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ABSTRACT

A numerical study is performed to investigate energy separation in a shear
layer. The unsteady two dimensional Navier-Stokes equation and total-energy
equation are solved using an equal-order linear finite element and fractional
four-step method. The predicted results show that the pressure fluctuaticms
due to the vortex motion in the shear layer cause the energy separation. The
results for instantaneous velocities and temperatures agree well with experi-
mental data.

INTRODUCTION

Spontaneous separation of the total temperature in different portions of a high speed
flow is called “energy separation”. Energy separation presents the possibility to heat or cool
fluid without using a conventional heating or cooling system. However, current obtainable
temperature differences between hot and cold regions are not large enough for practical
engineering systems. Further research to enlarge the temperature difference is still required.
Not only this possibility, but the ability to predict and understand the accurate temperature
distribution in fluid flows is critical to many engineering applications where flows are used
as heat transfer enhancement methods such as impinging jets.

This phenomenon was observed in the early 1940’s from measurement [I] of the recovery
temperature distribution on a circular cylinder in a high speed air stream. Other researchers
have reported the existence of energy separation in various flows including boundary layers
[2], jet flows [3, 4], cross flow across a circular cylinder [5], and shear flows [6]. With the
results of these studies, Eckert [7] suggested the physical explanation of the mechanism of
energy separation. Two different mechanisms can cause energy separation in fluid flows.

One is the imbalance between the energy transport by viscous shear work and that by heat
conduction. The other is the pressure fluctuation within flow fields due to the transport of
vortices. Energy separation in real flow fields can be due to combined mechanisms of the
imbalance and the pressure fluctuations.
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Even though previous research improved understanding on energy separation, it has
several limitations. First is the lack of instantaneous velocity and temperature informa-
tion. Only afew researchers tried to measure the instantaneous temperaturein the wake

of a cylinder [8], however most previous research is based on time-averaged temperature

measurements. To verify previously proposed physical models and make them complete,
instantaneous temperature and velocity information is essential. Second, previous numerical
studies [5, 9] were performed with invisicd fluid assumption. However, a vortex is formed in
flows through entrainment of surrounding fluid, in which viscosity plays vital role.

In the present study two dimensional plane shear layer is numerically simulated to inves-
tigate the instantaneous energy separation mechanism. Unsteady two dimensional Navier-
Stokes equations and total energy equation are solved. The results will provide useful infor-
mation to understand the instantaneous mechanism of energy separation.

MATHEMATICAL AND NUMERICAL FORMULATION

The calculation domain and coordinate system for the two-dimensional flow system are
illustrated in Figure 1. Two air streams with different velocity (Ul, U2) are initially separated
by a splitter plate. After merging of the two streams, a shear layer is formed and grows as
flow goes downstream.
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Figure 1: Schematic Diagram of Calculation Domain and Boundary Conditions

The governing equations for flow field are mass conservation, and unsteady Navier-Stokes
equations. The present study assumes an incompressible and constant property fluid. The
governing equations are written using the indicial notation as follows:
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where ui is i-th component of velocity. For convenience, U1 is sometimes denoted by u, and
U2 by v. All variables are non-dimensionalized using a half the initial shear layer thickness
6., and the velocity difference (AU = Uz – Ul). The pressure (p) is normalized by pAU2.
The Reynolds number (ReJO) is based on 60 and AU.

The governing equation for temperature field is total energy conservation equation. Re-
duced total energy equation with the assumption of non-conducting fluid is shown in Equa-
tion (3).

~Tt”
—+U,:,

* dp.—
at ‘Z

(3)
3

where Tt* is non-dimensional total temperature which is normalized with total temperature at
the inlet ‘TtOand two times of dynamic temperature AU2/cP such as ~~2~C~. For convenience,

superscript x is dropped after this.
.4 numerical algorithm using equal-order linear finite element and fractional four-step

method is used to solve Equation (1), (2), and (3) simultaneously. Detailed discretized
formulation of Equation (1) and (2) can be found in [10].

The discretized formulation of Equation (3) in time is obtained by the fractional step
method, and written in Equation (4).

Tt ‘+1– Tt’ 1
+ ~ (Tt”+luj”+l + T~nujn),j = ; (pn+l – Pn-l)

At

where At is the time increment, ‘,’ represents spatial derivatives, and superscript

(4)

n denotes
the time step. The total-energy equation is discretized in space using the equal-order lin-
ear finite element method. The weak form of Equation (3) is obtained by multiplying it
by a weighting function and integrating over the spatial domain (0) of the problem. By
manipulating the integration with divergence theorem, the weak form is reduced as follows;

(5)

.411variables are represented with variables at each node by the linear interpolation function:

4 4
~e =

E iV~ue~, Ve = z N~vek
k=l k=l

4 4

P’ = ~ NkPek, Tte = ~ NkT~e,k
k=l k=l

(6)

where Ue is the velocity in z direction at element e, Nk is the interpolation function, and
k is the number of the node in element e. Inserting Equation (6) into Equation (5), and
integrating with respect to time by Equation (4) gives a linear algebraic equation at each
node. The whole set of equations can be solved with the known Ue,ve, and pe.

A grid of 100 in z by 50 in g is used with U1 = 1, and U2 =2. The Reynolds number

(Re~O) is 100 for all numerical simulation. All data is collected after all the initial field is
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washed through the calculation domain.
The boundary conditions on each boundary of the calculation domain are shown in

Figure 1. At the inlet plane (Z = O), a hyperbolic tangent profile with a very thin initial shear
layer is employed for the velocity. In an actual shear layer, the velocity profile immediately
downstream of the splitter plate is wake-like due to the existence of the plate. However,

the velocity profile is quickly assumed as a tanh-like shape, because of intensive momentum
diffusion across the shear layer caused by the large velocity gradient in the spanwise direction.
Consequently, the hyperbolic tangent profile assumption is reasonable.

To simulate experimental flow conditions, small disturbances are introduced at the inlet
plane. The disturbances are obtained from stability analysis of inviscid flow with the same
inlet velocity profiles. Most unstable frequency and its two sub-harmonic frequencies are
selected as the frequencies of the disturbance. The magnitude of each disturbance is 0.03 so
that the turbulence intensity at the inlet plane is less than 2%. The boundary condition of
u is written in Equation (7).

[

1 u~–u~ 1
3

U(O>y, t) = –
2 u~+u~

+ tanh(2y) + 0.03 ~ ti’(y, t)e-i’+t
j=l

(7)

Similar disturbances are also introduced in the y direction. For temperature, uniform total
temperature is assumed.

At the outlet plane, a convective boundary condition is used. The convective boundary
condition is a suitable condition for handling a vortex passing across a boundary. The
detailed validity of this boundary condition can be found in [10, 11]. Boundary conditions
at the other two boundaries are assumed to be the same as the free stream.

RESULTS AND DISCUSSION

Vorticity is a convenient variable to describe the motion of a vortex in a flow field. The
vorticity (U=) is defined as,

In Figure 2, the vorticity distribution at different times are shown. The disturbance applied
at the inlet plane starts growing and rolls up into vortices. The interaction between the
vortices is observed. Near the inlet plane, very small size of vortices are formed, and merge
with neighboring ones. The merged vortex moves downstream, and combines with another
merged one. This interaction was observed in many experimental studies [12, 13].

Instantaneous pressure and temperature distributions are presented in Figure 3. It shows
that the formation of vortices distorts the pressure fields. Pressure near the center of vortices
is lower than surrounding, and has local minimum value. Between the minimum points, local
maximum pressure points exist.

Instantaneous total temperature distribution shown in Figure 3 (b) indicates the instan-
taneous energy separation. The locations of the separation nearly match with those of vortex

.’
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Instantaneous Vorticity (w.) Distribution

pressure fluctuation due to the motion of vortex is the cause
of energy separation. The temperature distribution is asymmetric, which is different from
the results of inviscid calculation [9]. The maximum amount of the separation is obtained
around x = 145. After that location, the energy separation starts to weaken. This should
be caused by the effect of viscosity. The vortices generated from the initial disturbances are
dissipated due to the viscosity of fluid as they moves downstream.

With the observation above, the mechanism of instantaneous energy separation can be
explained as follows. Since the vortex is moving with a certain velocity, the distortion in
pressure field is also moving. Due to the motion, fluid at the front-half of vortex experiences
negative ~ (i.e. do the pressure work to surrounding fluid), and fluid at the rear-half does

positive ~ (i.e. the pressure work done by surrounding fluid is added). Therefore, fluid loses
energy passing through the front-half of the vortex, and gains energy through the rear-half.

In Figure 4, the pressure around vortices and total temperature variations of fluid particles
are illustrated. Thickness of the line represents the pressure at that point, and color denotes

the total temperature of the fluid. A fluid particle which enters flow field from y > 0,
is entrained into shear layer through the front-half of vortices. Along this path, the fluid

particle lose energy and reach its local minimum temperature after passing where y = O.
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(a) Instantaneous pressure distribution when t=250
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(b) Instantaneous total temperature distribution when t=250

Figure 3: Instantaneous Pressure and Total Temperature Distribution

After that, the particle moves upward by the motion of vortex through the rear-half. Along
this path, the particle gain energy and return to nearly its initial total temperature.

Even though a fluid particle from y <0 is entrained similarly, the different sequence of
entrainment causes reverse total temperature distribution. Initially the particle is entrained
through the rear-half of vortex. Due to the entrainment through this path, the particle gains
energy first, and reach local maximum temperature. These local maximum and minimum
total temperature are believed to contribute to energy separation.

CONCLUSION

A numerical study on instantaneous mechanism of energy separation was performed. A
computational code to simulate unsteady two dimensional flow and total temperature field

has been developed. Physical explanation based on the results of numerical analysis was

proposed. The conclusions of the present research can be summarized as follows:

1. Numerical simulation shows the instantaneous mechanism of energy separation due to

the pressure fluctuations.
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Figure 4: Pressure and Total Temperature Variation along Pathlines in a Shea,r Layer

2. Motion of vortices in shear layer induces pressure fluctuations in flow fields. The
pressure fluctuations induced by

3. Instantaneous total temperature
asymmetric entrainment of fluid

the vortex motion cause the energy separation.

distribution is asymmetric. This should be caused by
from two sides of shear layer.

An experimental study to measure instantaneous total temperature in shear layer of jet
flows is in progress by the authors. The experimental results will provide useful data to help
to understand the instantaneous mechanism of energy separation, and can verify the results
of the numerical simulation.
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DYNAMIC HOLOGRAPHIC LOCK-IN IMAGING OF ULTRASONIC WAVES
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ABSTRACT

A laser imaging approach is presented that utilizes the adaptive property of
photorefractive materials to produce a real-time measurement of ultrasonic
traveling wave surface displacement and phase in all planar directions
simultaneously without scanning. The imaging method performs optical lock-
in operation. A single antisymmetric Lamb wave mode image produces direct
quantitative determination of the phase velocity in all planar directions
showing plate stiffness anisotropy. Excellent agreement was obtained with
modeling calculations of the phase velocity in all planar directions for an
anisotropic sheet material. The approach functions with diffusely scattering
surfaces, subnanometer motions and at frequencies from Hz to GHz.
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INTRODUCTION

A powerful method for imaging ultrasonic motion has been developed at the INEEL that
utilizes the photorefractive effect in optically nonlinear materials to perform adaptive
interferometry. 1’2Optical interference is developed within a photorefractive material with this
technique and the output is an optical image whose intensity distribution is directly proportional
to the surface vibration amplitude, for small ultrasonic displacements. Utilizing this approach,
no postprocessing of the data recorded by a video camera is required to produce images of the
surface vibration amplitude over large areas. Application of this approach, referred to as the
INEEL Laser Ultrasonic Camera, to imaging of standing wave resonant motion in plates has
been previously described.3>4’5 This paper describes optical lock-in operation of this imaging
method by recording the nonstationary waveform of a traveling Lamb wave in a plate.c

PHOTOREFRACTIVITY BACKGROUND

Photorefractivity refers to that process where optical excitation and transport of charge carriers
within select nonlinear optical materials produces a diffraction grating or hologram from the
interference pattern developed inside the material. A spatial and temporal charge distribution
results in the photorefractive material that reflects the phase information impressed onto an
optical signal beam (e.g. by a vibrating surface). The INEEL method records the photorefractive
grating produced at a fixed beat frequency between the phase modulated signal and reference
beams. It can directly measure vibration amplitude and phase with a response proportional to the
Bessel function of order one, providing a linear output for small amplitudes. The method
accommodates rough surfaces, exhibits a flat frequency response above the photorefractive
response cutoff frequency, and can be used for detecting both standing and traveling waves.

EXPERIMENTAL METHOD

The experimental setup for vibration detection is shown in Figure 1. A solid state laser source
at 532 nm was split into two legs forming the signal and reference beams. The signal beam was
reflected off traveling waves produced at the surface of a plate driven at its center by a
continuously excited piezoelectric transducer. The traveling wave motion occurring on the plate

surface produced a phase modulation d$i~of the signal beam. The reference beam was phase

modulated by an electro-optic modulator at a fixed modulation depth d,~f. The modulated beams

were combined and interfered inside a Bismuth Silicon Oxide (BSO) photorefractive crystal with
operation in the diffusive regime. In the four-wave mixing configuration, the reference beam was
reflected back into the crystal along a counter-propagating path that matched the Bragg angle of
the photorefractive grating in the medium. The vibration modulated phase grating was read out by
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1. Optical Lock-in Ultrasonic Imaging Setup.

the resulting scattered wave that propagated backward along the signal beam leg and was detected
by deflecting it with a beamsplitter (not shown) toward a photodetector or a video camera.

FLEXURAL WAVE DISPLACEMENT DISTRIBUTION

The lock-in mechanism that allows recording of ultrasonic wave displacements can be
illustrated by considering a traveling flexural wave in a plate7. The displacement normal to the

plate surface of a wave from an oscillating point excitation force F., for wavelengths larger than

the plate thickness, is given bys ~(~, t) = Re(igO [H; (k.p) – H1 (ik.P)]e – ‘(@St+”)) where

jo= ‘0 k==; and H;(x) is the Hankel function of order zero representing a wave
S@& ‘ .

Eh3
traveling outward from the origin. D - is the bending stiffness of the plate, o = p~h

12(1–s2)

the mass density per unit area, p. = the mass density, s = Poisson’s ratio, E = Young’s

modulus and h = the plate thickness. The 2-dimensional spatial Fourier transform yields poles at

FO

[

1
the propagation wavevector k: - 1~as‘P(q)==(q2–k:)(q2+k:) “

OPTICAL LOCK-IN TRAVELING WAVE DETECTION

The method by which the optical lock-in process demodulates the phase informaticm can be
illustrated by considering the four-wave mixing detection process. The Hankel function can be
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i(x-z)
written as Hi(x) = ho (x) e 4 to configure the optical phase shift of the signal beam as

4zg(p,t) = 4Z
@~ig(~,t) = ~ —&Olk(kap)lsin(@st + P. - kap + $- ma), where

a

i@a = -~aP(l+i). Using the relation
lh(ka@le - %(kap) -hO(ikap)e

4Zg0 , the optical signal beam amplitude becomesand @~igo = —
a

in(a~t+~~–kap~a ) where ~

As (r, t)= A~o e
i(~~.~~.-z~) ‘=~

Z Jn (~.igo)e s =7+7s,
n=-

~si~()=@si~()lWap)landvisthelaseroptical frequency. The reference beam is similarly phase

modulated by an electro-optic modulator (EOM) according to C$re~= C$re~osin(ort + pr).

dsigo, &-~~0 are the magnitudes, OS, ~co are the modulation frequencies and ~, Fjrare the standoff

distances and qs, pr are the modulation phases imposed by the specimen (signal) and the electro-

optic modulator (reference), respectively.
Interference inside the crystal produces a spatially and temporally modulated intensity pattern

with I? = is – ~r the grating wavevector and Z = is” ~ – ~r” ?r accounting for path length

differences between the two beams. The interference intensity distribution within the crystal
generates a corresponding space charge electric field distribution. The dynamic behavior of this
field is controlled by the charge carrier mobility and trapping that produces, in the diffusive

dE~C + E~C iEq 2AS . A;
operation regime, a single relaxation time response given by — — —

dt z = ~ 10 ‘where

T, the material response time and E~, are controlled by properties of the photorefractive material

and the fringe spacing. In the above configuration, the photorefractive crystal acts as a mixing and
low pass filtering element providing the benefits of lock-in detection. Therefore the space charge
field responds to slowly varying phase modulations occurring within the material response time
allowing only the terms around the difference frequency Q z S 1 to be important, assuming

Q<< (D~,r. With Q=cor-cos, @ =qr–ps, tan(~n) =nL2~, and ~(p) =(kap–~+@a), the

resultant space charge field becomes E~c (?, t) = EqMf(~sigo (p), ~(p); t)sin(l?” 7 + Z), with

[

‘O (3refO)J0 (dsigO (P)) +

f(3sigO(P),20); ~)= Cos(flt + @ – ~(p) – yl ) +

1

where Jn is the
2J1 (~refO)Jl (~sigo (P))

m ““”

Bessel function of the first kind.
The space-charge field modulates the local refractive index through the linear electro-optic

effect. This effect creates a diffraction grating within the crystal that contains the low frequency
phase information desired. The magnitude of the index of refraction grating produced is



~;r41 EScrq = where no is the average refractive index of the medium, r41 is the effective,
2’

orientation-dependent electro-optic coefficient. The diffraction efficiency of the grating is

determined by the wave coupling constant (E
4

mzl L
~Mf(3~igo ,x; t) where L is the

aces e = 2

znz~r41Eq
interaction length, 17=

Acoso
is the quadrature phase grating two-wave mixing coupling

constant, 1 is the source wavelength, and 20 is the angle between the mixing waves.
In the four-wave mixing arrangement, the reference beam that passes through the crystal is

reflected back into the crystal and diffracts from the photoinduced grating retracing the signal
beam path. In the undepleted pump approximation, the diffracted (conjugate) beam intensity is

given by 14=13e –O!Lfcose sin ~ 2 ~where 13 is the back-propagated reference beam intensity and

u’ is the material absorption coefficient. The refractive index modulation amplitude generated
by the mixing process is generally small, so that ~ <e 1, and sin(()= (. The first time

varying or AC term in the intensity of the diffracted beam is given by

tan(~) = f2~. This result shows that the magnitude and phase of the traveling wave have been

placed into the arguments of the Bessel functions for the magnitude and as the phase of a low
frequency AC signal. The resultant measured intensity, for small traveling wave displacement, is

8~igo
IAC cc —

4?&p,f2t + 0)
COS(SX+ @ –~(p) – y) = z?= @ - ~(~z) + ~. The imaging

2 2’
approach provides a measure of both the traveling wave amplitude and phase for small amplitudes

4&p,t)
relative to the optical wavelength, ( << 1). The maximum detectable signal amplitude

a
occurs at a phase shift of about one radian, corresponding to a traveling wave amplitude of about
45 nm for a probe wavelength of 532 nm.

