity of samples to be analyzed. For process streams, we have found that sour water streams, including streams from pumps and drums as well as gas scrubber streams, should be regarded as heavily loaded process streams for volatiles.

PHENOLICS ANALYSIS

A third problem in analyzing process streams is the high level of phenolic materials present in sour water streams. Toxic gases evolve during acidification of the aqueous samples. Also, the high levels of phenolics present in extracts tend to create problems when concentrated for analysis by gas chromatography (GC) and gas chromatography/mass spectometry (GC/MS). Very low recovery rates (20 to 40 percent) have been reported in many cases. The more volatile phenols are extremely difficult to recover quantitatively. For this reason, EPA has recommended a colorimetric method for the analysis

of steam-distillable phenol. The method is fairly specific for phenol; however, there are other major phenolics present in these streams, such as cresols, xylenols, and trimethyl phenols. These phenols are not quantitatively measured by this method. We have analyzed these streams by direct aqueous injections as well as colorimetric and GC/MS methods.

Table 6 shows a comparison of the results obtained by GC/MS, colorimetric, and direct injection analysis for two streams heavily loaded with phenolics. In both cases, the GC/MS gave lower values than the direct injection GC method. For heavily loaded samples, the GC method has the advantage of allowing analysis in situ with a minimum of sample handling. The only possible alteration to this method would be to carefully acidify to a slightly acid pH (6.0 to 7.0) any samples which were very basic to assure that all phenolics have been analyzed.

TABLE 6. PHENOLICS BY COMPARATIVE METHODS (mg/l)

METHOD

		<u></u>	
Sample	GC/MS	Colorimetric	Direct Injection
Sample A	3500	2439	11.321
Sample B	4300	16024	13131

The method we used was a slight modification of Standard Method 510E from the 14th edition of Standard Methods for the Examination of Water and Wastewater. $^{\rm 1}$

ANALYSIS OF THIOCYANATES AND RELATED SPECIES

There are also problems associated with the analysis of sulfide, cyanide, thiosulfate, and thiocyanate (SCN) in streams which have a high sulfide and/or H₂S content. These samples were analyzed in accordance with procedures defined in Manual of Methods: <u>Preservation and Analysis</u> of Coal Gasification Wastewater.² We found that the precipitation of sulfide from heavily loaded streams as lead sulfide is not easily accomplished and that the precipitations required several days. In addition, cyanide can easily be lost by occlusion during the precipitation. The amounts of lead sulfide were so great that this occlusion is a very real problem. Dilution of the original samples prior to precipitation was not possible because the lower limits of the required analytical range preclude dilution. Another consideration in the cyanide analysis is the equilibrium shown below. It appears that the equilibrium is being forced to the left as sulfur is removed from the system.

 $Pb^{+2} + 2s^{-2} + CN \implies SCN + PbS$

Theoretically, the analysis of SCN should then become an important parameter. However, the same problems occur in this analysis since sulfides must initially be precipitated and there are high levels of lead sulfide present. To date, no adequate solution to this problem has been developed.

CONCLUSION

There is currently no all-encompassing methodology available for the analysis of process, product, and wastewater streams from synthetic fuels plants. Each type of stream and each individual process stream must be handled under conditions which will optimize the value and validity of the data obtained. In our current studies, we are attempting to modify existing procedures, as appropriate, to provide the most effective analytical approach. In particular, we are correlating GC/MS and GC data by utilizing the qualitative data obtained from GC/MS as a guide, then using capillary gas chromatographic data as the eventual quantitative tool. By incorporating the specificity of the mass spectral data, we are better able to quantitate unresolved gas chromatographic peaks. We are also assessing alternatives to existing methodologies of volatile organics analysis to obtain a more consistent approach to the problem of heavily loaded process streams. Finally, we are attempting to modify the precipitation procedures for sulfides to adapt a method which is viable for heavily loaded process streams.

REFERENCES

- 1. <u>Standard Methods for the Examination of Water and Wastewater</u>, 14th edition. Prepared and published jointly by the American Public Health Association, the American Water Works Association, and the Water Pollution Control Federation, 1975.
- Luthy, R.G. <u>Manual of Methods: Preservation and Analysis for Coal</u> <u>Gasification Wastewaters</u>. Prepared for the U.S. Department of Energy, by the Environmental Studies Institute, Carnegie, Mellon University, Pittsburgh, PA, July 1978.

SOLVENT EXTRACTION PROCESSING

FOR COAL CONVERSION WASTEWATERS

James R. Campbell and Richard G. Luthy Department of Civil Engineering Carnegie-Mellon University Pittsburgh, Pennsylvania 15213

and

Manuel J. T. Corrondo Department of Environmental Sciences New University of Lisbon Lisboa, Portugal

ABSTRACT

This paper outlines experimental and modeling techniques that are being used to evaluate solvent extraction processing of coal conversion wastewaters. The project includes characterization of organic contaminants in slagging fixedbed gasification process wastewater, as well as screening studies to evaluate removal efficiencies for these contaminants. Experiments are also in progress to measure distribution coefficients for several solvent types with phenol and representative base- and neutral-fraction aromatic solutes. These experiments are being performed with both clean water and wastewater systems. Results from these experiments are being evaluated in light of three techniques for estimating distribution coefficients: Modified regular solution theory as used in chemical engineering processing, expanded solubility parameter approach as used in liquid-liquid chromatography, and estimation of octanol-water partition coefficient as employed in environmental science. This paper reviews results obtained to date and explains direction for work during the coming year.

INTRODUCTION

Solvent extraction is a candidate treatment process for reducing organic contaminants from coal conversion wastewater. Solvent extraction is especially attractive for treatment of highly contaminated streams where the cost of treatment may be compensated, in whole or in part, by the value of recovered material and by reduction of loadings on downstream wastewater processing units. Solvent extraction may also eliminate the need for additional physicochemical wastewater treatment steps.