OPTICAL LOCK-IN IMAGING

Since optical interference and the photorefractive effect occur throughout the photorefractive
crystal, lock-in detection of the vibration over many points on the surface of the plate can be
performed simultaneously. The volume character of the photorefractive process creates a grating
distribution that locally records the phase modulation measured from each point of the specimen
surface as long as the surface is accurately represented within the photorefractive crystal. The
output beam intensity can then be measured by a CCD camera. Each pixel records the local
intensity from a point on the specimen producing an output proportional to that point’s
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Figure 2: Calculated (left) and Measured (right) Traveling Wave Displacements and Mamitude
of the 2-D FFT for the Nickel Plate at 30.0 &z. -

displacement. Even a diffusely reflecting surface can be measured if the surface is adequately
imaged inside the photorefractive crystal by suitable optics.

Figure 2 shows an image of a traveling flexural wave in a 0.125 mm thick nickel plate at 30

kHz with E = 204 GPa, s = 0.31, pm = 8.9 g/cm3 . The expected circular wavefronts due to the

isotropic microstructure of the nickel plate are clearly defined and the ultrasonic displacement
phase is readily distinguishable. The figure shows single frame image data. The entire pattern
can be made to change its phase continuously at the frequency, Q, from about 1–30 Hz, so that
the appearance is that of waves emanating from the center and traveling outward. This is
physically equivalent to the actual traveling wave motion except that viewing of the wave has
been slowed to a much smaller observation frequency that is held constant and independent of
the actual wave frequency. The photorefractive process yields a true picture of the actual wave
vertical displacement motion and requires no additional processing for the images of Figure 2.

The magnitude of the Fourier transform of the traveling wave displacement shows real poles
at the wavevector for the traveling wave and imaginary poles of the same magnitude that
contribute to satisfy the boundary conditions. Therefore, the Fourier transform image of the
traveling wave displacement image is a single ring at the wavevector delineating the propagating
mode. Figure 2 shows images of the calculations and measurements of the traveling wave
displacements. Also shown are images of the magnitudes of the Fourier transforms. A strong
response is seen as a ring at the propagating wavevector that can be immediately measured to
quantitatively show the elastic constants and the isotropic character of the plate. This analysis
procedure provides considerable information about the plate in one simple image.

ANISOTROPIC MATERIAL MEASUREMENTS

If the specimen is elastically anisotropic, then the wave speed varies with the propagation
direction. Figure 3 shows this type of behavior for traveling waves in a sheet of copy paper. The
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Figure 3: (left) INEEL Camera Image of Ultrasonic Waves In Paper, (right) Magnitude
of the Fourier Transform of the Camera Image and Calculational Result (dashed lines).

paper sheet had its fibers aligned approximately along the vertical direction. The highly oblong
wavefront pattern shows the anisotropy immediately. Modeling calculation of the elastic wave
anisotropy for all planar angles has been performed from independent measurements of the
elastic constant matrix for this paper material. Comparison with the image data provides direct
measurement of the crystallographic axes orientation present in the material. Very goocl
agreement between the calculations and the measurements can be seen at all directions in figure 3
and at all frequencies as shown in figure 4. Coupled with detailed modeling of this type, the
INEEL Luser Ultrasonic Camera approach provides the an important step for developing a
means of determining arbitrary orientations of anisotropic materials from wave images using data
from all planar directions simultaneously.

CONCLUSIONS

An imaging optical lock-in traveling wave measurement method has been described. Direct
two-dimensional surface images of the traveling wave were obtained by expanding the collection
optics and imaging the output beam from the photorefractive material. These images showed the
ultrasonic wavelength and wavefront shape in all planar directions and provided a quantitative
method for obtaining the elastic stiffness of sheet materials, as illustrated for an isotropic nickel
plate and an anisotropic sheet of paper. The method is capable of flat frequency response over a
wide range above the reciprocal of the photorefractive time constant and is applicable to imaging

the ultrasonic motion of surfaces with rough, diffusely reflecting finishes. Coupled with detailed
modeling of anisotropic elastic properties of materials, imaging provides a powerful technique
for microstructure measurement and analysis.
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DUCTILE/BRITTLE LAYERED MATERIAL SYSTEMS
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Boulder, Colorado 80309

ABSTIL4CT

We attempt to provide a mechanistic understanding of the cracking
phenomena in brittle/ductile layered materials under axial and transverse
mechanical loading, and an ultrasonic framework within which to characterize
their mechanical properties and integrity. The former consists of models and
measurements of cracking in a brittle layer sandwiched between two ductile
layers subjected to axial tension and transverse compression. The latter consists
of measurement models that can be applied inversely when coupled with
ultrasonic measurements to determine mechanical properties of both individual
layers and the layered system as a whole.

INTRODUCTION

Considerable effort is currently being directed toward the development of long-length high-
TCsuperconducting cables. Regardless of the actual materials or fabrication technologies, the
cables are composites consisting of a brittle superconductor phase and a ductile metal phase.
While in theory high-TC superconductors have the potential to generate extremely large magnetic
fields due to their high upper critical field, in practice the electromechanical response of the
conductor to large Lorentz forces dictates the magnetic field limits. Layered superconducting
cables are often wound in magnets and in such a configuration the layered structure is subjected
to thermomechanical loading that arises from at least three sources: i) fabrication where the tape
is wound under a pretension into a cylindrical shape; ii) thermal expansion mismatch between
the layers; and iii) magnetic fields. The latter lead to tensile hoop and compressive transverse
stresses on the conductor. The design of superconducting magnets requires a solid understanding
of the role of these stresses on electromechanical failure of the superconductor. In high-TC
materials, the electromechanical failure mechanism appears to be transverse cracking that occurs
in the brittle superconducting layer (Ekin, 1992; Salib and Vipulanandan, 1997). This. results in
an irreversible dependence of critical currentifield on stress/strain; an example is shown in Fig.
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la (fi-om Ekin et al., 1992). More recently, critical current degradation has been observed under
transverse loading (Ekin, 1998).

Fig. 1 (a) Critical current vs. applied axial strain foraBi(2212)/Ag superconducting tape, and (b) microstructure of
the conductor showing the development of transverse crack arrays (horn Ekin et al., 1992).

There exists an extensive body of literature concerned with cracking in layered material
systems and a complete review is far beyond the scope of this work. Comprehensive reviews of
the subject are given by Hutchinson and Suo (1991) and Evans and Hutchinson (1995). The
mechanistic understanding of layer cracking now seems to exist, and is well-articulated by
Hutchinson and Suo (1991). The failure mode of interest here has been referred to as crack
tunneling or channeling (or crazing in the case of filmhubstrate systems), and the concept of a
steady-state energy release rate for crack channeling has emerged as an important and powerful
approach to describe the phenomena (Ho and Sue, 1991; Beuth, 1992). The basic idea is to
focus attention on the final cracked state (a crack that has filly channeled across the brittle layer)
and not on the details of the complicated initiation phenomena. Complete details of the steady-
state cracking concept are given by Hutchinson and Suo (1991) and references therein.
Motivated by the success of this concept to explain many problems regarding crack channeling,
we obtain steady-state cracking solutions for cracks in a sandwich layer subjected to transverse
compression.

The characterization of the mechanical behavior of such layered systems presents a
significant challenge. Ultrasonic nondestructive evaluation (NDE) techniques have found wide
use for quantitative characterization of mechanical properties and for detection of cracks and
delamination in layered plates. Their use, however, requires a clear understanding of wave
propagation in anisotropic and layered plates. In this paper, we focus on guided waves in a plate
with superconducting layers. Investigation of in-situ mechanical behavior and properties of thin
superconducting layers has been limited. The properties are highly dependent on the
manufacturing processes, internal and external stress fields, interface properties, porosity, and
the extent of possible cracking in the brittle layers. In order to model these different effects
accurately, it is necessary to understand the basic problem of guided wave propagation in a three-
layered thin plate where the brittle layers are on either the outside or inside. Since the
superconductor layer can be quite thin compared to the overall thickness of the plate, a model
study is presented here for this particular case and exact and approximate solutions are presented.
To approximate the thin layer we expand the fields in the (small) thickness and obtain
approximations by truncation of the infinite series. This approach has been taken by Bovik
(1994, 1996) for isotropic materials. Here we extend the approach of Bovik to anisotropic
coatings for the three-dimensional case.



ULTIL4SONIC CHAJWCTER.IZATION OF LAYERED SYSTEMS

Wave propagation in a layered plate with orthotropic layers having a common symmetry axis
perpendicular to the layers has been studied by Karunasena et al. (199 1). Guided waves in a
layered plate with layers of different anisotropic properties have also received some attention.
This problem is important for ultrasonic characterization of layered bonded plates when the
interface (interphase) bond (adhesive) properties are significantly different than the adjacent
layers. In a recent paper, Shun et al. (1994) considered ultrasonic wave propagation in a layered
plate with alternative layers of aluminum and adhesive formed by aramid fiber reinforced epoxy.
Experimental observations and theoretical model results were presented. Plates having varying
number of layers were considered. Here we present a theoretical analysis of ultrasonic wave
propagation in a plate with anisotropic layers. The theoretical development is presented in a
general form, followed by numerical results for the case of a three-layered plate. We present a
combined stiffness and analytical method to calculate the guided wave modes in a layered
anisotropic plate.

I /,

t a
1

F@re 2. Geometry of the layered plate: XJis normal to the layering, xl is the wave propagation direction.

We consider time harmonic elastic waves in an infinite plate (Fig. 2) composed of perfectly
bonded layers with distinct elastic properties and thickness. The two faces of the plate X3= -H
and X3= H are traction free. In the stiffness method, each layer is divided into several sublayers
so that the total number of sublayers through the thickness 2H is N. Let ui denote the
displacement components in the xi directions. Consider the ith sublayer bounded by X3= Zi and
Zi+ 1. Within the ith sublayer we approximate the displacement components through the
thickness as

(1)

(2)

In Eqs. (1)-(2), the generalized displacements Ub, urn, and Uf are taken at the back (bottom),

middle, and the front (top) nodal surfaces of the sublayer. The interpolation polynomi als Ni are

quadratic functions of position. Using Hamilton’s principle, the governing equation fi>r the

entire plate can be expressed as:

- [K, ]{Q}” + [K2]{Q}’ + [K~]{Q) + [M]{Q} = {F} (3)

where {Q} and {F} are vectors representing the nodal displacements and tractions applied at the
interfaces of the plate. The matrices [Kl], [K3], and [M] are symmetric, whereas [K2] is
antisymmetric. Applying the Fourier transform to equation (3) with respect to x1 (the
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propagation direction) and assuming that the field variables have harmonic time dependence of

the form exp(-jo)t), we obtain

{F} = (k’[KI]+j/k[K’] +[K3]-CN[A’4]){Q} (4)

Setting {F}= {O}yields a homogeneous system of equations describing the propagation of
guided waves in the plate. For a nontrivial solution, the determinant of the resulting coefficient
matrix must vanish. This condition yields the discretized form of the dispersion equation for
guided waves propagating in the xl-direction and can be solved for the eigenvalue cofor a given

wavenumber k or for the eigenvalue k when m is fixed. The stiffhess method just described is
applicable to generally anisotropic layers. For the special case of transverse isotropy, the
dispersion equation can be derived in closed form. This is summarized in Datta et al. (1999).

When the outer layer thickness, h, is small compared to the inner layer, a simplified
approximate solution can be obtained. We describe the method and results briefly here, but refer
Niklassonetal.(1999) for complete details. We consider a thin anisotropic coating at

– h <X3 <0 on a substrate at X3 >0. We assume that the thickness of the coating is small

compared to the wavelengths and expand the traction through the thickness of the coating as

where i3j = i3/ axj and below al = i?/ at as well. By using the equations of motion in the

coating, the boundary conditions at X3= –h, and the interface conditions at XJ = O, we arrive at

the effective boundary condition

6+ IZ(AC6+AUU)=O(kz), XJ=0, (6)

where 6 is the traction vector on the substrate and u the displacement vector. The components
of A. and Au are differential operators and are fimctions of the elastic constants and density of
the coating. We truncate the effective boundary conditions after the linear term in h and use this
approximation to derive an analytical expression for the dispersion relation in a coated plate. The
plate consists of an isotropic core and two identical anisotropic coating layers. The approximate
dispersion relation is obtained from the application of the equations

a,,,o,,g= Pafuj, –a<x3ca,

u j,,, = l~jn,anu,, + fl(an,uj + ajun, ),

67 11(A=6+ Auu) = O, X3 = *a,

with the solution on the form

i(kr,-(et)
‘j(x]>xz>xs,~)=vj(~s)e .



Since the equations of motion above are for an isotropic plate, the solution is straightfcmvard.
The result is an analytical expression for the dispersion relation since there is no need 10 compute
quantities associated with the anisotropic coating. To illustrate the behavior of guided waves in
the plate, we show exact and approximate dispersion curves for a plate consisting of silver and
BSCCO (Bi-2212) layers. The thickness of the silver core is 100 pm and the thickness of each
BSCCO coating layer is 5 pm. The material properties of BSCCO are taken from Boekholt et
al. (199 1). Fig. 3a shows the exact dispersion curves for the layered plate and for a plate made
of silver only (100 ~m thick). The difference between the dispersion curves is significant, except
for the lowest modes. A comparison between the approximate dispersion curves and the exact
ones for the coated plate is shown in Fig. 3b. We find excellent agreement between the curves
except for the highest modes. In Fig. 3c, we show a feature due to the anisotropic coal ings. If
the propagation direction is not in a plane of elastic symmetry, all waves will couple in the plate
(except symmetric and antisymmetric modes). The figure shows a magnification of the exact
dispersion curves for the layered plate. The coupling is clearly seen in the figure for the angles
@= 45° and @= 75° since the curves cannot cross. When @= 90° the anti-plane waves will

decouple from the in-plane ones due to the material symmetry and the curves will cross.
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Figure 3 (a) Exact dispersion curves for a coated BSCCO/Ag/BSCCO plate and for an uncoated Ag plate; (b) Exact
vs. approximate dispersion curves for the BSCCO}Ag/BSCCO plate; and (c) Magnification of the exact
dispersion curves for the BSCCO/Ag/BSCCO plate.

MECHANICAL BEHAVIOR OF BRITTLE/DUCTILE LAYERED SYSTEMS UNDER
TWSVERSE COMPRESSION

We consider a brittle layer, that deforms only elastically, symmetrically sandwiched between
two ductile layers that can undergo elastic-plastic deformations. The brittle layer cent ains a
tunnel crack extending form –a < X3z a and infinitely extended in the xl direction. We consider
two types of loading: (i) transverse compression and (ii) axial extension; the latter has been
studied extensively (see Hutchinson and Sue, 1991) so here we focus on the former. in the
transverse loadcase a load is applied in a fi-ictionless manner perpendicular to the layering. The
effects of friction will be considered elsewhere. Here we take both materials to be isotropic and
thus the elastic mismatch is characterized by the two well-known Dundurs (1969) parameters a

and P. Here we carry out all calculations with ~ = a/4. We model the plastic deformation
using the Ramberg-Osgood constitutive relation and we compute the energy release rate of the
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channel crack using the finite element method. The analysis procedure is similar to that used by
Beuth and Klingbeil (1996) to analyze the problem of a cracked film on an infinite substrate;
complete calculation details are discussed elsewhere (Sesselmann et al., 1999).

We first discuss the nature of the stress state in the layered structure when subjected to
transverse compression. In this case compressive stresses are developed in the X3direction, but
this is accompanied by lateral expansion (in the x1 and x2 directions) due to the Poisson effect.
Due to the elastic mismatch between the layered materials, stresses develop in the xl and x2
directions. When the materials deform elastically, the stresses in the brittle layer can be tensile
or compressive, depending on the elastic mismatch. When the metal deforms plastically, though,
the stresses will be tensile in the brittle layer and thus serve as a driver for transverse cracking.
This is significant becausethe alloys typically used have very low yield strengths; for example,
Salib andVipulanandan(1997) report a yield strength of only 10 MPa for pure Ag used in
Ag/BSCCO tapes. In general, the biaxial stress in the brittle layer crl is a fimction of the elastic

mismatch (a, ~), the thickness ratio (hl/hz), and the plastic properties of the ductile phase (oY,n).
Figure 4a shows the development of the stresses in the brittle layer as a fimction of the applied

transverse stress for different elastic mismatch (a only as we set ~ = cc/4) and thickness ratios
while Fig. 4b shows the effect of the hardening parameter, n. The results for elastic and elastic-
perfect plastic deformations are well-described by an analytical solution that is not discussed
here. An important result of these calculations is that the applied transverse stress required to
develop a certain tensile stress in the brittle layer increases substantially as the yield stress of the
ductile layer increases. Complete results can be found in Sesselmann et al. (1999).
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Fig. 4 Influence of elastic mismatch, (a) thickness ratio, and (b) the hardening parameter on the axial stress in the
thin layer due to an applied transverse load; (c) comparison of the normalized (by the stress in the brittle
layer) energy release rates for transverse and axial loading for different yield stresses of the substrate.

In Fig. 4C we show the normalized energy release rate for tunnel cracking as a function of the
applied transverse stress for hl/h2 = 1/20, cx= -0.5, and various values of yield properties. The
present accuracy in these results after yielding is not certain because we did not model the near-
tip behavior in detail, but the qualitative trends are thought to be correct. The energy release rate
increases linearly with the applied stress, in accordance with linear elasticity, until yielding
occurs at which point, g increases dramatically with increasing ~T and then reaches an
approximate asymptote, the value depending on the elastic mismatch, thickness ratio, and yield
properties. The asymptotic g results when the ductile material has filly yielded. For n = 100,
the full yielding of the ductile layer occurs rapidly after ~T reaches OY,but development is not as
abrupt as n decreases. Of course in the absence of yielding, g never reaches an asymptote as it
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increases linearly with ~T. These results show that increasing Gywill reduce the susceptibility of
the layered material to tunnel cracking.

When the materials undergo only elastic deformations, the energy release rate depends only

on the stress in the brittle layer, and not how it is generated as seen by the agreement of the solid

and dashed lines in Fig. 4c. This is significant because it allows one to calculate the stress

developed when subjected to transverse loading and then simply use the large volume of results

that exist in the literature for axial loading to compute the energy release rate. When yielding

occurs, though, the results for the axial and transverse load cases depart, and rather significantly.

In fact, for a given stress in the brittle layer, the energy release rate for transverse loading

exceeds that for axial loading. Thus, while the axial loading results, in terms of the stress in the

brittle layer, are not strictly applicable to transverse loading (as they are in the elastic case) once

yielding occurs, they can not even serve as conservative estimates. The difference between the
axial and transverse loadings is attributed to the fact that once yielding initiates, it develops faster

(as the applied load is increased) for transverse loading than for axial loading.

We have extended the analysis for the single crack to the case when multiple cracking occurs
in the brittle layer. Under conditions of small-scale yielding the approach is to compute, in the
same manner as for the single crack, the energy release rate when the distance between cracks is
finite (as opposed to the infinite extent in the previous section). For extensive yielding we
resorted to a shear-lag analysis. We computed the normalized energy release rate as a function
of crack spacing for various applied stresses for theAg/Bi-2212 system and applied these results
to measured results in the literature for a Ag/Bi-2212 tape superconductor system (Salib et al.,
1997). From their measured stress-strain curve and micrographs of the cracked superconductor
(from which we computed the crack density) we used our analysis inversely to infer the fracture
toughness of the Bi-2212 superconductor. We find a toughness of 1.2 – 1.8 M.Pa m“2. This
agrees favorably with limited data reported for Bi-2223 (Rouessac and Gomina, 1998).

k
-f,,,,,,

d
(b)

Figure 5 Crack patterns for (a) bending (stress in ceramic at failure = 129 MPa); and (b) transverse loading (applied
stress at failure = 40 MPa) in ceramiclepoxy specimens. The lines in (a) are superimposed to highlight
crack locations, as is the drawing in (b).

Finally, we are carrying out experiments on model ductile/brittle layered systems in order to

both guide and validate our modeling efforts. Specifically we have fabricated epoxy/ceramic

layered systems and have performed mechanical tests with axial tension, flexure, and transverse

compression loadings. Specimens with the ceramic layer offset from the centerline were used in

the flexural experiments to induce tensile stresses in the brittle layer. Representative cracking

patterns for the flexural and tensile specimens are similar and are shown in Fig. 5a. For the

transverse loading, representative cracking patterns are shown in Fig. 5b. We are in the process
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of analyzing these results, carrying out tests under transverse compression biased by axial
tension, and making ultrasonic measurements to attempt to quanti~ the crack density.
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MICROMECHANICS OF MATERIALS

WITH CRACKS AND PORES OF DIVERSE SHAPES

Mark Kachanov
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AESTRACT

Some basic aspects of micromechanics of solids with multiple microcracks
and cavities are analyzed. Two groups of properties are addressed:

1. Effective elastic properties. We emphasize mixtures of defects of diverse
shapes (pores+cracks, etc.) relevant for real materials. Effective elastic moduli of
solids with various orientational distributions of cavities are obtained in a unified
way. For non-random orientations, the overall anisotropy is found.

2. Likely microfracturing patterns in materials with interacting cavities and

cracks and dependence of these patterns on the defect shapes.

INTRODUCTION

The effective properties of solids with cavities strongly depend on the cavity shapes. The first
problem that arises in this connection is the choice of proper parameters of defect density. We
call the density parameters “proper” if the effective properties can be expressed in their terms
uniquely and in a unified (with respect to all orientational distributions) way. Such parameters
are shape-dependent and their choice is not obvious. For example, porosity - relative volume of
pores - becomes inadequate as a density parameter, if pores are non-spherical. The choice of
proper density parameters is actually dictated by the structure of the elastic potential.

Our analysis utilizes recent results of [3] briefly reviewed below.
We start with the general relation for a representative volume element V of a linear elastic

solid containing AI traction free defects (cracks or cavities) with surfaces F v. The ccmventional
starting point for the analysis is the representation of the macroscopic strain& associated with V
under the applied macroscopic stress o in the form
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(7=s0:E+AE (1)

The first term is the strain due to deformation of the matrix ( S0 is the compliance tensor of the

matrix material) and the second term is due to defects. Finding the effective compliance Sti~l

(such that 8=S :0 ) is thus reduced to finding As in terms of c.

As follows from the divergence theorem, the extra strain AE due to one cavity is given by
the integral over the cavity boundary F:

A&
1=— J(
2V~

un -?-nu)dF (2)

where u is the displacement vector and n is the unit normal to F. In the 2-D case, volume V
changes to a representative area A and cavity surfaces - to hole lines.

In the important case of a crack, this term reduces to

(2a)

where [u] = u+ – u - is the displacement discontinuity vector across the crack surface F. In the

case of aflat crack (n is constant along F )

.I

A&=-#bn+nb)F (2b)

where b = ([u} is the average over F displacement discontinuity vector.

Due to linear elasticity of the solid, AE is a linear function of the applied stress o:

A& =H : a or, in components Asti = Htikl CYkl (3)

where the fourth rank tensor H (possessing the usual symmetries H~kl = Hjikl=H;fk=Hkl~)
is the cavity compliance tensor. Finding H requires calculation of the integral (2) in terms of the
applied stress. This has been done for a number of 2-D hole shapes (elliptical, polygonal,
rectangular and hypotrohoidal) and for 3-D ellipsoids [1-3]

In the case of many cavities, we shall first consider the approximation of non-interacting
defects: each cavity is placed into the externally applied stress d (does not experience any
influence of neighbors) and A& -contributions of individual cavities are summed up. This
approximation is important because (A) it is rigorous at small defect densities and (B) it
constitutes the basic building block for most of the existing approximate schemes (that place
non-interacting defects into some sort of “effective” environment).

We illustrate the basic ideas of our analysis on the example of 2-D elliptical holes.
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NONINTERACTING ELLIPTICAL HOLES

For an elliptical hole having axes 2a, 2b with unit normals n, m , correspondingly,

H=> [a(2a +b)nnnn +b(2b + a)mmmm
AEO

(4)

1+ ~ (a + b)2 (mn + nm)(mn + rim)– ab(mmnn + nnmm)

The first two terms characterize the normal compliance of the hole in the n, m - directions, the

third term - the shear compliance and the fourth term - the Possson’s ratio effect.
The elastic potential in terms of stresses (complementary energy density) of a scllid with a

cavity can be represented as a sum of two terms:

~(~)= (1/2k : S(CT)= (1/2~ :SO :C + (1/2)0 :H:cT =fo + Af (5)

where f. is the potential in the absence of the cavity (in the case of the isotropic 2-D matrix,

fo= (1/zE~)~1+v~~MY.CT‘V~ (trCT)2 ] where E~,v~ are Young’s modulus and Poisson’s ratio

E;, v~ for plane strain and E./(1 –v~2 ) vi /(1 –v~ ) for plane stress) and Af is due to the

cavity. With (4), Af assumes the form that reflects the hole geometry:

(6)

The first term in the braces is expressed in terms of stress invariants, and thus describes the
isotropic response; it enters with the ellipse’s area z ab as a multiplier. It vanishes in the case of

a crack. The second term is orientation-dependent; it vanishes for a circular hole.
For many nonineracting holes, each hole is placed into the externally applied stress a. The

strain due to holes As= ~H ‘~): o, so that Af is a sum of terms of the (6)-type:

Thus, the potential is expressed in terms of two hole density parameters:

scalar (porosity) p = ~~(ab)(k)

2nd rank hole density tensor ~ = ~~ (a2mz + b2mm
(k)

)

(7)

(8)

We emphasize that the density parameters - porosity p and tensor ~ - are not introduced

arbitrarily, but are dictated by the structure of the elastic potential. Note that all elliptical shapes

(eccentricities b/a ) are covered in a unified way and no degeneracies arise for cracks. Mixtures

of diverse holes (for example, circles+cracks) are also covered.
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The representation (7) yields interesting (and not intuitively obvious) conclusions. Since the
elastic anisotropy is determined by the 2-rid rank tensor @ which is symmetric (as a sum of
symmetric tensors), a solid with any orientational distribution of ellipses is orthotropic.
Moreover, the orthotropy is of a simplified type: (A) Young’s modulus variation with direction is
described by an ellipse, rather than by a 4-th order curve, and (B) the number of independent
constants is reduced from four, as in the general case of 2-D orthotropy, to three (the shear
modulus is expressed in terms of Young’s moduli and Poisson’s ratios, see 103).

Effective elastic moduli Sti~l for any orientational distribution of ellipses follow from the

potential (since d~/~oti = &ti = SU~lCT~l). In the principal axes Xlxz of j? , the effective Young’s

moduli, Poisson’s ratios and the shear modulus are

(lo)

Even in the simplest case of randomly oriented holes (isotropy), porosity alone is not a
sufficient density parameter. Indeed, in this case the effective Young’s and bulk moduli are

E=
E.

;K =
KO

l+3p+q 1+ (2P+ ~)/(1-vo)

where an (additional to porosity p ) “eccentricity” parameter emerges:

q =tr~ –2p= (z/A)~(a –b)(~)2

(11)

(12)

If this shape factor is ignored (holes are treated as circular), then porosity, as inferred from the
data on the effective moduli, may be substantially overestimated. For example, porosity

estimated from the bulk modulus K/KO would be exaggerated by a factor of 1+ q/2p.

SOLIDS WITH INTERACTING HOLES

Interacting holes are usually considered in the framework of approximate schemes. A number
of such schemes has been proposed. Their predictions differ from each other, with the magnitude
of the differences dependent upon the cavity shapes [3].

Discussions of adequacy of these schemes is meaningful only if the statistics of mutual
positions of defects is specified. We restrict the discussion to the case of random mutual
positions (otherwise, the effective properties will depend on the particular spatial pattern, as
illustrated by the periodic arrays, where the results depend on the lattice parameters).

The existing approximate schemes can be classified, roughly, into two groups (with the
exception of the virial construction techniques, where several calculations of the term quadratic
in defect density have been made):

(A) Effective matrix schemes (self-consistent, generalized self-consistent, differential);
(B) Effective field schemes (in particular, Mori-Tanaka’s scheme, MTS).



Both A- and B-methods reduce the analysis to non-interacting defects that are placed into
some sort of effective environment: effective matrix (in the A-methods) or effective stress field
(in the B-methods). The B-methods appear to be more physically sound, particularly in the
context of stress superpositions. Indeed, representing the problem with N interacting defects as
a superposition of N problems with one defect each, we describe the interaction effects by the
additional, interaction tractions induced at the site of k -th cavity by (in the k -th subproblem) by
the other cavities in the remaining sub-problems. In MTS, these additional tractions are taken as

induced by the average over the solid phase stress o S. This seems reasonable in the case of
random mutual positions of defects.

For a solid with traction free cavities, the average over the solid phase OS is found in terms
of the applied (macroscopic) stress c and porosity by using the divergence theorem:

CTij
q = —

l–p
(13)

Thus, placing a representative hole into o’ yields the potential Af = (1/2)0: A& in MTS

approximation, by replacing o ~ (1- p)–l o in the hole compliance relation AE:=H :0 as

follows:

11
Af = ~Af~O~ijlt = —— {p~tra.a-(tra)2 ]+2a.o: @ - pi)] (14)

l–p l–p 2E0

For cracks, p = O and MTS coincides with the non-interaction approximation, implying that the

competing interaction effects of stress shielding and amplification, on average, balance each
other. This is related to the fact that the presence of cracks does not change the average stress in

the matrix (provided the boundary conditions are in tractions): o S= o.
In the case of randomly oriented elliptical holes, the effective moduli are

EO KO
E= ;K= (15)

1+ (3p+ q)(l - p)-l 1+ (1- p)-l (2p +q)/(1-v~)

where the factor (1- p)–l accounts for interactions.

We consider now a mixture of interacting circular holes and cracks. In this case,

~ ‘~~~les + ~c,ack = PI + pa where ~ is the crack density tensor and

{[ p 4tr0. 0 – tr~Af = ~AfllO~ilzt = ~ _ ( )1 2p
2 +—

l–p
O“o:a

2E0 l–p l–p 1 (16)

The first term in the braces depends on p and is independent of the crack density tensor a; the

second term contains both a and p. This shows that, since cracks do not raise the average

stress in the solid, as far as the effective properties are concerned, they produce no impact on
holes, whereas holes enhance the impact of cracks on the efiective moduli (by changing the
average stress environment for cracks). Thus, in the problem of effective properties, cracks do
not affect holes, but holes affect cracks.

94



If cracks in such a mixture are randomly oriented, a = (p/2)1 where p = tra= ~a(k)2 is

the usual scalar crack density, so that ~ = p(l + p/2)1 and

E=
E.

K=
K.

1+ (3p +Zp)(l- p)-l 1+ (1- p)-l (2p +zp)/(1-vJ
(17)

For the mixture of parallel cracks (normal to the xl axis) and circles, et= pelel. Young’s

modulus in the direction normal to cracks and the ratio El /E2 (the degree of anisotropy)

El =
E. El l+3p(l-p)-1

l+(3p+2zp)(l-p)-l ; E2 = l+(3p+2zp)(l-p)-l
(18)

An interesting issue for the mixtures cracks+pores is whether the anisotropy due to
preferential crack orientations is enhanced of weakened by the “background” porosity p. The

anisotropy is affected by p through two competing mechanisms: (A) in the absence of

interactions, porosity reduces the anisotropy; (B) interactions between pores and cracks enhance
the impact of cracks; in particular, they enhance the anisotropy. The result (18) shows that

~(E1/E2 )/ilp >0, i.e., the first mechanism is dominant: porosity weakens the crack-induced

anisotropy.

LARGE HOLE-SMALL HOLE INTERACTION

When fracture of porous materials is considered, an important question is whether the highest
tensile hoop stress occurs at a smaller hole (“microhole”) or at a larger one. The answer depends
on the shapes of holes. In particular, in the two limiting cases - circular holes and cracks - the
answers are opposite. Indeed, for a single circular hole, the maximum hoop stress under remote
tension p is 3p: the concentration factor of 3 is independent of the hole size. Consider now the

system “large circular hole - small circular hole”. Since the impact of a larger hole on a smaller
one is stronger than vice versa, the highest concentration factor is expected at the boundary of the
smaller hole. This implies that, as the critical load is reached, it is the smaller hole that will
fracture and “advance” towards the larger one.