Experimental work now in progress is aimed at defining solvent extraction

processing characteristics of a slagging fixed-bed coal gasification wastewater. This work includes tests with both wastewater and clean water systems as well as theoretical considerations aimed at development of a model to aid prediction of the fate of organic contaminants during solvent extraction treatment.

SOLVENT EXTRACTION PROCESSING

A typical solvent extraction system is illustrated in Figure 1 (Earhart, et al., 1977), where it is shown that the process is comprised of three basic unit operations: (1) an extractor where wastewater and solvent are mixed and separated, (2) a solvent regenerator where solvent is separated from extracted solutes for reuse, and (3) a solvent recovery step where residual solvent is removed from the treated wastewater.

Solvent extractors may be classified as either stagewise contactors, such as mixer-settlers, or as differential contact extractors, such as a packed column or rotary disk contactor. Solvent regeneration is usually accomplished by distillation, and solvent recovery may be achieved by either stripping or secondary solvent extraction.

Numerous solvents are available for use in solvent extraction systems. Solvents which have been employed for processing phenolic streams include: light aromatic oil mixtures, tricresyl phosphate, n-butyl acetate (NBA), diisopropylether (DIPE), and methylisobutyl ketone (MIBK). When choosing an extraction solvent, two of the most important considerations are high solute distribution coefficient and low aqueous solubility. While aqueous solubility data are available for most solvents, solvent-solute distribution coefficient data are available for relatively few compounds, notably phenol and its derivatives. It is especially noteworthy that there is essentially no solute distribution coefficient data for the variety of base- and neutral-fraction solutes which may exist in a coal conversion wastewater.

The solute distribution coefficient may be defined as either the equilib ram ratio of solute mass concentration (C, mg/l) in solvent and water phases (K_D '), or as the ratio of solute mole fraction activity coefficients (γ) in each phase (K_D);

> $K_{D}' = Cs/Cw$ $K_{D} = \gamma_{W}/\gamma_{S}$

where the subscript s refers to the solvent phase and w to the water phase. Mass concentration and mole fraction activity distribution coefficients are related by the ratio of water and solvent molar volumes;

$$K_D' = \frac{VW}{Vs} K_D$$

Usually solute distribution coefficient data must be determined from laboratory testing, and this may be a costly and time consuming task. However,

FIG.I TYPICAL SOLVENT EXTRACTION PROCESS WITH A VOLATILE SOLVENT

time and expense can be saved by using thermodynamic models to estimate solute mole fraction activity distribution coefficients (K_D). Evaluation of the accuracy and applicability of thermodynamic models is included in the theoretical aspects of this project.

PROJECT OBJECTIVES

Work now in progress entails both experimental and theoretical aspects of modeling the fate of organic compounds during wastewater treatment, with emphasis on solvent extraction. Specific objectives of the project are outlined below:

- Characterize organic contaminates in slagging fixed-bed gasification process wastewater before and after several steps of bench-scale treatment. This work will include screening studies with several solvents to evaluate the efficiency of solvent extraction for removal of phenolics, as well as for removal of base and neutral fraction aromatics. In addition, data from these tests will be used to observe organic specie removal during ammonia stripping and biological exidation.
- Review the literature for assessment of models to predict distribution coefficients and compile a listing of the available experimental data on distribution coefficients for wastewater contaminants.
- 3) Perform experiments to measure distribution coefficients for phenol and representative base and neutral fraction aromatic compounds in both clean water and wastewater systems. The effect of solute concentration on the value of the distribution coefficient will also be evaluated.
- 4) Assess the applicability and accuracy of distribution coefficient models by comparing model results with experimental data found in this study and experimental data reported in the literature.

RESULTS TO DATE

Several study objectives have been completed or are in the process of being completed. Screening studies have been performed with several solvents to assess their suitability for extraction of phenolic solutes from raw slagging fixedbed coal gasification wastewater. This wastewater was generated from gasification of a lignite coal.

As a result of these screening studies, MIBK was selected for execution of bench-scale treatment tests incorporating solvent extraction, ammonia stripping and biological oxidation. As a part of this study, organic contaminants were characterized in collaboration with Argonne National Laboratory to assess removal of acid, base and neutral fraction solutes following solvent extractionammonia stripping and biological oxidation. Results of this work were presented at the 54th Annual Conference of the Water Pollution Control Federation (Luthy, et al., 1981). A summary of this work is provided in Tables 1 and 2.

Table I shows average solvent extraction treatment characteristics for MIBK extracted wastewater. MIBK is particularly effective for removal of phenolics ($K_D \sim 100$), and the data show that in the process of reducing phenolics to about 5 mg/ ℓ there is also substantial reduction of TOC, COD and BOD. Biological oxidation was evaluated by both activated sludge (AS) and powdered activated carbon-activated sludge (PAC-AS) treatment with 5000 mg/ ℓ PAC. Both AS and PAC-AS showed good removal of the pollutants shown in Table 1. The biological oxidation studies showed that solvent extracted wastewater was easier to treat via AS in comparison with wastewater not pretreated for reduction of phenolics. Solvent extraction eliminated the requirement for dilution prior to AS and also reduced wastewater foaming during biological treatment. Solvent extraction also resulted in lower mass loading of residual organic material (eg. color, TOC, and COD) in the biological reactor effluent.

GC/MS analysis of acid, base, and neutral fraction organics were performed on raw condensate, solvent extracted-ammonia stripped wastewater, and AS and PAC-AS effluents. HPLC analysis were performed after each treatment step for detection of eleven polycyclic aromatic hydrocarbons. Table 2, which provides a summary of the analytical results, shows that no organic contaminants could be detected in the acid, base, and neutral fraction suspended phase samples of MIBK extracted wastewater. Analysis of solvent extracted-ammonia stripped aqueous phase acid fraction samples showed the presence of residual phenol, cresols, and other acid fraction compounds, while base and neutral fraction species showed mainly low levels of relatively few compounds. Analysis of AS and PAC-AS treated water showed excellent reduction of those few organic compounds which remained after extraction and stripping. These results showed that solvent extraction for reduction of phenolics offers several wastewater processing advantages for treatment of coal conversion condensates.

This work was followed by a preliminary investigation of thermodynamic models for the prediction of solute distribution coefficients between water and an organic solvent for phenol and other aromatic solutes. The results of this work were presented at the Symposium on Water Management and Pollution Control for Coal Gasification and Liquefaction, sponsored by the Division of Environmental Chemistry at the 182nd ACS National Meeting in August (Campbell and Luthy, 1981). This work showed that most of the experimental solvent extraction studies reported in the literature have focused on phenolic compounds. No distribution coefficient data were found for base and neutral fraction solutes with solvents normally used for phenol recovery. Furthermore, no distribution coefficient data was found for tests using actual coal refinery wastewaters.

A review of the chemical engineering and liquid-liquid chromatography literature revealed that solvent extraction models which are used in these disciplines are based on developments evolving from regular solution theory. These concepts have been applied to several solute-solvent systems, and it was found that some empiricism is necessary for estimation of certain thermodynamic

TABLE 1.SLAGGING FIXED-BED WASTEWATERTREATMENT CHARACTERISTICS1

,

Parameter mg/l unless noted	Raw Wastewater RA-52	Solvent Extracted MIBK	Ammonia Stripped	Activated Sludge	PAC/AS
		•			
TOC	11,100	1,950	1.380	580	385
COD	32.000	3.900	2.980	1,340	640
BOD	26.000	2.900	1,820	32	30
Phenolics	5.500	5	3	0.1	<0.02
Org-N	115	51	33	10	4
NHN	6.300	4.400	30	84	20
NO ² -N	<5	<5	<5	40	100
SCN	120	110	105	4	< 0.5
CN T	1.8	1.5	1.5	1.4	1.3
CN ^{IOI -}	0.1		0.1	0.1	<0.1
Freon Ext	410		10	<5	<5
Alk (as CaCO_)	20,700	16,300	850	175	72
Cond	20,000	18,600	1,490	2.230	2,200
Color (Pt-Co units)	500	500	700	500	<20

¹Reference: Luthy, Stamoudis, Campbell, and Harrison, 1981. Analyses of solvent extracted samples for TOC, COD and BOD were performed after gentie heating to expel residual MiBK.

540

.

Table 2

.

Concentration (µg/1) of Representative Organic Compounds Identified in Slagging Fixed Bed Quench Water at Various Stages of Treatment

Peak		Rawl	later	MIBK-Sti	ipped	MIBK-AS	MIBK-AS/PAC
Nunber	Compound Name	\$5	L M	22		M L	LN
			A	cid Fractio	SUC		
, 20	Phenol	15,100	3,080,000	IN	500	10	e
50	Me thyphenol	6,300	427,000	IN	100	-	1
60	Me thyphenol	16,400	494,000	NT	80	,,	-1
140	C ₂ - Phenol	8,890	155,000	NT	50	NT	N
260	liydroxindan	340	3,820	NT	40	IN	NT
370	I-Naphthol	250	1,150	ΝŢ	40	NT	NT
			æ	ase Fracti	40		
			1		51		
10	Pyridine	3.9	14,530	NT	NT	IN	0.1
15	Toluene	NT	11	·NT	NT	NT	IN
20	Methylpyridine	12	061 4	NT	1.0	IN	IN
140	Aniline	27	0714/	IN	NT	IN	IN
390	Azanaphtha lene	450	003	NT	·NT	NT	IN
730	Azafluorene	20	15	NT	NT	NT	NT
			Ne	utral Frac	tion		
			•				
32	Methylcyclohexane, or	QN	22,750	NT 4	230	NT	NT
	-2-cyclopentene		000 6	H.	ł	ł	TH
35	Benzon i tri le	DN I	2,3UU	N	Z	N	E
2	Indene	2300	910	NT	IN	NT	NI
125	C ₃ -Thiazole	ON	QN	NT	31	1.8	2.0
160	Näphthalène	16,300	26,600	NT	NT	NT	NT
330	Indole	150	5,000	NT N	TN	IN	NT
380	Bibbenvl	1100	QN	NT	NT	NT	NT
460	Acenaphthene	2480	QN	NT	NT	NT	IN
017	Phenanthrene	4680	QN	NT	NT	IN	NI
067	Fluoranthene	1510	0¥	NT	NT	NT	IN
810	Pyrene	830	on .	NT	NT	IN	NT
SS, Suspen	ded Solids; FW, Filtered Wat	er; ND, Not	Determinable	e; NT, Not	Dectect	.pa	

parameters. Despite this limitation, our analysis has shown that for MIBK and water, neutral fraction aromatic solutes are predicted to have distribution coefficients substantially greater than that for phenol. Thus, in the process of reducing phenolics from relatively high concentrations to comparatively low concentrations, it is expected that neutral fraction solutes would be reduced by even greater proportions.

CURRENT AND FUTURE WORK

Recent experimental work has been directed towards measuring distribution coefficients in both clean water and wastewater systems. This work has examined three solutes: phenol as a representative acid fraction solute, and aniline and pyridine as representative base fraction solutes. These compounds comprise the predominate parent chemical species for compounds previously identified in each of these fractions. It is planned to measure distribution coefficients for benzene with several solvents, as benzene is the parent specie for neutral fraction solutes.