In the system “large crack - small crack”, collinear arrangement, the opposite is true:

K1 ( B ) > KI ( A ). This implies that, at the critical load, fracture starts at the larger crack. This

result is explained by the fact that, for an isolated crack of length 21 under remote tension p,

K] = p~zl i.e. is higher for a larger crack; this factor is dominant, as compared to the impact of

interaction.
These two extreme cases indicate that, for interacting elliptical holes, the pattern is not

obvious and will depend on eccentricities of the holes and spacings between them.
If both holes have the same eccentricity k= b / a <1, the highest hoop stress will occur at the

smaller hole boundary. Indeed, the stress concentration factor for a single isolated hole 1+2\ A
is the same at both holes. Due to a stronger “amplifying” impact of a larger hole on the smaller
one than vice versa, it is the smaller hole where the highest hoop stress occurs. A similar
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conclusion will, obviously, hold for the system “larger hole with larger 1 - smaller hole with
smaller 1”.

A less obvious and more interesting case is the configuration “larger hole with smaller 1 -
smaller hole with larger A.”. The point of the highest hoop stress is then determined by the
competition of two mechanisms: (A) in the absence of interaction, the hole with smaller
eccentricity has a higher stress concentration and (B) larger hole produces a stronger impact on
the smaller one than vice versa. We investigated this case numerically using the “stress feedback”
procedure (alternating technique) [4].

Fig. 1 shows the eccentricity 1. of a larger hole interacting with a small circular hole for
which the situation is “neutral”: the stress concentration is the same at both holes. (The major
axis a of the larger hole remains equal to 3 diameters of the smaller hole while its minor axis b
is varied.) Points lying below (above) the curve correspond to the highest hoop stress occurring
at the boundary of the larger (smaller) hole. At larger distances, the interaction weakens and even
a slight ellipticity of the larger hole (I close to 1) results in shifting of the point of the highest
stress from the smaller to the larger hole.

ii

0.9

).8 /

0.7 /
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Fig. 1: Parameters required for a “neutral” configuration.

MICROFRACTURING PATTERNS

Consider now the interaction of a larger hole with a number of smaller ones. This
configuration may be relevant for a porous medium microstructure. In the first approximation,
the interaction between small holes can be ignored, as compared to the “large hole - small hole”
interactions. Then, the results obtained above can be utilized. Assuming that fracturing starts at
the point of the highest tensile hoop stress, Fig. 2 shows the likely microfracturing patterns.

For a crack interacting with micropores, fracture initiates at the crack tip (Fig. 2a).
If the shape of the larger hole is close to circular, the micropores (and microcracks) will

advance towards the larger hole, independently of their shapes (Fig. 2b).
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For a strongly elongated hole (small 1) interacting with more or less circular microholes, the
pattern of fracture initiation will depend on the spacing between the holes. If the distances
between the large hole and the microholes are small, then the smaller holes will fracture first and,
presumably, will crack towards larger hole (Fig. 2c). At larger distances (solid with smaller
density of micropores), the pattern shifts to the opposite one: the interaction effect is weak and
fracture initiates at the larger holes (Fig. 2d).

0
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0$”
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Fig.2:Likely microfracturing patterns.

ACKNOWLEDGMENTS

This research was supported by the DOE and NSF through grants to Tufts University.

REFERENCES

1. M. KACHANOV. Elastic solids with many cracks and related problems. In: Advances in
Applied Mechanics (J.W. Hutchinson 8ZT.Y. Wu Eds.), 259-445, Academic Press (1993).

2. I. TSUKROV and M. KACHANOV., Solids with holes of irregular shapes: effective moduli
and anisotropy. International Journal of Fracture, 64, R9-R12 (1993).

3. M. KACHANOV, I. TSUKROV and B. SHAFIRO, Effective moduli of solids with cavities
of various shapes, Applied Mechanics Reviews, 47, S151 -S 174 (1994).

4. I. TSUKROV. and M. KACHANOV, Stress-concentrations and microfracturing patterns for
interacting elliptical holes, International Journal of Fracture, 89, R89-R92 (1994).



AN INVESTIGATION OF DYNAMIC CRACK INITIATION IN DUCTILE STEELS USING
HIGH SPEED INFRARED THERMOGRAPHY

A.J. Rosakis, G. Ravichandran and P.R. Guduru

Graduate Aeronautical Laboratories
California Institute of Technology

Pasadena, CA 91125

ABSTRACT

The goal of the work presented here is to study dynamic crack initiation in
ductile steels (Ni-Cr steel and 304 stainless steel) at different loading rates and to
establish appropriate dynamic failure criteria. A variety of infrared and visible
optical methods and high-speed photography are used in this study. Precracked

steel specimens are subjected to dynamic three-point bend loading by impacting

them in a drop weight tower. During the dynamic deformation and fracture

initiation process the time history of the transient temperature in the vicinity of

the crack tip is recorded experimentally using a high-speed infrared detector. The

dynamic temperature trace in conjunction with the HRR solution is usecl to
determine the time history of the dynamic J-integral, ~(t), and to establish the
dynamic fracture initiation toughness, ~0 The measurements made using hi.gh-
speed thermography are validated through comparison with determination of .~(t)
by dynamic optical measurements of the crack tip opening displacement (CTOD).

1. INTRODUCTION

To aid in the design and vulnerability analysis of impact loaded structures and energy
systems (e.g., pressure vessels, pipelines and reactors), it is necessary to quantify the mechanical
behavior and failure modes of materials used in such systems under carefully controlled
conditions. Because of design constraints and safety issues, these energy systems are typically
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fabricated with corrosion resistant and highly ductile metallic alloys such as stainless and Ni-Cr
steels. Yet, relatively little is known regarding dynamic crack initiation and growth in such
ductile metals. A major stumbling block in this area is the measurement of relevant fracture
parameters, such as the J-integral, under a combination of large scale yielding conditions and
dynamic loading. Considerable effort has been made towards the analytical and computational
characterization of fracture parameters in highly ductile metals [1-4]. Recently, several
researchers have presented detailed analyses of ductile fracture using higher order expansions of
the deformation fields within the plastic zone [5-7].

To date relatively little experimental work has been done on determining fracture

parameters, such as ~(t), for ductile fracture under dynamic loading conditions. The only direct

measurements of the dynamic value of the J-integral, ~(t), have been made using the optical

technique of caustics in conjunction with high-speed photography [8]. However, even this

approach employs a procedure using calibration of J versus the caustic diameter, D, under quasi-

static loading conditions and then extends the same to dynamic loading conditions. Hence, this

technique is limited to rate-insensitive materials and requires calibration for all combinations of

specimen material and specimen geometry.

The current study introduces a technique for measurement of temperature variation in the

vicinity of the dynamically loaded crack tip using a hi h speed infrared detector to determine the

time history of the dynamic value of the J-integral, J (t). The dynamic temperature trace is also
employed to establish the dynamic fracture initiation toughness, ~(tc) = ~t, where tC is the time

of fracture initiation. The measurements made using high-speed thermography are validated

through comparison with determination of f(t) by dynamic optical measurements of the crack

tip opening displacement (CTOD).

2.EXPERIMENTAL SETUP

In this investigation high-speed infrared measurements of temperature and optical
measurements of crack tip opening displacements were employed to study dynamic crack

initiation in precracked ductile steel specimens. In the former, the temperature increase ahead of

the crack tip during dynamic deformation is measured and is related to the dynamic J integral. In

the latter, the dynamic J integral is estimated by relating it to the measured crack opening

displacement history.

2.1Specimen Configuration, Loading Arrangement and Material Properties

The experiments employed edge cracked specimens in a three point bend configuration.

The specimens were fabricated out of 2.3 Ni- 1.3 Cr steel (will be referred to as Ni-Cr steel here

onwards, O.17C, 0.3Mn, O.13CU, 0.22Si, 0,25Mo) and 304 stainless steel (0.024C, 1.77Mn,

0.28CU, 0.33Si, 8.16Ni, 18.33Cr, 0.35M0, O.lCO). The relevant material properties for these two

steels are listed in Table 1. Ni-Cr steel is strain-rate sensitive, with about 15% increase in yield

stress at a strain rate of 1000/s compared to that at 0.001/s. On the other hand, 304 stainless steel

is relatively rate insensitive and does not exhibit any appreciable change in yield properties for

the same change in strain rate. Dimensions for the edge-cracked specimen are shown in Figure 1.

An initial crack length of 30 mm was machined using electric discharge machining (EDM) that

resulted in a notch 0.25 mm wide. The test specimens were dynamically loaded in a 3-point bend



configuration by subjecting them to impact in a Dynatup 8 lOOA drop weight tower. A tup mass

of 200kg and an impact velocity of 5 rnh were employed for all the experiments conducted. The

dynamic deformation and fracture initiation process were monitored using high-speed infrared

measurement of temperature and optical measurement of crack tip opening displacements.

Details of the two experimental techniques are presented in the following sections.

2.2 Infrared Temperature Measurements

In this first series of experiments high-speed infrared diagnostics were introduced to

study dynamic crack initiation for the first time in precracked ductile steel specimens impact

loaded in a three point bend configuration. As the specimen was loaded, a high speed HgCdTe

infrared detector was employed to record the evolution of the temperature trace at a pre-

determined location from the crack tip, as shown in Figure 2. A Newtonian optical arrangement

Table 1

Material properties for Ni-Cr steel and 304 stainless steel

Properties Ni-Cr 304 Stainless

Young’s Modulus, E (GPa) 205 193

Density, p (kg/m3) 7910 7900

Specific Heat, CP(J/Kg-K) 460 500

Yield Stress, O. (MPa) (.E = 10-3 s-’ ) 750 510

Hardening Exponent, n (E = 10-3 s-’ ) 8 7

is employed to collect the radiation

and focus it onto the detector. The

location of the area of interest on the

specimen, which is essentially the area

of temperature measurement, is

situated well within the plastic zone

that engulfs the dynamically loaded

crack tip, as shown in Figure 2(b). If

this temperature measurement is made

at an appropriate location within the

fracture process zone surrounding the

dynamically loaded crack tip then, as

it will be shown later, the history of

the temperature trace can be directly

related to the evolution of the dynamic

1

Impact

~qoa.s” d

Thickness = 10 mm

Precrack Length= 30 mm Notch Width= 0.25mm

Figure 1. Schematic of three-point bend impact

Loading of a precracked steel specimen
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value of the ~-integral, f(t).

2.3 Optical Measurements of the Crack Tip Opening Displacement (CTOD)

In order to corroborate and evaluate the accuracy and applicability of the infrared

temperature measurement technique to determine f(t), optical measurements of the crack tip

~ Specimen

Plane Mirror

*

IR Detector

Collecting W

Crack Tip

Plastic Zone

9

,,
Temperature

measurement area

II Notch

(b)

Figure 2. Measurement of temperature

variation in the vicinity of the dynamically

loaded crack tip, (a) top view of specimen and

(b) location of temperature measurement area

Impact Loading

&
Pulsed laser

R

Steel Specimen

Imaging Lens

High Speed Camera

2X106frames/second

Figure 3. Optical measurement of crack tip
opening displacement (CTOD) using high-
speed photography.
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opening displacement (CTOD) were
performed to measure the time history of
the dynamic value of the J-integral, f(t).
The optical arrangement for the CTOD
measurement employs a cavity dumped
pulsed laser as the illumination source
and a high-speed camera as the imaging
system. A collimated laser beam is
incident on the steel specimen, passes
through the crack opening and is imaged
on to the film track of a rotating mirror
type high-speed camera (2 million
frames/second). A schematic
arrangement of the setup is shown in
figure 3. The crack tip opening
displacement is later measured directly
from the recorded crack opening profiles.

3. ANALYSIS PROCEDURE

The temperature measurements
made in the vicinity of the dynamically
loaded crack tip and the optical
measurements of the crack tip opening
displacement were analyzed to determine
the time history of the dynamic value of
the J-integral, f(t). The analysis
procedure involves the application of an
appropriate asymptotic field that
describes the crack tip stresses in an
elastic-plastic material. The details of the
analysis procedure are discussed in the
following sections.

3.1 Temperature Rise Associated with
the HRR Singular Field

Hutchinson[l] and Rice
and Rosengren [2], collectively referred



to as HRR, considered the case of a monotonically loaded stationary crack in a material
described by a J2-deformation theory of plasticity and a power hardening relaticmship and
showed that the strain components in the crack tip region scale with the value of the l-integral.
This enables one to relate the J integral to temperature rise ahead of the crack tip. Consider an
elastic-plastic isotropic homogeneous material with constant thermal conductivity. The heat
conduction equation can be written as

kV2@–LX(32 + 2P)@O&&+ @ti&: = PC@ (1)

where, k is the thermal conductivity, @is the absolute temperature, a is the coefficient of thermal

expansion, A and P are Lame elastic constants, @ is the initial temperature, ~j ~d @j me the

Crwtesian components of the strain and stress tensors, p is the mass density, and c is the specific

heat. The quantity /? is the fraction of plastic work rate density, Wp = Cti 4;, dissipated as heat.

Neglecting the thermo-elastic term and assuming adiabatic conditions, equation (1) becomes

Substituting HRR field equations into equation (2) we have

H=ddit=f(r’e’”~~(t) = pcI~ n+l

(2)

(3)

On integrating equation (3) with respect to time, t, we obtain

()pdn n+ 1
Jd(t)=— — [@(r,d,t)-@o(r,e,to)]+ J: (to)

P n Zti (8,njEti (djn)
(4)

where J; (tO) is the value of the J-integral at time t= toand represents the integration constant.

Equation (6) relates the time history of the dynamic value of the J-integral, ~(t), to the dynamic
temperature rise in the vicinity of the crack tip.

3.2 Crack Tip Opening Displacement (CTOD) Associated with the HRR Singular Field

Using the 90° intercept definition for CTOD as used by Shih [9], the J integral can be
related to CTOD as

J= ‘0 J
dn (SO,n)

where, d is the CTOD, J is the value of the J-integral, co
dependent dimensionless constant.

(5)

is the yield stress and d,l is a material

4. EXPERIMENTAL OBSERVATIONS AND RESULTS

Typical variations of temperature measured in the vicinity of the crack tip for a
dynamically loaded Ni-Cr steel specimen are shown in Figure 4. Traces from two nominally
similar experiments are plotted. There are a few features in the temperature traces that merit
elucidation. At about 550 ps after impact the temperature detection area is completely engulfed
by the crack tip plastic zone and the transient temperature signal starts to increase steadily in a
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Figure 4. Time history of the temperature variation
in the vicinity of the dynamically loaded crack tip
for a precracked Ni-Cr steel specimen.

monotonic fashion. This increase
remains steady until about 1200-1300

ps when a dip occurs in the temperature
trace, which corresponds to fracture
initiation.

The transient temperature traces
were analyzed using equation (4) to
determine the evolution of the
instantaneous value of the J-integral,
~(t). Figure 6 shows typical results
from two experiments.

Infrared thermography was also
employed to study ductile failure of
edge-cracked 304 stainless steel
specimens subjected to three-point bend
impact loading. Figure (5) shows typical
variations of temperature measured in
the vicinity of the dynamically loaded

crack tip for a 304 stainless steel specimen. Traces from two nominally similar experiments are
plotted. Features similar to those observed for Ni-Cr steel can be observed in this case also.

As discussed earlier, optical measurements of the crack tip opening displacements were
made using a high-speed imaging system in order to validate the infrared thermography
measurements of ~(t). The dynamic value of the CTOD, i?(t), was using the 90° vertex intercept
definition, Thereafter, time history of the dynamic value of the J-integral, f(t), was determined
from the CTOD variation in accordance with equation (5). Figure 6 shows the time history of the
dynamic J-integral, y(t), as determined from measurements of the dynamic CTOD, t?(t). The
figure also shows the variation of ~(t) as determined from infrared measurements of
temperature. The excellent degree of correspondence between the two establishes the validity
and accuracy of the infrared thermography technique to determine .#(t).

10

$

~-6 ....~
ti .....

........
g

r,, ,,1, cc, l,, ,,1, ,,ol ,,, )1, ,111, .,, 1,1, ,l, ,, ,1,,.,

0 250 500 750 1000125015001750200022502500
Time After Impact, t, @s)

Figure 5. Time history of the dynamic temperature
variation in the vicinity of the dynamically loaded
crack tip for a pre-cracked 304 stainless steel specimen.

Table 2 lists
the values of fracture initiation
toughness, J(tc) = J., obtained for
quasi-static loading conditions and
for dynamic loading. Fracture
toughness values for both the steels
are listed. The rate of loading at the
time of fracture, t = tC, is quantified

in terms of the value of the rate of

change of the J-integral. As can be

seen from this data there is a

significant increase in the value of

the fracture toughness with

increasing rate of loading for NGCr

steel. No such significant rise is

observed for the 304 stainless steel.
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Figure 6. Time history of the dynamic value of the J-
integral as obtained from optical measurement of CTOD
and infrared temperature measurement (Ni-Cr steel)

Table 2

Fracture toughness as a function of loading rate for Ni-Cr steel and 304 stainless
steel

Ni-Cr Steel 304 Stainless Steel

10 kNm-]s-l 1080 IcNm-l 8 ~m-ls-l 1800 kNrn-l

2500 lchlm-ls-l 1750 IcNm-l 1300 IcNm-ls-l 1600 kNm-l

5.SUMMARY

This study focuses on the development of a non-contact experimental technique to
measure the history of the J integral for dynamically loaded cracks in ductile solids. This
technique utilizes infrared thermography for the first time to measure the temperature increase
ahead of the dynamically deforming crack, which is subsequently related to the J integral
through HRR singular fields. The accuracy of this method is verified through an independent
measurement of the dynamic J integral, where high-speed photography was used to measure the

crack tip opening displacement (CTOD).