Five solvents have been incorporated in these tests, methylisobutyl ketone (MIBK), di-isopropylether (DIPE), n-butyl acetate (NBA), toluene, and tetradecane These compounds are representative of major classes of organic solvents. MIBK is reportedly used in an extraction process licensed by the Chem-Pro Equipment Corp. (Greminger, et al., 1980), while DIPE is employed in the Lurgi Phenolsolvan process. NBA shows a relatively high distribution coefficient for phenol, and it has been proposed for use in dual-solvent extraction systems . (Earheart, et al., 1977). Toluene is a component of coal-devired light oil, which was widely used at one time for extraction of phenolics from coke plant ammonia liquor. Tetradecane was included in this study for comparison purposes because it is an alkane, and because crude oil or related compounds are sometimes involved in petroleum refining operations for extraction of phenol from water or for washing phenol from refinery products.

Solvent extraction tests were performed with these solvents and solutes, in single and multiple solute clean water systems as well as in actual wastewater, to investigate potential synergistic/antagonistic effects. The effect of solute concentration was also investigated. The results of this work are being summarized in the form of a technical paper.

It is planned to execute another treatment study using slagging fixed-bed wastewater generated from gasification of another type of coal. Results obtained from this work would be used to verify the previous results, as well as to assess processing differences for a different water-solvent system. The tests would also include detailed wastewater characterization at different levels of phenol removal. These analyses would provide information on whether various contaminants are removed concomitantly in proportion to their respective distribution coefficients.

The latter tests are important from an economic point of view. Goldstein (1981) notes that single stage extraction is less costly than multiple-stage extraction, and that partial phenol recovery may be economically attractive. An 80 percent recovery of 5,500 mg/l phenolics is reported as supplying enough energy in the recovered material to run the extraction process. Goldstein also recommends solvent extraction if phenolic levels are high and if BOD concentrations are greater than 4,000 to 6,000 mg/l.

ADVANTAGES OF SOLVENT EXTRACTION

The economic issues regarding cost of solvent extraction versus reduced cost of additional wastewater treatment are not easily evaluated. However, it is clear that solvent extraction of phenolic condensates is advantageous for numerous reasons. Some of these reasons are outlined below.

- (a) Solvent extraction removes most base and neutral fraction solutes. This is significant because many of the toxic or hazardous organic contaminants in coal conversion wastewaters are found in these fractions.
- (b) Recovered material may be combusted for heat value, and this heat may be used to drive the extraction process. Properly designed combusters would destroy hazardous organic compounds.
- (c) Solvent extraction would remove hazardous organics, and this would reduce or eliminate problems with disposal of hazardous organic sludges formed as a result of wastewater treatment and reuse.
- (d) Solvent extraction would reduce or eliminate problems with carry over of volatile aromatic hydrocarbons during sour water treatment.
- (e) Extraction removes creosotes, and thus it is likely that most "tar acids" would be removed. This may be particularly important in treatment of coal liquefaction wastewater, where it is believed that acid treatment is required prior to biological oxidation to precipitate tar acids (Drummond, et al., 1981). Solvent extraction may eliminate the need for this step.
- (f) Solvent extraction can eliminate the need for dilution prior to biological oxidation. It has been found in various studies that dilution is required when biological oxidation is employed for treatment of heavily contaminated gasification or liquefaction process condensates (Luthy, 1981; Drummond et al., 1981). Our recent work (Luthy, et al., 1981) has shown that dilution was not necessary when treating solvent extracted coal gasification condensate.
- (g) Pretreatment by solvent extraction results in lower mass loading of residual organic material (i.e. TOC, COD, and color) in biological reactor effluent. Also, foaming was not a problem when solvent extracted wastewater was subjected to activated sludge treatment.
- (h) Since solvent extraction pretreatment can eliminate the need for dilution water as well as result in lower loadings of residual organics, it should benefit any additional treatment required prior to wastewater reuse.

REFERENCES

- Campbell, James R., and R.G. Luthy, "Estimation of Distribution Coefficients for Wastewater Aromatic Solutes", paper presented at Symposium on Water Management and Pollution Control for Coal Gasification and Liquefaction, Division of Environmental Chemistry, 182nd ASC National Meeting, New York, NY, August, 1981.
- Drummond, C.J., R.P. Noceti, and Jack G. Walters, "Treatment of Solvent Refined Coal (SRC-I) Wastewater: A Laboratory Evaluation," paper presented at the 91st National Meeting of the American Institute of Chemical Engineers, Detroit, MI, August, 1981.
- Earhart, J.P., K.W. Won, J.M. Prausnitz, and C.J. King, "Recovery of Organic Pollutants Via Solvent Extraction," <u>Chemical and Engineering Progress</u>, pp 67-73, May 1977.
- Goldstein, D.J., "Wastewater Treatment in Coal Conversion" paper presented at the 54th Annual Conference, Water Pollution Control Federation, Detroit, MI, October, 1981.
- Luthy, R.G., "Treatment of Coal Coking and Coal Gasification Wastewater," J. Water Pollution Control Federation, Vol. 53, No. 3, pp 325-339, 1981.
- Luthy, R.G., V.C. Stamoudis, J.R, Campbell, and W. Harrison, "Removal of Organic Contaminants from Coal Conversion Condensates," paper presented at the 54th Annual Conference, Water Pollution Control Federation, Detroit, MI, October, 1981. Submitted to J. Water Pollution Control Federation.

APPENDIX

Attendees

Allen Altschuler	Doreen C. Morris H.	145 Vista Avenue 401 M Street, S. W. (RD-681)	Pasadena Washington	CA 91106 DC 20460	Aerovironment Inc. II.S. EPA
Anastasia	Louis	4201 W. 36th Street	Chicago	11. 60632	Institute of Gas Technology
Anderson	Joseph M.	One Gateway Center	Pittsburgh	PA 15222	PPG Industries, Inc.
Anderson	Rick	P. O. Box 2511	Houston	TX 77001	Tennessee Gas Transmission Corp.
ALKINSON Aver	K. DWIGHT Franklin A.	2505 FIYMOUUTH KOAG P. O. Box 12194	Ann Arbor Research Triangle Park	NC 27709	u.S. EFA Research Triangle Institute
Bailly	F. David	1626 Cole Boulevard	Golden	CO 80401	Dames & Moore
Bravers	R. W. S. S. S.	P. O. Box 5888	Denver	CO 80217	Stearns-Roger Engineering Corp.
Bee	Robert W.	20030 Century Boulevard	Germantown	MD 20874	The Aerospace Corporation
Beckley	Pamela	3401 Lagrande Boulevard	Sacramento	CA 95823	Radian Corporation
Bell	Linda R.	Natural Resources Bldg., P&C Staff	Norris	TN 37828	Tennessee Valley Authority
Beltran Borbau	Katael G. rd	A.A. 49/6 127 Alleune Drive	Bogota U.E. Dittshursh	CULORBIA PA 15215	University of Los Andes Sunco fonenitante Inc
Beachok	Milton R.	ist niteyne bilve 63 Oak Tree Lane	tresoutgu Írvine	CA 92715	Consulting Engineer
Bixel	John C.	P. D. Box 1026	Princeton	NJ 08540	Mobil Research & Development Corp.
Blake	John H.	Fifty Beale Street	San Francisco	CA 94105	Bechtel Group, Inc.
Bolton	Graham	8150 Leesburg Pike, Suite 600	Vienna	VA 22180	International Gas Consultancy Ltd.
Bomhaugh	Karl J.	8501 Mo-Pac Blvd., P. O. Box 9948	Austin	TX 78766	Radian Corporation
Bonkoski	W. A.	77 Havemeyer	Stamford	CT 06904	Dorr-Oliver
Bosman	H.	P. O. Box 19	9700 MA Groningen	NETHERLANDS	N.V. Nederlandse Gasunie
Bradshaw	W. N.	P. O. Box 5888	Denver Bessert Tufeed - Besk	CO 80217	Stearns-Roger Engineering Corp.
brna	Incodore u.	IEKL, RU-DI 2000 Ficdaufar St	Research Irjangle Fark	11//7 AN	U.J. EFA Tours for Transmission form
Brown	bisheed D	JOUD FIEDEFICE DL. 1970 Dollon Modion Doulonard	UWERSDOLD Mat and		The MITDE Connection
Burne	The A	D O Boy 1690	Its Iolls	ra 22102 ra 02038	Suctame Science and Software
Burton	Ellison S	1: V. DUA 1920 3344 Federal Office of Fossil Energy	Washineton	DC 20461	N.S. Denartment of Enerov
Carley	Bohert	247 FENERAL, VILLES VI LUSSIL WIELEY 2420 Alcott Street	Tenver	CO 80211	McLauchlin Industrial Waste Encineers
Casamassima	Sal	P. 0. Box 2180	Houston	TX 77001	Exxon Company, U.S.A.
Chartrand	Dean-	15740 Shady Grove Road	Gaithersburg	MD 20877	Bechtel Power Corporation
Christoplier	J.	P. 0. Box 2521	Houston	TX 77001	Tri-State Synfuels Company
Cooper	Elliot	1860 Lincoln Street	Denver	CO 80295	U.S. EPA, Region VIII
Corbett	Willian E.	8501 Mo-Pac Blvd., P. O. Box 9948	Austin	TX 78766	Radian Corporation
Cowser	Kenneth E.	Building 1505 2420 Algott Street	Dak Kidge	TN 3/830	Uak Kidge National Laboratory Mufaunhiin Industrial Washa Funinaare
Crawford	Jav	2920 ALLOLL JULYEL	Bismarck	ND 58505	ND State Dept. of Health
Crawford	Kimm W.	One Space Park Drive, R4/1136	Redondo Beach	CA 90278	TRW, Inc.
Dale	John T.	1860 Lincoln Street (84H-A)	Denver	CO 80295	U.S. EPA, Region VIII
D'Alonzo	John	115 Gibraltar Road	Horsham	PA 19044	lll Conversion Systems, Inc.
Dennis	Patrick	2200 Churchill Road	Springfield	IL 62706	Illinois EPA
DICKETL	Charles I.	Independence Mall West P. O. P. : /O. Pys. F. P. : / OF	Philadelphia		Conserved Plantation Company
Dounoucos	Angelo	P. U. Box 4.5, Bidg. 5, Koom 4.2	Schenectady	10021 14201 IN	Neneral Stettit Company
Drahkin	Marvin	2100 N Street, N.W., Suite 50/	Washington	100 2 2 UDA	u.s. synthetic fuels torp. D S Docutiont of Control
Drummond	Charles J.	P. U. Box 10940	Pittsburga	174 11220 175 11220	U.S. Department of sucryy Dree for Convellents and Projucare
UUDNerly Durble	Agnes K. n w	650 South Cherry Street, Suite 400	Denver Henstern	100464 DA4242	Pace vo. vousuttauts anu mugumeris IN Panvareian Svetame. Inc.
Dunk (e	U. N. Dahaut I	113 GLUFALLAF KOAG 1924 Jimmili Chimin OAHA	The student	CD 80.05	I S FPA Region VIII
El-Ashrv	Mohamed T.	(and private attack (and)	Norris	TN 37828	Tennessee Valley Authority
Elms	Bruce R.	12075 E. 45th Avenue	Denver	0.0 80239	Black & Veatch
Ely	Rohert B.	9210 South East 68th Street	Mercer Island	07036 VM	Zimpro, Inc.
Engel	Paul	2244 Walnut Grove Ave., Rm. 492	Rosenead	CA 91770	Southern California Edison Company
Englick	Jack	133 S. Van Gordon St., Ste. 2060	Denver	CO 80228	FNC Corporation
Erickson	Ron		Nissonla	MT 59812	lniversity of Montana