104



ACKNOWLEDGEMENTS

The authors would like acknowledge the support of the Department of Energy under grant
no. DE-FG03-95 ER14560 (Dr R.E. Price, Program Manager).

REFERENCES

1. Hutchinson, J. W., Singular Behavior at the End of a Tensile Crack in a Hardening Material,
Journal of Mechanics and Physics of Solids, 16, 13 (1968).

2. Rice, J. R., and Rosengren, G. F., Plane Strain Deformation Near a Crack Tip in a Power-
Law-Hardening Material, Journal of the Mechanics and Physics of Solids, 16, 1 (1968).

3. Needleman, A., and Tvergaard, V., An Analysis of Ductile Rupture Modes at a Crack Tip,
Journal of the Mechanics and Physics of Solids, 35,151 (1987).

4. Narasimhan, R., and Rosakis, A. J., 3-Dimensional Effects Near a Crack Tip in a Ductile 3-
Point Bend Specimen. I. A Numerical Investigation, Journal of Applied Mechanics, 57,
607 (1990).

5. Sharma, S. M., and Aravas, N., Determination of Higher Order Terms in Asymptotic
Elastoplastic Crack Tip Solutions, Journal of the Mechanics and Physics of Solids, ~, 1043
(1991).

6. O’Dowd, N. P., and Shih, C. F., Family of Crack Tip Fields Characterized by a Triaxiality
Parameter. II. Fracture Applications, Journal of the Mechanics and Physics of Solids, 40,
939 (1992).

7. Yang, S., Chao, Y. J., and Sutton, M. A., Complete Theoretical Analysis for Higher Order
Asymptotic Terms and the HRR Zone at a Crack Tip for Mode I and Mode II Loading of a
Hardening Material, Acts Mechanica, ~, 79 (1993).

8. Rosakis, A. J., Zehnder, A. T., and Narasimhan, R., Caustics by Reflection and Their
Application to Elastic-Plastic and Dynamic Fracture Mechanics, Optical Engineering, n,
596 (1988).

9. Shih, C. F., Relationships Between the J-Integral and the Crack Tip Opening Displacement for
Stationary and Extending Cracks, Journal of the Mechanics and Physics of Solids, 29,305
(1981).



ORDER OF MAGNITUDESCALINGOF COMPLEX
ENGINEERINGPROBLEMS

Patricio F. Mendez and Thomas W. Eagar

Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT

This paper presents a methodology for obtaining order of magnitude estimations of complex

engineering problems which are described by differential equations. It is often found that mea-

surements and numerical treatment can be difficult in some of these problems. This might be

due to the lack of reliability of idealizations, or the inability of dimensional analysis to reduce the

number of arguments significantly. The methodology presented here overcomes these difficulties

by bridging the fields of dimensional analysis and asymptotic considerations. The differential

equations are transformed into a set of algebraic equations, which are much simpler to solve.

The results obtained are estimations of the characteristic values of the unknown funct ions. It is

not necessary to solve the differential equations in order to obtain the estimations; however, pre-

vious physical insight is necessary in order to perform the proper normalization and asymptotic

considerations. The classical boundary layer problem is studied as a representative example,

and it is shown that the estimations obtained are within a factor of 2 of the exact solution.

INTRODUCTION

Dimensional analysis and asymptotic considerations have been linked by some authors before.

Barenblatt [I] focused on the application of dimensional analysis to obtain exact asymptotic

solutions. Denn [2] introduces a scaling for pressure that depends on whether inertial or viscous

forces dominate. He also uses the concept of dominant balance described by Bender et al.[4].

Chen [3] is the first to describe some of the properties of the dimensionless functions and their

implications; however, he assumes that if the function and its arguments are normalized with

their scale, all the dimensionless derivatives are of the order of one. This last statement is not

generally valid and there are important cases for which it does not hold true. The order of

magnitude methodology presented here applies some of Chen)s concepts such as the emphasis

on the normalization of the functions and its derivatives. The normalization is based on the scale

of the unknown functions (velocity, temperature, etc.). The governing equations are normalized
with the dominant terms of the equations. In this work the dominant terms are cletermined
using a variation of the technique of dominant balance. One of the new concepts presented in

this research is the requisite of an upper bound for the second derivative (the dimensionless

second derivative must be of the order of one, and this implies the partition of the domain in

some cases). Another novel concept is the transformation of a system of differential equations
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into an algebraic system. This useful simplification is possible by assuring that the unknown

functions and derivatives are of the order of one, and their unknown scale is contained in a set

of estimations. Also, a number of sets is introduced so matrix algebra can be used to simplify

the calculation of the estimations.

Instead of having an abstract discussion, the order of magnitude scaling methodology is

presented through an example. This example is the viscous boundary layer, for which the

solution is known and can be used as a benchmark of the quality of the estimations obtained.

. EXAMPLE: ORDER OF MAGNITUDE SCALING OF THE

VISCOUS BOUNDARY LAYER

The objective is to obtain an estimation of the thickness and velocities in the viscous bound-

ary layer. It is assumed that the fluid is incompressible and isothermal, and no external pressure

gradients are applied.

Figure 1:

x L

Schematic of the viscous boundary layer and the domain for scaling

Governing Equations, Boundary Conditions, and Domain for Scaling

au w ~
ax+w =

The boundary conditions are: U(x > 0,0)= o,V(x > 0,0)=
V(–CQ,Y) = o,P(o,ca)= o.

(1)

(2)

(3)

o,U(–cqY) = Um,

There are two independent arguments: X and Y. The equations are defined for an infinite

domain over both independent arguments; however, a finite domain must be defined for the

scaling. An arbitrary finite length L is defined as the domain limit in the X-direction. The
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domain in the Y-direction will be limited by the characteristic thickness of the bounclary layer

(6). Because L is arbitrary, it is a known characteristic value, and belongs to the set {P} of

parameters that completely determine the problem. The thickness of the boundaqy layer is

unknown, and its estimation (6) belongs to the set {S} of estimations.

Sets of Parameters and Units

The set of parameters that completely determine the problem is obtained by inspect~.on of the

system of equations, its boundary conditions, and its domain, this way the complete set of

parameters for this problem is:

{P}T = {p, v, Um, L} (4)

A reasonable choice for the system of units is the S1. The set of reference units {R} is

obtained by expressing the units of each element of {P} in the S1 and inspecting the reference

units involved:

{l?}T = {m, kg, s} (5)

The matrix of dimensions [U]T for this problem is shown in Figure 2. Its rank is 3; therefore,

three dimensionally independent parameters constitute a set of reference parameters:

{Pk}T = {p, v, Um} (6)

K3!l
Figure 2: Matrix of dimensions [tJ]T for the viscous boundary layer. The submatrix on the left

has rank 3, indicating that there are three dimensionally independent parameters

Scaling Relationships, Characteristic
tions

Values and Order of Magnitude Estima-

Scaling Relationships for the Independent Arguments

The domain for scaling is the rectangle O ~ X ~ L, O < Y < d, where L is the characteristic

value for X, and d the characteristic value for Y. Because 6 is unknown, its estimation $ is used

for the scaling relationships for the independent arguments:

X=LX

Y=$y

Scaling Relationship for U(X, Y)

For laminar flow, the minimum value of U is O, and the

characteristic value for U. Previous physical insight in

108

(7)

(8)

maximum is Um, therefore UN is the

this case comes from the well known
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solutions by Blasius [5]. There are no sharp changes in the slope of U inside the domain,

therefore U(Z, y) and its first two derivatives are of the order of one. The scaling relationship

for U then is:

U(x,Y) = Umu(z,y) (9)

Scaling Relationship for V(X, Y)

The transverse velocity V is O at the plate and upstream. Previous physical insight indicates

that there are no sharp changes in the slope of V inside the domain, therefore V(Z, y) and its first

two derivatives are of the order of one. The characteristic value of V is Vc, which is unknown;

therefore, an estimation will be used in the scaling relationship.

V(X>Y) = %J(Z,y) (lo)

Scaling Relationship for P(X, Y)

The minimum value of P is O far from the plate, but its characteristic value PC is unknown. It

is estimated by Pc, and the scaling relationship is:

P(x,Y) = Pcp(z, y) (11)

Based on the scaling relationships defined above, the set of estimations {S} is:

{S}T= {$,PC,&} (12)

Dimensionless Governing Equations and Boundary Conditions

The original set of equations is normalized by using the scaling relationships and the dominant

terms. The dominant terms are determined using a variation of the technique of dominant

balance. In this work, a guess for a dominant term is verified by checking that all of the

dimensionless coefficients in the equations are lesser or equal to one. The normal formulation

for a dominant balance requires that the equations are simplified and solved. Equation 14

(conservation of momentum in the z-direction) was normalized with the viscous forces. This

viscous forces create pressures, which are the forces used to normalize equation 15 (conservation

of momentum in the y-direction). The expression of the coefficients Ni appears in matrix [A]
(Figure 3).

(13)

The boundary conditions are: U(Z >0, O) = O, V(Z >0, O) = O, u(–oa, y) = 1, V(–CO, Y) = 0,

p(o, co) = o.

,.

,.
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Dimensionless Groups of Known Order of Magnitude

The boundary layer is the region where the flow transitions from stagnant (at the wall) to
free flow (far from the wall). Close to the wall the viscous forces are dominant, and far from
the wall the inertial forces dominate. A practical and physically meaningful way to define the
boundary layer (used by Rivas and Ostrach [6]) is as the ‘(region where the viscous forces are of
the same order of magnitude as the inertial forces”. From this consideration, the group N3 can
be estimated as equal to one. The group IVl is also estimated as equal to one because it relates
two terms that ar of the order of magnitude of one. The group N4 will also be estimated as one,
indicating that the pressure scales with the viscous and inertial forces.

Complete Set of Dimensionless Groups

From Buckingham’s theorem it is known that this problem can be described completely by
just one non-dimensional group. The Reynolds number (Re = U@L/v) is arbitrarily chosen to

describe the problem.

Expression of the Estimations

Matrix algebra will be used to illustrate its application, although this problem is simple enough

as to be solved by simple inspection. The matrix [A] of dimensionless groups is shown in Figure 3.

P v Um Lf~c&
N1 [ -1 11-1 1

W_h
Figure 3: Matrix [A] for the viscous boundary layer. The internal lines divide the submatrices

[Aij]. The elements of the matrix are the exponents of the parameters in each dimensionless
group

The matrix of estimations [As] is shown in Figure 4. It is obtained by using the following

equation:

[As] = -[Al,] -’[All] (16)

The expression for the estimation of the boundary layer thickness is obtained from matrix [As]:

r
x= g (17)

w

Finally, the exact boundary layer thickness is J = $g(Re), where g(Re) is approximately equal

to one.
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Figure 4: Matrix [As] for the

Dimensionless Governing Equations and

the Reference Dimensionless Groups)

viscous boundary layer

Boundary Conditions (In Terms of

Even though an estimation of the characteristic value of the functions in the problem was already

obtained, rewriting the equations in terms of the reference dimensionless groups (in this case,

the Reynolds number) is useful as a check of consistency and for added physical insight.

(18)

(20)

The equations above are equivalent to their dimensional counterparts, no physical aspects

have been neglected or modified. The boundary layer is commonly studied at large Reynolds

numbers, because that is the case when it can be considered thin and independent of Re.

Inspecting the equations, it can be seen that at values of the Reynolds number larger than

one, all term are of the order of one. The term 8p/8y in equation 20 is very small (O(Re-l )),

indicating that the pressure gradient is approximately parallel to the z axis.

Comparison with Known Results

The expression of g(Re) can be obtained from the literature [5]. This expression depends on

the definition of boundary layer thickness used. The displacement thickness of the boundary

layer is an integral definition that can be compared to the definition used here, and at high

Reynolds numbers it is where the parallel velocity is 99% of that of the free flow. In this

case the dimensionless function would be g(Re) = 5. It is not difficult to try to improve the

order of magnitude estimations according to this definition. The thickness of the boundary

layer could be estimated as the region where the inertial forces are 100 times larger than the

viscous; this statement is translated into IV2 = 100, with an estimated boundary layer thickness

is $ = 10~=. In this last case, the dimensionless function is g(Re) = 0.5.

DISCUSSION

This technique expands the capabilities of dimensional analysis by incorporating information

from previous physical insight and the governing equations. For both standard dimensional
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Table 1: Comparison of estimated and exact thickness of the viscous boundary layer for different

definitions. It can be observed that the dimensionless function g(Re) is approximately equal to

one i a..LU.3GD.
=

Definition Estimation N2 6 $ g(R.e)

—

displacement inertial forces= 1 1.72~= J= 1.i’2

thickness viscous forces

99%UW inertial forces= 1 5~= ~a 5

viscous forces

99%um inertial forcess 100 5J- 1OJ- 0.5

100 x viscous forces

analysis and order of magnitude scaling, the unknowns are expressed in the form of a power

law multiplied by an unknown function of the governing dimensionless parameters; however, in

order of magnitude scaling that function is known to be approximately equal to one, while in

dimensional analysis that function is unknown, and can have any behavior or order of magnitude.

This methodology can be applied to non-linear equations such as Navier-Stokes. Its present

formulation, however, is limited to differential equations of second order or lower; the reason is

that it is difficult to assure that lower order derivatives are of the order of one when dealing with

higher order equations. Another limitation in the current formulation is that the equat ions must

be written in scalar form, excluding vectorial notation. The reason is that the same vector might

need to be assigned more than one scale (for example different scales in the X and Y directions).

The circular logic of the dominant balance technique limits the generality of this methodology

because not all of the dangerous cases can be identified beforehand. Special precauticms should

be taken when a dimensionless function can be of an order of magnitude smaller than one. In

this case, differential equations might be transformed into into algebraic inequalities, which are

difficult to analyze.

Problems for which many domain subdivisions are necessary (in order to reduce the magni-

tude of the second derivative) are beyond the scope of this methodology because they cannot

be simplified significantly. Unstable systems, such as those presenting capillary instability may

be of this type.

When using matrix algebra to implement this methodology the matrices involved are gener-

ally small, and the matrix operations relatively simple. The calculation process can be :performed

with commercial software tools.

CONCLUSIONS

Order of magnitude scaling is helpful to the engineer who needs to gain insight into a complex
problem but cannot afford to tackle the full solution of the governing equations. The estima-
tions can be obtained without solving the differential equations because the original system of
differential equations is transformed into a linear algebraic system. These estimaticms can be
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used to determine the relative importance of the different driving forces in the problem, thus

gaining deeper physical insight into it.

The estimations are related to the governing parameters through power laws, and the exact

value of the characteristic values is related to the estimations through an unknown function of

the governing dimensionless parameters. This function is approximately equal to one, and can

be considered as exactly equal to one for order of magnitude approximations.

The approximations obtained can be refined by further calculations or experiments. The

knowledge gained regarding what dimensionless groups can be neglected reduces significantly

the necessary number of experiments or calculations. The simple expression of the solutions

makes them suitable to be implemented in real-time control algorithms. When using matrix

algebra to implement this methodology the matrices involved are generally small, and the matrix

operations relatively simple. The calculation process can be performed with commercial software
tools.

The boundary layer example illustrates the practical implementation of this methodology,

and shows that the results obtained match satisfactorily the exact solution to the equations.

This work was supported by the United States Department of Energy, Office of Basic Energy

Sciences.
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LOW TEMPERATURE TIME DEPENDENT CRACKING

W. A. Van Der Sluys
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ABSTR4CT

This paper describes a project to investigate metallurgical and mechanical phenomena
associated with the occurrence of piping failures in fossil boilers due to time dependent
cracking. These failures occur in carbon steels piping at temperatures between 320C and
360C. Time dependent cracking failures of carbon steel piping in this temperature range
have been experienced in the fossil power industry for almost thirty years. The
information developed in this project will aid in the development of more comprehensive
materials specification that will eliminate the possibility for this type of failure in the
future.

INTRODUCTION

This paper describes a project to investigate metallurgical and mechanical phenomena assclciated with
the occurrence of piping failures in fossil boilers due to time dependent cracking. These failures occur in
carbon steels piping at temperatures between 320C and 360C. Time dependent cracking failures of
carbon steel piping in this temperature range have been experienced in the fossil power industry for
almost thirty years. Moreover, these failures can occur suddenly, creating a serious threat to human
safety and substantial monetary losses. Several worldwide research programs conducted to address this
problem have demonstrated that failures are proceeded by a creep crack growth mechanism. However,
recent field failures suggest that our understanding of the fundamental metallurgical and mechanical
parameters controlling this type of failure is still insufficient to eliminate the failures.

BACKGROUND

In the early 1970’s, time dependent cracking at the extrados of cold bent elbows resulted in
unexpected, catastrophic failures in the piping systems of a number of fossil power utilities arcmnd the
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world. Failures occurred within the plants of at least five U.S. utilities and it has been reported that

failures have occurred within at least twelve European utilitiesl. These failures typically caused

significant damage to the boiler facility.2 Most importantly, cracking often culminated in ‘blow-outs’ of
sections of the elbows, producing a serious threat to human safe~. A picture of one of these blown out
widows is presented in Fig. 1. -

. ... .,. .,. . . . .:
,, I. .