Environmental Research & Technology Inc. Battelle Pacific Northwest Laboratory Colorado Department of Health Stearns-Roger Engineering Corp. Fluor Engineers & Constructors, Inc. Century Refining Co. Wyoming Office of Industrial Siting lestinghouse Research & Development Espey, Huston & Associates, Inc. Electric Power Rescarch Institute Envirosphere Co. Exxon Research & Engineering Co. Worth Carolina State University North Carolina State University Stearns-Roger Engineering Corp. Dow Chemical USA Morrison-Knudsen Company, Inc. U.S. EPA Oak Ridge National Laboratory IIT Research Institute MC1/Consulting Engineers Inc. Hittman Associates, Inc. U.S. Fish & Wildlife Service Research Triangle Institute UOP/Air Correction Division Research Triangle Institute U.S. EPA, Region VIII Gilbert/Commonwealth Assoc. U.S. Pepartment of Energy U.S. Department of Energy American Natural Resources General Electric Company Denver Research Institute Hittman Associates, Inc. Iransco Companies, Inc. Colucci and Associates Phillips Petroleum Co. The MITRE Corporation U.S. EPA, Region VIII J.S. EPA, Region VIII Standard Oil of Ohio U.S. EPA U.S. EPA, Region IV Shell Oil Company Radian Corporation Radian Corporation exaco, Inc. Lurgi Corp. FRW. Inc. U.S. EPA U.S. EPA .S. EPA U.S. EPA 27650 99352 80220 27607 80295 19607 58202 58202 58202 78766 20460 80295 90278 10048 07932 20460 83729 27711 30365 77001 27711 37064 21045 80225 77251 78766 80217 92730 94002 44115 80601 82002 27711 80112 48226 27709 95037 80217 70764 06856 80201 21045 12301 80208 27709 37830 60076 94303 15235 80295 22102 80155 30237 27711 Research Triangle Park Research Triangle Park Research Triangle Park Research Triangle Park **Research Triangle Park** Research Triangle Park Redondo Beach Florham Park Plaquemine Norwalk Schenectady Grand Forks Morgan Hill Palo Alto Pittsburgh Washington Morgantown Washington Englewood Englewood Oak Ridge Cleveland New York Franklin Lakewood Columbia Sichland Columbia Brighton Cheyenne Chi cago Atlanta Houston Raleigh Reading Houston Belmont Detroit McLean Denver Raleigh Denver Denver Denver Denver Austin Austin Denver Denver Denver rvine Jenver Boise P. O. Box X 10 West 35th Street 7800 E. Union Avenue, Suite 930 P. O. Box 10412, 3412 Hillview Avenue Two World Trade Center, 90th Floor P. O. Box 101 401 M Street, S. W. (TS-794) P. O. Box 7808, 11 M-K Plaza IERN, MD-61 345 Contland Street Entex Building, P. O. Box 3105 IERL, MD-61 500 Boyd Building, 18th & Carey Ave. 134 Union Bullevard P. O. Box 1396 8501 Mo-Pac Blvd., P. O. Box 9948 700 S. Aah 3333 Michelson Drive One Davis Drive 432 CB Midland Building P. O. Box 68, 695 North 7th P. O. Box 1498 Box 8213, University Station P. O. Box 880, Collins Ferry Road 8501 Mo-Pac Blvd., P. O. Box 9948 401 M Street, S. W. (WH-565) 1860 Lincoln Street 7700 East Arapahoe Road, Suite 330 P. O. Box 5888 P. O. Box 150, Building 3502 P. O. Box 5440 P. O. Box 2100 9190 Red Branch Road Dept. of Chemical Engineering 329 Building, 300 Area 4210 E. 11th Avenue 1820 Dolley Madison Boulevard One Space Park Drive, R4/2150 P. O. Box 12194 15305 Calle Enrique, Suite D P. O. Box 806 9190 Red Branch Road One Woodward Avenue P. O. Box 5035 1860 Lincoln Street 1860 Lincoln Street P. 0. Box 12194 P. 0. Box 2309 IERL, MD-61 Churchil Boro P. O. Box 43 2390 S. York IERL, MD-61 Jeannette W. Garrie L. F. Sidney Patricia-6. William H. Thilip G. William E. Michael R. E. F. Colleen D. Raymond I. Russell L. W. W. Henry Robert P. George L. James C. D. Bruce Robert J. Fred L. Morton J. Jerry H. Ralph Y. Richard M. N. Stuart (vonne M. William R Peter W. Nancy L. Robert Sohert W. Jeane L. T. Kelly V. David David A. James K. Dale A. Ron L. S. Gene Jerry A. Marshall latthew N. Dale Masood Gerald Cindy Charles Howard Mike Paul Bill 5 Harlow Hayward, Jr. Henschel *Xirchgessner* fangebrauck Honerkamp Hoskins Hospodarec Howard lone fenger Coldgrahen Kamperman Kelley King Kingsbury Hale, Jr. Hamanishi Higgins Higman Hoffman Ghassemi Klein Koblitz ı eeñâñ rench ischer ischer Gorshaw Granger lonardi Juday Kalish Kimura erraro errell ughes Felder łafker Klein uchs Garbe Janes lones Jones Koump Kuntz Geise Felix ones coma i llul ent luff

Kurey	William J.	P. 0. Box 295	Roosevelt	UT	84066	U.S. Fish & Wildlife Service
Lafond	Timothy J.	One Gateway Center	Pittsburgh	PA	15222	PPG Industries, Inc.
Lagemann	Robert C.	IERL, MD-61	Research Triangle Park	NC	27711	U.S. EPA
Larsen	Deborah J.	Acorn Park	Cambridge	MA D	02140	Arthur D. Little, Inc.
Lethi	Minh-Irlet	401 M Street, S. W. (PM-221)	Washington	DC	20460	U.S. EPA
Lewis	Alan J.	150 Ninth Avenue N.	Nashville	TN	57203	State of Tennessee
Lewis	Kamilla	2390 S. York	Denver	0	80208	Denver Research Institute
Liao	F. Y.	P. 0. Box 1026	Princeton	NJ.	08540	Mobil Research & Development Corp
LIGWIN	Maria	LEKL, MU-61	Research Triangle Park	NC	27711	U.S. EPA
Lienhard	H.	666 Kinderkamack Road	River Edge	N.	07630	Lurgi Kohle
Linkhardt	Douglas	1860 Lincoln Street	Denver	8	80295	U.S. EPA, Region VIII
Long	Dick	1860 Lincoln Street	Denver	00	80295	U.S. EPA, Region VIII
l.ongenberger	Fred	1860 Lincoln Street	Denver	8	80295	U.S. EPA, Region VIII
Lynott	William P.	3344 N. Torrey Pines Court #B	La Jolla	CA	92037	Energy Resources Co., Inc.
Lytle	Robert S.	1617 Cole Blvd., Suite 250	Golden	8	80401	Envirosphere Company
Magee	Robert A.	8501 Mo-Pac Blvd., P. O. Box 9948	Austin	TX	78766	Radian Corporation
Martin	Joan	1320 17th Street .	Denver	8	80202	Fred C. Hart Associates, Inc.
Maskarinec	Míchael P.	P. O. Box X	Oak Ridge	IN	37830	Oak Ridge National Laboratory
Maxwell	Míchael A.	IERL, MD-61	Research Triangle Park	NC	27711	U.S. EPA
Mazza	Carl	401 M Street, S. W. (TS-794)	Washington	DC	20460	U.S. EPA
McCann	Edward W.	5990 S. Syracuse St., Suite 320	Englewood	8	80111	Hampshire Energy
Meissner, III	Roland E. (Hap)	100 West Walnut	Pasadena	CA	91124	The Ralph M. Parsons Company
Melcer	Henryk	867 Lakeshore Road, P. O. Box 5050	Burlington, Ontario	CANADA	L7R 4A6	Environmental Protection Service
Menzies	William R.	8501 Mo-Pac Blvd., P. O. Box 9948	Austin	TX	78766	Radian Corporation
Miller	Eli	Dept. of Environmental Sci. Eng'g	Chapel Hill	NC	27514	University of North Carolina
Milliken	J. 0.	IERL, MD-61	Research Triangle Park	NC	27711	U.S. EPA
Mirchandani	Dilip	Two World Trade Center	New York	ΝΥ	10048	Envirosphere Co.
Miullo	Nat	1860 Lincoln Street	Denver	00	80295	U.S. EPA, Region VIII
Moghissi	A. Alaı	401 M Street, S. W. (RD-682)	Washington	DC	20460	U.S. EPA
Mohr	Volker H.	1140 Avenue of the Americas	New York	NY	10036	Lotepro Corp.
Mohr, Jr.	Donald H.	Department of Chemical Engineering	Berkeley	CA	94720	University of California
Moyer	Thomas J.	7000 South Broadway	Littleton	00	80122	Tom Moyer & Associates, Ltd.
Murphy	Andrew	P. O. Box 13109	Research Triangle Park	NC	27709	Acurex Corp.
Murray, Jr.	Charles F.	One Space Park Drive	Redondo Beach	CA	90278	TRW, Inc.
Nelson	Roger	11455 West 48th Avenue	Wheatridge	00	80033	Camp Dresser & McKee, Inc.
Neufeld	Ronald D.	949 Benedum Hall, Dept. Civil Eng.	Pittsburgh	PA	15261	University of Pittsburgh
Noceti	Richard P.	P. O. Box 10940	Pittsburgh	PA	15236	U.S. Department of Energy
Notich	Mark D.	9151 Rumsey Road	Columbia	QM	21045	Hittman Associates, Inc.
0'Brien	Maryln J.	9238 Rawsonville Road	Belleville	MI	11185	State of Michigan
0'Donnell	Frank	1828 L Street, N.W., Suite 510	Washington	DC	20036	Synfuels Week
Utten	George	485 Clyde Avenue	Mountain View	CA	94042	Acurex Corp.
Uri	Ul anna	1515 Cleveland Place, Suite 360	Denver	8	80202	Occidental Oil Shale Co.
Urgeron	Paul S.	2150 Shattuck Avenue	Berkeley	CA	94704	Tera Corporation
Urzynski	Stephen J.	1320 17th Street	Denver	00	80202	Fred C. Hart Associates, Inc.
Parker	Gary E.	5660 S. Syracuse Circle, Suite 206	Englewood	00	80111	Council of Energy Resource Trihes
Peel	Rohert C.	10 Longs Peak Drive, Box 2000	Broomfield	00	80020	Rocky Mountain Energy
Piepers	0.	P. O. Box 19	9700 MA Groningen	NETHERI, ANDS		N.V. Nederlandse Gasunie
Place	Barry G.	P. 0. Box 512	Mi lwaukee	IM	53201	Allis Chalmers
Ponder	Wade H.	JERL, MD-61	Research Triangle Park	NC	27711	U.S. EPA
Poulson	Richard E.	P. O. Box 3395, LETC	Laramie	.IM	82071	U.S. Department of Energy
Princiotta	Frank T.	IERL, MD-60	Research Triangle Park	NC	27711	U.S. EPA
Pugsley	Е. В.	P. O. Box 5888	Denver	5	80217	Stearns-Roger Engineering Corp.
Капед	Irwin A.	130 Sandringham South	Moraga	CA	94556	IAR Technology Inc.