/. , .,’, .,,w*I<Fay.fir~gz7f<.n*,~v.,~h,~Gqk~?*,, ..., ,
-- ~-. ”.. ,+ -:,

Fig. 1 Picture of failed elbow

were independently performed within the U.S. and

This paper describes a project to investigate
metallurgical and mechanical phenomena associated
with the occurrence of piping failures in fossil boilers
due to time dependent cracking. These failures occur
in carbon steels piping at temperatures between 320°c
and 360”C. Time dependent cracking failures of
carbon steel piping in this temperature range have
been experienced in the fossil power industry for
almost thirty years

Significant resources have been dedicated to
characterizing the problem and defining economic
means for eliminating this problem. Investigations

Europe, but there was no common resolution to this
problem. However, the studies in Europe did reveal a number of distinct features that were common to

most failures3: (1.) Cracking failures occurred in cold-formed material manufactured fi-om common
grades of boiler pipe, i.e. SA106 Grade C and SA21O Grade C. (2.) The operating temperature of the
failed components was in the range of 300C to 420C. (3.) Failures usually occurred before 10,000 hours
of operation, but several were noted at times up to 100,000 hours of operation. Usually the longer lives
were attributed to straight pipe sections while the shorted lives were entirely elbows. (4.) Cracking
always occurred at the extrados of the bends. (5.) Cracking was typically associated with the presence of
small surface defects that were within the limits of the inspection criteria - i.e., laps, seams, hammer
marks, gouges, etc. (6.) Stable cracking occurred by an intragranular mode before transitioning to a
transgranular mode during final fracture.

Most of the failures, which have occurred in the United States, occurred in the early 1970’s. In the
U.S. steps were taken in the mid 1970’s to limit the stress on the elbows, eliminate defects, and to
improve the uniformity of the steels used to fabricate the elbows. This appeared to have eliminated the
problems. In Europe failures continued and a large research project was performed in Europe that
identified the failure mechanisms identified below. In Europe most of the failures have been eliminated
by reducing the stress, eliminating the defects and eliminating the high fi-ee nitrogen in the steel. The
elimination of elbows with high free nitrogen in the steel is quit costly. Free nitrogen is very hard to
measure in the field and if high free nitrogen is detected the only fix is to replace the elbow.

More recently, it has been reported that Indian boiler tube failures account for a power generator loss
on 3100 MW Which is equivalent of an annual power generator on one 500 MW Unit at a 70°/0 power
loading. During 8 occasions riser tube failures resulted in forced shut down of the power grid. Their
study showed the mechanism to be creep crack growth. Temporary fixes reflecting European research
studies were stress relief, improved NDE, and control of the free nitrogen.

In the U.S. there were two failures in the early 1990’s. These failures were slightly different from the
others. The elbows had high residual and tramp element contents. The steel used to fabricate these
elbows had been manufactured in Europe and although the steel met the U.S. Code requirements for this



grade of steel the failed elbows contained much higher levels of residual and tramp elements than is
typically found in steel manufactured in the U.S. These recent failures raises the concerns that a better
understanding of the physical metallurgical and mechanical aspects of these failures is needed. In
addition these recent failures raise concerns about the adequacy of U.S. Code material specifications
when the materials are manufactured overseas and the manufacturing practices are substantially different
from those in the U.S.

Mechanisms
Research on this issue demonstrated that metallurgical conditions which produce good creep rupture

strength in carbon-manganese piping steels typically produce poor creep crack growth resistance5>69798.
The cause is believed to be related to the relative strength of the matrix and grain boundaries in the
temperature range of 300C to 420C. When a crack is introduced into a material, the high strain fields
ahead of the crack tip cannot be easily accommodated, if the material matrix has high creep strength. As
a result, weakening of the grain boundaries by any mechanism can produce cavitation and cracking along
the boundaries. This material model agrees well with the observation that these ~es of failures occur
only over a limited temperature range. At lower temperatures, creep mechanisms on the grain boundaries
are not operable so cracking does not occur. At higher temperatures, the strength of the matrix is
sufficiently reduced to allow accommodation of the crack tip strains. This is also consistent wiih the small
numbers of failures for the large numbers of carbon steel cold bent elbows that are in service. ;Failures
appear to require both a matrix strengthing and a grain boundary weakening mechanism to exist at the
service temperature.

There are a variety of phenomena that can contribute to either strengthening of the matrix or
weakening of grain boundaries. For example, free nitrogen, residual alloying elements and austenitizing
temperatures can strongly impact the matrix strength. Tramp element levels, grain size, and urlfavorable
distributions of microstructural phases can each influence the propensity for grain boundary cracking and
decohesion to occur. These parameters comprise the primary metallurgical factors that will impact the

creep crack growth resistance of a C-Mn steel. However, according to Gooch et al.g, there are a number
of engineering factors that will also have an impact on the probability for failure, such as the constraint of
the material at a crack tip. It has been observed that constraint influences the materials resistance to creep
crack growth (i.e., specimen geometry, specimen size, crack depth, etc.). All of the parameters cited
above must be considered when evaluating the propensity for cracking in the field when using laboratory
data.

A considerable amount of research has been performed on this topic. Still, the amount of creep crack

growth data on these materials is limited7. Consequently, a number of unresolved issues remain that
demonstrate that a more fundamental understanding of the problem must be obtained before steps can be
taken to eliminate this problem from the field.

It has been demonstrated on a limited basis that creep crack growth rate test data can be used. to

reasonably predict the life of low carbon steel elbowsg. However, the data from conventional, deeply
cracked (a/W>O.4) compact specimens produce results that under-predict the observed failure lives of
carbon steel elbows, sometimes by as much as a factor of 10. Deeply notched specimens can produce
highly conservative creep crack growth rate data due to the high crack tip constraint associated with the
deep notch. This has a direct influence on the damage mechanism and therefore, will influence the crack
tip parameter C*, which characterizes the creep crack growth behavior. In fact, some tests using deeply
notched specimens have shown that creep crack growth rates can be better correlated to the linear elastic
stress intensity factor, K1. Using the crack growth rate/ K1 correlations to predict remaining life in the

field produces overly conservative life estimates.
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It appears that this relates to whether a material is behaving in a creep-brittle of creep-ductile manor.
Creep-ductile materials where the creep rate displacement is large compared to the total displacement rate
while creep-brittle materials the creep rate displacement is small compared to the total displacement rates.
There is little work on the effect of constraint on the creep-brittle versus creep-ductile behavior. However,
the state of stress present in laboratory specimens typically used to study creep crack failures is not
representative of the stresses that will exist in the field, at least in the early stages of crack growth. This
issue will impact the measured creep crack growth rates and may influence the creep-ductile versus creep-
brittle behavior of the specimen.

Failure of the pipe elbows in the field has typically been related to the existence of shallow defects on
the pipe extrados that passed inspection at the beginning of service. The flaws range from seams or laps
fi-omthe pipe manufacturing process to relatively blunt gouges or hammer marks. Studies of field
failures indicate that the stresses on the pipe extrados are sufficiently high that any type of measurable
flaw produces enough stress concentration to initiate creep crack growth early in the life of the elbow.

ASTM E 1457-98 recommend uses of the compact (CT) specimen under constant load for determine
creep crack growth for both creep-ductile and creep-brittle materials. However, it is suggested that
constant displacement or displacement rate testing maybe more suitable for creep-brittle materials. It is
also through that the single edge cracked specimen in tension with a shallow flaw will best simulate the
cold bent pipe constraint. For this reason the shallow cracked single edge notched under displacement
control is being used in this program.

Additionally, recent progress on theoretically quantifying in-plane constraint for creep crack growth
under widespread creep conditions using the Q stress parameter will be incorporated into an existing
computer code developed by B&W. Predictions of actual failed lives will be made using laboratory crack
growth rate measurements in the more realistic constraint model. The predictions will be compared to
actual field lives to assess the effectiveness of accounting for crack tip constraint. B&W feels that this
approach is most promising because damage models for fracture of the process zone based on both the
ductility exhaustion model and stress rupture model will predict a variation of crack growth with
constraint (as measured by the parameter Q).

DESCRIPTION OF CURRENT PROJECT
The work cited in the above Background, has demonstrated that classical creep is operative in C-Mn

piping steels (as well as low alloy steels) in the temperature range of 3200F to 3600F; which was

previously thought to be too low for creep to occur4~6~8. Moreover, widespread creep damage such as
that observed in rupture tests is not responsible for the time dependent cracking failures of C-Mn steels
observed in the field. The generally accepted mechanism for these failures is believed to be related to a
critical combination of creep strength of the metal matrix, decohesion strength of the grain boundaries,
and level of constraint at the crack tip. When the critical combination occurs, high levels of crack tip
constraint inhibit creep relaxation of the large strains ahead of a crack tip and these crack tip strains
encourage separation along prior austenite grain boundaries.

Although a failure mechanism has been defined for the pipe elbow failures, a ilmdamental
understanding of the critical metallurgical/mechanical factors required to produce field failures has not
been completely determined. Thus, the purpose of this project is to conduct experimental studies of
common grades of piping steels that are designed to elucidate the metallurgical phenomena that contribute
to time dependent cracking failures. The expected result of this project is to define mechanical and
metallurgical conditions associated with creep crack growth in these types of steels. This information will

117



.- —

be evaluated with respect to steel-making practices, forming operations, heat treating and field conditions
to determine the most effective method for eliminating the cracking problems in the field.

The project is being performed in several phases, with each phase building on the results ofprevious
phases. Descriptions of each phase are provided below.

Selection and Baseline Characterization of Test Material
The rate of occurrence of field failures indicates that a critical combination of conditions must exist in

a pipe bend for time dependent cracking to occur. Supporting this, previous experimental work has

shown that different heats of the same steel grade have different susceptibilities to this type of cracking5.
Considering that the manufacturing methods were similar between the heats studied in reference 5, and
the global properties such as microstructure and hardness were nearly identical, the difference is
postulated to lie in compositional differences between the heats - specifically in the free nitrogen, residual
alloying element and tramp elements. Thus, materials wee obtained which possess sufficient variations in
composition to allow testing of the relative impact of these elements on creep crack growth susceptibility.

Pipe samples ofSA106 Grade C and/or SA21 O Grade C from various sources. Sufficient materials
representing significant compositional variations were obtained for testing. The desired compositions are
shown in Table 1.

Table 1 Material Compositions

Si Killed Steels ( High nitrogen levels) AL Killed or Al treated Steels ( Low=’
levels)

Clean (1) Clean (3)

High residuals and tramp element content (2) 4High residuals and tramp element content 4

The following steps were followed to find samples of pipe with the compositions shown in Table. 1
1. Contacted all U.S. boiler manufactures looking for compositions desired and examples of faded pipe.
2.Performed a survey of B&W R&D archives looking for samples of failed pipe.
3. Searched the inventory of pipe available at B&W manufacturing sites.
4. Contacted Italian and Spanish boiler manufactures for samples of failed pipe.
5. Contacted the Project leader of the European program for failed samples.
6. Checked with tube vendor on available piping with desired compositions.

The results from this effort were that there were no offers of pipe fi-om other manufactures either in
the U.S. or overseas were received. An offer was received ilom the chairman of the European program of
4 samples of pipe material. Five candidate materials in R&D Division storage and four candidate
materials from B&W manufacturing sites. However, only one of these samples was from a pipe that had
failed in service.

Detailed chemical analyses were conducted on the nine candidate materials found at B&W. The
compositions of these nine materials and the four materials offered from Europe were then reviewed and
four materials were selected for the test matrix.

Table 2 contains the results of chemical analysis of the four heats of material. Of particular interest
are the two “dirty” heats of material. These two heats are of the most interest in the test program.
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Table 2 Composition of the test materials

Standard elements
Material c Mn s P Si Cr Ni Mo Cu N Al

w’?!o w’??o w%o W!o W%o W%o W%o W%o W’?!o W%o W%o

Heat M(l) 0.25 0.46 0.021 0.007 0.18 0.1 0.1 0.04 0.05 0.0055 0.011
Heat D (2) 0.26 0.68 0.01 0.008 0.24 0.15 0.11 0.02 0.22 0.011 0.004
A42425 (3) 0.18 1.05 0.007 0.006 0.23 0.05 0.02 0.02 0.01 0.0047 0.021
Heat 98541 (4) 0.19 0.75 0.007 0.006 0.33 0.04 0.06 0.02 0.16 0.006 0.024

Trace elements
Material CR Ni Mo Cu

w’?/0 W!o w%o \v’3/0
M 0.1 0.1 0.04 0.05

Heat D 0.15 0.11 0.02 0.22
A42425 0.05 0.02 0.02 0.05

Heat 98541 0.04 0.06 0.02 0.16
Tamp elements

Material P s Cu Sn Sb As
Wo!o Wo!o wYO w’3/o we/o w’-/o

Heat M 0.007 0.021 0.05 0.005 0.0018 0.007
Heat D 0.008 0.01 0.22 0.015 0.0037 0.015
A42425 0.006 0.007 0.05 0.001 0.006 0.0024
Heat 98541 0.006 0.007 0.16 0.014 0.003 0.0089

In order to cold work the material, it was originally planned to bend the pipe to the same degrees as
the field bends which failed. The amount of strain typical in the failed bends is from 20 to 25’%0strain. It
is impossible to strain this material in a uniaxial tension test to achieve a uniform strain of this amount.
The tension specimens will experience necking at strain levels of 15 to 16%. Not enough pipe could be
obtained of the materials of interest to use this method of cold work. Since only the exrados of the bend
receives the desired cold work strains, only a small portion of the pipe bend can be used. It was decided
to attempt to develop a tension specimen with enough biaxial constraint to achieve the desired strain
levels. Tension tests were conducted on one of the candidate heats. The stress strain curve was used in an
elastic plastic finite element model of a flat plate tension specimen in order to optimize the proportions of
the specimen. Three specimens were then machined. One specimen of the optimal proportions fi-om the
finite element analysis, one with a slightly longer gage length, and a third with an even longer gage length
were machined. These specimens were then loaded with a superimposed g-i-idpattern and the strain
distribution determined. The middle specimen of the three appeared to give an acceptable strain
distribution. Four tension or creep specimens or one creep crack growth specimen can be machined from
each of the cold worked specimen.

Material characterization matrix

Tension tests and primary creep test are being conducted on each of the 12 material conditions shown
in Table 3. Tension tests are being conducted at both room temperature and 340 C on these materials.
Primary creep rate testing will also be conducted at four stress levels and at 340 Con each of the 12
materials. The microstructure of the creep specimens will then be extensively studied to obtain
information on the effect of the applied stress and cold work on the matrix strengthening mechanisms in
the four materials. The composition of the grain boundaries will also be studied looking for indications of
grain boundary weakening mechanisms. Extensive use of electron optics will be made in this work.
SEM AUGER TEM and perhaps STEM will be employed in this study.



At this time the cold working of the more than 40 tension specimens is underway.

Table 3. Test materials for Tension and creep testing

Material I Material condition
Low Al /N, lowresiduals [ High cold work
Low Al /N, low residuals High cold work + SR
Low Al /N, low residuals High cold work + N

~High Al/N, low residuals I High cold work I

Low ALIN, high residuals AR
Low AL/N, high residuals Med. cold work
Low AL/N, high residuals High cold work
Low AL/N, high residuals High cold work + SR
Low AL/N, high residuals High cold work + N

High Al N, high residuals I High cold work
High Al N, high residuals I High cold work+ SR,
High Al N, high residuals [ High cold work+ N

Creep Crack Growth Matrix
Creep crack grow testing will be performed using a single end notch tension specimen under

displacement loading at 340C. Three specimens will be tested of each of the materials in Table 4. This
test procedure is under development. The equations for the calculation of C* are not included in the
ASTM test method for creep crack growth we are developing the needed equations.

Table 4 Test materials for creep crack growth testing

Material Material condition
Low Al /’N,low residuals High cold work
Low Al /N, low residuals High cold work -1-SR
Low Al /N, low residuals High cold work + N

High Al/N, low residuals High cold work

Low ALIN, high residuals AR
Low ALIN, high residuals Med. cold work
Low AL/N, high residuals High cold work
Low AL/N, high residuals I High cold work+ SR
Low AL/N. hixh residuals I Hizh cold work+ N

High Al N, high residuals I High cold work
High Al N, high residuals I High cold work+ SR I,
High Al N, high residuals I High cold work+ N

After the creep crack growth testing and the metallurgical analysis of the creep specimens “hasbeen
completed interrupted creep crack growth tests are planned on one of the test materials. Them aterial in
the plastic zone at the tip of these specimens will be extensively studied again using the tools of electron
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optics. In addition it will be attempted to fails some small specimens intergranularly in an auger electron
spectrometer so that the grain boundary composition can be determined.
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Abstract

Whh the development of CAD packages which can create complicated 3-D models and mesh them
with tetrahedral elements with relative ease, the application of finite element techniques in mechanical
design has reached unprecedented proportions. However, the extension of these techniques to fracture
mechanics studies is hindered by the unavailability of a general method to obtain fracture mechanics
singularity strength (J, KI, etc.) for tetrahedral meshes. An approach to obtain these parameters along a
3-D crack front using tetrahedral elements is presented here. The method is then validated on well-known
crack geometries using tetrahedral meshes generated from commercially-available CAD-FEA packages.