Gesellschaft fur Kohle-Technologie mbH Fluor Engineers & Constructors, Inc. Council of Energy Resource Tribes Argonne National Laboratory Electric Power Research Institute Laramie Energy Technology Center Stone & Webster Engineering Corp. Radian Corporation Exxon Research & Engineering Co. Exxon Research & Engineering Co. U.S. EPA, Region VIII U.S. Department of Energy North Carolina State University Tennessee Valley Authority Black, Sivalls & Bryson, Inc. International Coal Refining Co. UOP/SDC nternational Coal Refining Co. Camp Dresser & McKee, Inc. 66&6 Environmental Consultants Jniversity of North Carolina **Invirotéch Process Equipment** U.S. EPA U.S. EPA, Region VIII Research Triangle Institute U.S. EPA, Region VIII Camp Dresser & McKee, Inc. Occidental Oil Shale Co. Brown & Root, Inc. University of Los Andes Camp Dresser & McKee, Inc. U.S. Department of Energy Jet Propulsion Laboratory ANG Coal Gasification Co. J.S. Department of Energy ND State Dept. of Health Chevron Research Company Catalytic, Inc. U.S. EPA, Region VIII U.S. EPA, Region VIII Exxon Company, U.S.A. Union Carbide Corp. Rioblanco Oil Shale Nalco Chemical Co. W. R. Grace & Co. U.S. EPA Riler Stoker Corp. ladian Corporation Radian Corporation Shell Oil Company fexas Eastern impro, Inc. WATEC Inc. Consultant U.S. EPA U.S. EPA 15236 58505 77210 80295 82071 27711 20460 80295 60439 94303 27711 53222 80202 77001 27529 27514 80226 54474 45213 91109 01613 80014 78766 07932 78766 92730 80222 94572 60521 38127 27709 80295 80231 48226 78766 25303 80033 02154 19102 20545 22102 07932 27711 80295 37902 77027 82071 02107 18001 77001 8001 Research Triangle Park Research Triangle Park Research Triangle Park Research Triangle Park South Charleston D-4300 Essen 1 Phi lade l phi a Houston Florham Park Florham Park Chapel Hill Washington Wheatridge Bogota D.E. Rothschild Cincinnati Washington Pittsburgh Milwaukee Worcester Allentown Knoxville Allentown Englewood Palo Alto **Oak Brook** Bismarck Pasadena Richmond Lakewood Laramie Detroit Waltham Houston Houston Laramie Houston Argonne Houston Aurora Memphis Austin Austin rvine Denver Austin dcLean Denvér Boston Denver Denver Denver Denver Denver Garner Denver 1860 Líncoln Street 5660 S. Syracuse Circle 5061 S. Syracuse Circle 9 202, Biological Research 9 0. Box 10412, 3412 Hillview Avenue 15RL, MD-61 913 Hamilton Bank Building P. O. Box 27125, 8303 S. W. Freeway P. O. Box 2752 A.A. 4976 P. O. Box 3395, University Station P. 0. Box 2180, Dresser Tower 3555 Dept. of Environmental Sci. Eng'g 363 South Harlan St., Suite 209 4800 Dak Grove Drive, MS 502-310 P. O. Box 547 2950 South Jamaica Court, #208 8501 Mo-Pac Blvd., P. O. Box 9948 8501 Mo-Pac Blvd., P. O. Box 9948 3501 Mo-Pac Blvd., P. O. Box 9948 8500 W. Capitol Drive 1515 Cleveland Place, Suite 360 EP-33, Office of Env. Programs IERL, HD-63 401 M Street, S. W. (PM-208) 1860 Lincoln Street P. O. Bax 12194 1860 Lincoln Street 5790 Old Millington Road 6315 Grand Vista Avenue P. O. Box 8361 11455 West 48th Avenue 300 Bear Hill Road P. 0. Box 4320 1860 Lincoin Street P. 0. Box 3395, LETC 3728 Randell Road 2901 Butterfield Road 3333 Michelson Drive P. 0. Box 3 (04-107) P. O. Box 10940 1200 Missouri Avenue 576 Standard Avenue One Woodward Avenue 1500 Market Street 1860 Lincoln Street 7929 Westpark Drive 245 Summer Street P. O. Box 2521 9725 E. Hampden **folkestrasse** 29 P. O. Box 2752 1660 S. Albion P. O. Box 101 P. 0. Box 101 IERL, MD-61 Donald Warner K. Christopher A. Paul W. Christopher M. Francisco A. Ronald C. Philip C. G. Richard N. Dean William S. William J. Thomas C. Charles.D. J. V. Richard L. William C. Gerard P. Charles L. fichael F. J. D. W. Gene Elizabeth Garrett Gary Robert G. Rolf Gary David Russell Walter H. Weston William C. **Fracey L.** Gary M. David W. Sídney Richard Alan F. Steve M. Carol J. Fred E. Carl E. Gilbert Anna W. Larry Ven C. David lenry Jeff Rick Mike Jack Bob

Reilly, Jr. Reveal Rosenfield roscinski Wetherold Rodriguez Sosenfeld Shankland Thomson Thornton Weinreich Richards Sheesley Thompson Wetze] Whipp]e loosmagi Wallace Walline Robbins Schauer Stevens Stewart hielen **Fucker** /oerman White Wilder Wilson Witmer homas Chomas Ruppel Rydell toner Rhodes Weiner tasch teeser Singer Soukup spaite Smith Smith l rask Wilks Smith ' SOE/ Rigg Sims Rowe (eh (en (u Yee

go Sob

B

SATISFACTION GUARANTEED

if the item you receive NTIS strives to provide quality products, reliable service, and fast delivery. ling your order. Please contact us for a replacement within 30 days we have made an error in s defective or

E-mail: info@ntis.gov Phone: 1-888-584-8332 or (703)605-6050

Reproduced by NTis

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are custom reproduced for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available.

Occasionally, older master materials may reproduce portions of documents that are not fully legible. If you have questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and related business information – then organizes, maintains, and disseminates that information in a variety of formats – including electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia training products; computer software and electronic databases developed by federal agencies; and technical reports prepared by research organizations worldwide.

For more information about NTIS, visit our Web site at <u>http://www.ntis.gov</u>.

Ensuring Permanent, Easy Access to U.S. Government Information Assets

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000