1 Introduction

The overall quality of mesh generators for tetrahedral elements has been consistently improving over the past

decade, and a number of CAD-FEA interfaces are now available, thus allowing construction of complicated

3-D models at the click of a button. However, currently-available finite element implementations of domain

integral or virtual crack extension methods for evaluating the variation of fracture mechanics singularity

strength (J, Kr, etc.) along a 3-D crack front require the use of brick elements in the neighborhood of

the crack. Unfortunately, the capabilities of mesh generators for brick elements remain in a comparatively

earl y stage of development [1]. In order to address this issue, we extended domain integra I techniques

to tetrahedral meshes. A “straightforward” implementation of the method proved quite unsatisfactory; the

estimated nodal J-values along the crack front depended strongly on the particular choice of the perturbation

field and were in poor agreement with analytical predictions. Refining the tetrahedral meshes and optimizing

element aspect ratios did not result in substantial improvements. These difficulties are tied to the inability

of the quadratic tetrahedral shape functions to describe accurately the gradients introduced by a node-based

representation of the perturbation fields.

In the approach proposed here, we have overcome the poor performance of the tetrahedral shape
functions while remaining within the framework of the finite element method. We selectively evaluated the
perturbation gradient at the integration points of the elements in the interior of the domain through direct
analytical differentiation of the globally-defined perturbation field, while we retained the shape function
representation of the perturbation gradient for elements on the boundary of the domain. The versatility of
finite elements in modeling crack combinations and free surface configurations was thus preserved. This
simple expedient has allowed us to improve dramatically the accuracy of the procedure, as demonstrated by
validation on a number of standard crack configurations.
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Figure 1: Three-dimensional formulation of the domain integral method. (a) Domain of integration. (b) Crack-front

perturbation pattern dl~(s).

2 Formulation and finite element implementation of the proposed method

A brief outline of the proposed method is presented here. A detailed formulation and the finite element
implementation of the method can be found in [2].

2.1 Domain integral method

The path-independent J-integral is a measure of the intensity of the singular crack-tip fields which can be
used to correlate the initiation of crack propagation. The J-integral also characterizes the energy release
for a virtual crack extension. For a virtual crack advance 61(s) in the plane of the crack and in the direction
normal to the crack-front, we can express, to within first-order terms,

/
J(spl(s)ds = –h-,

c
(1)

where s is the curvilinear coordinate along the crack-front C, ds is the elemental arc length along C’, and

–&r is the decrease in total potential energy of the body.
To develop the three-dimensional formulation of the domain integral method, we consider a three-

dimensional, simply-connected domain Q between surfaces So and S1, as shown in figure 1 (a). The
domain Q is bounded by the closed surface S formed by the surfaces So, S1, S+, S–, SR and SL, where S+
and S– are surfaces on the respective crack faces, and SR and SL are the respective ends of the cylindrical
domain. We now define a perturbation field q, in Q as q s Oon S1 U SR U SL ; q s Jl(s)n(s) on C and
q. m = Oon S+ U S-, where n is the in-plane normal at locations and m is the normal to the crack plane.
The domain integral expression for the energy release can be obtained using the q-field in !2 as

(2)

2.2 Finite element implementation

For a crack-front comprised of IV nodes, to obtain values of the J-integral at nodes along the crack-front, we

define IVJ = (IV+ 3)/4 perturbation patterns centered on every alternate comer node along the crack-front.

We extend the base of each perturbation pattern to span four adjacent crack-front element-edges, as shown

in figure 1 (b). This differs significantly from a “straightforward” implementation of the domain integral

method where the perturbations are based on quadratic shape functions for every node on the crack-front.

While no perturbation fields are centered at the mid-side nodes in our implementation, the mid-side nodes

are still used in order to obtain accurate deformation fields and to accurately define curved crack-fronts.

123



This expedient has led to a tremendous improvement in the accuracy of the computed J. For each of the NJ

perturbation patterns, {611(s), ... &K(s),.., &NJ (s)}, we can obtain NJ values of J along the crack-front

K” &K(s); QK }, we have a crack-front integral{Jl, ... JK, ... JNJ}. Forthe K-thperturbation pattern { q ,
expression for the energy release:

~TK = –

/
J(s)dlK(s)ds,

c

as well as the corresponding domain-integral expression:

(3)

(4)

Equation (4) is evaluated via element-by-element numerical quadrature overf2K. To evaluate ( 4), we divide

the domain QK into a core domain fiK, and a periphery domain, fi K. For elements within the core domain

bK, we evaluate the gradients of the qK-functions, at each integration point, analytically. For elements

within the periphery domain ~K, we evaluate 8qtK/8xj based on the value of the qK-field at the four
comer nodes, and use linear shape functions to interpolate qK, so that the resulting perturbation gradient

is constant over the element. This method overcomes undesirable effects linked to the inte~olation of the

perturbation gradient by the quadratic tetrahedral shape functions in a “straightforward” implementation,

and leads to a significant improvement in the accuracy of the results.

Equations (4) and ( 3) are equivalent representations of the energy release associated with the K-th
perturbation pattern. Equating the RHS of ( 4) and ( 3) for each pattern of perturbation, we obtain a system

of NJ equations in NJ unknowns J1,
[Af]{J,} = {&rK}. (5)

Solving the system of equations(5) gives the nodal values of the J-integral.

2.3 Elastic-plastic formulation

Many problems in crack plasticity are solved by considering the deformation as non-linear elastic through the

deformation theory of plasticity. However, in most cases for purposes of elastic-plastic fracture mechanics

computation, the incremental theory of plasticity and the deformation theory are equivalent. We can express

the energy density W, used in the definition of J as

where d~~jand d$j are the elastic and plastic parts of the total incremental strain d~ij respectively, We is
the elastic strain energy, and WP is the plastic dissipation. Hence, we obtain the volume integral expression

for the energy release for the elastic-plastic case from (2) as

(7)

To compute the J-values along the crack front, we use the finite element implementation of the domain

integral method exactly as described above. The crack-front integral expression remains the same as ( 3).

The volume integral expression for the energy release is now evaluated using ( 7). The evaluation of ( 7)

is similar in all respects to FE evaluation of ( 4), except that now both We and WP have to be read at the

integration points of the 3-D elements in the domain Q.
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3 Elastic analysis

The proposed method is validated on well-known crack geometries [4]. Solutions for three representative
crack-geometries are detailed here. Commercially-available packages ABAQUS/Pre and Pro/MESH were
used to create the meshes, and ABAQUSKtandard was used as the FE solver. Two tetrahedral meshes, a
regular mesh from ABAQUS/Pre and an irregular mesh from Pro/MESH, were created for each of the crack
geometries, and the method was validated on both the meshes. The tetrahedral mesh results were compared

to predictions obtained with brick meshes of comparable mesh density, using the domain integral option in

ABAQUS/Standard.

3.1 Semi-elliptical surface crack in a finite-thickness plate

Surface cracks are an important class of crack geometries which are crucial to life prediction in aircraft,

pressure vessels and other structures. Typically, surface cracks propagate sub-critically by fatigue, with

semi-elliptic or near-semi-elliptic crack fronts. A crack with a semi-elliptical front has varying local radius

of curvature along the crack front, thus representing a good test to assess the performance of the proposed

method on a general 3-D curvilinear crack-front in space. Hence, a planar semi-elliptical surface crack

is considered here to validate the accuracy of the method. A comparison of the relative user-time needed

to generate brick, regular and irregular tetrahedral meshes for this geometry is shown in table 1. For this

relatively simple 3-D crack configuration, a reduction factor between 15 and 20 is evident for automatic

tetrahedral meshing; the speed-up factor for more complex geometries can be much larger.

Newman and Raju [3] have obtained stress-intensity factors from detailed finite element models of

semi-elliptical surface cracks using a nodal force method. Here, a semi-elliptical surface crack with aspect

ratio a/c = 1/3 and maximum relative depth a/-t = 0.5 is considered for analysis. The crack is subjected to
uniform remote tension in Mode-I loading. Displaced meshes of the FEM models for the elliptical surface
crack are shown in figure 2. The stress intensity factor KI, at any point ~ along the semi-elliptical crack,

can be expressed as

KI = &
r

[(T:)] F(;, ;, ~), (8)

where F’ is the applied stress, a is the crack depth, #is the parametric angle of the ellipse, Q is the shape

factor of an ellipse and is given by the square of the complete elliptical integral of the second kind; for

(a/c) = 1/3, Q = 1.123. The value of the boundary correction factor F for the specific crack geometry

(a/c = 1/3 and a/t = 0.5) is obtained as a function of ~ from Raju and Newman [3]. Results from the FEM

models using brick elements, regular and irregular tetrahedral elements, along with the reported values of

Newman and Raju, are shown in figure 3, using (1 – v2).K~ = EJ. The maximum value of K1 occurs at

@= 7r/2, in agreement with Newman and Raju observations. The average value of the Kz-solution agreed

to within 2% of Newman and Raju’s findings (which have been reported to be accurate to 1 – 3% [3]), and

the oscillations were within 2% and 4% of the mean value for the regular and irregular tetrahedral meshes,

respectively.

4 Elastic-plasticanalysis

4.1 Edge-cracked model in plane strain

A straight through-thickness crack was considered in a body with characteristic dimensional ratios (a/13) =

0.5, (h/-B) = 3.0, and (a/w) = 0.5, as shown in figure 4. The model was constrained to plane strain

boundary conditions. The main aim of this elastic-plastic study was to note the accuracy of the method
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MESH USER MESH GENERATION TIME NUMBER OF NODES
Unstructured tetrahedral mesh 30 minutes 6352

(Pro/MESH)
Structured tetrahedral mesh 8 hours 4298

(ABAQUS/Pre)

Brick mesh 7.5 hours 4198
(ABAQUSIPre)

Table 1: Approximate total user mesh generation time and size of the problem for the semi-elliptical surface crack

in a finite thickness plate.

(a) (b) (c)

Figure z: Displaced meshes of the elliptical surface crack in a finite thickness plate. The models are subjected to

uniform remote tension. One-quarter of the plate is modeled. (a) Brick mesh. (b) Regular tetrahedral mesh obtained

from ABAQUS/F’re. (c) Irregular tetrahedral mesh obtained from Pro/Mesh.

Figure 3: Point-wise J-integral values for semi-elliptical surface crack in a finite thickness plate. The semi-elliptical

crack is subjected to uniform remote tension of magnitude&.
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in obtaining J-values under fully-plastic conditions. The analysis was performed on an elastic/perfectly-
plastic material model with Y/E = 0.0011, using the incremental theory of plasticity. The model was
loaded with a far-field uniform relative displacement A. One-half of the specimen geometry was modeled,
and second-order isoparametric (10-noded) tetrahedral elements were used to mesh this geometry with
quarter-point elements at the crack tip. A finer mesh was used near the crack to capture the steep crack-tip
gradients. The results were also compared with a 2-D plane strain analysis using 2-D 8-noded quadrilateral
plane strain elements with reduced integration (CPE8R) from ABAQUS/Standard. The 2-D mesh was also
focussed at the crack tip.

The half-specimen was loaded with afar-field displacement of A/2. For a rigid-plastic model in plane
strain, the limit load P~I~ from limit analysis is given by

PLI~ = ~(l? - a), (9)

where Y is the tensile yield strength of the material, a the crack length and 13, w are dimensions as shown

schematically in figure 4. From the formal definition of J as the energy difference and for a rigid-plastic

formulation, we have
dJpla~tiC = 8PLIM 2Y.—

dA
= ~. (lo)

w ~a

Hence, the slope of the J-A curve is constant in the fully-plastic, non-hardening regime, and this can be

used to verify the FE results.

The values of J obtained are normalized using EJ/Y2a, and the far-field displacement A is normalized
to EA/Yl, where 1? is the Young’s modulus, Y the yield strength, and 1 = (13 – a) is the ligament length

as shown in figure 4. The J-profile along the crack-front is shown in figure 4 (a) for three domains of
integration at the last increment of loading (i.e., at EA/Yl = 32), corresponding to the fully plastic case.

The values of J are normalized by the J obtained from the 2-D plane strain solution at the same load-level

(Le., at EA/Yl = 32). We observe some path dependence of the computed J-values along the crack-front
for the domain close to the crack tip (i.e., p/a = 0.4, p/a = 0.5 and p/a = 0.6). This is because of the

basic nature of the incremental theory of plasticity and is discussed in [4]. In our further analysis, for the

3-D meshes, we consider the average value of J along the crack-front, ~ = J Jdx/w, to represent the J
for a load-level. To validate the elastic-plastic analysis, we consider the slope of the normalized J-A curve

from ( 10) under fully plastic conditions. We now have the slope of the normalized J-A curve (under fully

plastic conditions), denoted (Slope)th as

d(EJ/Y2a)

d@A/Yl)
= (Slope)~~ = *. (11)

Figure 4 (b) shows the plot of normalized J (~ for the 3-D meshes) versus normalized A. Calculating

the slope of the curves from the FE computations from figure 4 (b), we have (Shpe)mg.tet.= 1.131,

(skpe)~rr.tet.= 1.120 and (Slope)~riC~~ = 1.134. We also have for the geometry modeled, (SVope)th =
1.155. Thus the slope of J – A curve has a variation of 3% from the theoretical value for the irregular

tetrahedral mesh and 2% for the regular tetrahedral mesh.

4.2 Semi-elliptical surface crack in a finite thickness plate

A semi-elliptical surface crack in a finite thickness plate is considered next. Full three-dimensional elastic-

plastic analysis of semi-elliptical surface cracks under tensile loading has been performed by Wang [5].

A semi-elliptical crack with a maximum penetration a and a total surface length of 2C is in the middle of

the plate. The plate has a thickness oft, total width 2b and total height 2h. The dimensional ratios of

the crack and plate are given by a/c = 0.24, a/t = 0.6, b/t = 8, and h/t = 16. These ratios are the
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Q: Straight through-thickness crack in plane strain. Elastic/perfectly-plastic material model is used with

Y/-E = 0.0011. (a) Normalized J profile along the crack-front. The values of J are normalized using the J-value

obtained from the 2-D plane strain solution for the load level EA/ (Yl) = 32.The values are shown for three domains

of integration: p/a = 0.4, p/a = 0.5, and p/a = 0.6, for the irregular tetrahedral mesh. (b) Variation of normalized

J (~ for the 3-D meshes) with normalized displacement for the FE meshes.

same as the crack geometry analyzed by Wang [5]. The model was loaded by a far-field uniform relative

displacement A. One-fourth of the specimen geometry is modeled. The Poisson’s ratio was set to 0.3 and

the Ramberg-Osgood deformation plasticity was used with a = 1. Results for a high strain hardening

(n= 5) case are reported here. Figure 5 (a) shows the variation of J at the symmetry plane normalized

by aotot versus normalized far-field stress, along with the results obtained by Wang [5], for n = 5. We
can observe from figure 5 (a) that the variation in J at the symmetry plane is less than 3% cjf the values

reported by Wang [5]. Figure 5 (b) shows the J-profile for a stress level Om/oo = 0.975, normalized by

J at the symmetry plane. The J at the free surface is about 20’ZOof the J at the symmetry plane. These
profiles are also plotted along with the profiles obtained by Wang [5] and show a close correlation to the

reported values.

5 Conclusions

With the development of CAD packages which can create complicated models and mesh them with tetra-

hedral elements with relative ease, there is a need for a general method to obtain crack-front singularity

strengths from tetrahedral element meshes so that the developments in the CAD systems can be directly

extended to the whole class of fracture and fatigue crack propagation prediction problems. The practicality

of the proposed method lies in its ability to obtain accurate results for elastic-plastic analysis from rather

irregular tetrahedral meshes readily obtained from commercially-available CAD packages possessing fairly

good meshing capabilities.

A “straightforward” implementation failed to produce acceptably accurate results because of the large

gradients within crack-front elements (both those having edge-coincidence with the crack front and those

making only vertex contact) introduced by node-based interpolation of domain perturbations of highly

localized support. This problem is offset by using perturbations of “extended support~’ numerical quadrature

using analytical] y-calculated gradients of the perturbation vector field, and interpolation with the use of the

nodal support at the boundaries of the model. On the meshes used, the method was shown to be accurate to

within 3 – 4% of the theoretical predictions for a wide range of problems.
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Figure 5: Semi-elliptical surface crack in a finite thickness plate. Ramberg-Osgood deformation plasticity is used

with n = 5 and a = 1. (a) Variation of normalized J at the symmetry plane at different load levels. (b) Variation of

J, normalized by J at the symmetry plane, along the crack-front at load level &/aO = 0.975.
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ON PREDICTING THE TRANSITION IN PROBABILITY OF RARE CLEAV,4GE
IN DUCTILE CRACKED STRUCTURES

Frank A. McClintock and David M. Parks

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, U.S.A.

ABSTRACT

If a structure normally undergoes micro-ductile cracking, the probability of
cleavage that might shatter the structure should be very small, say e 0.00001.
Economic and practical considerations dictate that data be obtained from few,
small, quickly tested specimens, perhaps cut from the structure. The results must
be extrapolated to the desired very low probability of cleavage in the structure.

Such extrapolation must take into account statistics, size, the compliance of
the structure, strain rates, and localized temperature changes. There are theories
for the brittle lower shelf and transition regimes, but not for the upper shelf
where no macro-cleavage is found in small specimens. An approximiite
mechanistic model suggests using fractographic examinations for the small
fraction of cleaved grains and a micro-mechanical study of the criti~;al
agglomeration of cleaved grains that would cause macro-cleavage.

1. INTRODUCTION

1.1 The Problem

There are perhaps a dozen kinds of cleavage transition temperatures. But what is wanted is
that of the structure of concern, not of a test specimen. Furthermore, there should be iivery low
probability (= 10-5) that the structure will cleave and possibly shatter. Economics dictates that
the data be obtained from relatively few, small, quickly tested specimens. The results must be
extrapolated, taking into account statistics, size, the compliance of the structure, strain rates, and
localized temperature changes. Such theones have been proposed for the brittle lower shelf and
transition regimes, but not for the rare cleavage fractures in structures that should be ductile
even under design-specified accidents. A method of reaching this objective is outlined here.

1.2 The State of the Art

Typically, the mechanisms of cracking are idealized as a competition between cleavage and
the nucleation, growth, and linkage of holes. (But cleavage facets must also link,, and hole
nucleation may involve cleavage.) A number of analyses could be used. Fracture micro-
mechanics at the atomic scale would in principle predict cleavage fracture in structures, but
even if the myriad details of initial dislocation and metallurgical structures were known, it
would be a hundred years before the crack growth across a 25 mm thick, 200 mm square plate
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could be calculated in a day. Fracture micromechanics at the 10-micron scale so far does not
deal with observed roughness of 100 to 1000 pm, the inhomogeneous slip in a grain caused by
neighboring grains, or the distortions of the yield locus thatoccur with the non-radial loading
around a blunting or growing crack. While micromechanics should be pursued for insight and
its future promise, to predict the behavior of large welded structureswe also need engineering
approximations startingfrom testson cm-sized, cracked specimens cut from the weld and from
the base metal. These predictions should be based on macrornechanics.

Fracture macromechanics characterizes the stress and strain fields in an annular region
around a crack tip by a few crack tip driving parameters(Dl%). The relations between these
and the crack tip response functions (RF’s) are found from tests on small specimens. Fracture
macromechanics then determines the DP’s from the applied loads and deformations, and
predicts the resulting crack growth in structures from the RF’s. There are three main types of
fracture macromechanics, useful with increasing plastic zone sizes relative to the size of the
cracked net section. Linear elastic fractu re mechani cs (LEFM) applies to the initial growth of a
pre-existing crack when there is an annular elastic region around the tip of the crack that is large
compared to the fracture process zone, to the plastic zone, and to any stable crack growth.
Also, the annular region must be small compared to the distance to any other free sutidce or
applied load. Then the stress and strain fields, and hence cracking, are governed by crack tip
driving parameters (DP’s) consisting of the stress intensity factor K , the mode of loading, and
possibly the second-order, constant local tensile stress T parallel to the crack. The initial
growth of a macro-crack by cleavage is almost always unstable when LEFM applies. Therefore
for Mode I cleavage cracking, the crack tip response function (RF) is sitnply a critical function:
KIC(T) . Non-linear elastic fractu re mechanics (NLEFM) applies to the similar situation with
power-law, non-linear elasticity giving the Hutchinson, and Rice and Rosengren (HRR) stress
and displacement fields. NLEFM can treat crack initiation in elastic-plastic structures (EPFM)
if the loading is radial in the sense that the plastic strain increments in an element remain in
constant ratios to each other. This requires that any crack growth be small compared to the
outer radius of validity of the HRR field. The driving parameters DP are J , the mode, and
possibly Shih’s triaxiality parameter Q . The local field for quasi-steady growth with linearly
harde nin~ fractu re mechanic s (LHFM) has been foundl, but not the domain of validity nor the
connection to the far-field configuration and loading.

SliD line fracture rnechanic$ (SLFM) is a third main type, useful for the desirably ductile
structures that require a plastic net section for extended crack growth. SLFM applies when the
local fields around a crack tip can be approximated by plane strain, rigid-plastic, nonha.rdening,
slip line plasticity, with only one or two slip lines emanating from the tip. For symmetrical
Mode I loading, the DP’s are the angle es from the crack direction to the slip lines, the normal
stress on across them, and the displacement discontinuity du~ across them for an increment of
loading. For the initiation of crack growth the RF of the DP’s is u i . The crack tip opening
displacement CTODi for the initiation of crack growth (see Fig. 1)23 is then

CTODi = 2U~iCOS 8S . (1)

similarly, for growth the micro-crack advance per unit slip, dc/du~ , can be converted to the
crack tip opening angle CTOA:

tan(CTOA / 2) = sin 0~ / (dc/du~ + cos OS) . (2)

For a single slip plane typical of mixed mode cracking, the DP’s and RF’s are similar except
that the crack direction is an added RF when expressed relative to the slip line, ec -es 4.

In process zone comwtational mechanics (PZCM), there is no annular field between macro-
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Figure 1. Non-hardening Ligament Reduction by Deformation and Micro-Cracking
Note sliding off and microcracking at crack tip and drawing-in of back fiace.

mechanics and the fracture process zone. Rather, the process zone is confined to a single plane
modeled by a thin layer of finite elements. Fracture is specified by a traction-displacement
relation across these elements. If the relation is linear and the deformation is Mode I, the
relation can be characterized by a strain-dependent peak stress at the tip of the zone, ~lnX(8) ,
and the crack opening displacement where the tmction goes to zero, CTODnlX . Linearity may
not be sufficiently accurate if cleavage cracking causes an abrupt drop in traction followed by a
slow decrease due to tearing of the ligaments between cleavage Facets. PZFM has the
limitations of not providing closed-form expressions, helpful for interpreting tests on cm-sized
specimens. In spite of these difficulties, two-parameter computations have been made by
Needleman and by Shih. Further computations should be pursued, general conditions for
validity, and the relations to LEFM, NLEFM, and SLFM should be sought. For instance, if
there is no plastic flow in the flanks behind the crack tip, Kim3 has shown there is no effect of
the decohering zone on the slip line field, except for a small increase in the limit load.

The effects of finite grain size and statistics in the K- and J-regimes are too numerous to cite
here, but some discussion will be given in Sec. 3.5.

2. A SAMPLE PROBLEM

Consider a large plate with a far-field extension u~ normal to a surhce crack (Fig. 2). Let
the crack extend all across the plate so plane strain applies, except near the free surfi~ces at the
ends of the crack. Before initial crack growth, first the K field, then the J field, and possibly
an SLFM field applies. For full plasticity and extended growth, SLFM is used as the simplest
available field. To illustrate the overall procedure for finding the transition curves of such a
structure from small specimen tests, simplify the loadings and responses to one variable each.
Thus take both the specimens and the structure to be under pure extension, u_sP and u~~lr ,
and take the crack tip DP’s to be purely K1 , J , and dus . That is, ignore bending. triaxiahty,
(changes in CJn , and (3s ), even though they do arise from the bending as the decreasing
ligament interacts with the plate compliance.

132



Q!
b

4CIU*

Figure 2. Illustrative Example of a Long Surfiace Crack in a Plate

3. OPENING AT ORIGINAL CRACK TIP VERSUS APPLIED DISPLACEMENT

3.1 Completely Stable Micro-Ductile Crack Growth in the Specimen

For all the KI , J , and u.s fields, the increment in opening of the original criick tip,
dCToOD , can be taken as the crack tip DP. Thus cracking in the specimen can be represented
as a single curve of CToODsp versus its far-field half-displacement (um)sp (see Fig. 3). The
curve is found from continuum mechanics or FEM. In the SLFM regime, the shoulders and
ends of the specimen are rigid, so the CToOD-u~ relation is linear with a slope of two. For the
initiation of crack growth, the crack tip RF is here simply CTODi, obtained by 3-D
fractography. For growth of the crack in SLFM, the crock tip RF is dc/dus . It is found by
adding to Fig. 3 at ucoi a second ordinate, namely the crack length as measured by the
reduction of the remaining ligament ~~– ~. The relation of the ligament reduction to dc/dus is
found by first noting that for this example, with (IS= 45° slip, the far field half-displacement
du~ is given in terms of dus by

The corresponding ligament reduction is now found from Fig. 1 first in terms of dus on etich
45° slip line by taking into account the drawing-in of the back face and then introducing Eq. 3:

Figure 3. Opening at Original Ctack Tip, CTOOD, versus Far-field Displacement, u~
For initial and continuing micro-ductile crack growth, with

regimes for valid K-, J-, and us- fracture mechanics, as well as cleavage and instability cut-offs.



-dc=2$&&. .2dl,.+&Z& ; --#=2 +@$- .
s s s

(4)

Scatter in CTODi and in dc/dus during micro-ductile fracture are ignored in this example. If
there is no prior instability or cleavage, the specimen fails when the ligament becomes zero.

The curves in Fig. 3 of CTOD and then li – f versus Um depend on the specimen size
through the remaining ligament at initiation, li , and through the far-field compliar[ce. They
also depend on the temperature and loading rate, especially if changed from quasi-static to rapid
(“impact”) rates. Here, all specimens will be regarded as rapid-loaded, so rate effects will be
ignored until considering the transition behavior of a nearly static structure.

In summary, up to initiation CTOD(u~) is found from analysis or the FEM. CTODi is
found from 3-D fractography. It appears that the variables ~i – 1 and CTOOD must be found
ultrasonically or by sectioning at various stages. Curves such as Fig. 3, up to instability,
cleavage, or final penetration, must be found for each temperature in the transition regime.

3.2 Instability

If the load drop per unit extension across the net section decreases, for instance due to
damage ahexad of the crack giving a smaller crack opening angle, or if the stiffness of the
loading decreases at low loads, instability may intervene before crack penetration through the
thickness. The resulting upward curvature of the plot of CTOOD versus u~ is shown by a
dashed line in Fig. 3. When the applied extension per unit load drop goes to zero, (he system
becomes unstable even if the surroundings are infinitely stiff and the load is still finite.

3.3 Cleavage Cracking, with Variability

Representative experimental variability in cleavage is shown by the horizontal marks on the
curve of Fig. 3, grouped by the various nominal specimen temperatures TsP . Cleavage may
occur when the crack tip is K-, J-, or us-controlled, depending on temperature. Also, it may
occur before or during micro-ductile crack growth, or not at all, as the structural engineer hopes.

3.4 Deriving the Material-determined Reference Probability Plot from the Specimen Tests

This requires correcting the dard of Fig. 3 for local temperature and statistical effects: a) In
pre-cracked impact tests on a tough structural steel (8 = 0.25, CJ= 600 MPa), the crack tip
tem~eratures Tti

?-
may be 15-40”C higher than the pre-test specimen temperature TsP . For

initiation, Ttip - sp depends strongly on the size of the plastic zone and on blunting. (Note
that blunting effects may be minimized in low-cycle fatigue, which occurs in earthquakes or
repeated service loads, with the crack approaching its critical length.) For growing cracks, T[ip

- Ts depends on the crack velocity and the strength and sharpness of the accompanying shear
bam!s. b) The probability of cleava~e is affected by the length of the crack front in plane strain,
bpl stn. This varies from specimen to specimen because bpl sill varies with the CTOD through
the end effects caused by the shear lip, for example. The data of Fig. 3 must be corrected to a
common reference length bre~. For small corrections,

CTODi ,$ = CToDi5P+
(acy)yref-TliP)+(ac;:)Jg)yllf-~/Jisl,l)- (5)

For an initial iteration, the first two partial derivatives can be obtained from Fig. 3. The
statktical size effect , (dP/~b)T, comes from the theory for the assumed distribution function.

134



The probability PI, for the nlll specimen can be estimated from order statistics:

P,, =11 / (/ln,m + 1) . (6)

Equations 5 and 6 give the physical initiation probabilities P(Trcf, CrODi ~cf, brer) from the
specimen data P(Tsl), CTODi 5P, bpl sill) Such as Fig. 3.

The probabilities of cleavage before and during crack growth under the reference conditions
are plotted in Fig. 4 as CTOOD versus Trcf for lines of constiant P from Eq. 6. For simplicity,
the displacements CTODi and CToODf are assumed independent of temperature. The
original data and its corrections to Trcf and bmf are shown as dots connected by lines.

As micro-ductile crack growth begins, the tip temperatures decrease, and the temperature
corrections beome less. It is assumed here that the increase in probability of cleavage with
CTOOD also becomes less, so the lines of constant probability bend sharply upward. The final
corrected points are connected by dashed lines where data are limited. Note that dav~ should be
taken at closely spaced temperatures near initiation and in the crdck growth region (near the
upper shelf fracture appearance transition).

Crack Penetration deDends on the thickness. The mobabilities of frztcture converge to a
single linev since scatter i; micro-ductile cracking has be& neglected.

Reference temperature Tr.f

Figure 4. CTOOD versus Temperature Corrected to Reference Conditions
Lines of constmt probability of cleavage.

Bends occur at initial micro-ductile crack growth, taken independent of temperature.

3.5 Extrapolating the Reference Plot to the Required Cleavage Probability before Initiation

Models for estimating CTODC(P) are too numerous to cite here. In spite of the fiict that the
triggering of cleavage fracture is often a cooperative rather than a single event, extreme wtlue
(EV) statistics are usually assumed. Note that EV distributions are not necessarily approached
by the extremes of large samples (as the normal distribution is approached by the means of large
samples). Further, a change of variables shows that in LEFM if the distribution of crdck lengths
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is EV, the distribution of strengths is not. Rather, EV distributions are ones whose underlying
form remains unchanged with sample size. They involve three parameters. In principle, for
either of the lower two reference temperatures of Fig. 4, these parameters could be estimated
from the distribution of CTOD’S of the specimens, and then the extrapolation made to the
desired probability. In practice, the spread of such estimates is hopeless. Weibull has said that
to distinguish a log-normal distribution from the most close] y matching EV distribution would
require a sample size of 20,000! So one must make a number of different assumptions based on
experience, and then again from experience, select a number based on those results.

At temperatures TrCt-3 and above, extrapolation fails because the critical initiation data are
truncated or non-existent. Again in principle, one might try to estimate the tenlperature-
dependence for each of the EV parameters at lower TrC~s and use those to get ~ODi(P) . For
growth, the means of estimation will be discussed in Sec. 4.2 in connection with structures.

4. FINDING THE ALLOWABLE CTOOD(P) FOR A STRUCIWRE

4.1 The Cleavage Probability before the Initiation of Crock Growth

For initiation, the reference temperature for the structure could be found from the structural
conditions as for the specimens, but also ~dking into account the effects of deformation rote.
perhaps by the rate modified temperature. With a mnge of reference probabilities before
initiation plotted in Fig. 4, the appropriate CTOD before initiation could be read. Mechanics
could then give the allowable crack length in the structure for its geometry and 1oading. An
iteration might be needed to account for the volume ahead of the crack, using EV ideas. But
this all deals with relatively brittle structures, which cleave before the initiation of micro-ducti Ie
crack growth. We finally turn to the upper right corner of Fig. 4, where all specimens have been
totally macro-ductile, but some structures will cleave during macro-ductile crack growth.

4.2 The Required Cleavage Probability during Crack Growth

An approximate model of the s~~tistics of cleavage during plastic crack growth was based
On a probability of cleavage of an individual grain, pg , and the assumption that unstable
macro-cleavage cracking occurs when a small patch of area AP of neighboring grains huve
cleaveds. The number of independent patches per unit area was taken to be A/Ag to
(A/A )/(A~Ag) . For a through-crack in a pressure vessel, the surfidce area might be A =
20x280 mm = 4 10~ mmz . For a 20 pm grain size, with Ag = 4x10-4 nm12 , this would give
A/Ag = 107. The allowable probability of a macro-cleavage fracture might be, say, 1- Psrv =
10-6. Since the grain! per patch that would trigger macro cleavage appear to be Al+’Ag = 1 to
lU , the approximation

A

[1

A,, 1– P~r,,
—= lto —
Ag Ag p8Ai) IA8

; Pg= [’+]l;:;:r’’”g). (7)

shows that the material-, stress-, and temperature-dependent grain cleavage probability would
be pg = 10-13 to 0.06. Clearly, the critical number of grains per patch, A1l/Ag , is essential.
Further studies to clwify the analysis should include the following;

a) From Wably tearing plates, measure the frtaction of grains cleaved, pg .
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b) From fractogmphy and from micromechanics, including dynamics and rate
effects, estimate the patch size (area of contiguous cracked groins) needed m
trigger macroscopic cleavage for the conditions of the stably growing plastic crack.

c) In Eq. 7, use those numbers, along with the desired PSrv , to estimate the
allowable area swept out before macroscopic, unstable cleavage.

For example, if one can determine from fractograph y that at a given temperature the
probability of cleavage of an individual grdin k 110 more than Pg =10-3 , if a patch size Of

B’
= 4 is required for macro-cleavage, and if the probability of survival is to be at least

$ 4599, Eq. 7 indicates that a plastic crack must not grow beyond A/Ag = (1to4)xl@. This
means that for a grain size of 20 pm, the area swept out by the plastic crock must be 1imited to
A c 400 to 1600 mm2, a rather severe restriction for steel structures.

The difficulty of determining the critical patch size, Step (b), seems to mean that further
studies are essential for a tnethod to design of ductile structures of high reliabi 1ity.

CONCLUSION

The crucial step in assuring vely low probabilities of cleavage in normally ductile structures
is predicting the probability of rttre macro-cleavage during micro-ductile crack growth. An
approximate analysis provides a method of making such estimates when the macro-cleavage is
due to a critical patch of A~Ag cleaved grains.
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